pyxllib 0.3.96__py3-none-any.whl → 0.3.197__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (306) hide show
  1. pyxllib/algo/geo.py +12 -0
  2. pyxllib/algo/intervals.py +1 -1
  3. pyxllib/algo/matcher.py +78 -0
  4. pyxllib/algo/pupil.py +187 -19
  5. pyxllib/algo/specialist.py +2 -1
  6. pyxllib/algo/stat.py +38 -2
  7. {pyxlpr → pyxllib/autogui}/__init__.py +1 -1
  8. pyxllib/autogui/activewin.py +246 -0
  9. pyxllib/autogui/all.py +9 -0
  10. pyxllib/{ext/autogui → autogui}/autogui.py +40 -11
  11. pyxllib/autogui/uiautolib.py +362 -0
  12. pyxllib/autogui/wechat.py +827 -0
  13. pyxllib/autogui/wechat_msg.py +421 -0
  14. pyxllib/autogui/wxautolib.py +84 -0
  15. pyxllib/cv/slidercaptcha.py +137 -0
  16. pyxllib/data/echarts.py +123 -12
  17. pyxllib/data/jsonlib.py +89 -0
  18. pyxllib/data/pglib.py +514 -30
  19. pyxllib/data/sqlite.py +231 -4
  20. pyxllib/ext/JLineViewer.py +14 -1
  21. pyxllib/ext/drissionlib.py +277 -0
  22. pyxllib/ext/kq5034lib.py +0 -1594
  23. pyxllib/ext/robustprocfile.py +497 -0
  24. pyxllib/ext/unixlib.py +6 -5
  25. pyxllib/ext/utools.py +108 -95
  26. pyxllib/ext/webhook.py +32 -14
  27. pyxllib/ext/wjxlib.py +88 -0
  28. pyxllib/ext/wpsapi.py +124 -0
  29. pyxllib/ext/xlwork.py +9 -0
  30. pyxllib/ext/yuquelib.py +1003 -71
  31. pyxllib/file/docxlib.py +1 -1
  32. pyxllib/file/libreoffice.py +165 -0
  33. pyxllib/file/movielib.py +9 -0
  34. pyxllib/file/packlib/__init__.py +112 -75
  35. pyxllib/file/pdflib.py +1 -1
  36. pyxllib/file/pupil.py +1 -1
  37. pyxllib/file/specialist/dirlib.py +1 -1
  38. pyxllib/file/specialist/download.py +10 -3
  39. pyxllib/file/specialist/filelib.py +266 -55
  40. pyxllib/file/xlsxlib.py +205 -50
  41. pyxllib/file/xlsyncfile.py +341 -0
  42. pyxllib/prog/cachetools.py +64 -0
  43. pyxllib/prog/filelock.py +42 -0
  44. pyxllib/prog/multiprogs.py +940 -0
  45. pyxllib/prog/newbie.py +9 -2
  46. pyxllib/prog/pupil.py +129 -60
  47. pyxllib/prog/specialist/__init__.py +176 -2
  48. pyxllib/prog/specialist/bc.py +5 -2
  49. pyxllib/prog/specialist/browser.py +11 -2
  50. pyxllib/prog/specialist/datetime.py +68 -0
  51. pyxllib/prog/specialist/tictoc.py +12 -13
  52. pyxllib/prog/specialist/xllog.py +5 -5
  53. pyxllib/prog/xlosenv.py +7 -0
  54. pyxllib/text/airscript.js +744 -0
  55. pyxllib/text/charclasslib.py +17 -5
  56. pyxllib/text/jiebalib.py +6 -3
  57. pyxllib/text/jinjalib.py +32 -0
  58. pyxllib/text/jsa_ai_prompt.md +271 -0
  59. pyxllib/text/jscode.py +159 -4
  60. pyxllib/text/nestenv.py +1 -1
  61. pyxllib/text/newbie.py +12 -0
  62. pyxllib/text/pupil/common.py +26 -0
  63. pyxllib/text/specialist/ptag.py +2 -2
  64. pyxllib/text/templates/echart_base.html +11 -0
  65. pyxllib/text/templates/highlight_code.html +17 -0
  66. pyxllib/text/templates/latex_editor.html +103 -0
  67. pyxllib/text/xmllib.py +76 -14
  68. pyxllib/xl.py +2 -1
  69. pyxllib-0.3.197.dist-info/METADATA +48 -0
