pyxllib 0.3.96__py3-none-any.whl → 0.3.197__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyxllib/algo/geo.py +12 -0
- pyxllib/algo/intervals.py +1 -1
- pyxllib/algo/matcher.py +78 -0
- pyxllib/algo/pupil.py +187 -19
- pyxllib/algo/specialist.py +2 -1
- pyxllib/algo/stat.py +38 -2
- {pyxlpr → pyxllib/autogui}/__init__.py +1 -1
- pyxllib/autogui/activewin.py +246 -0
- pyxllib/autogui/all.py +9 -0
- pyxllib/{ext/autogui → autogui}/autogui.py +40 -11
- pyxllib/autogui/uiautolib.py +362 -0
- pyxllib/autogui/wechat.py +827 -0
- pyxllib/autogui/wechat_msg.py +421 -0
- pyxllib/autogui/wxautolib.py +84 -0
- pyxllib/cv/slidercaptcha.py +137 -0
- pyxllib/data/echarts.py +123 -12
- pyxllib/data/jsonlib.py +89 -0
- pyxllib/data/pglib.py +514 -30
- pyxllib/data/sqlite.py +231 -4
- pyxllib/ext/JLineViewer.py +14 -1
- pyxllib/ext/drissionlib.py +277 -0
- pyxllib/ext/kq5034lib.py +0 -1594
- pyxllib/ext/robustprocfile.py +497 -0
- pyxllib/ext/unixlib.py +6 -5
- pyxllib/ext/utools.py +108 -95
- pyxllib/ext/webhook.py +32 -14
- pyxllib/ext/wjxlib.py +88 -0
- pyxllib/ext/wpsapi.py +124 -0
- pyxllib/ext/xlwork.py +9 -0
- pyxllib/ext/yuquelib.py +1003 -71
- pyxllib/file/docxlib.py +1 -1
- pyxllib/file/libreoffice.py +165 -0
- pyxllib/file/movielib.py +9 -0
- pyxllib/file/packlib/__init__.py +112 -75
- pyxllib/file/pdflib.py +1 -1
- pyxllib/file/pupil.py +1 -1
- pyxllib/file/specialist/dirlib.py +1 -1
- pyxllib/file/specialist/download.py +10 -3
- pyxllib/file/specialist/filelib.py +266 -55
- pyxllib/file/xlsxlib.py +205 -50
- pyxllib/file/xlsyncfile.py +341 -0
- pyxllib/prog/cachetools.py +64 -0
- pyxllib/prog/filelock.py +42 -0
- pyxllib/prog/multiprogs.py +940 -0
- pyxllib/prog/newbie.py +9 -2
- pyxllib/prog/pupil.py +129 -60
- pyxllib/prog/specialist/__init__.py +176 -2
- pyxllib/prog/specialist/bc.py +5 -2
- pyxllib/prog/specialist/browser.py +11 -2
- pyxllib/prog/specialist/datetime.py +68 -0
- pyxllib/prog/specialist/tictoc.py +12 -13
- pyxllib/prog/specialist/xllog.py +5 -5
- pyxllib/prog/xlosenv.py +7 -0
- pyxllib/text/airscript.js +744 -0
- pyxllib/text/charclasslib.py +17 -5
- pyxllib/text/jiebalib.py +6 -3
- pyxllib/text/jinjalib.py +32 -0
- pyxllib/text/jsa_ai_prompt.md +271 -0
- pyxllib/text/jscode.py +159 -4
- pyxllib/text/nestenv.py +1 -1
- pyxllib/text/newbie.py +12 -0
- pyxllib/text/pupil/common.py +26 -0
- pyxllib/text/specialist/ptag.py +2 -2
- pyxllib/text/templates/echart_base.html +11 -0
- pyxllib/text/templates/highlight_code.html +17 -0
- pyxllib/text/templates/latex_editor.html +103 -0
- pyxllib/text/xmllib.py +76 -14
- pyxllib/xl.py +2 -1
- pyxllib-0.3.197.dist-info/METADATA +48 -0
- pyxllib-0.3.197.dist-info/RECORD +126 -0
- {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info}/WHEEL +1 -2
- pyxllib/ext/autogui/__init__.py +0 -8
- pyxllib-0.3.96.dist-info/METADATA +0 -51
- pyxllib-0.3.96.dist-info/RECORD +0 -333
- pyxllib-0.3.96.dist-info/top_level.txt +0 -2
- pyxlpr/ai/__init__.py +0 -5
- pyxlpr/ai/clientlib.py +0 -1281
- pyxlpr/ai/specialist.py +0 -286
- pyxlpr/ai/torch_app.py +0 -172
- pyxlpr/ai/xlpaddle.py +0 -655
- pyxlpr/ai/xltorch.py +0 -705
- pyxlpr/data/__init__.py +0 -11
- pyxlpr/data/coco.py +0 -1325
- pyxlpr/data/datacls.py +0 -365
- pyxlpr/data/datasets.py +0 -200
- pyxlpr/data/gptlib.py +0 -1291
- pyxlpr/data/icdar/__init__.py +0 -96
- pyxlpr/data/icdar/deteval.py +0 -377
- pyxlpr/data/icdar/icdar2013.py +0 -341
- pyxlpr/data/icdar/iou.py +0 -340
- pyxlpr/data/icdar/rrc_evaluation_funcs_1_1.py +0 -463
- pyxlpr/data/imtextline.py +0 -473
- pyxlpr/data/labelme.py +0 -866
- pyxlpr/data/removeline.py +0 -179
- pyxlpr/data/specialist.py +0 -57
- pyxlpr/eval/__init__.py +0 -85
- pyxlpr/paddleocr.py +0 -776
- pyxlpr/ppocr/__init__.py +0 -15
- pyxlpr/ppocr/configs/rec/multi_language/generate_multi_language_configs.py +0 -226
- pyxlpr/ppocr/data/__init__.py +0 -135
- pyxlpr/ppocr/data/imaug/ColorJitter.py +0 -26
- pyxlpr/ppocr/data/imaug/__init__.py +0 -67
- pyxlpr/ppocr/data/imaug/copy_paste.py +0 -170
- pyxlpr/ppocr/data/imaug/east_process.py +0 -437
- pyxlpr/ppocr/data/imaug/gen_table_mask.py +0 -244
- pyxlpr/ppocr/data/imaug/iaa_augment.py +0 -114
- pyxlpr/ppocr/data/imaug/label_ops.py +0 -789
- pyxlpr/ppocr/data/imaug/make_border_map.py +0 -184
- pyxlpr/ppocr/data/imaug/make_pse_gt.py +0 -106
- pyxlpr/ppocr/data/imaug/make_shrink_map.py +0 -126
- pyxlpr/ppocr/data/imaug/operators.py +0 -433
- pyxlpr/ppocr/data/imaug/pg_process.py +0 -906
