pyxllib 0.3.96__py3-none-any.whl → 0.3.197__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyxllib/algo/geo.py +12 -0
- pyxllib/algo/intervals.py +1 -1
- pyxllib/algo/matcher.py +78 -0
- pyxllib/algo/pupil.py +187 -19
- pyxllib/algo/specialist.py +2 -1
- pyxllib/algo/stat.py +38 -2
- {pyxlpr → pyxllib/autogui}/__init__.py +1 -1
- pyxllib/autogui/activewin.py +246 -0
- pyxllib/autogui/all.py +9 -0
- pyxllib/{ext/autogui → autogui}/autogui.py +40 -11
- pyxllib/autogui/uiautolib.py +362 -0
- pyxllib/autogui/wechat.py +827 -0
- pyxllib/autogui/wechat_msg.py +421 -0
- pyxllib/autogui/wxautolib.py +84 -0
- pyxllib/cv/slidercaptcha.py +137 -0
- pyxllib/data/echarts.py +123 -12
- pyxllib/data/jsonlib.py +89 -0
- pyxllib/data/pglib.py +514 -30
- pyxllib/data/sqlite.py +231 -4
- pyxllib/ext/JLineViewer.py +14 -1
- pyxllib/ext/drissionlib.py +277 -0
- pyxllib/ext/kq5034lib.py +0 -1594
- pyxllib/ext/robustprocfile.py +497 -0
- pyxllib/ext/unixlib.py +6 -5
- pyxllib/ext/utools.py +108 -95
- pyxllib/ext/webhook.py +32 -14
- pyxllib/ext/wjxlib.py +88 -0
- pyxllib/ext/wpsapi.py +124 -0
- pyxllib/ext/xlwork.py +9 -0
- pyxllib/ext/yuquelib.py +1003 -71
- pyxllib/file/docxlib.py +1 -1
- pyxllib/file/libreoffice.py +165 -0
- pyxllib/file/movielib.py +9 -0
- pyxllib/file/packlib/__init__.py +112 -75
- pyxllib/file/pdflib.py +1 -1
- pyxllib/file/pupil.py +1 -1
- pyxllib/file/specialist/dirlib.py +1 -1
- pyxllib/file/specialist/download.py +10 -3
- pyxllib/file/specialist/filelib.py +266 -55
- pyxllib/file/xlsxlib.py +205 -50
- pyxllib/file/xlsyncfile.py +341 -0
- pyxllib/prog/cachetools.py +64 -0
- pyxllib/prog/filelock.py +42 -0
- pyxllib/prog/multiprogs.py +940 -0
- pyxllib/prog/newbie.py +9 -2
- pyxllib/prog/pupil.py +129 -60
- pyxllib/prog/specialist/__init__.py +176 -2
- pyxllib/prog/specialist/bc.py +5 -2
- pyxllib/prog/specialist/browser.py +11 -2
- pyxllib/prog/specialist/datetime.py +68 -0
- pyxllib/prog/specialist/tictoc.py +12 -13
- pyxllib/prog/specialist/xllog.py +5 -5
- pyxllib/prog/xlosenv.py +7 -0
- pyxllib/text/airscript.js +744 -0
- pyxllib/text/charclasslib.py +17 -5
- pyxllib/text/jiebalib.py +6 -3
- pyxllib/text/jinjalib.py +32 -0
- pyxllib/text/jsa_ai_prompt.md +271 -0
- pyxllib/text/jscode.py +159 -4
- pyxllib/text/nestenv.py +1 -1
- pyxllib/text/newbie.py +12 -0
- pyxllib/text/pupil/common.py +26 -0
- pyxllib/text/specialist/ptag.py +2 -2
- pyxllib/text/templates/echart_base.html +11 -0
- pyxllib/text/templates/highlight_code.html +17 -0
- pyxllib/text/templates/latex_editor.html +103 -0
- pyxllib/text/xmllib.py +76 -14
- pyxllib/xl.py +2 -1
- pyxllib-0.3.197.dist-info/METADATA +48 -0
- pyxllib-0.3.197.dist-info/RECORD +126 -0
- {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info}/WHEEL +1 -2
- pyxllib/ext/autogui/__init__.py +0 -8
- pyxllib-0.3.96.dist-info/METADATA +0 -51
- pyxllib-0.3.96.dist-info/RECORD +0 -333
- pyxllib-0.3.96.dist-info/top_level.txt +0 -2
- pyxlpr/ai/__init__.py +0 -5
- pyxlpr/ai/clientlib.py +0 -1281
- pyxlpr/ai/specialist.py +0 -286
- pyxlpr/ai/torch_app.py +0 -172
- pyxlpr/ai/xlpaddle.py +0 -655
- pyxlpr/ai/xltorch.py +0 -705
- pyxlpr/data/__init__.py +0 -11
- pyxlpr/data/coco.py +0 -1325
- pyxlpr/data/datacls.py +0 -365
- pyxlpr/data/datasets.py +0 -200
- pyxlpr/data/gptlib.py +0 -1291
- pyxlpr/data/icdar/__init__.py +0 -96
- pyxlpr/data/icdar/deteval.py +0 -377
- pyxlpr/data/icdar/icdar2013.py +0 -341
- pyxlpr/data/icdar/iou.py +0 -340
- pyxlpr/data/icdar/rrc_evaluation_funcs_1_1.py +0 -463
- pyxlpr/data/imtextline.py +0 -473
- pyxlpr/data/labelme.py +0 -866
- pyxlpr/data/removeline.py +0 -179
- pyxlpr/data/specialist.py +0 -57
- pyxlpr/eval/__init__.py +0 -85
- pyxlpr/paddleocr.py +0 -776
- pyxlpr/ppocr/__init__.py +0 -15
- pyxlpr/ppocr/configs/rec/multi_language/generate_multi_language_configs.py +0 -226
- pyxlpr/ppocr/data/__init__.py +0 -135
- pyxlpr/ppocr/data/imaug/ColorJitter.py +0 -26
- pyxlpr/ppocr/data/imaug/__init__.py +0 -67
- pyxlpr/ppocr/data/imaug/copy_paste.py +0 -170
- pyxlpr/ppocr/data/imaug/east_process.py +0 -437
