pyxllib 0.3.96__py3-none-any.whl → 0.3.197__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (306) hide show
  1. pyxllib/algo/geo.py +12 -0
  2. pyxllib/algo/intervals.py +1 -1
  3. pyxllib/algo/matcher.py +78 -0
  4. pyxllib/algo/pupil.py +187 -19
  5. pyxllib/algo/specialist.py +2 -1
  6. pyxllib/algo/stat.py +38 -2
  7. {pyxlpr → pyxllib/autogui}/__init__.py +1 -1
  8. pyxllib/autogui/activewin.py +246 -0
  9. pyxllib/autogui/all.py +9 -0
  10. pyxllib/{ext/autogui → autogui}/autogui.py +40 -11
  11. pyxllib/autogui/uiautolib.py +362 -0
  12. pyxllib/autogui/wechat.py +827 -0
  13. pyxllib/autogui/wechat_msg.py +421 -0
  14. pyxllib/autogui/wxautolib.py +84 -0
  15. pyxllib/cv/slidercaptcha.py +137 -0
  16. pyxllib/data/echarts.py +123 -12
  17. pyxllib/data/jsonlib.py +89 -0
  18. pyxllib/data/pglib.py +514 -30
  19. pyxllib/data/sqlite.py +231 -4
  20. pyxllib/ext/JLineViewer.py +14 -1
  21. pyxllib/ext/drissionlib.py +277 -0
  22. pyxllib/ext/kq5034lib.py +0 -1594
  23. pyxllib/ext/robustprocfile.py +497 -0
  24. pyxllib/ext/unixlib.py +6 -5
  25. pyxllib/ext/utools.py +108 -95
  26. pyxllib/ext/webhook.py +32 -14
  27. pyxllib/ext/wjxlib.py +88 -0
  28. pyxllib/ext/wpsapi.py +124 -0
  29. pyxllib/ext/xlwork.py +9 -0
  30. pyxllib/ext/yuquelib.py +1003 -71
  31. pyxllib/file/docxlib.py +1 -1
  32. pyxllib/file/libreoffice.py +165 -0
  33. pyxllib/file/movielib.py +9 -0
  34. pyxllib/file/packlib/__init__.py +112 -75
  35. pyxllib/file/pdflib.py +1 -1
  36. pyxllib/file/pupil.py +1 -1
  37. pyxllib/file/specialist/dirlib.py +1 -1
  38. pyxllib/file/specialist/download.py +10 -3
  39. pyxllib/file/specialist/filelib.py +266 -55
  40. pyxllib/file/xlsxlib.py +205 -50
  41. pyxllib/file/xlsyncfile.py +341 -0
  42. pyxllib/prog/cachetools.py +64 -0
  43. pyxllib/prog/filelock.py +42 -0
  44. pyxllib/prog/multiprogs.py +940 -0
  45. pyxllib/prog/newbie.py +9 -2
  46. pyxllib/prog/pupil.py +129 -60
  47. pyxllib/prog/specialist/__init__.py +176 -2
  48. pyxllib/prog/specialist/bc.py +5 -2
  49. pyxllib/prog/specialist/browser.py +11 -2
  50. pyxllib/prog/specialist/datetime.py +68 -0
  51. pyxllib/prog/specialist/tictoc.py +12 -13
  52. pyxllib/prog/specialist/xllog.py +5 -5
  53. pyxllib/prog/xlosenv.py +7 -0
  54. pyxllib/text/airscript.js +744 -0
  55. pyxllib/text/charclasslib.py +17 -5
  56. pyxllib/text/jiebalib.py +6 -3
  57. pyxllib/text/jinjalib.py +32 -0
  58. pyxllib/text/jsa_ai_prompt.md +271 -0
  59. pyxllib/text/jscode.py +159 -4
  60. pyxllib/text/nestenv.py +1 -1
  61. pyxllib/text/newbie.py +12 -0
  62. pyxllib/text/pupil/common.py +26 -0
  63. pyxllib/text/specialist/ptag.py +2 -2
  64. pyxllib/text/templates/echart_base.html +11 -0
  65. pyxllib/text/templates/highlight_code.html +17 -0
  66. pyxllib/text/templates/latex_editor.html +103 -0
  67. pyxllib/text/xmllib.py +76 -14
  68. pyxllib/xl.py +2 -1
  69. pyxllib-0.3.197.dist-info/METADATA +48 -0
  70. pyxllib-0.3.197.dist-info/RECORD +126 -0
  71. {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info}/WHEEL +1 -2
  72. pyxllib/ext/autogui/__init__.py +0 -8
  73. pyxllib-0.3.96.dist-info/METADATA +0 -51
  74. pyxllib-0.3.96.dist-info/RECORD +0 -333
  75. pyxllib-0.3.96.dist-info/top_level.txt +0 -2
  76. pyxlpr/ai/__init__.py +0 -5
  77. pyxlpr/ai/clientlib.py +0 -1281
  78. pyxlpr/ai/specialist.py +0 -286
  79. pyxlpr/ai/torch_app.py +0 -172
  80. pyxlpr/ai/xlpaddle.py +0 -655
  81. pyxlpr/ai/xltorch.py +0 -705
  82. pyxlpr/data/__init__.py +0 -11
  83. pyxlpr/data/coco.py +0 -1325
  84. pyxlpr/data/datacls.py +0 -365
  85. pyxlpr/data/datasets.py +0 -200
  86. pyxlpr/data/gptlib.py +0 -1291
  87. pyxlpr/data/icdar/__init__.py +0 -96
  88. pyxlpr/data/icdar/deteval.py +0 -377
  89. pyxlpr/data/icdar/icdar2013.py +0 -341
  90. pyxlpr/data/icdar/iou.py +0 -340
  91. pyxlpr/data/icdar/rrc_evaluation_funcs_1_1.py +0 -463
  92. pyxlpr/data/imtextline.py +0 -473
  93. pyxlpr/data/labelme.py +0 -866
  94. pyxlpr/data/removeline.py +0 -179
  95. pyxlpr/data/specialist.py +0 -57
  96. pyxlpr/eval/__init__.py +0 -85
  97. pyxlpr/paddleocr.py +0 -776
  98. pyxlpr/ppocr/__init__.py +0 -15
  99. pyxlpr/ppocr/configs/rec/multi_language/generate_multi_language_configs.py +0 -226
  100. pyxlpr/ppocr/data/__init__.py +0 -135
  101. pyxlpr/ppocr/data/imaug/ColorJitter.py +0 -26
  102. pyxlpr/ppocr/data/imaug/__init__.py +0 -67
  103. pyxlpr/ppocr/data/imaug/copy_paste.py +0 -170
  104. pyxlpr/ppocr/data/imaug/east_process.py +0 -437
  105. pyxlpr/ppocr/data/imaug/gen_table_mask.py +0 -244