- pyxlpr/ppocr/data/imaug/randaugment.py +0 -143
- pyxlpr/ppocr/data/imaug/random_crop_data.py +0 -239
- pyxlpr/ppocr/data/imaug/rec_img_aug.py +0 -533
- pyxlpr/ppocr/data/imaug/sast_process.py +0 -777
- pyxlpr/ppocr/data/imaug/text_image_aug/__init__.py +0 -17
- pyxlpr/ppocr/data/imaug/text_image_aug/augment.py +0 -120
- pyxlpr/ppocr/data/imaug/text_image_aug/warp_mls.py +0 -168
- pyxlpr/ppocr/data/lmdb_dataset.py +0 -115
- pyxlpr/ppocr/data/pgnet_dataset.py +0 -104
- pyxlpr/ppocr/data/pubtab_dataset.py +0 -107
- pyxlpr/ppocr/data/simple_dataset.py +0 -372
- pyxlpr/ppocr/losses/__init__.py +0 -61
- pyxlpr/ppocr/losses/ace_loss.py +0 -52
- pyxlpr/ppocr/losses/basic_loss.py +0 -135
- pyxlpr/ppocr/losses/center_loss.py +0 -88
- pyxlpr/ppocr/losses/cls_loss.py +0 -30
- pyxlpr/ppocr/losses/combined_loss.py +0 -67
- pyxlpr/ppocr/losses/det_basic_loss.py +0 -208
- pyxlpr/ppocr/losses/det_db_loss.py +0 -80
- pyxlpr/ppocr/losses/det_east_loss.py +0 -63
- pyxlpr/ppocr/losses/det_pse_loss.py +0 -149
- pyxlpr/ppocr/losses/det_sast_loss.py +0 -121
- pyxlpr/ppocr/losses/distillation_loss.py +0 -272
- pyxlpr/ppocr/losses/e2e_pg_loss.py +0 -140
- pyxlpr/ppocr/losses/kie_sdmgr_loss.py +0 -113
- pyxlpr/ppocr/losses/rec_aster_loss.py +0 -99
- pyxlpr/ppocr/losses/rec_att_loss.py +0 -39
- pyxlpr/ppocr/losses/rec_ctc_loss.py +0 -44
- pyxlpr/ppocr/losses/rec_enhanced_ctc_loss.py +0 -70
- pyxlpr/ppocr/losses/rec_nrtr_loss.py +0 -30
- pyxlpr/ppocr/losses/rec_sar_loss.py +0 -28
- pyxlpr/ppocr/losses/rec_srn_loss.py +0 -47
- pyxlpr/ppocr/losses/table_att_loss.py +0 -109
- pyxlpr/ppocr/metrics/__init__.py +0 -44
- pyxlpr/ppocr/metrics/cls_metric.py +0 -45
- pyxlpr/ppocr/metrics/det_metric.py +0 -82
- pyxlpr/ppocr/metrics/distillation_metric.py +0 -73
- pyxlpr/ppocr/metrics/e2e_metric.py +0 -86
- pyxlpr/ppocr/metrics/eval_det_iou.py +0 -274
- pyxlpr/ppocr/metrics/kie_metric.py +0 -70
- pyxlpr/ppocr/metrics/rec_metric.py +0 -75
- pyxlpr/ppocr/metrics/table_metric.py +0 -50
- pyxlpr/ppocr/modeling/architectures/__init__.py +0 -32
- pyxlpr/ppocr/modeling/architectures/base_model.py +0 -88
- pyxlpr/ppocr/modeling/architectures/distillation_model.py +0 -60
- pyxlpr/ppocr/modeling/backbones/__init__.py +0 -54
- pyxlpr/ppocr/modeling/backbones/det_mobilenet_v3.py +0 -268
- pyxlpr/ppocr/modeling/backbones/det_resnet_vd.py +0 -246
- pyxlpr/ppocr/modeling/backbones/det_resnet_vd_sast.py +0 -285
- pyxlpr/ppocr/modeling/backbones/e2e_resnet_vd_pg.py +0 -265
- pyxlpr/ppocr/modeling/backbones/kie_unet_sdmgr.py +0 -186
- pyxlpr/ppocr/modeling/backbones/rec_mobilenet_v3.py +0 -138
- pyxlpr/ppocr/modeling/backbones/rec_mv1_enhance.py +0 -258
- pyxlpr/ppocr/modeling/backbones/rec_nrtr_mtb.py +0 -48
- pyxlpr/ppocr/modeling/backbones/rec_resnet_31.py +0 -210
- pyxlpr/ppocr/modeling/backbones/rec_resnet_aster.py +0 -143
- pyxlpr/ppocr/modeling/backbones/rec_resnet_fpn.py +0 -307
- pyxlpr/ppocr/modeling/backbones/rec_resnet_vd.py +0 -286
- pyxlpr/ppocr/modeling/heads/__init__.py +0 -54
- pyxlpr/ppocr/modeling/heads/cls_head.py +0 -52
- pyxlpr/ppocr/modeling/heads/det_db_head.py +0 -118
- pyxlpr/ppocr/modeling/heads/det_east_head.py +0 -121
- pyxlpr/ppocr/modeling/heads/det_pse_head.py +0 -37
- pyxlpr/ppocr/modeling/heads/det_sast_head.py +0 -128
- pyxlpr/ppocr/modeling/heads/e2e_pg_head.py +0 -253
- pyxlpr/ppocr/modeling/heads/kie_sdmgr_head.py +0 -206
- pyxlpr/ppocr/modeling/heads/multiheadAttention.py +0 -163
- pyxlpr/ppocr/modeling/heads/rec_aster_head.py +0 -393
- pyxlpr/ppocr/modeling/heads/rec_att_head.py +0 -202
- pyxlpr/ppocr/modeling/heads/rec_ctc_head.py +0 -88
- pyxlpr/ppocr/modeling/heads/rec_nrtr_head.py +0 -826
- pyxlpr/ppocr/modeling/heads/rec_sar_head.py +0 -402
- pyxlpr/ppocr/modeling/heads/rec_srn_head.py +0 -280
- pyxlpr/ppocr/modeling/heads/self_attention.py +0 -406
- pyxlpr/ppocr/modeling/heads/table_att_head.py +0 -246
- pyxlpr/ppocr/modeling/necks/__init__.py +0 -32
- pyxlpr/ppocr/modeling/necks/db_fpn.py +0 -111
- pyxlpr/ppocr/modeling/necks/east_fpn.py +0 -188
- pyxlpr/ppocr/modeling/necks/fpn.py +0 -138
- pyxlpr/ppocr/modeling/necks/pg_fpn.py +0 -314
- pyxlpr/ppocr/modeling/necks/rnn.py +0 -92
- pyxlpr/ppocr/modeling/necks/sast_fpn.py +0 -284
- pyxlpr/ppocr/modeling/necks/table_fpn.py +0 -110
- pyxlpr/ppocr/modeling/transforms/__init__.py +0 -28
- pyxlpr/ppocr/modeling/transforms/stn.py +0 -135
- pyxlpr/ppocr/modeling/transforms/tps.py +0 -308
- pyxlpr/ppocr/modeling/transforms/tps_spatial_transformer.py +0 -156