- pyxlpr/ppocr/data/imaug/gen_table_mask.py +0 -244
- pyxlpr/ppocr/data/imaug/iaa_augment.py +0 -114
- pyxlpr/ppocr/data/imaug/label_ops.py +0 -789
- pyxlpr/ppocr/data/imaug/make_border_map.py +0 -184
- pyxlpr/ppocr/data/imaug/make_pse_gt.py +0 -106
- pyxlpr/ppocr/data/imaug/make_shrink_map.py +0 -126
- pyxlpr/ppocr/data/imaug/operators.py +0 -433
- pyxlpr/ppocr/data/imaug/pg_process.py +0 -906
- pyxlpr/ppocr/data/imaug/randaugment.py +0 -143
- pyxlpr/ppocr/data/imaug/random_crop_data.py +0 -239
- pyxlpr/ppocr/data/imaug/rec_img_aug.py +0 -533
- pyxlpr/ppocr/data/imaug/sast_process.py +0 -777
- pyxlpr/ppocr/data/imaug/text_image_aug/__init__.py +0 -17
- pyxlpr/ppocr/data/imaug/text_image_aug/augment.py +0 -120
- pyxlpr/ppocr/data/imaug/text_image_aug/warp_mls.py +0 -168
- pyxlpr/ppocr/data/lmdb_dataset.py +0 -115
- pyxlpr/ppocr/data/pgnet_dataset.py +0 -104
- pyxlpr/ppocr/data/pubtab_dataset.py +0 -107
- pyxlpr/ppocr/data/simple_dataset.py +0 -372
- pyxlpr/ppocr/losses/__init__.py +0 -61
- pyxlpr/ppocr/losses/ace_loss.py +0 -52
- pyxlpr/ppocr/losses/basic_loss.py +0 -135
- pyxlpr/ppocr/losses/center_loss.py +0 -88
- pyxlpr/ppocr/losses/cls_loss.py +0 -30
- pyxlpr/ppocr/losses/combined_loss.py +0 -67
- pyxlpr/ppocr/losses/det_basic_loss.py +0 -208
- pyxlpr/ppocr/losses/det_db_loss.py +0 -80
- pyxlpr/ppocr/losses/det_east_loss.py +0 -63
- pyxlpr/ppocr/losses/det_pse_loss.py +0 -149
- pyxlpr/ppocr/losses/det_sast_loss.py +0 -121
- pyxlpr/ppocr/losses/distillation_loss.py +0 -272
- pyxlpr/ppocr/losses/e2e_pg_loss.py +0 -140
- pyxlpr/ppocr/losses/kie_sdmgr_loss.py +0 -113
- pyxlpr/ppocr/losses/rec_aster_loss.py +0 -99
- pyxlpr/ppocr/losses/rec_att_loss.py +0 -39
- pyxlpr/ppocr/losses/rec_ctc_loss.py +0 -44
- pyxlpr/ppocr/losses/rec_enhanced_ctc_loss.py +0 -70
- pyxlpr/ppocr/losses/rec_nrtr_loss.py +0 -30
- pyxlpr/ppocr/losses/rec_sar_loss.py +0 -28
- pyxlpr/ppocr/losses/rec_srn_loss.py +0 -47
- pyxlpr/ppocr/losses/table_att_loss.py +0 -109
- pyxlpr/ppocr/metrics/__init__.py +0 -44
- pyxlpr/ppocr/metrics/cls_metric.py +0 -45
- pyxlpr/ppocr/metrics/det_metric.py +0 -82
- pyxlpr/ppocr/metrics/distillation_metric.py +0 -73
- pyxlpr/ppocr/metrics/e2e_metric.py +0 -86
- pyxlpr/ppocr/metrics/eval_det_iou.py +0 -274
- pyxlpr/ppocr/metrics/kie_metric.py +0 -70
- pyxlpr/ppocr/metrics/rec_metric.py +0 -75
- pyxlpr/ppocr/metrics/table_metric.py +0 -50
- pyxlpr/ppocr/modeling/architectures/__init__.py +0 -32
- pyxlpr/ppocr/modeling/architectures/base_model.py +0 -88
- pyxlpr/ppocr/modeling/architectures/distillation_model.py +0 -60
- pyxlpr/ppocr/modeling/backbones/__init__.py +0 -54
- pyxlpr/ppocr/modeling/backbones/det_mobilenet_v3.py +0 -268
- pyxlpr/ppocr/modeling/backbones/det_resnet_vd.py +0 -246
- pyxlpr/ppocr/modeling/backbones/det_resnet_vd_sast.py +0 -285
- pyxlpr/ppocr/modeling/backbones/e2e_resnet_vd_pg.py +0 -265
- pyxlpr/ppocr/modeling/backbones/kie_unet_sdmgr.py +0 -186
- pyxlpr/ppocr/modeling/backbones/rec_mobilenet_v3.py +0 -138
- pyxlpr/ppocr/modeling/backbones/rec_mv1_enhance.py +0 -258
- pyxlpr/ppocr/modeling/backbones/rec_nrtr_mtb.py +0 -48
- pyxlpr/ppocr/modeling/backbones/rec_resnet_31.py +0 -210
- pyxlpr/ppocr/modeling/backbones/rec_resnet_aster.py +0 -143
- pyxlpr/ppocr/modeling/backbones/rec_resnet_fpn.py +0 -307
- pyxlpr/ppocr/modeling/backbones/rec_resnet_vd.py +0 -286
- pyxlpr/ppocr/modeling/heads/__init__.py +0 -54
- pyxlpr/ppocr/modeling/heads/cls_head.py +0 -52
- pyxlpr/ppocr/modeling/heads/det_db_head.py +0 -118
- pyxlpr/ppocr/modeling/heads/det_east_head.py +0 -121
- pyxlpr/ppocr/modeling/heads/det_pse_head.py +0 -37
- pyxlpr/ppocr/modeling/heads/det_sast_head.py +0 -128
- pyxlpr/ppocr/modeling/heads/e2e_pg_head.py +0 -253
- pyxlpr/ppocr/modeling/heads/kie_sdmgr_head.py +0 -206
- pyxlpr/ppocr/modeling/heads/multiheadAttention.py +0 -163
- pyxlpr/ppocr/modeling/heads/rec_aster_head.py +0 -393
- pyxlpr/ppocr/modeling/heads/rec_att_head.py +0 -202
- pyxlpr/ppocr/modeling/heads/rec_ctc_head.py +0 -88
- pyxlpr/ppocr/modeling/heads/rec_nrtr_head.py +0 -826
- pyxlpr/ppocr/modeling/heads/rec_sar_head.py +0 -402