  106. pyxlpr/ppocr/data/imaug/iaa_augment.py +0 -114
  107. pyxlpr/ppocr/data/imaug/label_ops.py +0 -789
  108. pyxlpr/ppocr/data/imaug/make_border_map.py +0 -184
  109. pyxlpr/ppocr/data/imaug/make_pse_gt.py +0 -106
  110. pyxlpr/ppocr/data/imaug/make_shrink_map.py +0 -126
  111. pyxlpr/ppocr/data/imaug/operators.py +0 -433
  112. pyxlpr/ppocr/data/imaug/pg_process.py +0 -906
  113. pyxlpr/ppocr/data/imaug/randaugment.py +0 -143
  114. pyxlpr/ppocr/data/imaug/random_crop_data.py +0 -239
  115. pyxlpr/ppocr/data/imaug/rec_img_aug.py +0 -533
  116. pyxlpr/ppocr/data/imaug/sast_process.py +0 -777
  117. pyxlpr/ppocr/data/imaug/text_image_aug/__init__.py +0 -17
  118. pyxlpr/ppocr/data/imaug/text_image_aug/augment.py +0 -120
  119. pyxlpr/ppocr/data/imaug/text_image_aug/warp_mls.py +0 -168
  120. pyxlpr/ppocr/data/lmdb_dataset.py +0 -115
  121. pyxlpr/ppocr/data/pgnet_dataset.py +0 -104
  122. pyxlpr/ppocr/data/pubtab_dataset.py +0 -107
  123. pyxlpr/ppocr/data/simple_dataset.py +0 -372
  124. pyxlpr/ppocr/losses/__init__.py +0 -61
  125. pyxlpr/ppocr/losses/ace_loss.py +0 -52
  126. pyxlpr/ppocr/losses/basic_loss.py +0 -135
  127. pyxlpr/ppocr/losses/center_loss.py +0 -88
  128. pyxlpr/ppocr/losses/cls_loss.py +0 -30
  129. pyxlpr/ppocr/losses/combined_loss.py +0 -67
  130. pyxlpr/ppocr/losses/det_basic_loss.py +0 -208
  131. pyxlpr/ppocr/losses/det_db_loss.py +0 -80
  132. pyxlpr/ppocr/losses/det_east_loss.py +0 -63
  133. pyxlpr/ppocr/losses/det_pse_loss.py +0 -149
  134. pyxlpr/ppocr/losses/det_sast_loss.py +0 -121
  135. pyxlpr/ppocr/losses/distillation_loss.py +0 -272
  136. pyxlpr/ppocr/losses/e2e_pg_loss.py +0 -140
  137. pyxlpr/ppocr/losses/kie_sdmgr_loss.py +0 -113
  138. pyxlpr/ppocr/losses/rec_aster_loss.py +0 -99
  139. pyxlpr/ppocr/losses/rec_att_loss.py +0 -39
  140. pyxlpr/ppocr/losses/rec_ctc_loss.py +0 -44
  141. pyxlpr/ppocr/losses/rec_enhanced_ctc_loss.py +0 -70
  142. pyxlpr/ppocr/losses/rec_nrtr_loss.py +0 -30
  143. pyxlpr/ppocr/losses/rec_sar_loss.py +0 -28
  144. pyxlpr/ppocr/losses/rec_srn_loss.py +0 -47
  145. pyxlpr/ppocr/losses/table_att_loss.py +0 -109
  146. pyxlpr/ppocr/metrics/__init__.py +0 -44
  147. pyxlpr/ppocr/metrics/cls_metric.py +0 -45
  148. pyxlpr/ppocr/metrics/det_metric.py +0 -82
  149. pyxlpr/ppocr/metrics/distillation_metric.py +0 -73
  150. pyxlpr/ppocr/metrics/e2e_metric.py +0 -86
  151. pyxlpr/ppocr/metrics/eval_det_iou.py +0 -274
  152. pyxlpr/ppocr/metrics/kie_metric.py +0 -70
  153. pyxlpr/ppocr/metrics/rec_metric.py +0 -75
  154. pyxlpr/ppocr/metrics/table_metric.py +0 -50
  155. pyxlpr/ppocr/modeling/architectures/__init__.py +0 -32
  156. pyxlpr/ppocr/modeling/architectures/base_model.py +0 -88
  157. pyxlpr/ppocr/modeling/architectures/distillation_model.py +0 -60
  158. pyxlpr/ppocr/modeling/backbones/__init__.py +0 -54
  159. pyxlpr/ppocr/modeling/backbones/det_mobilenet_v3.py +0 -268
  160. pyxlpr/ppocr/modeling/backbones/det_resnet_vd.py +0 -246
  161. pyxlpr/ppocr/modeling/backbones/det_resnet_vd_sast.py +0 -285
  162. pyxlpr/ppocr/modeling/backbones/e2e_resnet_vd_pg.py +0 -265
  163. pyxlpr/ppocr/modeling/backbones/kie_unet_sdmgr.py +0 -186
  164. pyxlpr/ppocr/modeling/backbones/rec_mobilenet_v3.py +0 -138
  165. pyxlpr/ppocr/modeling/backbones/rec_mv1_enhance.py +0 -258
  166. pyxlpr/ppocr/modeling/backbones/rec_nrtr_mtb.py +0 -48
  167. pyxlpr/ppocr/modeling/backbones/rec_resnet_31.py +0 -210
  168. pyxlpr/ppocr/modeling/backbones/rec_resnet_aster.py +0 -143
  169. pyxlpr/ppocr/modeling/backbones/rec_resnet_fpn.py +0 -307
  170. pyxlpr/ppocr/modeling/backbones/rec_resnet_vd.py +0 -286
  171. pyxlpr/ppocr/modeling/heads/__init__.py +0 -54
  172. pyxlpr/ppocr/modeling/heads/cls_head.py +0 -52
  173. pyxlpr/ppocr/modeling/heads/det_db_head.py +0 -118
  174. pyxlpr/ppocr/modeling/heads/det_east_head.py +0 -121
  175. pyxlpr/ppocr/modeling/heads/det_pse_head.py +0 -37
  176. pyxlpr/ppocr/modeling/heads/det_sast_head.py +0 -128
  177. pyxlpr/ppocr/modeling/heads/e2e_pg_head.py +0 -253
  178. pyxlpr/ppocr/modeling/heads/kie_sdmgr_head.py +0 -206
  179. pyxlpr/ppocr/modeling/heads/multiheadAttention.py +0 -163
  180. pyxlpr/ppocr/modeling/heads/rec_aster_head.py +0 -393
  181. pyxlpr/ppocr/modeling/heads/rec_att_head.py +0 -202
  182. pyxlpr/ppocr/modeling/heads/rec_ctc_head.py +0 -88
  183. pyxlpr/ppocr/modeling/heads/rec_nrtr_head.py +0 -826
  184. pyxlpr/ppocr/modeling/heads/rec_sar_head.py +0 -402
  185. pyxlpr/ppocr/modeling/heads/rec_srn_head.py +0 -280