  70. pyxllib-0.3.197.dist-info/RECORD +126 -0
  71. {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info}/WHEEL +1 -2
  72. pyxllib/ext/autogui/__init__.py +0 -8
  73. pyxllib-0.3.96.dist-info/METADATA +0 -51
  74. pyxllib-0.3.96.dist-info/RECORD +0 -333
  75. pyxllib-0.3.96.dist-info/top_level.txt +0 -2
  76. pyxlpr/ai/__init__.py +0 -5
  77. pyxlpr/ai/clientlib.py +0 -1281
  78. pyxlpr/ai/specialist.py +0 -286
  79. pyxlpr/ai/torch_app.py +0 -172
  80. pyxlpr/ai/xlpaddle.py +0 -655
  81. pyxlpr/ai/xltorch.py +0 -705
  82. pyxlpr/data/__init__.py +0 -11
  83. pyxlpr/data/coco.py +0 -1325
  84. pyxlpr/data/datacls.py +0 -365
  85. pyxlpr/data/datasets.py +0 -200
  86. pyxlpr/data/gptlib.py +0 -1291
  87. pyxlpr/data/icdar/__init__.py +0 -96
  88. pyxlpr/data/icdar/deteval.py +0 -377
  89. pyxlpr/data/icdar/icdar2013.py +0 -341
  90. pyxlpr/data/icdar/iou.py +0 -340
  91. pyxlpr/data/icdar/rrc_evaluation_funcs_1_1.py +0 -463
  92. pyxlpr/data/imtextline.py +0 -473
  93. pyxlpr/data/labelme.py +0 -866
  94. pyxlpr/data/removeline.py +0 -179
  95. pyxlpr/data/specialist.py +0 -57
  96. pyxlpr/eval/__init__.py +0 -85
  97. pyxlpr/paddleocr.py +0 -776
  98. pyxlpr/ppocr/__init__.py +0 -15
  99. pyxlpr/ppocr/configs/rec/multi_language/generate_multi_language_configs.py +0 -226
  100. pyxlpr/ppocr/data/__init__.py +0 -135
  101. pyxlpr/ppocr/data/imaug/ColorJitter.py +0 -26
  102. pyxlpr/ppocr/data/imaug/__init__.py +0 -67
  103. pyxlpr/ppocr/data/imaug/copy_paste.py +0 -170
  104. pyxlpr/ppocr/data/imaug/east_process.py +0 -437
  105. pyxlpr/ppocr/data/imaug/gen_table_mask.py +0 -244
  106. pyxlpr/ppocr/data/imaug/iaa_augment.py +0 -114
  107. pyxlpr/ppocr/data/imaug/label_ops.py +0 -789
  108. pyxlpr/ppocr/data/imaug/make_border_map.py +0 -184
  109. pyxlpr/ppocr/data/imaug/make_pse_gt.py +0 -106
  110. pyxlpr/ppocr/data/imaug/make_shrink_map.py +0 -126
  111. pyxlpr/ppocr/data/imaug/operators.py +0 -433
  112. pyxlpr/ppocr/data/imaug/pg_process.py +0 -906
  113. pyxlpr/ppocr/data/imaug/randaugment.py +0 -143
  114. pyxlpr/ppocr/data/imaug/random_crop_data.py +0 -239
  115. pyxlpr/ppocr/data/imaug/rec_img_aug.py +0 -533
  116. pyxlpr/ppocr/data/imaug/sast_process.py +0 -777
  117. pyxlpr/ppocr/data/imaug/text_image_aug/__init__.py +0 -17
  118. pyxlpr/ppocr/data/imaug/text_image_aug/augment.py +0 -120
  119. pyxlpr/ppocr/data/imaug/text_image_aug/warp_mls.py +0 -168
  120. pyxlpr/ppocr/data/lmdb_dataset.py +0 -115
  121. pyxlpr/ppocr/data/pgnet_dataset.py +0 -104
  122. pyxlpr/ppocr/data/pubtab_dataset.py +0 -107
  123. pyxlpr/ppocr/data/simple_dataset.py +0 -372
  124. pyxlpr/ppocr/losses/__init__.py +0 -61
  125. pyxlpr/ppocr/losses/ace_loss.py +0 -52
  126. pyxlpr/ppocr/losses/basic_loss.py +0 -135
  127. pyxlpr/ppocr/losses/center_loss.py +0 -88
  128. pyxlpr/ppocr/losses/cls_loss.py +0 -30
  129. pyxlpr/ppocr/losses/combined_loss.py +0 -67
  130. pyxlpr/ppocr/losses/det_basic_loss.py +0 -208