- pyxlpr/ppocr/modeling/heads/rec_srn_head.py +0 -280
- pyxlpr/ppocr/modeling/heads/self_attention.py +0 -406
- pyxlpr/ppocr/modeling/heads/table_att_head.py +0 -246
- pyxlpr/ppocr/modeling/necks/__init__.py +0 -32
- pyxlpr/ppocr/modeling/necks/db_fpn.py +0 -111
- pyxlpr/ppocr/modeling/necks/east_fpn.py +0 -188
- pyxlpr/ppocr/modeling/necks/fpn.py +0 -138
- pyxlpr/ppocr/modeling/necks/pg_fpn.py +0 -314
- pyxlpr/ppocr/modeling/necks/rnn.py +0 -92
- pyxlpr/ppocr/modeling/necks/sast_fpn.py +0 -284
- pyxlpr/ppocr/modeling/necks/table_fpn.py +0 -110
- pyxlpr/ppocr/modeling/transforms/__init__.py +0 -28
- pyxlpr/ppocr/modeling/transforms/stn.py +0 -135
- pyxlpr/ppocr/modeling/transforms/tps.py +0 -308
- pyxlpr/ppocr/modeling/transforms/tps_spatial_transformer.py +0 -156
- pyxlpr/ppocr/optimizer/__init__.py +0 -61
- pyxlpr/ppocr/optimizer/learning_rate.py +0 -228
- pyxlpr/ppocr/optimizer/lr_scheduler.py +0 -49
- pyxlpr/ppocr/optimizer/optimizer.py +0 -160
- pyxlpr/ppocr/optimizer/regularizer.py +0 -52
- pyxlpr/ppocr/postprocess/__init__.py +0 -55
- pyxlpr/ppocr/postprocess/cls_postprocess.py +0 -33
- pyxlpr/ppocr/postprocess/db_postprocess.py +0 -234
- pyxlpr/ppocr/postprocess/east_postprocess.py +0 -143
- pyxlpr/ppocr/postprocess/locality_aware_nms.py +0 -200
- pyxlpr/ppocr/postprocess/pg_postprocess.py +0 -52
- pyxlpr/ppocr/postprocess/pse_postprocess/__init__.py +0 -15
- pyxlpr/ppocr/postprocess/pse_postprocess/pse/__init__.py +0 -29
- pyxlpr/ppocr/postprocess/pse_postprocess/pse/setup.py +0 -14
- pyxlpr/ppocr/postprocess/pse_postprocess/pse_postprocess.py +0 -118
- pyxlpr/ppocr/postprocess/rec_postprocess.py +0 -654
- pyxlpr/ppocr/postprocess/sast_postprocess.py +0 -355
- pyxlpr/ppocr/tools/__init__.py +0 -14
- pyxlpr/ppocr/tools/eval.py +0 -83
- pyxlpr/ppocr/tools/export_center.py +0 -77
- pyxlpr/ppocr/tools/export_model.py +0 -129
- pyxlpr/ppocr/tools/infer/predict_cls.py +0 -151
- pyxlpr/ppocr/tools/infer/predict_det.py +0 -300
- pyxlpr/ppocr/tools/infer/predict_e2e.py +0 -169
- pyxlpr/ppocr/tools/infer/predict_rec.py +0 -414
- pyxlpr/ppocr/tools/infer/predict_system.py +0 -204
- pyxlpr/ppocr/tools/infer/utility.py +0 -629
- pyxlpr/ppocr/tools/infer_cls.py +0 -83
- pyxlpr/ppocr/tools/infer_det.py +0 -134
- pyxlpr/ppocr/tools/infer_e2e.py +0 -122
- pyxlpr/ppocr/tools/infer_kie.py +0 -153
- pyxlpr/ppocr/tools/infer_rec.py +0 -146
- pyxlpr/ppocr/tools/infer_table.py +0 -107
- pyxlpr/ppocr/tools/program.py +0 -596
- pyxlpr/ppocr/tools/test_hubserving.py +0 -117
- pyxlpr/ppocr/tools/train.py +0 -163
- pyxlpr/ppocr/tools/xlprog.py +0 -748
- pyxlpr/ppocr/utils/EN_symbol_dict.txt +0 -94
- pyxlpr/ppocr/utils/__init__.py +0 -24
- pyxlpr/ppocr/utils/dict/ar_dict.txt +0 -117
- pyxlpr/ppocr/utils/dict/arabic_dict.txt +0 -162
- pyxlpr/ppocr/utils/dict/be_dict.txt +0 -145
- pyxlpr/ppocr/utils/dict/bg_dict.txt +0 -140
- pyxlpr/ppocr/utils/dict/chinese_cht_dict.txt +0 -8421
- pyxlpr/ppocr/utils/dict/cyrillic_dict.txt +0 -163
- pyxlpr/ppocr/utils/dict/devanagari_dict.txt +0 -167
- pyxlpr/ppocr/utils/dict/en_dict.txt +0 -63
- pyxlpr/ppocr/utils/dict/fa_dict.txt +0 -136
- pyxlpr/ppocr/utils/dict/french_dict.txt +0 -136
- pyxlpr/ppocr/utils/dict/german_dict.txt +0 -143
- pyxlpr/ppocr/utils/dict/hi_dict.txt +0 -162
- pyxlpr/ppocr/utils/dict/it_dict.txt +0 -118
- pyxlpr/ppocr/utils/dict/japan_dict.txt +0 -4399
- pyxlpr/ppocr/utils/dict/ka_dict.txt +0 -153
- pyxlpr/ppocr/utils/dict/korean_dict.txt +0 -3688
- pyxlpr/ppocr/utils/dict/latin_dict.txt +0 -185
- pyxlpr/ppocr/utils/dict/mr_dict.txt +0 -153
- pyxlpr/ppocr/utils/dict/ne_dict.txt +0 -153
- pyxlpr/ppocr/utils/dict/oc_dict.txt +0 -96
- pyxlpr/ppocr/utils/dict/pu_dict.txt +0 -130
- pyxlpr/ppocr/utils/dict/rs_dict.txt +0 -91
- pyxlpr/ppocr/utils/dict/rsc_dict.txt +0 -134
- pyxlpr/ppocr/utils/dict/ru_dict.txt +0 -125
- pyxlpr/ppocr/utils/dict/ta_dict.txt +0 -128
- pyxlpr/ppocr/utils/dict/table_dict.txt +0 -277
- pyxlpr/ppocr/utils/dict/table_structure_dict.txt +0 -2759
- pyxlpr/ppocr/utils/dict/te_dict.txt +0 -151
- pyxlpr/ppocr/utils/dict/ug_dict.txt +0 -114