  186. pyxlpr/ppocr/modeling/heads/self_attention.py +0 -406
  187. pyxlpr/ppocr/modeling/heads/table_att_head.py +0 -246
  188. pyxlpr/ppocr/modeling/necks/__init__.py +0 -32
  189. pyxlpr/ppocr/modeling/necks/db_fpn.py +0 -111
  190. pyxlpr/ppocr/modeling/necks/east_fpn.py +0 -188
  191. pyxlpr/ppocr/modeling/necks/fpn.py +0 -138
  192. pyxlpr/ppocr/modeling/necks/pg_fpn.py +0 -314
  193. pyxlpr/ppocr/modeling/necks/rnn.py +0 -92
  194. pyxlpr/ppocr/modeling/necks/sast_fpn.py +0 -284
  195. pyxlpr/ppocr/modeling/necks/table_fpn.py +0 -110
  196. pyxlpr/ppocr/modeling/transforms/__init__.py +0 -28
  197. pyxlpr/ppocr/modeling/transforms/stn.py +0 -135
  198. pyxlpr/ppocr/modeling/transforms/tps.py +0 -308
  199. pyxlpr/ppocr/modeling/transforms/tps_spatial_transformer.py +0 -156
  200. pyxlpr/ppocr/optimizer/__init__.py +0 -61
  201. pyxlpr/ppocr/optimizer/learning_rate.py +0 -228
  202. pyxlpr/ppocr/optimizer/lr_scheduler.py +0 -49
  203. pyxlpr/ppocr/optimizer/optimizer.py +0 -160
  204. pyxlpr/ppocr/optimizer/regularizer.py +0 -52
  205. pyxlpr/ppocr/postprocess/__init__.py +0 -55
  206. pyxlpr/ppocr/postprocess/cls_postprocess.py +0 -33
  207. pyxlpr/ppocr/postprocess/db_postprocess.py +0 -234
  208. pyxlpr/ppocr/postprocess/east_postprocess.py +0 -143
  209. pyxlpr/ppocr/postprocess/locality_aware_nms.py +0 -200
  210. pyxlpr/ppocr/postprocess/pg_postprocess.py +0 -52
  211. pyxlpr/ppocr/postprocess/pse_postprocess/__init__.py +0 -15
  212. pyxlpr/ppocr/postprocess/pse_postprocess/pse/__init__.py +0 -29
  213. pyxlpr/ppocr/postprocess/pse_postprocess/pse/setup.py +0 -14
  214. pyxlpr/ppocr/postprocess/pse_postprocess/pse_postprocess.py +0 -118
  215. pyxlpr/ppocr/postprocess/rec_postprocess.py +0 -654
  216. pyxlpr/ppocr/postprocess/sast_postprocess.py +0 -355
  217. pyxlpr/ppocr/tools/__init__.py +0 -14
  218. pyxlpr/ppocr/tools/eval.py +0 -83
  219. pyxlpr/ppocr/tools/export_center.py +0 -77
  220. pyxlpr/ppocr/tools/export_model.py +0 -129
  221. pyxlpr/ppocr/tools/infer/predict_cls.py +0 -151
  222. pyxlpr/ppocr/tools/infer/predict_det.py +0 -300
  223. pyxlpr/ppocr/tools/infer/predict_e2e.py +0 -169
  224. pyxlpr/ppocr/tools/infer/predict_rec.py +0 -414
  225. pyxlpr/ppocr/tools/infer/predict_system.py +0 -204
  226. pyxlpr/ppocr/tools/infer/utility.py +0 -629
  227. pyxlpr/ppocr/tools/infer_cls.py +0 -83
  228. pyxlpr/ppocr/tools/infer_det.py +0 -134
  229. pyxlpr/ppocr/tools/infer_e2e.py +0 -122
  230. pyxlpr/ppocr/tools/infer_kie.py +0 -153
  231. pyxlpr/ppocr/tools/infer_rec.py +0 -146
  232. pyxlpr/ppocr/tools/infer_table.py +0 -107
  233. pyxlpr/ppocr/tools/program.py +0 -596
  234. pyxlpr/ppocr/tools/test_hubserving.py +0 -117
  235. pyxlpr/ppocr/tools/train.py +0 -163
  236. pyxlpr/ppocr/tools/xlprog.py +0 -748
  237. pyxlpr/ppocr/utils/EN_symbol_dict.txt +0 -94
  238. pyxlpr/ppocr/utils/__init__.py +0 -24
  239. pyxlpr/ppocr/utils/dict/ar_dict.txt +0 -117
  240. pyxlpr/ppocr/utils/dict/arabic_dict.txt +0 -162
  241. pyxlpr/ppocr/utils/dict/be_dict.txt +0 -145
  242. pyxlpr/ppocr/utils/dict/bg_dict.txt +0 -140
  243. pyxlpr/ppocr/utils/dict/chinese_cht_dict.txt +0 -8421
  244. pyxlpr/ppocr/utils/dict/cyrillic_dict.txt +0 -163
  245. pyxlpr/ppocr/utils/dict/devanagari_dict.txt +0 -167
  246. pyxlpr/ppocr/utils/dict/en_dict.txt +0 -63
  247. pyxlpr/ppocr/utils/dict/fa_dict.txt +0 -136
  248. pyxlpr/ppocr/utils/dict/french_dict.txt +0 -136
  249. pyxlpr/ppocr/utils/dict/german_dict.txt +0 -143
  250. pyxlpr/ppocr/utils/dict/hi_dict.txt +0 -162
  251. pyxlpr/ppocr/utils/dict/it_dict.txt +0 -118
  252. pyxlpr/ppocr/utils/dict/japan_dict.txt +0 -4399
  253. pyxlpr/ppocr/utils/dict/ka_dict.txt +0 -153
  254. pyxlpr/ppocr/utils/dict/korean_dict.txt +0 -3688
  255. pyxlpr/ppocr/utils/dict/latin_dict.txt +0 -185
  256. pyxlpr/ppocr/utils/dict/mr_dict.txt +0 -153
  257. pyxlpr/ppocr/utils/dict/ne_dict.txt +0 -153
  258. pyxlpr/ppocr/utils/dict/oc_dict.txt +0 -96
  259. pyxlpr/ppocr/utils/dict/pu_dict.txt +0 -130
  260. pyxlpr/ppocr/utils/dict/rs_dict.txt +0 -91
  261. pyxlpr/ppocr/utils/dict/rsc_dict.txt +0 -134
  262. pyxlpr/ppocr/utils/dict/ru_dict.txt +0 -125
  263. pyxlpr/ppocr/utils/dict/ta_dict.txt +0 -128
  264. pyxlpr/ppocr/utils/dict/table_dict.txt +0 -277
  265. pyxlpr/ppocr/utils/dict/table_structure_dict.txt +0 -2759
  266. pyxlpr/ppocr/utils/dict/te_dict.txt +0 -151
  267. pyxlpr/ppocr/utils/dict/ug_dict.txt +0 -114
  268. pyxlpr/ppocr/utils/dict/uk_dict.txt +0 -142