  131. pyxlpr/ppocr/losses/det_db_loss.py +0 -80
  132. pyxlpr/ppocr/losses/det_east_loss.py +0 -63
  133. pyxlpr/ppocr/losses/det_pse_loss.py +0 -149
  134. pyxlpr/ppocr/losses/det_sast_loss.py +0 -121
  135. pyxlpr/ppocr/losses/distillation_loss.py +0 -272
  136. pyxlpr/ppocr/losses/e2e_pg_loss.py +0 -140
  137. pyxlpr/ppocr/losses/kie_sdmgr_loss.py +0 -113
  138. pyxlpr/ppocr/losses/rec_aster_loss.py +0 -99
  139. pyxlpr/ppocr/losses/rec_att_loss.py +0 -39
  140. pyxlpr/ppocr/losses/rec_ctc_loss.py +0 -44
  141. pyxlpr/ppocr/losses/rec_enhanced_ctc_loss.py +0 -70
  142. pyxlpr/ppocr/losses/rec_nrtr_loss.py +0 -30
  143. pyxlpr/ppocr/losses/rec_sar_loss.py +0 -28
  144. pyxlpr/ppocr/losses/rec_srn_loss.py +0 -47
  145. pyxlpr/ppocr/losses/table_att_loss.py +0 -109
  146. pyxlpr/ppocr/metrics/__init__.py +0 -44
  147. pyxlpr/ppocr/metrics/cls_metric.py +0 -45
  148. pyxlpr/ppocr/metrics/det_metric.py +0 -82
  149. pyxlpr/ppocr/metrics/distillation_metric.py +0 -73
  150. pyxlpr/ppocr/metrics/e2e_metric.py +0 -86
  151. pyxlpr/ppocr/metrics/eval_det_iou.py +0 -274
  152. pyxlpr/ppocr/metrics/kie_metric.py +0 -70
  153. pyxlpr/ppocr/metrics/rec_metric.py +0 -75
  154. pyxlpr/ppocr/metrics/table_metric.py +0 -50
  155. pyxlpr/ppocr/modeling/architectures/__init__.py +0 -32
  156. pyxlpr/ppocr/modeling/architectures/base_model.py +0 -88
  157. pyxlpr/ppocr/modeling/architectures/distillation_model.py +0 -60
  158. pyxlpr/ppocr/modeling/backbones/__init__.py +0 -54
  159. pyxlpr/ppocr/modeling/backbones/det_mobilenet_v3.py +0 -268
  160. pyxlpr/ppocr/modeling/backbones/det_resnet_vd.py +0 -246
  161. pyxlpr/ppocr/modeling/backbones/det_resnet_vd_sast.py +0 -285
  162. pyxlpr/ppocr/modeling/backbones/e2e_resnet_vd_pg.py +0 -265
  163. pyxlpr/ppocr/modeling/backbones/kie_unet_sdmgr.py +0 -186
  164. pyxlpr/ppocr/modeling/backbones/rec_mobilenet_v3.py +0 -138
  165. pyxlpr/ppocr/modeling/backbones/rec_mv1_enhance.py +0 -258
  166. pyxlpr/ppocr/modeling/backbones/rec_nrtr_mtb.py +0 -48
  167. pyxlpr/ppocr/modeling/backbones/rec_resnet_31.py +0 -210
  168. pyxlpr/ppocr/modeling/backbones/rec_resnet_aster.py +0 -143
  169. pyxlpr/ppocr/modeling/backbones/rec_resnet_fpn.py +0 -307
  170. pyxlpr/ppocr/modeling/backbones/rec_resnet_vd.py +0 -286
  171. pyxlpr/ppocr/modeling/heads/__init__.py +0 -54
  172. pyxlpr/ppocr/modeling/heads/cls_head.py +0 -52
  173. pyxlpr/ppocr/modeling/heads/det_db_head.py +0 -118
  174. pyxlpr/ppocr/modeling/heads/det_east_head.py +0 -121
  175. pyxlpr/ppocr/modeling/heads/det_pse_head.py +0 -37
  176. pyxlpr/ppocr/modeling/heads/det_sast_head.py +0 -128
  177. pyxlpr/ppocr/modeling/heads/e2e_pg_head.py +0 -253
  178. pyxlpr/ppocr/modeling/heads/kie_sdmgr_head.py +0 -206
  179. pyxlpr/ppocr/modeling/heads/multiheadAttention.py +0 -163
  180. pyxlpr/ppocr/modeling/heads/rec_aster_head.py +0 -393
  181. pyxlpr/ppocr/modeling/heads/rec_att_head.py +0 -202