- pyxlpr/ppocr/optimizer/__init__.py +0 -61
- pyxlpr/ppocr/optimizer/learning_rate.py +0 -228
- pyxlpr/ppocr/optimizer/lr_scheduler.py +0 -49
- pyxlpr/ppocr/optimizer/optimizer.py +0 -160
- pyxlpr/ppocr/optimizer/regularizer.py +0 -52
- pyxlpr/ppocr/postprocess/__init__.py +0 -55
- pyxlpr/ppocr/postprocess/cls_postprocess.py +0 -33
- pyxlpr/ppocr/postprocess/db_postprocess.py +0 -234
- pyxlpr/ppocr/postprocess/east_postprocess.py +0 -143
- pyxlpr/ppocr/postprocess/locality_aware_nms.py +0 -200
- pyxlpr/ppocr/postprocess/pg_postprocess.py +0 -52
- pyxlpr/ppocr/postprocess/pse_postprocess/__init__.py +0 -15
- pyxlpr/ppocr/postprocess/pse_postprocess/pse/__init__.py +0 -29
- pyxlpr/ppocr/postprocess/pse_postprocess/pse/setup.py +0 -14
- pyxlpr/ppocr/postprocess/pse_postprocess/pse_postprocess.py +0 -118
- pyxlpr/ppocr/postprocess/rec_postprocess.py +0 -654
- pyxlpr/ppocr/postprocess/sast_postprocess.py +0 -355
- pyxlpr/ppocr/tools/__init__.py +0 -14
- pyxlpr/ppocr/tools/eval.py +0 -83
- pyxlpr/ppocr/tools/export_center.py +0 -77
- pyxlpr/ppocr/tools/export_model.py +0 -129
- pyxlpr/ppocr/tools/infer/predict_cls.py +0 -151
- pyxlpr/ppocr/tools/infer/predict_det.py +0 -300
- pyxlpr/ppocr/tools/infer/predict_e2e.py +0 -169
- pyxlpr/ppocr/tools/infer/predict_rec.py +0 -414
- pyxlpr/ppocr/tools/infer/predict_system.py +0 -204
- pyxlpr/ppocr/tools/infer/utility.py +0 -629
- pyxlpr/ppocr/tools/infer_cls.py +0 -83
- pyxlpr/ppocr/tools/infer_det.py +0 -134
- pyxlpr/ppocr/tools/infer_e2e.py +0 -122
- pyxlpr/ppocr/tools/infer_kie.py +0 -153
- pyxlpr/ppocr/tools/infer_rec.py +0 -146
- pyxlpr/ppocr/tools/infer_table.py +0 -107
- pyxlpr/ppocr/tools/program.py +0 -596
- pyxlpr/ppocr/tools/test_hubserving.py +0 -117
- pyxlpr/ppocr/tools/train.py +0 -163
- pyxlpr/ppocr/tools/xlprog.py +0 -748
- pyxlpr/ppocr/utils/EN_symbol_dict.txt +0 -94
- pyxlpr/ppocr/utils/__init__.py +0 -24
- pyxlpr/ppocr/utils/dict/ar_dict.txt +0 -117
- pyxlpr/ppocr/utils/dict/arabic_dict.txt +0 -162
- pyxlpr/ppocr/utils/dict/be_dict.txt +0 -145
- pyxlpr/ppocr/utils/dict/bg_dict.txt +0 -140
- pyxlpr/ppocr/utils/dict/chinese_cht_dict.txt +0 -8421
- pyxlpr/ppocr/utils/dict/cyrillic_dict.txt +0 -163
- pyxlpr/ppocr/utils/dict/devanagari_dict.txt +0 -167
- pyxlpr/ppocr/utils/dict/en_dict.txt +0 -63
- pyxlpr/ppocr/utils/dict/fa_dict.txt +0 -136
- pyxlpr/ppocr/utils/dict/french_dict.txt +0 -136
- pyxlpr/ppocr/utils/dict/german_dict.txt +0 -143
- pyxlpr/ppocr/utils/dict/hi_dict.txt +0 -162
- pyxlpr/ppocr/utils/dict/it_dict.txt +0 -118
- pyxlpr/ppocr/utils/dict/japan_dict.txt +0 -4399
- pyxlpr/ppocr/utils/dict/ka_dict.txt +0 -153
- pyxlpr/ppocr/utils/dict/korean_dict.txt +0 -3688
- pyxlpr/ppocr/utils/dict/latin_dict.txt +0 -185
- pyxlpr/ppocr/utils/dict/mr_dict.txt +0 -153
- pyxlpr/ppocr/utils/dict/ne_dict.txt +0 -153
- pyxlpr/ppocr/utils/dict/oc_dict.txt +0 -96
- pyxlpr/ppocr/utils/dict/pu_dict.txt +0 -130
- pyxlpr/ppocr/utils/dict/rs_dict.txt +0 -91
- pyxlpr/ppocr/utils/dict/rsc_dict.txt +0 -134
- pyxlpr/ppocr/utils/dict/ru_dict.txt +0 -125
- pyxlpr/ppocr/utils/dict/ta_dict.txt +0 -128
- pyxlpr/ppocr/utils/dict/table_dict.txt +0 -277
- pyxlpr/ppocr/utils/dict/table_structure_dict.txt +0 -2759
- pyxlpr/ppocr/utils/dict/te_dict.txt +0 -151
- pyxlpr/ppocr/utils/dict/ug_dict.txt +0 -114
- pyxlpr/ppocr/utils/dict/uk_dict.txt +0 -142
- pyxlpr/ppocr/utils/dict/ur_dict.txt +0 -137
- pyxlpr/ppocr/utils/dict/xi_dict.txt +0 -110
- pyxlpr/ppocr/utils/dict90.txt +0 -90
- pyxlpr/ppocr/utils/e2e_metric/Deteval.py +0 -574
- pyxlpr/ppocr/utils/e2e_metric/polygon_fast.py +0 -83
- pyxlpr/ppocr/utils/e2e_utils/extract_batchsize.py +0 -87
- pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_fast.py +0 -457
- pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_slow.py +0 -592
- pyxlpr/ppocr/utils/e2e_utils/pgnet_pp_utils.py +0 -162
- pyxlpr/ppocr/utils/e2e_utils/visual.py +0 -162
- pyxlpr/ppocr/utils/en_dict.txt +0 -95
- pyxlpr/ppocr/utils/gen_label.py +0 -81
- pyxlpr/ppocr/utils/ic15_dict.txt +0 -36
- pyxlpr/ppocr/utils/iou.py +0 -54
- pyxlpr/ppocr/utils/logging.py +0 -69
- pyxlpr/ppocr/utils/network.py +0 -84
- pyxlpr/ppocr/utils/ppocr_keys_v1.txt +0 -6623
- pyxlpr/ppocr/utils/profiler.py +0 -110
- pyxlpr/ppocr/utils/save_load.py +0 -150
- pyxlpr/ppocr/utils/stats.py +0 -72
- pyxlpr/ppocr/utils/utility.py +0 -80
- pyxlpr/ppstructure/__init__.py +0 -13
- pyxlpr/ppstructure/predict_system.py +0 -187