- pyxlpr/ppocr/utils/dict/uk_dict.txt +0 -142
- pyxlpr/ppocr/utils/dict/ur_dict.txt +0 -137
- pyxlpr/ppocr/utils/dict/xi_dict.txt +0 -110
- pyxlpr/ppocr/utils/dict90.txt +0 -90
- pyxlpr/ppocr/utils/e2e_metric/Deteval.py +0 -574
- pyxlpr/ppocr/utils/e2e_metric/polygon_fast.py +0 -83
- pyxlpr/ppocr/utils/e2e_utils/extract_batchsize.py +0 -87
- pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_fast.py +0 -457
- pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_slow.py +0 -592
- pyxlpr/ppocr/utils/e2e_utils/pgnet_pp_utils.py +0 -162
- pyxlpr/ppocr/utils/e2e_utils/visual.py +0 -162
- pyxlpr/ppocr/utils/en_dict.txt +0 -95
- pyxlpr/ppocr/utils/gen_label.py +0 -81
- pyxlpr/ppocr/utils/ic15_dict.txt +0 -36
- pyxlpr/ppocr/utils/iou.py +0 -54
- pyxlpr/ppocr/utils/logging.py +0 -69
- pyxlpr/ppocr/utils/network.py +0 -84
- pyxlpr/ppocr/utils/ppocr_keys_v1.txt +0 -6623
- pyxlpr/ppocr/utils/profiler.py +0 -110
- pyxlpr/ppocr/utils/save_load.py +0 -150
- pyxlpr/ppocr/utils/stats.py +0 -72
- pyxlpr/ppocr/utils/utility.py +0 -80
- pyxlpr/ppstructure/__init__.py +0 -13
- pyxlpr/ppstructure/predict_system.py +0 -187
- pyxlpr/ppstructure/table/__init__.py +0 -13
- pyxlpr/ppstructure/table/eval_table.py +0 -72
- pyxlpr/ppstructure/table/matcher.py +0 -192
- pyxlpr/ppstructure/table/predict_structure.py +0 -136
- pyxlpr/ppstructure/table/predict_table.py +0 -221
- pyxlpr/ppstructure/table/table_metric/__init__.py +0 -16
- pyxlpr/ppstructure/table/table_metric/parallel.py +0 -51
- pyxlpr/ppstructure/table/table_metric/table_metric.py +0 -247
- pyxlpr/ppstructure/table/tablepyxl/__init__.py +0 -13
- pyxlpr/ppstructure/table/tablepyxl/style.py +0 -283
- pyxlpr/ppstructure/table/tablepyxl/tablepyxl.py +0 -118
- pyxlpr/ppstructure/utility.py +0 -71
- pyxlpr/xlai.py +0 -10
- /pyxllib/{ext/autogui → autogui}/virtualkey.py +0 -0
- {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info/licenses}/LICENSE +0 -0
@@ -1,265 +0,0 @@
|
|
1
|
-
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
|
15
|
-
from __future__ import absolute_import
|
16
|
-
from __future__ import division
|
17
|
-
from __future__ import print_function
|
18
|
-
|
19
|
-
import paddle
|
20
|
-
from paddle import ParamAttr
|
21
|
-
import paddle.nn as nn
|
22
|
-
import paddle.nn.functional as F
|
23
|
-
|
24
|
-
__all__ = ["ResNet"]
|
25
|
-
|
26
|
-
|
27
|
-
class ConvBNLayer(nn.Layer):
|
28
|
-
def __init__(
|
29
|
-
self,
|
30
|
-
in_channels,
|
31
|
-
out_channels,
|
32
|
-
kernel_size,
|
33
|
-
stride=1,
|
34
|
-
groups=1,
|
35
|
-
is_vd_mode=False,
|
36
|
-
act=None,
|
37
|
-
name=None, ):
|
38
|
-
super(ConvBNLayer, self).__init__()
|
39
|
-
|
40
|
-
self.is_vd_mode = is_vd_mode
|
41
|
-
self._pool2d_avg = nn.AvgPool2D(
|
42
|
-
kernel_size=2, stride=2, padding=0, ceil_mode=True)
|
43
|
-
self._conv = nn.Conv2D(
|
44
|
-
in_channels=in_channels,
|
45
|
-
out_channels=out_channels,
|
46
|
-
kernel_size=kernel_size,
|
47
|
-
stride=stride,
|
48
|
-
padding=(kernel_size - 1) // 2,
|
49
|
-
groups=groups,
|
50
|
-
weight_attr=ParamAttr(name=name + "_weights"),
|
51
|
-
bias_attr=False)
|
52
|
-
if name == "conv1":
|
53
|
-
bn_name = "bn_" + name
|
54
|
-
else:
|
55
|
-
bn_name = "bn" + name[3:]
|
56
|
-
self._batch_norm = nn.BatchNorm(
|
57
|
-
out_channels,
|
58
|
-
act=act,
|
59
|
-
param_attr=ParamAttr(name=bn_name + '_scale'),
|
60
|
-
bias_attr=ParamAttr(bn_name + '_offset'),
|
61
|
-
moving_mean_name=bn_name + '_mean',
|
62
|
-
moving_variance_name=bn_name + '_variance')
|
63
|
-
|
64
|
-
def forward(self, inputs):
|
65
|
-
y = self._conv(inputs)
|
66
|
-
y = self._batch_norm(y)
|
67
|
-
return y
|
68
|
-
|
69
|
-
|
70
|
-
class BottleneckBlock(nn.Layer):
|
71
|
-
def __init__(self,
|
72
|
-
in_channels,
|
73
|
-
out_channels,
|
74
|
-
stride,
|
75
|
-
shortcut=True,
|
76
|
-
if_first=False,
|
77
|
-
name=None):
|
78
|
-
super(BottleneckBlock, self).__init__()
|
79
|
-
|
80
|
-
self.conv0 = ConvBNLayer(
|
81
|
-
in_channels=in_channels,
|
82
|
-
out_channels=out_channels,
|
83
|
-
kernel_size=1,
|
84
|
-
act='relu',
|
85
|
-
name=name + "_branch2a")