  182. pyxlpr/ppocr/modeling/heads/rec_ctc_head.py +0 -88
  183. pyxlpr/ppocr/modeling/heads/rec_nrtr_head.py +0 -826
  184. pyxlpr/ppocr/modeling/heads/rec_sar_head.py +0 -402
  185. pyxlpr/ppocr/modeling/heads/rec_srn_head.py +0 -280
  186. pyxlpr/ppocr/modeling/heads/self_attention.py +0 -406
  187. pyxlpr/ppocr/modeling/heads/table_att_head.py +0 -246
  188. pyxlpr/ppocr/modeling/necks/__init__.py +0 -32
  189. pyxlpr/ppocr/modeling/necks/db_fpn.py +0 -111
  190. pyxlpr/ppocr/modeling/necks/east_fpn.py +0 -188
  191. pyxlpr/ppocr/modeling/necks/fpn.py +0 -138
  192. pyxlpr/ppocr/modeling/necks/pg_fpn.py +0 -314
  193. pyxlpr/ppocr/modeling/necks/rnn.py +0 -92
  194. pyxlpr/ppocr/modeling/necks/sast_fpn.py +0 -284
  195. pyxlpr/ppocr/modeling/necks/table_fpn.py +0 -110
  196. pyxlpr/ppocr/modeling/transforms/__init__.py +0 -28
  197. pyxlpr/ppocr/modeling/transforms/stn.py +0 -135
  198. pyxlpr/ppocr/modeling/transforms/tps.py +0 -308
  199. pyxlpr/ppocr/modeling/transforms/tps_spatial_transformer.py +0 -156
  200. pyxlpr/ppocr/optimizer/__init__.py +0 -61
  201. pyxlpr/ppocr/optimizer/learning_rate.py +0 -228
  202. pyxlpr/ppocr/optimizer/lr_scheduler.py +0 -49
  203. pyxlpr/ppocr/optimizer/optimizer.py +0 -160
  204. pyxlpr/ppocr/optimizer/regularizer.py +0 -52
  205. pyxlpr/ppocr/postprocess/__init__.py +0 -55
  206. pyxlpr/ppocr/postprocess/cls_postprocess.py +0 -33
  207. pyxlpr/ppocr/postprocess/db_postprocess.py +0 -234
  208. pyxlpr/ppocr/postprocess/east_postprocess.py +0 -143
  209. pyxlpr/ppocr/postprocess/locality_aware_nms.py +0 -200
  210. pyxlpr/ppocr/postprocess/pg_postprocess.py +0 -52
  211. pyxlpr/ppocr/postprocess/pse_postprocess/__init__.py +0 -15
  212. pyxlpr/ppocr/postprocess/pse_postprocess/pse/__init__.py +0 -29
  213. pyxlpr/ppocr/postprocess/pse_postprocess/pse/setup.py +0 -14
  214. pyxlpr/ppocr/postprocess/pse_postprocess/pse_postprocess.py +0 -118
  215. pyxlpr/ppocr/postprocess/rec_postprocess.py +0 -654
  216. pyxlpr/ppocr/postprocess/sast_postprocess.py +0 -355
  217. pyxlpr/ppocr/tools/__init__.py +0 -14
  218. pyxlpr/ppocr/tools/eval.py +0 -83
  219. pyxlpr/ppocr/tools/export_center.py +0 -77
  220. pyxlpr/ppocr/tools/export_model.py +0 -129
  221. pyxlpr/ppocr/tools/infer/predict_cls.py +0 -151
  222. pyxlpr/ppocr/tools/infer/predict_det.py +0 -300
  223. pyxlpr/ppocr/tools/infer/predict_e2e.py +0 -169
  224. pyxlpr/ppocr/tools/infer/predict_rec.py +0 -414
  225. pyxlpr/ppocr/tools/infer/predict_system.py +0 -204
  226. pyxlpr/ppocr/tools/infer/utility.py +0 -629
  227. pyxlpr/ppocr/tools/infer_cls.py +0 -83
  228. pyxlpr/ppocr/tools/infer_det.py +0 -134
  229. pyxlpr/ppocr/tools/infer_e2e.py +0 -122
  230. pyxlpr/ppocr/tools/infer_kie.py +0 -153
  231. pyxlpr/ppocr/tools/infer_rec.py +0 -146
  232. pyxlpr/ppocr/tools/infer_table.py +0 -107
  233. pyxlpr/ppocr/tools/program.py +0 -596
  234. pyxlpr/ppocr/tools/test_hubserving.py +0 -117
  235. pyxlpr/ppocr/tools/train.py +0 -163