  269. pyxlpr/ppocr/utils/dict/ur_dict.txt +0 -137
  270. pyxlpr/ppocr/utils/dict/xi_dict.txt +0 -110
  271. pyxlpr/ppocr/utils/dict90.txt +0 -90
  272. pyxlpr/ppocr/utils/e2e_metric/Deteval.py +0 -574
  273. pyxlpr/ppocr/utils/e2e_metric/polygon_fast.py +0 -83
  274. pyxlpr/ppocr/utils/e2e_utils/extract_batchsize.py +0 -87
  275. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_fast.py +0 -457
  276. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_slow.py +0 -592
  277. pyxlpr/ppocr/utils/e2e_utils/pgnet_pp_utils.py +0 -162
  278. pyxlpr/ppocr/utils/e2e_utils/visual.py +0 -162
  279. pyxlpr/ppocr/utils/en_dict.txt +0 -95
  280. pyxlpr/ppocr/utils/gen_label.py +0 -81
  281. pyxlpr/ppocr/utils/ic15_dict.txt +0 -36
  282. pyxlpr/ppocr/utils/iou.py +0 -54
  283. pyxlpr/ppocr/utils/logging.py +0 -69
  284. pyxlpr/ppocr/utils/network.py +0 -84
  285. pyxlpr/ppocr/utils/ppocr_keys_v1.txt +0 -6623
  286. pyxlpr/ppocr/utils/profiler.py +0 -110
  287. pyxlpr/ppocr/utils/save_load.py +0 -150
  288. pyxlpr/ppocr/utils/stats.py +0 -72
  289. pyxlpr/ppocr/utils/utility.py +0 -80
  290. pyxlpr/ppstructure/__init__.py +0 -13
  291. pyxlpr/ppstructure/predict_system.py +0 -187
  292. pyxlpr/ppstructure/table/__init__.py +0 -13
  293. pyxlpr/ppstructure/table/eval_table.py +0 -72
  294. pyxlpr/ppstructure/table/matcher.py +0 -192
  295. pyxlpr/ppstructure/table/predict_structure.py +0 -136
  296. pyxlpr/ppstructure/table/predict_table.py +0 -221
  297. pyxlpr/ppstructure/table/table_metric/__init__.py +0 -16
  298. pyxlpr/ppstructure/table/table_metric/parallel.py +0 -51
  299. pyxlpr/ppstructure/table/table_metric/table_metric.py +0 -247
  300. pyxlpr/ppstructure/table/tablepyxl/__init__.py +0 -13
  301. pyxlpr/ppstructure/table/tablepyxl/style.py +0 -283
  302. pyxlpr/ppstructure/table/tablepyxl/tablepyxl.py +0 -118
  303. pyxlpr/ppstructure/utility.py +0 -71
  304. pyxlpr/xlai.py +0 -10
  305. /pyxllib/{ext/autogui → autogui}/virtualkey.py +0 -0
  306. {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info/licenses}/LICENSE +0 -0
@@ -1,414 +0,0 @@
1
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- import os
15
- import sys
16
- from PIL import Image
17
- __dir__ = os.path.dirname(os.path.abspath(__file__))
18
- sys.path.append(__dir__)
19
- sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
20
-
21
- os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
22
-
23
- import cv2
24
- import numpy as np
25
- import math
26
- import time
27
- import traceback
28
- import paddle
29
-
30
- import pyxlpr.ppocr.tools.infer.utility as utility
31
- from pyxlpr.ppocr.postprocess import build_post_process
32
- from pyxlpr.ppocr.utils.logging import get_logger
33
- from pyxlpr.ppocr.utils.utility import get_image_file_list, check_and_read_gif
34
-
35
- logger = get_logger()
36
-
37
-
38
- class TextRecognizer(object):
39
- def __init__(self, args):
40
- self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
41
- self.rec_batch_num = args.rec_batch_num
42
- self.rec_algorithm = args.rec_algorithm
43
- postprocess_params = {
44
- 'name': 'CTCLabelDecode',
45
- "character_dict_path": args.rec_char_dict_path,
46
- "use_space_char": args.use_space_char
47
- }
48
- if self.rec_algorithm == "SRN":
49
- postprocess_params = {
50
- 'name': 'SRNLabelDecode',
51
- "character_dict_path": args.rec_char_dict_path,
52
- "use_space_char": args.use_space_char
53
- }
54
- elif self.rec_algorithm == "RARE":
55
- postprocess_params = {
56
- 'name': 'AttnLabelDecode',
57
- "character_dict_path": args.rec_char_dict_path,
58
- "use_space_char": args.use_space_char
59
- }
60
- elif self.rec_algorithm == 'NRTR':
61
- postprocess_params = {
62
- 'name': 'NRTRLabelDecode',
63
- "character_dict_path": args.rec_char_dict_path,
64
- "use_space_char": args.use_space_char
65
- }
66
- elif self.rec_algorithm == "SAR":
67
- postprocess_params = {
68
- 'name': 'SARLabelDecode',
69
- "character_dict_path": args.rec_char_dict_path,
70
- "use_space_char": args.use_space_char
71
- }
72
- self.postprocess_op = build_post_process(postprocess_params)
73
- self.predictor, self.input_tensor, self.output_tensors, self.config = \
74
- utility.create_predictor(args, 'rec', logger)
75
- self.benchmark = args.benchmark
76
- self.use_onnx = args.use_onnx
77
- if args.benchmark:
78
- import auto_log
79
- pid = os.getpid()
80
- gpu_id = utility.get_infer_gpuid()
81
- self.autolog = auto_log.AutoLogger(
82
- model_name="rec",
83
- model_precision=args.precision,
84
- batch_size=args.rec_batch_num,
85