|
86
|
-
self.conv1 = ConvBNLayer(
|
87
|
-
in_channels=out_channels,
|
88
|
-
out_channels=out_channels,
|
89
|
-
kernel_size=3,
|
90
|
-
stride=stride,
|
91
|
-
act='relu',
|
92
|
-
name=name + "_branch2b")
|
93
|
-
self.conv2 = ConvBNLayer(
|
94
|
-
in_channels=out_channels,
|
95
|
-
out_channels=out_channels * 4,
|
96
|
-
kernel_size=1,
|
97
|
-
act=None,
|
98
|
-
name=name + "_branch2c")
|
99
|
-
|
100
|
-
if not shortcut:
|
101
|
-
self.short = ConvBNLayer(
|
102
|
-
in_channels=in_channels,
|
103
|
-
out_channels=out_channels * 4,
|
104
|
-
kernel_size=1,
|
105
|
-
stride=stride,
|
106
|
-
is_vd_mode=False if if_first else True,
|
107
|
-
name=name + "_branch1")
|
108
|
-
|
109
|
-
self.shortcut = shortcut
|
110
|
-
|
111
|
-
def forward(self, inputs):
|
112
|
-
y = self.conv0(inputs)
|
113
|
-
conv1 = self.conv1(y)
|
114
|
-
conv2 = self.conv2(conv1)
|
115
|
-
|
116
|
-
if self.shortcut:
|
117
|
-
short = inputs
|
118
|
-
else:
|
119
|
-
short = self.short(inputs)
|
120
|
-
y = paddle.add(x=short, y=conv2)
|
121
|
-
y = F.relu(y)
|
122
|
-
return y
|
123
|
-
|
124
|
-
|
125
|
-
class BasicBlock(nn.Layer):
|
126
|
-
def __init__(self,
|
127
|
-
in_channels,
|
128
|
-
out_channels,
|
129
|
-
stride,
|
130
|
-
shortcut=True,
|
131
|
-
if_first=False,
|
132
|
-
name=None):
|
133
|
-
super(BasicBlock, self).__init__()
|
134
|
-
self.stride = stride
|
135
|
-
self.conv0 = ConvBNLayer(
|
136
|
-
in_channels=in_channels,
|
137
|
-
out_channels=out_channels,
|
138
|
-
kernel_size=3,
|
139
|
-
stride=stride,
|
140
|
-
act='relu',
|
141
|
-
name=name + "_branch2a")
|
142
|
-
self.conv1 = ConvBNLayer(
|
143
|
-
in_channels=out_channels,
|
144
|
-
out_channels=out_channels,
|
145
|
-
kernel_size=3,
|
146
|
-
act=None,
|
147
|
-
name=name + "_branch2b")
|
148
|
-
|
149
|
-
if not shortcut:
|
150
|
-
self.short = ConvBNLayer(
|
151
|
-
in_channels=in_channels,
|
152
|
-
out_channels=out_channels,
|
153
|
-
kernel_size=1,
|
154
|
-
stride=1,
|
155
|
-
is_vd_mode=False if if_first else True,
|
156
|
-
name=name + "_branch1")
|
157
|
-
|
158
|
-
self.shortcut = shortcut
|
159
|
-
|
160
|
-
def forward(self, inputs):
|
161
|
-
y = self.conv0(inputs)
|
162
|
-
conv1 = self.conv1(y)
|
163
|
-
|
164
|
-
if self.shortcut:
|
165
|
-
short = inputs
|
166
|
-
else:
|
167
|
-
short = self.short(inputs)
|
168
|
-
y = paddle.add(x=short, y=conv1)
|
169
|
-
y = F.relu(y)
|
170
|
-
return y
|
171
|
-
|
172
|
-
|
173
|
-
class ResNet(nn.Layer):
|
174
|
-
def __init__(self, in_channels=3, layers=50, **kwargs):
|
175
|
-
super(ResNet, self).__init__()
|
176
|
-
|
177
|
-
self.layers = layers
|
178
|
-
supported_layers = [18, 34, 50, 101, 152, 200]
|
179
|
-
assert layers in supported_layers, \
|
180
|
-
"supported layers are {} but input layer is {}".format(
|
181
|
-
supported_layers, layers)
|
182
|
-
|
183
|
-
if layers == 18:
|
184
|
-
depth = [2, 2, 2, 2]
|
185
|
-
elif layers == 34 or layers == 50:
|
186
|
-
# depth = [3, 4, 6, 3]
|
187
|
-
depth = [3, 4, 6, 3, 3]
|
188
|
-
elif layers == 101:
|
189
|
-
depth = [3, 4, 23, 3]
|
190
|
-
elif layers == 152:
|
191
|
-
depth = [3, 8, 36, 3]
|
192
|
-
elif layers == 200:
|
193
|
-
depth = [3, 12, 48, 3]
|
194
|
-
num_channels = [64, 256, 512, 1024,
|
195
|
-
2048] if layers >= 50 else [64, 64, 128, 256]
|
196
|
-
num_filters = [64, 128, 256, 512, 512]
|
197
|
-
|
198
|
-
self.conv1_1 = ConvBNLayer(
|
199
|
-
in_channels=in_channels,
|
200
|
-
out_channels=64,
|
201
|
-
kernel_size=7,
|
202
|
-
stride=2,
|
203
|
-
act='relu',
|
204
|
-
name="conv1_1")
|
205
|
-
self.pool2d_max = nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
|
206
|
-
|
207
|
-
self.stages = []
|
208
|
-
self.out_channels = [3, 64]
|
209
|
-
# num_filters = [64, 128, 256, 512, 512]
|
210
|
-
if layers >= 50:
|
211
|
-
for block in range(len(depth)):
|
212
|
-
block_list = []
|
213
|
-
shortcut = False
|
214
|
-
for i in range(depth[block]):
|
215
|
-
if layers in [101, 152] and block == 2:
|
216
|
-
if i == 0:
|
217
|
-
conv_name = "res" + str(block + 2) + "a"
|
218
|
-
else:
|
219
|
-