  236. pyxlpr/ppocr/tools/xlprog.py +0 -748
  237. pyxlpr/ppocr/utils/EN_symbol_dict.txt +0 -94
  238. pyxlpr/ppocr/utils/__init__.py +0 -24
  239. pyxlpr/ppocr/utils/dict/ar_dict.txt +0 -117
  240. pyxlpr/ppocr/utils/dict/arabic_dict.txt +0 -162
  241. pyxlpr/ppocr/utils/dict/be_dict.txt +0 -145
  242. pyxlpr/ppocr/utils/dict/bg_dict.txt +0 -140
  243. pyxlpr/ppocr/utils/dict/chinese_cht_dict.txt +0 -8421
  244. pyxlpr/ppocr/utils/dict/cyrillic_dict.txt +0 -163
  245. pyxlpr/ppocr/utils/dict/devanagari_dict.txt +0 -167
  246. pyxlpr/ppocr/utils/dict/en_dict.txt +0 -63
  247. pyxlpr/ppocr/utils/dict/fa_dict.txt +0 -136
  248. pyxlpr/ppocr/utils/dict/french_dict.txt +0 -136
  249. pyxlpr/ppocr/utils/dict/german_dict.txt +0 -143
  250. pyxlpr/ppocr/utils/dict/hi_dict.txt +0 -162
  251. pyxlpr/ppocr/utils/dict/it_dict.txt +0 -118
  252. pyxlpr/ppocr/utils/dict/japan_dict.txt +0 -4399
  253. pyxlpr/ppocr/utils/dict/ka_dict.txt +0 -153
  254. pyxlpr/ppocr/utils/dict/korean_dict.txt +0 -3688
  255. pyxlpr/ppocr/utils/dict/latin_dict.txt +0 -185
  256. pyxlpr/ppocr/utils/dict/mr_dict.txt +0 -153
  257. pyxlpr/ppocr/utils/dict/ne_dict.txt +0 -153
  258. pyxlpr/ppocr/utils/dict/oc_dict.txt +0 -96
  259. pyxlpr/ppocr/utils/dict/pu_dict.txt +0 -130
  260. pyxlpr/ppocr/utils/dict/rs_dict.txt +0 -91
  261. pyxlpr/ppocr/utils/dict/rsc_dict.txt +0 -134
  262. pyxlpr/ppocr/utils/dict/ru_dict.txt +0 -125
  263. pyxlpr/ppocr/utils/dict/ta_dict.txt +0 -128
  264. pyxlpr/ppocr/utils/dict/table_dict.txt +0 -277
  265. pyxlpr/ppocr/utils/dict/table_structure_dict.txt +0 -2759
  266. pyxlpr/ppocr/utils/dict/te_dict.txt +0 -151
  267. pyxlpr/ppocr/utils/dict/ug_dict.txt +0 -114
  268. pyxlpr/ppocr/utils/dict/uk_dict.txt +0 -142
  269. pyxlpr/ppocr/utils/dict/ur_dict.txt +0 -137
  270. pyxlpr/ppocr/utils/dict/xi_dict.txt +0 -110
  271. pyxlpr/ppocr/utils/dict90.txt +0 -90
  272. pyxlpr/ppocr/utils/e2e_metric/Deteval.py +0 -574
  273. pyxlpr/ppocr/utils/e2e_metric/polygon_fast.py +0 -83
  274. pyxlpr/ppocr/utils/e2e_utils/extract_batchsize.py +0 -87
  275. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_fast.py +0 -457
  276. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_slow.py +0 -592
  277. pyxlpr/ppocr/utils/e2e_utils/pgnet_pp_utils.py +0 -162
  278. pyxlpr/ppocr/utils/e2e_utils/visual.py +0 -162
  279. pyxlpr/ppocr/utils/en_dict.txt +0 -95
  280. pyxlpr/ppocr/utils/gen_label.py +0 -81
  281. pyxlpr/ppocr/utils/ic15_dict.txt +0 -36
  282. pyxlpr/ppocr/utils/iou.py +0 -54
  283. pyxlpr/ppocr/utils/logging.py +0 -69
  284. pyxlpr/ppocr/utils/network.py +0 -84
  285. pyxlpr/ppocr/utils/ppocr_keys_v1.txt +0 -6623
  286. pyxlpr/ppocr/utils/profiler.py +0 -110
  287. pyxlpr/ppocr/utils/save_load.py +0 -150
  288. pyxlpr/ppocr/utils/stats.py +0 -72
  289. pyxlpr/ppocr/utils/utility.py +0 -80
  290. pyxlpr/ppstructure/__init__.py +0 -13
  291. pyxlpr/ppstructure/predict_system.py +0 -187