- pyxlpr/ppstructure/table/__init__.py +0 -13
- pyxlpr/ppstructure/table/eval_table.py +0 -72
- pyxlpr/ppstructure/table/matcher.py +0 -192
- pyxlpr/ppstructure/table/predict_structure.py +0 -136
- pyxlpr/ppstructure/table/predict_table.py +0 -221
- pyxlpr/ppstructure/table/table_metric/__init__.py +0 -16
- pyxlpr/ppstructure/table/table_metric/parallel.py +0 -51
- pyxlpr/ppstructure/table/table_metric/table_metric.py +0 -247
- pyxlpr/ppstructure/table/tablepyxl/__init__.py +0 -13
- pyxlpr/ppstructure/table/tablepyxl/style.py +0 -283
- pyxlpr/ppstructure/table/tablepyxl/tablepyxl.py +0 -118
- pyxlpr/ppstructure/utility.py +0 -71
- pyxlpr/xlai.py +0 -10
- /pyxllib/{ext/autogui → autogui}/virtualkey.py +0 -0
- {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info/licenses}/LICENSE +0 -0
@@ -1,414 +0,0 @@
|
|
1
|
-
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
import os
|
15
|
-
import sys
|
16
|
-
from PIL import Image
|
17
|
-
__dir__ = os.path.dirname(os.path.abspath(__file__))
|
18
|
-
sys.path.append(__dir__)
|
19
|
-
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
|
20
|
-
|
21
|
-
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
|
22
|
-
|
23
|
-
import cv2
|
24
|
-
import numpy as np
|
25
|
-
import math
|
26
|
-
import time
|
27
|
-
import traceback
|
28
|
-
import paddle
|
29
|
-
|
30
|
-
import pyxlpr.ppocr.tools.infer.utility as utility
|
31
|
-
from pyxlpr.ppocr.postprocess import build_post_process
|
32
|
-
from pyxlpr.ppocr.utils.logging import get_logger
|
33
|
-
from pyxlpr.ppocr.utils.utility import get_image_file_list, check_and_read_gif
|
34
|
-
|
35
|
-
logger = get_logger()
|
36
|
-
|
37
|
-
|
38
|
-
class TextRecognizer(object):
|
39
|
-
def __init__(self, args):
|
40
|
-
self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
|
41
|
-
self.rec_batch_num = args.rec_batch_num
|
42
|
-
self.rec_algorithm = args.rec_algorithm
|
43
|
-
postprocess_params = {
|
44
|
-
'name': 'CTCLabelDecode',
|
45
|
-
"character_dict_path": args.rec_char_dict_path,
|
46
|
-
"use_space_char": args.use_space_char
|
47
|
-
}
|
48
|
-
if self.rec_algorithm == "SRN":
|
49
|
-
postprocess_params = {
|
50
|
-
'name': 'SRNLabelDecode',
|
51
|
-
"character_dict_path": args.rec_char_dict_path,
|
52
|
-
"use_space_char": args.use_space_char
|
53
|
-
}
|
54
|
-
elif self.rec_algorithm == "RARE":
|
55
|
-
postprocess_params = {
|
56
|
-
'name': 'AttnLabelDecode',
|
57
|
-
"character_dict_path": args.rec_char_dict_path,
|
58
|
-
"use_space_char": args.use_space_char
|
59
|
-
}
|
60
|
-
elif self.rec_algorithm == 'NRTR':
|
61
|
-
postprocess_params = {
|
62
|
-
'name': 'NRTRLabelDecode',
|
63
|
-
"character_dict_path": args.rec_char_dict_path,
|
64
|
-
"use_space_char": args.use_space_char
|
65
|
-
}
|
66
|
-
elif self.rec_algorithm == "SAR":
|
67
|
-
postprocess_params = {
|
68
|
-
'name': 'SARLabelDecode',
|
69
|
-
"character_dict_path": args.rec_char_dict_path,
|
70
|
-
"use_space_char": args.use_space_char
|
71
|
-
}
|
72
|
-
self.postprocess_op = build_post_process(postprocess_params)
|
73
|
-
self.predictor, self.input_tensor, self.output_tensors, self.config = \
|
74
|
-
utility.create_predictor(args, 'rec', logger)
|
75
|
-
self.benchmark = args.benchmark
|
76
|
-
self.use_onnx = args.use_onnx
|
77
|
-
if args.benchmark:
|
78
|
-
import auto_log
|
79
|
-
pid = os.getpid()
|
80
|
-
gpu_id = utility.get_infer_gpuid()
|
81
|
-
self.autolog = auto_log.AutoLogger(
|
82
|
-
model_name="rec",
|
83
|
-
model_precision=args.precision,
|
84
|
-
batch_size=args.rec_batch_num,
|
85
|
-
data_shape="dynamic",
|
86
|
-
save_path=None, #args.save_log_path,
|
87
|
-
inference_config=self.config,
|
88
|
-
pids=pid,
|
89
|
-
process_name=None,
|
90
|
-
gpu_ids=gpu_id if args.use_gpu else None,
|
91
|
-
time_keys=[
|
92
|
-
'preprocess_time', 'inference_time', 'postprocess_time'
|
93
|
-
],
|
94
|
-
warmup=0,
|
95
|
-
logger=logger)
|
96
|
-
|
97
|
-
def resize_norm_img(self, img, max_wh_ratio):
|
98
|
-
imgC, imgH, imgW = self.rec_image_shape
|
99
|
-
if self.rec_algorithm == 'NRTR':
|
100
|
-
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
101
|
-
# return padding_im
|
102
|
-
image_pil = Image.fromarray(np.uint8(img))
|
103
|
-
img = image_pil.resize([100, 32], Image.ANTIALIAS)
|
104
|
-
img = np.array(img)
|
105
|
-
norm_img = np.expand_dims(img, -1)
|
106
|
-
norm_img = norm_img.transpose((2, 0, 1))
|
107
|
-
return norm_img.astype(np.float32) / 128. - 1.