- data_shape="dynamic",
86
- save_path=None, #args.save_log_path,
87
- inference_config=self.config,
88
- pids=pid,
89
- process_name=None,
90
- gpu_ids=gpu_id if args.use_gpu else None,
91
- time_keys=[
92
- 'preprocess_time', 'inference_time', 'postprocess_time'
93
- ],
94
- warmup=0,
95
- logger=logger)
96
-
97
- def resize_norm_img(self, img, max_wh_ratio):
98
- imgC, imgH, imgW = self.rec_image_shape
99
- if self.rec_algorithm == 'NRTR':
100
- img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
101
- # return padding_im
102
- image_pil = Image.fromarray(np.uint8(img))
103
- img = image_pil.resize([100, 32], Image.ANTIALIAS)
104
- img = np.array(img)
105
- norm_img = np.expand_dims(img, -1)
106
- norm_img = norm_img.transpose((2, 0, 1))
107
- return norm_img.astype(np.float32) / 128. - 1.
108
-
109
- assert imgC == img.shape[2]
110
- # imgW = int((32 * max_wh_ratio))
111
- if self.use_onnx:
112
- w = self.input_tensor.shape[3:][0]
113
- if w is not None and w > 0:
114
- imgW = w
115
- h, w = img.shape[:2]
116
- ratio = w / float(h)
117
- if math.ceil(imgH * ratio) > imgW:
118
- resized_w = imgW
119
- else:
120
- resized_w = int(math.ceil(imgH * ratio))
121
- resized_image = cv2.resize(img, (resized_w, imgH))
122
- resized_image = resized_image.astype('float32')
123
- resized_image = resized_image.transpose((2, 0, 1)) / 255
124
- resized_image -= 0.5
125
- resized_image /= 0.5
126
- padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
127
- padding_im[:, :, 0:resized_w] = resized_image
128
- return padding_im
129
-
130
- def resize_norm_img_srn(self, img, image_shape):
131
- imgC, imgH, imgW = image_shape
132
-
133
- img_black = np.zeros((imgH, imgW))
134
- im_hei = img.shape[0]
135
- im_wid = img.shape[1]
136
-
137
- if im_wid <= im_hei * 1:
138
- img_new = cv2.resize(img, (imgH * 1, imgH))
139
- elif im_wid <= im_hei * 2:
140
- img_new = cv2.resize(img, (imgH * 2, imgH))
141
- elif im_wid <= im_hei * 3:
142
- img_new = cv2.resize(img, (imgH * 3, imgH))
143
- else:
144
- img_new = cv2.resize(img, (imgW, imgH))
145
-
146
- img_np = np.asarray(img_new)
147
- img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
148
- img_black[:, 0:img_np.shape[1]] = img_np
149
- img_black = img_black[:, :, np.newaxis]
150
-
151
- row, col, c = img_black.shape
152
- c = 1
153
-
154
- return np.reshape(img_black, (c, row, col)).astype(np.float32)
155
-
156
- def srn_other_inputs(self, image_shape, num_heads, max_text_length):
157
-
158
- imgC, imgH, imgW = image_shape
159
- feature_dim = int((imgH / 8) * (imgW / 8))
160
-
161
- encoder_word_pos = np.array(range(0, feature_dim)).reshape(
162
- (feature_dim, 1)).astype('int64')
163
- gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
164
- (max_text_length, 1)).astype('int64')
165
-
166
- gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
167
- gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
168
- [-1, 1, max_text_length, max_text_length])
169
- gsrm_slf_attn_bias1 = np.tile(
170
- gsrm_slf_attn_bias1,
171
- [1, num_heads, 1, 1]).astype('float32') * [-1e9]
172
-
173
- gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
174
- [-1, 1, max_text_length, max_text_length])
175
- gsrm_slf_attn_bias2 = np.tile(
176
- gsrm_slf_attn_bias2,
177
- [1, num_heads, 1, 1]).astype('float32') * [-1e9]
178
-
179
- encoder_word_pos = encoder_word_pos[np.newaxis, :]
180
- gsrm_word_pos = gsrm_word_pos[np.newaxis, :]
181
-
182
- return [
183
- encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
184
- gsrm_slf_attn_bias2
185
- ]
186
-
187
- def process_image_srn(self, img, image_shape, num_heads, max_text_length):
188
- norm_img = self.resize_norm_img_srn(img, image_shape)
189
- norm_img = norm_img[np.newaxis, :]
190
-
191
- [encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
192
- self.srn_other_inputs(image_shape, num_heads, max_text_length)
193
-
194
- gsrm_slf_attn_bias1 = gsrm_slf_attn_bias1.astype(np.float32)
195
- gsrm_slf_attn_bias2 = gsrm_slf_attn_bias2.astype(np.float32)
196
- encoder_word_pos = encoder_word_pos.astype(np.int64)
197
- gsrm_word_pos = gsrm_word_pos.astype(np.int64)
198
-
199
- return (norm_img, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
200
- gsrm_slf_attn_bias2)
201
-
202
- def resize_norm_img_sar(self, img, image_shape,
203
- width_downsample_ratio=0.25):
204
- imgC, imgH, imgW_min, imgW_max = image_shape
205
- h = img.shape[0]
206
- w = img.shape[1]
207
- valid_ratio = 1.0
208
- # make sure new_width is an integral multiple of width_divisor.