conv_name = "res" + str(block + 2) + "b" + str(i)
|
220
|
-
else:
|
221
|
-
conv_name = "res" + str(block + 2) + chr(97 + i)
|
222
|
-
bottleneck_block = self.add_sublayer(
|
223
|
-
'bb_%d_%d' % (block, i),
|
224
|
-
BottleneckBlock(
|
225
|
-
in_channels=num_channels[block]
|
226
|
-
if i == 0 else num_filters[block] * 4,
|
227
|
-
out_channels=num_filters[block],
|
228
|
-
stride=2 if i == 0 and block != 0 else 1,
|
229
|
-
shortcut=shortcut,
|
230
|
-
if_first=block == i == 0,
|
231
|
-
name=conv_name))
|
232
|
-
shortcut = True
|
233
|
-
block_list.append(bottleneck_block)
|
234
|
-
self.out_channels.append(num_filters[block] * 4)
|
235
|
-
self.stages.append(nn.Sequential(*block_list))
|
236
|
-
else:
|
237
|
-
for block in range(len(depth)):
|
238
|
-
block_list = []
|
239
|
-
shortcut = False
|
240
|
-
for i in range(depth[block]):
|
241
|
-
conv_name = "res" + str(block + 2) + chr(97 + i)
|
242
|
-
basic_block = self.add_sublayer(
|
243
|
-
'bb_%d_%d' % (block, i),
|
244
|
-
BasicBlock(
|
245
|
-
in_channels=num_channels[block]
|
246
|
-
if i == 0 else num_filters[block],
|
247
|
-
out_channels=num_filters[block],
|
248
|
-
stride=2 if i == 0 and block != 0 else 1,
|
249
|
-
shortcut=shortcut,
|
250
|
-
if_first=block == i == 0,
|
251
|
-
name=conv_name))
|
252
|
-
shortcut = True
|
253
|
-
block_list.append(basic_block)
|
254
|
-
self.out_channels.append(num_filters[block])
|
255
|
-
self.stages.append(nn.Sequential(*block_list))
|
256
|
-
|
257
|
-
def forward(self, inputs):
|
258
|
-
out = [inputs]
|
259
|
-
y = self.conv1_1(inputs)
|
260
|
-
out.append(y)
|
261
|
-
y = self.pool2d_max(y)
|
262
|
-
for block in self.stages:
|
263
|
-
y = block(y)
|
264
|
-
out.append(y)
|
265
|
-
return out
|
@@ -1,186 +0,0 @@
|
|
1
|
-
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
|
15
|
-
from __future__ import absolute_import
|
16
|
-
from __future__ import division
|
17
|
-
from __future__ import print_function
|
18
|
-
|
19
|
-
import paddle
|
20
|
-
from paddle import nn
|
21
|
-
import numpy as np
|
22
|
-
import cv2
|
23
|
-
|
24
|
-
__all__ = ["Kie_backbone"]
|
25
|
-
|
26
|
-
|
27
|
-
class Encoder(nn.Layer):
|
28
|
-
def __init__(self, num_channels, num_filters):
|
29
|
-
super(Encoder, self).__init__()
|
30
|
-
self.conv1 = nn.Conv2D(
|
31
|
-
num_channels,
|
32
|
-
num_filters,
|
33
|
-
kernel_size=3,
|
34
|
-
stride=1,
|
35
|
-
padding=1,
|
36
|
-
bias_attr=False)
|
37
|
-
self.bn1 = nn.BatchNorm(num_filters, act='relu')
|
38
|
-
|
39
|
-
self.conv2 = nn.Conv2D(
|
40
|
-
num_filters,
|
41
|
-
num_filters,
|
42
|
-
kernel_size=3,
|
43
|
-
stride=1,
|
44
|
-
padding=1,
|
45
|
-
bias_attr=False)
|
46
|
-
self.bn2 = nn.BatchNorm(num_filters, act='relu')
|
47
|
-
|
48
|
-
self.pool = nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
|
49
|
-
|
50
|
-
def forward(self, inputs):
|
51
|
-
x = self.conv1(inputs)
|
52
|
-
x = self.bn1(x)
|
53
|
-
x = self.conv2(x)
|
54
|
-
x = self.bn2(x)
|
55
|
-
x_pooled = self.pool(x)
|
56
|
-
return x, x_pooled
|
57
|
-
|
58
|
-
|
59
|
-
class Decoder(nn.Layer):
|
60
|
-
def __init__(self, num_channels, num_filters):
|
61
|
-
super(Decoder, self).__init__()
|
62
|
-
|
63
|
-
self.conv1 = nn.Conv2D(
|
64
|
-
num_channels,
|
65
|
-
num_filters,
|
66
|
-
kernel_size=3,
|
67
|
-
stride=1,
|
68
|
-
padding=1,
|
69
|
-
bias_attr=False)
|
70
|
-
self.bn1 = nn.BatchNorm(num_filters, act='relu')
|
71
|
-
|
72
|
-
self.conv2 = nn.Conv2D(
|
73
|
-
num_filters,
|
74
|
-
num_filters,
|
75
|
-
kernel_size=3,
|
76
|
-
stride=1,
|
77
|
-
padding=1,
|
78
|
-
bias_attr=False)
|
79
|
-
self.bn2 = nn.BatchNorm(num_filters, act='relu')
|
80
|
-
|
81
|
-
self.conv0 = nn.Conv2D(
|
82
|
-
num_channels,
|
83
|
-
num_filters,
|
84
|
-
kernel_size=1,
|
85
|
-
stride=1,
|
86
|
-
padding=0,
|
87
|
-
bias_attr=False)
|
88
|
-
self.bn0 = nn.BatchNorm(num_filters, act='relu')
|
89
|
-
|
90
|
-
def forward(self, inputs_prev, inputs):
|
91
|
-
x = self.conv0(inputs)
|
92
|
-
x = self.bn0(x)
|
93
|
-
x = paddle.nn.functional.interpolate(
|
94
|
-
x, scale_factor=2, mode='bilinear', align_corners=False)