|
108
|
-
|
109
|
-
assert imgC == img.shape[2]
|
110
|
-
# imgW = int((32 * max_wh_ratio))
|
111
|
-
if self.use_onnx:
|
112
|
-
w = self.input_tensor.shape[3:][0]
|
113
|
-
if w is not None and w > 0:
|
114
|
-
imgW = w
|
115
|
-
h, w = img.shape[:2]
|
116
|
-
ratio = w / float(h)
|
117
|
-
if math.ceil(imgH * ratio) > imgW:
|
118
|
-
resized_w = imgW
|
119
|
-
else:
|
120
|
-
resized_w = int(math.ceil(imgH * ratio))
|
121
|
-
resized_image = cv2.resize(img, (resized_w, imgH))
|
122
|
-
resized_image = resized_image.astype('float32')
|
123
|
-
resized_image = resized_image.transpose((2, 0, 1)) / 255
|
124
|
-
resized_image -= 0.5
|
125
|
-
resized_image /= 0.5
|
126
|
-
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
|
127
|
-
padding_im[:, :, 0:resized_w] = resized_image
|
128
|
-
return padding_im
|
129
|
-
|
130
|
-
def resize_norm_img_srn(self, img, image_shape):
|
131
|
-
imgC, imgH, imgW = image_shape
|
132
|
-
|
133
|
-
img_black = np.zeros((imgH, imgW))
|
134
|
-
im_hei = img.shape[0]
|
135
|
-
im_wid = img.shape[1]
|
136
|
-
|
137
|
-
if im_wid <= im_hei * 1:
|
138
|
-
img_new = cv2.resize(img, (imgH * 1, imgH))
|
139
|
-
elif im_wid <= im_hei * 2:
|
140
|
-
img_new = cv2.resize(img, (imgH * 2, imgH))
|
141
|
-
elif im_wid <= im_hei * 3:
|
142
|
-
img_new = cv2.resize(img, (imgH * 3, imgH))
|
143
|
-
else:
|
144
|
-
img_new = cv2.resize(img, (imgW, imgH))
|
145
|
-
|
146
|
-
img_np = np.asarray(img_new)
|
147
|
-
img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
|
148
|
-
img_black[:, 0:img_np.shape[1]] = img_np
|
149
|
-
img_black = img_black[:, :, np.newaxis]
|
150
|
-
|
151
|
-
row, col, c = img_black.shape
|
152
|
-
c = 1
|
153
|
-
|
154
|
-
return np.reshape(img_black, (c, row, col)).astype(np.float32)
|
155
|
-
|
156
|
-
def srn_other_inputs(self, image_shape, num_heads, max_text_length):
|
157
|
-
|
158
|
-
imgC, imgH, imgW = image_shape
|
159
|
-
feature_dim = int((imgH / 8) * (imgW / 8))
|
160
|
-
|
161
|
-
encoder_word_pos = np.array(range(0, feature_dim)).reshape(
|
162
|
-
(feature_dim, 1)).astype('int64')
|
163
|
-
gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
|
164
|
-
(max_text_length, 1)).astype('int64')
|
165
|
-
|
166
|
-
gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
|
167
|
-
gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
|
168
|
-
[-1, 1, max_text_length, max_text_length])
|
169
|
-
gsrm_slf_attn_bias1 = np.tile(
|
170
|
-
gsrm_slf_attn_bias1,
|
171
|
-
[1, num_heads, 1, 1]).astype('float32') * [-1e9]
|
172
|
-
|
173
|
-
gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
|
174
|
-
[-1, 1, max_text_length, max_text_length])
|
175
|
-
gsrm_slf_attn_bias2 = np.tile(
|
176
|
-
gsrm_slf_attn_bias2,
|
177
|
-
[1, num_heads, 1, 1]).astype('float32') * [-1e9]
|
178
|
-
|
179
|
-
encoder_word_pos = encoder_word_pos[np.newaxis, :]
|
180
|
-
gsrm_word_pos = gsrm_word_pos[np.newaxis, :]
|
181
|
-
|
182
|
-
return [
|
183
|
-
encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
|
184
|
-
gsrm_slf_attn_bias2
|
185
|
-
]
|
186
|
-
|
187
|
-
def process_image_srn(self, img, image_shape, num_heads, max_text_length):
|
188
|
-
norm_img = self.resize_norm_img_srn(img, image_shape)
|
189
|
-
norm_img = norm_img[np.newaxis, :]
|
190
|
-
|
191
|
-
[encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
|
192
|
-
self.srn_other_inputs(image_shape, num_heads, max_text_length)
|
193
|
-
|
194
|
-
gsrm_slf_attn_bias1 = gsrm_slf_attn_bias1.astype(np.float32)
|
195
|
-
gsrm_slf_attn_bias2 = gsrm_slf_attn_bias2.astype(np.float32)
|
196
|
-
encoder_word_pos = encoder_word_pos.astype(np.int64)
|
197
|
-
gsrm_word_pos = gsrm_word_pos.astype(np.int64)
|
198
|
-
|
199
|
-
return (norm_img, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
|
200
|
-
gsrm_slf_attn_bias2)
|
201
|
-
|
202
|
-
def resize_norm_img_sar(self, img, image_shape,
|
203
|
-
width_downsample_ratio=0.25):
|
204
|
-
imgC, imgH, imgW_min, imgW_max = image_shape
|
205
|
-
h = img.shape[0]
|
206
|
-
w = img.shape[1]