209
- width_divisor = int(1 / width_downsample_ratio)
210
- # resize
211
- ratio = w / float(h)
212
- resize_w = math.ceil(imgH * ratio)
213
- if resize_w % width_divisor != 0:
214
- resize_w = round(resize_w / width_divisor) * width_divisor
215
- if imgW_min is not None:
216
- resize_w = max(imgW_min, resize_w)
217
- if imgW_max is not None:
218
- valid_ratio = min(1.0, 1.0 * resize_w / imgW_max)
219
- resize_w = min(imgW_max, resize_w)
220
- resized_image = cv2.resize(img, (resize_w, imgH))
221
- resized_image = resized_image.astype('float32')
222
- # norm
223
- if image_shape[0] == 1:
224
- resized_image = resized_image / 255
225
- resized_image = resized_image[np.newaxis, :]
226
- else:
227
- resized_image = resized_image.transpose((2, 0, 1)) / 255
228
- resized_image -= 0.5
229
- resized_image /= 0.5
230
- resize_shape = resized_image.shape
231
- padding_im = -1.0 * np.ones((imgC, imgH, imgW_max), dtype=np.float32)
232
- padding_im[:, :, 0:resize_w] = resized_image
233
- pad_shape = padding_im.shape
234
-
235
- return padding_im, resize_shape, pad_shape, valid_ratio
236
-
237
- def __call__(self, img_list):
238
- img_num = len(img_list)
239
- # Calculate the aspect ratio of all text bars
240
- width_list = []
241
- for img in img_list:
242
- width_list.append(img.shape[1] / float(img.shape[0]))
243
- # Sorting can speed up the recognition process
244
- indices = np.argsort(np.array(width_list))
245
- rec_res = [['', 0.0]] * img_num
246
- batch_num = self.rec_batch_num
247
- st = time.time()
248
- if self.benchmark:
249
- self.autolog.times.start()
250
- for beg_img_no in range(0, img_num, batch_num):
251
- end_img_no = min(img_num, beg_img_no + batch_num)
252
- norm_img_batch = []
253
- max_wh_ratio = 0
254
- for ino in range(beg_img_no, end_img_no):
255
- h, w = img_list[indices[ino]].shape[0:2]
256
- wh_ratio = w * 1.0 / h
257
- max_wh_ratio = max(max_wh_ratio, wh_ratio)
258
- for ino in range(beg_img_no, end_img_no):
259
- if self.rec_algorithm != "SRN" and self.rec_algorithm != "SAR":
260
- norm_img = self.resize_norm_img(img_list[indices[ino]],
261
- max_wh_ratio)
262
- norm_img = norm_img[np.newaxis, :]
263
- norm_img_batch.append(norm_img)
264
- elif self.rec_algorithm == "SAR":
265
- norm_img, _, _, valid_ratio = self.resize_norm_img_sar(
266
- img_list[indices[ino]], self.rec_image_shape)
267
- norm_img = norm_img[np.newaxis, :]
268
- valid_ratio = np.expand_dims(valid_ratio, axis=0)
269
- valid_ratios = []
270
- valid_ratios.append(valid_ratio)
271
- norm_img_batch.append(norm_img)
272
- else:
273
- norm_img = self.process_image_srn(
274
- img_list[indices[ino]], self.rec_image_shape, 8, 25)
275
- encoder_word_pos_list = []
276
- gsrm_word_pos_list = []
277
- gsrm_slf_attn_bias1_list = []
278
- gsrm_slf_attn_bias2_list = []
279
- encoder_word_pos_list.append(norm_img[1])
280
- gsrm_word_pos_list.append(norm_img[2])
281
- gsrm_slf_attn_bias1_list.append(norm_img[3])
282
- gsrm_slf_attn_bias2_list.append(norm_img[4])
283
- norm_img_batch.append(norm_img[0])
284
- norm_img_batch = np.concatenate(norm_img_batch)
285
- norm_img_batch = norm_img_batch.copy()
286
- if self.benchmark:
287
- self.autolog.times.stamp()
288
-
289
- if self.rec_algorithm == "SRN":
290
- encoder_word_pos_list = np.concatenate(encoder_word_pos_list)
291
- gsrm_word_pos_list = np.concatenate(gsrm_word_pos_list)
292
- gsrm_slf_attn_bias1_list = np.concatenate(
293
- gsrm_slf_attn_bias1_list)
294
- gsrm_slf_attn_bias2_list = np.concatenate(
295
- gsrm_slf_attn_bias2_list)
296
-
297
- inputs = [
298
- norm_img_batch,
299
- encoder_word_pos_list,
300
- gsrm_word_pos_list,
301
- gsrm_slf_attn_bias1_list,
302
- gsrm_slf_attn_bias2_list,
303
- ]
304
- if self.use_onnx:
305
- input_dict = {}
306
- input_dict[self.input_tensor.name] = norm_img_batch
307
- outputs = self.predictor.run(self.output_tensors,
308
- input_dict)
309
- preds = {"predict": outputs[2]}
310
- else:
311
- input_names = self.predictor.get_input_names()
312
- for i in range(len(input_names)):
313
- input_tensor = self.predictor.get_input_handle(
314
- input_names[i])
315
- input_tensor.copy_from_cpu(inputs[i])
316
- self.predictor.run()
317
- outputs = []
318
- for output_tensor in self.output_tensors:
319
- output = output_tensor.copy_to_cpu()
320
- outputs.append(output)
321
- if self.benchmark:
322
- self.autolog.times.stamp()
323
- preds = {"predict": outputs[2]}
324
- elif self.rec_algorithm == "SAR":
325
- valid_ratios = np.concatenate(valid_ratios)
326
- inputs = [
327
- norm_img_batch,
328
- valid_ratios,
329
- ]
330