|
95
|
-
x = paddle.concat([inputs_prev, x], axis=1)
|
96
|
-
x = self.conv1(x)
|
97
|
-
x = self.bn1(x)
|
98
|
-
x = self.conv2(x)
|
99
|
-
x = self.bn2(x)
|
100
|
-
return x
|
101
|
-
|
102
|
-
|
103
|
-
class UNet(nn.Layer):
|
104
|
-
def __init__(self):
|
105
|
-
super(UNet, self).__init__()
|
106
|
-
self.down1 = Encoder(num_channels=3, num_filters=16)
|
107
|
-
self.down2 = Encoder(num_channels=16, num_filters=32)
|
108
|
-
self.down3 = Encoder(num_channels=32, num_filters=64)
|
109
|
-
self.down4 = Encoder(num_channels=64, num_filters=128)
|
110
|
-
self.down5 = Encoder(num_channels=128, num_filters=256)
|
111
|
-
|
112
|
-
self.up1 = Decoder(32, 16)
|
113
|
-
self.up2 = Decoder(64, 32)
|
114
|
-
self.up3 = Decoder(128, 64)
|
115
|
-
self.up4 = Decoder(256, 128)
|
116
|
-
self.out_channels = 16
|
117
|
-
|
118
|
-
def forward(self, inputs):
|
119
|
-
x1, _ = self.down1(inputs)
|
120
|
-
_, x2 = self.down2(x1)
|
121
|
-
_, x3 = self.down3(x2)
|
122
|
-
_, x4 = self.down4(x3)
|
123
|
-
_, x5 = self.down5(x4)
|
124
|
-
|
125
|
-
x = self.up4(x4, x5)
|
126
|
-
x = self.up3(x3, x)
|
127
|
-
x = self.up2(x2, x)
|
128
|
-
x = self.up1(x1, x)
|
129
|
-
return x
|
130
|
-
|
131
|
-
|
132
|
-
class Kie_backbone(nn.Layer):
|
133
|
-
def __init__(self, in_channels, **kwargs):
|
134
|
-
super(Kie_backbone, self).__init__()
|
135
|
-
self.out_channels = 16
|
136
|
-
self.img_feat = UNet()
|
137
|
-
self.maxpool = nn.MaxPool2D(kernel_size=7)
|
138
|
-
|
139
|
-
def bbox2roi(self, bbox_list):
|
140
|
-
rois_list = []
|
141
|
-
rois_num = []
|
142
|
-
for img_id, bboxes in enumerate(bbox_list):
|
143
|
-
rois_num.append(bboxes.shape[0])
|
144
|
-
rois_list.append(bboxes)
|
145
|
-
rois = paddle.concat(rois_list, 0)
|
146
|
-
rois_num = paddle.to_tensor(rois_num, dtype='int32')
|
147
|
-
return rois, rois_num
|
148
|
-
|
149
|
-
def pre_process(self, img, relations, texts, gt_bboxes, tag, img_size):
|
150
|
-
img, relations, texts, gt_bboxes, tag, img_size = img.numpy(
|
151
|
-
), relations.numpy(), texts.numpy(), gt_bboxes.numpy(), tag.numpy(
|
152
|
-
).tolist(), img_size.numpy()
|
153
|
-
temp_relations, temp_texts, temp_gt_bboxes = [], [], []
|
154
|
-
h, w = int(np.max(img_size[:, 0])), int(np.max(img_size[:, 1]))
|
155
|
-
img = paddle.to_tensor(img[:, :, :h, :w])
|
156
|
-
batch = len(tag)
|
157
|
-
for i in range(batch):
|
158
|
-
num, recoder_len = tag[i][0], tag[i][1]
|
159
|
-
temp_relations.append(
|
160
|
-
paddle.to_tensor(
|
161
|
-
relations[i, :num, :num, :], dtype='float32'))
|
162
|
-
temp_texts.append(
|
163
|
-
paddle.to_tensor(
|
164
|
-
texts[i, :num, :recoder_len], dtype='float32'))
|
165
|
-
temp_gt_bboxes.append(
|
166
|
-
paddle.to_tensor(
|
167
|
-
gt_bboxes[i, :num, ...], dtype='float32'))
|
168
|
-
return img, temp_relations, temp_texts, temp_gt_bboxes
|
169
|
-
|
170
|
-
def forward(self, inputs):
|
171
|
-
img = inputs[0]
|
172
|
-
relations, texts, gt_bboxes, tag, img_size = inputs[1], inputs[
|
173
|
-
2], inputs[3], inputs[5], inputs[-1]
|
174
|
-
img, relations, texts, gt_bboxes = self.pre_process(
|
175
|
-
img, relations, texts, gt_bboxes, tag, img_size)
|
176
|
-
x = self.img_feat(img)
|
177
|
-
boxes, rois_num = self.bbox2roi(gt_bboxes)
|
178
|
-
feats = paddle.fluid.layers.roi_align(
|
179
|
-
x,
|
180
|
-
boxes,
|
181
|
-
spatial_scale=1.0,
|
182
|
-
pooled_height=7,
|
183
|
-
pooled_width=7,
|
184
|
-
rois_num=rois_num)
|
185
|
-
feats = self.maxpool(feats).squeeze(-1).squeeze(-1)
|
186
|
-
return [relations, texts, feats]
|
@@ -1,138 +0,0 @@
|
|
1
|
-
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
|
15
|
-
from paddle import nn
|
16
|
-
|
17
|
-
from pyxlpr.ppocr.modeling.backbones.det_mobilenet_v3 import ResidualUnit, ConvBNLayer, make_divisible
|
18
|
-
|
19
|
-
__all__ = ['MobileNetV3']
|
20
|
-
|
21
|
-
|
22
|
-
class MobileNetV3(nn.Layer):
|
23
|
-
def __init__(self,
|
24
|
-
in_channels=3,
|
25
|
-
model_name='small',
|
26
|
-
scale=0.5,
|
27
|
-
large_stride=None,
|
28
|
-
small_stride=None,
|
29
|
-
disable_se=False,
|
30
|
-
**kwargs):
|