|
207
|
-
valid_ratio = 1.0
|
208
|
-
# make sure new_width is an integral multiple of width_divisor.
|
209
|
-
width_divisor = int(1 / width_downsample_ratio)
|
210
|
-
# resize
|
211
|
-
ratio = w / float(h)
|
212
|
-
resize_w = math.ceil(imgH * ratio)
|
213
|
-
if resize_w % width_divisor != 0:
|
214
|
-
resize_w = round(resize_w / width_divisor) * width_divisor
|
215
|
-
if imgW_min is not None:
|
216
|
-
resize_w = max(imgW_min, resize_w)
|
217
|
-
if imgW_max is not None:
|
218
|
-
valid_ratio = min(1.0, 1.0 * resize_w / imgW_max)
|
219
|
-
resize_w = min(imgW_max, resize_w)
|
220
|
-
resized_image = cv2.resize(img, (resize_w, imgH))
|
221
|
-
resized_image = resized_image.astype('float32')
|
222
|
-
# norm
|
223
|
-
if image_shape[0] == 1:
|
224
|
-
resized_image = resized_image / 255
|
225
|
-
resized_image = resized_image[np.newaxis, :]
|
226
|
-
else:
|
227
|
-
resized_image = resized_image.transpose((2, 0, 1)) / 255
|
228
|
-
resized_image -= 0.5
|
229
|
-
resized_image /= 0.5
|
230
|
-
resize_shape = resized_image.shape
|
231
|
-
padding_im = -1.0 * np.ones((imgC, imgH, imgW_max), dtype=np.float32)
|
232
|
-
padding_im[:, :, 0:resize_w] = resized_image
|
233
|
-
pad_shape = padding_im.shape
|
234
|
-
|
235
|
-
return padding_im, resize_shape, pad_shape, valid_ratio
|
236
|
-
|
237
|
-
def __call__(self, img_list):
|
238
|
-
img_num = len(img_list)
|
239
|
-
# Calculate the aspect ratio of all text bars
|
240
|
-
width_list = []
|
241
|
-
for img in img_list:
|
242
|
-
width_list.append(img.shape[1] / float(img.shape[0]))
|
243
|
-
# Sorting can speed up the recognition process
|
244
|
-
indices = np.argsort(np.array(width_list))
|
245
|
-
rec_res = [['', 0.0]] * img_num
|
246
|
-
batch_num = self.rec_batch_num
|
247
|
-
st = time.time()
|
248
|
-
if self.benchmark:
|
249
|
-
self.autolog.times.start()
|
250
|
-
for beg_img_no in range(0, img_num, batch_num):
|
251
|
-
end_img_no = min(img_num, beg_img_no + batch_num)
|
252
|
-
norm_img_batch = []
|
253
|
-
max_wh_ratio = 0
|
254
|
-
for ino in range(beg_img_no, end_img_no):
|
255
|
-
h, w = img_list[indices[ino]].shape[0:2]
|
256
|
-
wh_ratio = w * 1.0 / h
|
257
|
-
max_wh_ratio = max(max_wh_ratio, wh_ratio)
|
258
|
-
for ino in range(beg_img_no, end_img_no):
|
259
|
-
if self.rec_algorithm != "SRN" and self.rec_algorithm != "SAR":
|
260
|
-
norm_img = self.resize_norm_img(img_list[indices[ino]],
|
261
|
-
max_wh_ratio)
|
262
|
-
norm_img = norm_img[np.newaxis, :]
|
263
|
-
norm_img_batch.append(norm_img)
|
264
|
-
elif self.rec_algorithm == "SAR":
|
265
|
-
norm_img, _, _, valid_ratio = self.resize_norm_img_sar(
|
266
|
-
img_list[indices[ino]], self.rec_image_shape)
|
267
|
-
norm_img = norm_img[np.newaxis, :]
|
268
|
-
valid_ratio = np.expand_dims(valid_ratio, axis=0)
|
269
|
-
valid_ratios = []
|
270
|
-
valid_ratios.append(valid_ratio)
|
271
|
-
norm_img_batch.append(norm_img)
|
272
|
-
else:
|
273
|
-
norm_img = self.process_image_srn(
|
274
|
-
img_list[indices[ino]], self.rec_image_shape, 8, 25)
|
275
|
-
encoder_word_pos_list = []
|
276
|
-
gsrm_word_pos_list = []
|
277
|
-
gsrm_slf_attn_bias1_list = []
|
278
|
-
gsrm_slf_attn_bias2_list = []
|
279
|
-
encoder_word_pos_list.append(norm_img[1])
|
280
|
-
gsrm_word_pos_list.append(norm_img[2])
|
281
|
-
gsrm_slf_attn_bias1_list.append(norm_img[3])
|
282
|
-
gsrm_slf_attn_bias2_list.append(norm_img[4])
|
283
|
-
norm_img_batch.append(norm_img[0])
|
284
|
-
norm_img_batch = np.concatenate(norm_img_batch)
|
285
|
-
norm_img_batch = norm_img_batch.copy()
|
286
|
-
if self.benchmark:
|
287
|
-
self.autolog.times.stamp()
|
288
|
-
|
289
|
-
if self.rec_algorithm == "SRN":
|
290
|
-
encoder_word_pos_list = np.concatenate(encoder_word_pos_list)
|
291
|
-
gsrm_word_pos_list = np.concatenate(gsrm_word_pos_list)
|
292
|
-
gsrm_slf_attn_bias1_list = np.concatenate(
|
293
|
-
gsrm_slf_attn_bias1_list)
|
294
|
-
gsrm_slf_attn_bias2_list = np.concatenate(
|
295
|
-
gsrm_slf_attn_bias2_list)
|
296
|
-
|
297
|
-
inputs = [
|
298
|
-
norm_img_batch,
|
299
|
-
encoder_word_pos_list,
|
300
|
-
gsrm_word_pos_list,
|
301
|
-
gsrm_slf_attn_bias1_list,
|
302
|
-
gsrm_slf_attn_bias2_list,
|
303
|
-
]
|
304
|
-
if self.use_onnx:
|
305
|
-
input_dict = {}
|
306
|
-
input_dict[self.input_tensor.name] = norm_img_batch
|
307
|
-
outputs = self.predictor.run(self.output_tensors,
|
308
|
-
input_dict)
|
309
|
-
preds = {"predict": outputs[2]}
|
310
|
-
else:
|
311
|
-
input_names = self.predictor.get_input_names()
|
312
|
-
for i in range(len(input_names)):
|
313
|
-
input_tensor = self.predictor.get_input_handle(
|
314
|
-
input_names[i])
|
315
|
-
input_tensor.copy_from_cpu(inputs[i])
|
316
|
-
self.predictor.run()
|
317
|
-
outputs = []
|
318
|
-
for output_tensor in self.output_tensors:
|
319
|
-
output = output_tensor.copy_to_cpu()
|
320
|
-
outputs.append(output)
|
321
|
-
if self.benchmark:
|
322
|
-
self.autolog.times.stamp()
|
323
|
-
preds = {"predict": outputs[2]}
|
324
|
-
elif self.rec_algorithm == "SAR":
|
325
|
-
valid_ratios = np.concatenate(valid_ratios)
|
326
|
-
inputs = [
|
327
|
-
norm_img_batch,
|
328
|
-
valid_ratios,
|