- if self.use_onnx:
331
- input_dict = {}
332
- input_dict[self.input_tensor.name] = norm_img_batch
333
- outputs = self.predictor.run(self.output_tensors,
334
- input_dict)
335
- preds = outputs[0]
336
- else:
337
- input_names = self.predictor.get_input_names()
338
- for i in range(len(input_names)):
339
- input_tensor = self.predictor.get_input_handle(
340
- input_names[i])
341
- input_tensor.copy_from_cpu(inputs[i])
342
- self.predictor.run()
343
- outputs = []
344
- for output_tensor in self.output_tensors:
345
- output = output_tensor.copy_to_cpu()
346
- outputs.append(output)
347
- if self.benchmark:
348
- self.autolog.times.stamp()
349
- preds = outputs[0]
350
- else:
351
- if self.use_onnx:
352
- input_dict = {}
353
- input_dict[self.input_tensor.name] = norm_img_batch
354
- outputs = self.predictor.run(self.output_tensors,
355
- input_dict)
356
- preds = outputs[0]
357
- else:
358
- self.input_tensor.copy_from_cpu(norm_img_batch)
359
- self.predictor.run()
360
- outputs = []
361
- for output_tensor in self.output_tensors:
362
- output = output_tensor.copy_to_cpu()
363
- outputs.append(output)
364
- if self.benchmark:
365
- self.autolog.times.stamp()
366
- if len(outputs) != 1:
367
- preds = outputs
368
- else:
369
- preds = outputs[0]
370
- rec_result = self.postprocess_op(preds)
371
- for rno in range(len(rec_result)):
372
- rec_res[indices[beg_img_no + rno]] = rec_result[rno]
373
- if self.benchmark:
374
- self.autolog.times.end(stamp=True)
375
- return rec_res, time.time() - st
376
-
377
-
378
- def main(args):
379
- image_file_list = get_image_file_list(args.image_dir)
380
- text_recognizer = TextRecognizer(args)
381
- valid_image_file_list = []
382
- img_list = []
383
-
384
- # warmup 2 times
385
- if args.warmup:
386
- img = np.random.uniform(0, 255, [32, 320, 3]).astype(np.uint8)
387
- for i in range(2):
388
- res = text_recognizer([img] * int(args.rec_batch_num))
389
-
390
- for image_file in image_file_list:
391
- img, flag = check_and_read_gif(image_file)
392
- if not flag:
393
- img = cv2.imread(image_file)
394
- if img is None:
395
- logger.info("error in loading image:{}".format(image_file))
396
- continue
397
- valid_image_file_list.append(image_file)
398
- img_list.append(img)
399
- try:
400
- rec_res, _ = text_recognizer(img_list)
401
-
402
- except Exception as E:
403
- logger.info(traceback.format_exc())
404
- logger.info(E)
405
- exit()
406
- for ino in range(len(img_list)):
407
- logger.info("Predicts of {}:{}".format(valid_image_file_list[ino],
408
- rec_res[ino]))
409
- if args.benchmark:
410
- text_recognizer.autolog.report()
411
-
412
-
413
- if __name__ == "__main__":
414
- main(utility.parse_args())
@@ -1,204 +0,0 @@
1
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- import os
15
- import sys
16
- import subprocess
17
-
18
- __dir__ = os.path.dirname(os.path.abspath(__file__))
19
- sys.path.append(__dir__)
20
- sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
21
-
22
- os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
23
-
24
- import cv2
25
- import copy
26
- import numpy as np
27
- import time
28
- import logging
29
- from PIL import Image
30
- import pyxlpr.ppocr.tools.infer.utility as utility
31
- import pyxlpr.ppocr.tools.infer.predict_rec as predict_rec
32
- import pyxlpr.ppocr.tools.infer.predict_det as predict_det
33
- import pyxlpr.ppocr.tools.infer.predict_cls as predict_cls
34
- from pyxlpr.ppocr.utils.utility import get_image_file_list, check_and_read_gif
35
- from pyxlpr.ppocr.utils.logging import get_logger
36
- from pyxlpr.ppocr.tools.infer.utility import draw_ocr_box_txt, get_rotate_crop_image
37
- logger = get_logger()
38
-
39
-
40
- class TextSystem(object):
41
- def __init__(self, args):
42
- if not args.show_log:
43
- logger.setLevel(logging.INFO)
44
-
45
- self.text_detector = predict_det.TextDetector(args)
46
- self.text_recognizer = predict_rec.TextRecognizer(args)
47
- self.use_angle_cls = args.use_angle_cls
48
- self.drop_score = args.drop_score
49
- if self.use_angle_cls:
50
- self.text_classifier = predict_cls.TextClassifier(args)
51
-
52
- self.args = args
53
- self.crop_image_res_index = 0
54
-
55
- def draw_crop_rec_res(self, output_dir, img_crop_list, rec_res):
56
- os.makedirs(output_dir, exist_ok=True)
57
- bbox_num = len(img_crop_list)
58
- for bno in range(bbox_num):
59
- cv2.imwrite(
60
- os.path.join(output_dir,
61
- f"mg_crop_{bno+self.crop_image_res_index}.jpg"),
62
- img_crop_list[bno])
63
- logger.debug(f"{bno}, {rec_res[bno]}")
64
- self.crop_image_res_index += bbox_num
65
-
66