31
|
-
super(MobileNetV3, self).__init__()
|
32
|
-
self.disable_se = disable_se
|
33
|
-
if small_stride is None:
|
34
|
-
small_stride = [2, 2, 2, 2]
|
35
|
-
if large_stride is None:
|
36
|
-
large_stride = [1, 2, 2, 2]
|
37
|
-
|
38
|
-
assert isinstance(large_stride, list), "large_stride type must " \
|
39
|
-
"be list but got {}".format(type(large_stride))
|
40
|
-
assert isinstance(small_stride, list), "small_stride type must " \
|
41
|
-
"be list but got {}".format(type(small_stride))
|
42
|
-
assert len(large_stride) == 4, "large_stride length must be " \
|
43
|
-
"4 but got {}".format(len(large_stride))
|
44
|
-
assert len(small_stride) == 4, "small_stride length must be " \
|
45
|
-
"4 but got {}".format(len(small_stride))
|
46
|
-
|
47
|
-
if model_name == "large":
|
48
|
-
cfg = [
|
49
|
-
# k, exp, c, se, nl, s,
|
50
|
-
[3, 16, 16, False, 'relu', large_stride[0]],
|
51
|
-
[3, 64, 24, False, 'relu', (large_stride[1], 1)],
|
52
|
-
[3, 72, 24, False, 'relu', 1],
|
53
|
-
[5, 72, 40, True, 'relu', (large_stride[2], 1)],
|
54
|
-
[5, 120, 40, True, 'relu', 1],
|
55
|
-
[5, 120, 40, True, 'relu', 1],
|
56
|
-
[3, 240, 80, False, 'hardswish', 1],
|
57
|
-
[3, 200, 80, False, 'hardswish', 1],
|
58
|
-
[3, 184, 80, False, 'hardswish', 1],
|
59
|
-
[3, 184, 80, False, 'hardswish', 1],
|
60
|
-
[3, 480, 112, True, 'hardswish', 1],
|
61
|
-
[3, 672, 112, True, 'hardswish', 1],
|
62
|
-
[5, 672, 160, True, 'hardswish', (large_stride[3], 1)],
|
63
|
-
[5, 960, 160, True, 'hardswish', 1],
|
64
|
-
[5, 960, 160, True, 'hardswish', 1],
|
65
|
-
]
|
66
|
-
cls_ch_squeeze = 960
|
67
|
-
elif model_name == "small":
|
68
|
-
cfg = [
|
69
|
-
# k, exp, c, se, nl, s,
|
70
|
-
[3, 16, 16, True, 'relu', (small_stride[0], 1)],
|
71
|
-
[3, 72, 24, False, 'relu', (small_stride[1], 1)],
|
72
|
-
[3, 88, 24, False, 'relu', 1],
|
73
|
-
[5, 96, 40, True, 'hardswish', (small_stride[2], 1)],
|
74
|
-
[5, 240, 40, True, 'hardswish', 1],
|
75
|
-
[5, 240, 40, True, 'hardswish', 1],
|
76
|
-
[5, 120, 48, True, 'hardswish', 1],
|
77
|
-
[5, 144, 48, True, 'hardswish', 1],
|
78
|
-
[5, 288, 96, True, 'hardswish', (small_stride[3], 1)],
|
79
|
-
[5, 576, 96, True, 'hardswish', 1],
|
80
|
-
[5, 576, 96, True, 'hardswish', 1],
|
81
|
-
]
|
82
|
-
cls_ch_squeeze = 576
|
83
|
-
else:
|
84
|
-
raise NotImplementedError("mode[" + model_name +
|
85
|
-
"_model] is not implemented!")
|
86
|
-
|
87
|
-
supported_scale = [0.35, 0.5, 0.75, 1.0, 1.25]
|
88
|
-
assert scale in supported_scale, \
|
89
|
-
"supported scales are {} but input scale is {}".format(supported_scale, scale)
|
90
|
-
|
91
|
-
inplanes = 16
|
92
|
-
# conv1
|
93
|
-
self.conv1 = ConvBNLayer(
|
94
|
-
in_channels=in_channels,
|
95
|
-
out_channels=make_divisible(inplanes * scale),
|
96
|
-
kernel_size=3,
|
97
|
-
stride=2,
|
98
|
-
padding=1,
|
99
|
-
groups=1,
|
100
|
-
if_act=True,
|
101
|
-
act='hardswish')
|
102
|
-
i = 0
|
103
|
-
block_list = []
|
104
|
-
inplanes = make_divisible(inplanes * scale)
|
105
|
-
for (k, exp, c, se, nl, s) in cfg:
|
106
|
-
se = se and not self.disable_se
|
107
|
-
block_list.append(
|
108
|
-
ResidualUnit(
|
109
|
-
in_channels=inplanes,
|
110
|
-
mid_channels=make_divisible(scale * exp),
|
111
|
-
out_channels=make_divisible(scale * c),
|
112
|
-
kernel_size=k,
|
113
|
-
stride=s,
|
114
|
-
use_se=se,
|
115
|
-
act=nl))
|
116
|
-
inplanes = make_divisible(scale * c)
|
117
|
-
i += 1
|
118
|
-
self.blocks = nn.Sequential(*block_list)
|
119
|
-
|
120
|
-
self.conv2 = ConvBNLayer(
|
121
|
-
in_channels=inplanes,
|
122
|
-
out_channels=make_divisible(scale * cls_ch_squeeze),
|
123
|
-
kernel_size=1,
|
124
|
-
stride=1,
|
125
|
-
padding=0,
|
126
|
-
groups=1,
|
127
|
-
if_act=True,
|
128
|
-
act='hardswish')
|
129
|
-
|
130
|
-
self.pool = nn.MaxPool2D(kernel_size=2, stride=2, padding=0)
|
131
|
-
self.out_channels = make_divisible(scale * cls_ch_squeeze)
|
132
|
-
|
133
|
-
def forward(self, x):
|
134
|
-
x = self.conv1(x)
|
135
|
-
x = self.blocks(x)
|
136
|
-
x = self.conv2(x)
|
137
|
-
x = self.pool(x)
|
138
|
-
return x
|