329
|
-
]
|
330
|
-
if self.use_onnx:
|
331
|
-
input_dict = {}
|
332
|
-
input_dict[self.input_tensor.name] = norm_img_batch
|
333
|
-
outputs = self.predictor.run(self.output_tensors,
|
334
|
-
input_dict)
|
335
|
-
preds = outputs[0]
|
336
|
-
else:
|
337
|
-
input_names = self.predictor.get_input_names()
|
338
|
-
for i in range(len(input_names)):
|
339
|
-
input_tensor = self.predictor.get_input_handle(
|
340
|
-
input_names[i])
|
341
|
-
input_tensor.copy_from_cpu(inputs[i])
|
342
|
-
self.predictor.run()
|
343
|
-
outputs = []
|
344
|
-
for output_tensor in self.output_tensors:
|
345
|
-
output = output_tensor.copy_to_cpu()
|
346
|
-
outputs.append(output)
|
347
|
-
if self.benchmark:
|
348
|
-
self.autolog.times.stamp()
|
349
|
-
preds = outputs[0]
|
350
|
-
else:
|
351
|
-
if self.use_onnx:
|
352
|
-
input_dict = {}
|
353
|
-
input_dict[self.input_tensor.name] = norm_img_batch
|
354
|
-
outputs = self.predictor.run(self.output_tensors,
|
355
|
-
input_dict)
|
356
|
-
preds = outputs[0]
|
357
|
-
else:
|
358
|
-
self.input_tensor.copy_from_cpu(norm_img_batch)
|
359
|
-
self.predictor.run()
|
360
|
-
outputs = []
|
361
|
-
for output_tensor in self.output_tensors:
|
362
|
-
output = output_tensor.copy_to_cpu()
|
363
|
-
outputs.append(output)
|
364
|
-
if self.benchmark:
|
365
|
-
self.autolog.times.stamp()
|
366
|
-
if len(outputs) != 1:
|
367
|
-
preds = outputs
|
368
|
-
else:
|
369
|
-
preds = outputs[0]
|
370
|
-
rec_result = self.postprocess_op(preds)
|
371
|
-
for rno in range(len(rec_result)):
|
372
|
-
rec_res[indices[beg_img_no + rno]] = rec_result[rno]
|
373
|
-
if self.benchmark:
|
374
|
-
self.autolog.times.end(stamp=True)
|
375
|
-
return rec_res, time.time() - st
|
376
|
-
|
377
|
-
|
378
|
-
def main(args):
|
379
|
-
image_file_list = get_image_file_list(args.image_dir)
|
380
|
-
text_recognizer = TextRecognizer(args)
|
381
|
-
valid_image_file_list = []
|
382
|
-
img_list = []
|
383
|
-
|
384
|
-
# warmup 2 times
|
385
|
-
if args.warmup:
|
386
|
-
img = np.random.uniform(0, 255, [32, 320, 3]).astype(np.uint8)
|
387
|
-
for i in range(2):
|
388
|
-
res = text_recognizer([img] * int(args.rec_batch_num))
|
389
|
-
|
390
|
-
for image_file in image_file_list:
|
391
|
-
img, flag = check_and_read_gif(image_file)
|
392
|
-
if not flag:
|
393
|
-
img = cv2.imread(image_file)
|
394
|
-
if img is None:
|
395
|
-
logger.info("error in loading image:{}".format(image_file))
|
396
|
-
continue
|
397
|
-
valid_image_file_list.append(image_file)
|
398
|
-
img_list.append(img)
|
399
|
-
try:
|
400
|
-
rec_res, _ = text_recognizer(img_list)
|
401
|
-
|
402
|
-
except Exception as E:
|
403
|
-
logger.info(traceback.format_exc())
|
404
|
-
logger.info(E)
|
405
|
-
exit()
|
406
|
-
for ino in range(len(img_list)):
|
407
|
-
logger.info("Predicts of {}:{}".format(valid_image_file_list[ino],
|
408
|
-
rec_res[ino]))
|
409
|
-
if args.benchmark:
|
410
|
-
text_recognizer.autolog.report()
|
411
|
-
|
412
|
-
|
413
|
-
if __name__ == "__main__":
|
414
|
-
main(utility.parse_args())
|
@@ -1,204 +0,0 @@
|
|
1
|
-
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
import os
|
15
|
-
import sys
|
16
|
-
import subprocess
|
17
|
-
|
18
|
-
__dir__ = os.path.dirname(os.path.abspath(__file__))
|
19
|
-
sys.path.append(__dir__)
|
20
|
-
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
|
21
|
-
|
22
|
-
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
|
23
|
-
|
24
|
-
import cv2
|
25
|
-
import copy
|
26
|
-
import numpy as np
|
27
|
-
import time
|
28
|
-
import logging
|
29
|
-
from PIL import Image
|
30
|
-
import pyxlpr.ppocr.tools.infer.utility as utility
|
31
|
-
import pyxlpr.ppocr.tools.infer.predict_rec as predict_rec
|
32
|
-
import pyxlpr.ppocr.tools.infer.predict_det as predict_det
|
33
|
-
import pyxlpr.ppocr.tools.infer.predict_cls as predict_cls
|
34
|
-
from pyxlpr.ppocr.utils.utility import get_image_file_list, check_and_read_gif
|
35
|
-
from pyxlpr.ppocr.utils.logging import get_logger
|
36
|
-
from pyxlpr.ppocr.tools.infer.utility import draw_ocr_box_txt, get_rotate_crop_image
|
37
|
-
logger = get_logger()
|
38
|
-
|
39
|
-
|
40
|
-
class TextSystem(object):
|
41
|
-
def __init__(self, args):
|
42
|
-
if not args.show_log:
|
43
|
-
logger.setLevel(logging.INFO)
|
44
|
-
|
45
|
-
self.text_detector = predict_det.TextDetector(args)
|
46
|
-
self.text_recognizer = predict_rec.TextRecognizer(args)
|
47
|
-
self.use_angle_cls = args.use_angle_cls
|
48
|
-
self.drop_score = args.drop_score
|
49
|
-
if self.use_angle_cls:
|
50
|
-
self.text_classifier = predict_cls.TextClassifier(args)
|
51
|
-
|
52
|
-
self.args = args
|
53
|
-
self.crop_image_res_index = 0
|
54
|
-
|
55
|
-
def draw_crop_rec_res(self, output_dir, img_crop_list, rec_res):
|
56
|
-
os.makedirs(output_dir, exist_ok=True)
|
57
|
-
bbox_num = len(img_crop_list)
|
58
|
-
for bno in range(bbox_num):
|
59
|
-
cv2.imwrite(
|
60
|
-
os.path.join(output_dir,
|
61
|
-
f"mg_crop_{bno+self.crop_image_res_index}.jpg"),
|
62
|
-
img_crop_list[bno])
|
63
|
-
logger.debug(f"{bno}, {rec_res[bno]}")
|
64
|
-
self.crop_image_res_index += bbox_num
|
65
|
-
|
66
|