- def __call__(self, img, cls=True):
67
- ori_im = img.copy()
68
- dt_boxes, elapse = self.text_detector(img)
69
-
70
- logger.debug("dt_boxes num : {}, elapse : {}".format(
71
- len(dt_boxes), elapse))
72
- if dt_boxes is None:
73
- return None, None
74
- img_crop_list = []
75
-
76
- dt_boxes = sorted_boxes(dt_boxes)
77
-
78
- for bno in range(len(dt_boxes)):
79
- tmp_box = copy.deepcopy(dt_boxes[bno])
80
- img_crop = get_rotate_crop_image(ori_im, tmp_box)
81
- img_crop_list.append(img_crop)
82
- if self.use_angle_cls and cls:
83
- img_crop_list, angle_list, elapse = self.text_classifier(
84
- img_crop_list)
85
- logger.debug("cls num : {}, elapse : {}".format(
86
- len(img_crop_list), elapse))
87
-
88
- rec_res, elapse = self.text_recognizer(img_crop_list)
89
- logger.debug("rec_res num : {}, elapse : {}".format(
90
- len(rec_res), elapse))
91
- if self.args.save_crop_res:
92
- self.draw_crop_rec_res(self.args.crop_res_save_dir, img_crop_list,
93
- rec_res)
94
- filter_boxes, filter_rec_res = [], []
95
- for box, rec_reuslt in zip(dt_boxes, rec_res):
96
- text, score = rec_reuslt
97
- if score >= self.drop_score:
98
- filter_boxes.append(box)
99
- filter_rec_res.append(rec_reuslt)
100
- return filter_boxes, filter_rec_res
101
-
102
-
103
- def sorted_boxes(dt_boxes):
104
- """
105
- Sort text boxes in order from top to bottom, left to right
106
- args:
107
- dt_boxes(array):detected text boxes with shape [4, 2]
108
- return:
109
- sorted boxes(array) with shape [4, 2]
110
- """
111
- num_boxes = dt_boxes.shape[0]
112
- sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
113
- _boxes = list(sorted_boxes)
114
-
115
- for i in range(num_boxes - 1):
116
- if abs(_boxes[i + 1][0][1] - _boxes[i][0][1]) < 10 and \
117
- (_boxes[i + 1][0][0] < _boxes[i][0][0]):
118
- tmp = _boxes[i]
119
- _boxes[i] = _boxes[i + 1]
120
- _boxes[i + 1] = tmp
121
- return _boxes
122
-
123
-
124
- def main(args):
125
- image_file_list = get_image_file_list(args.image_dir)
126
- image_file_list = image_file_list[args.process_id::args.total_process_num]
127
- text_sys = TextSystem(args)
128
- is_visualize = True
129
- font_path = args.vis_font_path
130
- drop_score = args.drop_score
131
-
132
- # warm up 10 times
133
- if args.warmup:
134
- img = np.random.uniform(0, 255, [640, 640, 3]).astype(np.uint8)
135
- for i in range(10):
136
- res = text_sys(img)
137
-
138
- total_time = 0
139
- cpu_mem, gpu_mem, gpu_util = 0, 0, 0
140
- _st = time.time()
141
- count = 0
142
- for idx, image_file in enumerate(image_file_list):
143
-
144
- img, flag = check_and_read_gif(image_file)
145
- if not flag:
146
- img = cv2.imread(image_file)
147
- if img is None:
148
- logger.debug("error in loading image:{}".format(image_file))
149
- continue
150
- starttime = time.time()
151
- dt_boxes, rec_res = text_sys(img)
152
- elapse = time.time() - starttime
153
- total_time += elapse
154
-
155
- logger.debug(
156
- str(idx) + " Predict time of %s: %.3fs" % (image_file, elapse))
157
- for text, score in rec_res:
158
- logger.debug("{}, {:.3f}".format(text, score))
159
-
160
- if is_visualize:
161
- image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
162
- boxes = dt_boxes
163
- txts = [rec_res[i][0] for i in range(len(rec_res))]
164
- scores = [rec_res[i][1] for i in range(len(rec_res))]
165
-
166
- draw_img = draw_ocr_box_txt(
167
- image,
168
- boxes,
169
- txts,
170
- scores,
171
- drop_score=drop_score,
172
- font_path=font_path)
173
- draw_img_save_dir = args.draw_img_save_dir
174
- os.makedirs(draw_img_save_dir, exist_ok=True)
175
- if flag:
176
- image_file = image_file[:-3] + "png"
177
- cv2.imwrite(
178
- os.path.join(draw_img_save_dir, os.path.basename(image_file)),
179
- draw_img[:, :, ::-1])
180
- logger.debug("The visualized image saved in {}".format(
181
- os.path.join(draw_img_save_dir, os.path.basename(image_file))))
182
-
183
- logger.info("The predict total time is {}".format(time.time() - _st))
184
- if args.benchmark:
185
- text_sys.text_detector.autolog.report()
186
- text_sys.text_recognizer.autolog.report()
187
-
188
-
189
- if __name__ == "__main__":
190
- args = utility.parse_args()
191
- if args.use_mp:
192
- p_list = []
193
- total_process_num = args.total_process_num
194
- for process_id in range(total_process_num):
195
- cmd = [sys.executable, "-u"] + sys.argv + [
196
- "--process_id={}".format(process_id),
197
- "--use_mp={}".format(False)
198
- ]
199
- p = subprocess.Popen(cmd, stdout=sys.stdout, stderr=sys.stdout)
200
- p_list.append(p)
201
- for p in p_list:
202
- p.wait()
203
- else:
204
- main(args)