-
def __call__(self, img, cls=True):
|
67
|
-
ori_im = img.copy()
|
68
|
-
dt_boxes, elapse = self.text_detector(img)
|
69
|
-
|
70
|
-
logger.debug("dt_boxes num : {}, elapse : {}".format(
|
71
|
-
len(dt_boxes), elapse))
|
72
|
-
if dt_boxes is None:
|
73
|
-
return None, None
|
74
|
-
img_crop_list = []
|
75
|
-
|
76
|
-
dt_boxes = sorted_boxes(dt_boxes)
|
77
|
-
|
78
|
-
for bno in range(len(dt_boxes)):
|
79
|
-
tmp_box = copy.deepcopy(dt_boxes[bno])
|
80
|
-
img_crop = get_rotate_crop_image(ori_im, tmp_box)
|
81
|
-
img_crop_list.append(img_crop)
|
82
|
-
if self.use_angle_cls and cls:
|
83
|
-
img_crop_list, angle_list, elapse = self.text_classifier(
|
84
|
-
img_crop_list)
|
85
|
-
logger.debug("cls num : {}, elapse : {}".format(
|
86
|
-
len(img_crop_list), elapse))
|
87
|
-
|
88
|
-
rec_res, elapse = self.text_recognizer(img_crop_list)
|
89
|
-
logger.debug("rec_res num : {}, elapse : {}".format(
|
90
|
-
len(rec_res), elapse))
|
91
|
-
if self.args.save_crop_res:
|
92
|
-
self.draw_crop_rec_res(self.args.crop_res_save_dir, img_crop_list,
|
93
|
-
rec_res)
|
94
|
-
filter_boxes, filter_rec_res = [], []
|
95
|
-
for box, rec_reuslt in zip(dt_boxes, rec_res):
|
96
|
-
text, score = rec_reuslt
|
97
|
-
if score >= self.drop_score:
|
98
|
-
filter_boxes.append(box)
|
99
|
-
filter_rec_res.append(rec_reuslt)
|
100
|
-
return filter_boxes, filter_rec_res
|
101
|
-
|
102
|
-
|
103
|
-
def sorted_boxes(dt_boxes):
|
104
|
-
"""
|
105
|
-
Sort text boxes in order from top to bottom, left to right
|
106
|
-
args:
|
107
|
-
dt_boxes(array):detected text boxes with shape [4, 2]
|
108
|
-
return:
|
109
|
-
sorted boxes(array) with shape [4, 2]
|
110
|
-
"""
|
111
|
-
num_boxes = dt_boxes.shape[0]
|
112
|
-
sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
|
113
|
-
_boxes = list(sorted_boxes)
|
114
|
-
|
115
|
-
for i in range(num_boxes - 1):
|
116
|
-
if abs(_boxes[i + 1][0][1] - _boxes[i][0][1]) < 10 and \
|
117
|
-
(_boxes[i + 1][0][0] < _boxes[i][0][0]):
|
118
|
-
tmp = _boxes[i]
|
119
|
-
_boxes[i] = _boxes[i + 1]
|
120
|
-
_boxes[i + 1] = tmp
|
121
|
-
return _boxes
|
122
|
-
|
123
|
-
|
124
|
-
def main(args):
|
125
|
-
image_file_list = get_image_file_list(args.image_dir)
|
126
|
-
image_file_list = image_file_list[args.process_id::args.total_process_num]
|
127
|
-
text_sys = TextSystem(args)
|
128
|
-
is_visualize = True
|
129
|
-
font_path = args.vis_font_path
|
130
|
-
drop_score = args.drop_score
|
131
|
-
|
132
|
-
# warm up 10 times
|
133
|
-
if args.warmup:
|
134
|
-
img = np.random.uniform(0, 255, [640, 640, 3]).astype(np.uint8)
|
135
|
-
for i in range(10):
|
136
|
-
res = text_sys(img)
|
137
|
-
|
138
|
-
total_time = 0
|
139
|
-
cpu_mem, gpu_mem, gpu_util = 0, 0, 0
|
140
|
-
_st = time.time()
|
141
|
-
count = 0
|
142
|
-
for idx, image_file in enumerate(image_file_list):
|
143
|
-
|
144
|
-
img, flag = check_and_read_gif(image_file)
|
145
|
-
if not flag:
|
146
|
-
img = cv2.imread(image_file)
|
147
|
-
if img is None:
|
148
|
-
logger.debug("error in loading image:{}".format(image_file))
|
149
|
-
continue
|
150
|
-
starttime = time.time()
|
151
|
-
dt_boxes, rec_res = text_sys(img)
|
152
|
-
elapse = time.time() - starttime
|
153
|
-
total_time += elapse
|
154
|
-
|
155
|
-
logger.debug(
|
156
|
-
str(idx) + " Predict time of %s: %.3fs" % (image_file, elapse))
|
157
|
-
for text, score in rec_res:
|
158
|
-
logger.debug("{}, {:.3f}".format(text, score))
|
159
|
-
|
160
|
-
if is_visualize:
|
161
|
-
image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
162
|
-
boxes = dt_boxes
|
163
|
-
txts = [rec_res[i][0] for i in range(len(rec_res))]
|
164
|
-
scores = [rec_res[i][1] for i in range(len(rec_res))]
|
165
|
-
|
166
|
-
draw_img = draw_ocr_box_txt(
|
167
|
-
image,
|
168
|
-
boxes,
|
169
|
-
txts,
|
170
|
-
scores,
|
171
|
-
drop_score=drop_score,
|
172
|
-
font_path=font_path)
|
173
|
-
draw_img_save_dir = args.draw_img_save_dir
|
174
|
-
os.makedirs(draw_img_save_dir, exist_ok=True)
|
175
|
-
if flag:
|
176
|
-
image_file = image_file[:-3] + "png"
|
177
|
-
cv2.imwrite(
|
178
|
-
os.path.join(draw_img_save_dir, os.path.basename(image_file)),
|
179
|
-
draw_img[:, :, ::-1])
|
180
|
-
logger.debug("The visualized image saved in {}".format(
|
181
|
-
os.path.join(draw_img_save_dir, os.path.basename(image_file))))
|
182
|
-
|
183
|
-
logger.info("The predict total time is {}".format(time.time() - _st))
|
184
|
-
if args.benchmark:
|
185
|
-
text_sys.text_detector.autolog.report()
|
186
|
-
text_sys.text_recognizer.autolog.report()
|
187
|
-
|
188
|
-
|
189
|
-
if __name__ == "__main__":
|
190
|
-
args = utility.parse_args()
|
191
|
-
if args.use_mp:
|
192
|
-
p_list = []
|
193
|
-
total_process_num = args.total_process_num
|
194
|
-
for process_id in range(total_process_num):
|
195
|
-
cmd = [sys.executable, "-u"] + sys.argv + [
|
196
|
-
"--process_id={}".format(process_id),
|
197
|
-
"--use_mp={}".format(False)
|
198
|
-
]
|
199
|
-
p = subprocess.Popen(cmd, stdout=sys.stdout, stderr=sys.stdout)
|
200
|
-
p_list.append(p)
|
201
|
-
for p in p_list:
|
202
|
-
p.wait()
|
203
|
-
else:
|
204
|
-
main(args)
|