  292. pyxlpr/ppstructure/table/__init__.py +0 -13
  293. pyxlpr/ppstructure/table/eval_table.py +0 -72
  294. pyxlpr/ppstructure/table/matcher.py +0 -192
  295. pyxlpr/ppstructure/table/predict_structure.py +0 -136
  296. pyxlpr/ppstructure/table/predict_table.py +0 -221
  297. pyxlpr/ppstructure/table/table_metric/__init__.py +0 -16
  298. pyxlpr/ppstructure/table/table_metric/parallel.py +0 -51
  299. pyxlpr/ppstructure/table/table_metric/table_metric.py +0 -247
  300. pyxlpr/ppstructure/table/tablepyxl/__init__.py +0 -13
  301. pyxlpr/ppstructure/table/tablepyxl/style.py +0 -283
  302. pyxlpr/ppstructure/table/tablepyxl/tablepyxl.py +0 -118
  303. pyxlpr/ppstructure/utility.py +0 -71
  304. pyxlpr/xlai.py +0 -10
  305. /pyxllib/{ext/autogui → autogui}/virtualkey.py +0 -0
  306. {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info/licenses}/LICENSE +0 -0
@@ -1,355 +0,0 @@
1
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from __future__ import absolute_import
16
- from __future__ import division
17
- from __future__ import print_function
18
-
19
- import os
20
- import sys
21
-
22
- __dir__ = os.path.dirname(__file__)
23
- sys.path.append(__dir__)
24
- sys.path.append(os.path.join(__dir__, '..'))
25
-
26
- import numpy as np
27
- from .locality_aware_nms import nms_locality
28
- import paddle
29
- import cv2
30
- import time
31
-
32
-
33
- class SASTPostProcess(object):
34
- """
35
- The post process for SAST.
36
- """
37
-
38
- def __init__(self,
39
- score_thresh=0.5,
40
- nms_thresh=0.2,
41
- sample_pts_num=2,
42
- shrink_ratio_of_width=0.3,
43
- expand_scale=1.0,
44
- tcl_map_thresh=0.5,
45
- **kwargs):
46
-
47
- self.score_thresh = score_thresh
48
- self.nms_thresh = nms_thresh
49
- self.sample_pts_num = sample_pts_num
50
- self.shrink_ratio_of_width = shrink_ratio_of_width
51
- self.expand_scale = expand_scale
52
- self.tcl_map_thresh = tcl_map_thresh
53
-
54
- # c++ la-nms is faster, but only support python 3.5
55
- self.is_python35 = False
56
- if sys.version_info.major == 3 and sys.version_info.minor == 5:
57
- self.is_python35 = True
58
-
59
- def point_pair2poly(self, point_pair_list):
60
- """
61
- Transfer vertical point_pairs into poly point in clockwise.
62
- """
63
- # constract poly
64
- point_num = len(point_pair_list) * 2
65
- point_list = [0] * point_num
66
- for idx, point_pair in enumerate(point_pair_list):
67
- point_list[idx] = point_pair[0]
68
- point_list[point_num - 1 - idx] = point_pair[1]
69
- return np.array(point_list).reshape(-1, 2)
70
-
71
- def shrink_quad_along_width(self,
72
- quad,
73
- begin_width_ratio=0.,
74
- end_width_ratio=1.):
75
- """
76
- Generate shrink_quad_along_width.
77
- """
78
- ratio_pair = np.array(
79
- [[begin_width_ratio], [end_width_ratio]], dtype=np.float32)
80
- p0_1 = quad[0] + (quad[1] - quad[0]) * ratio_pair
81
- p3_2 = quad[3] + (quad[2] - quad[3]) * ratio_pair
82
- return np.array([p0_1[0], p0_1[1], p3_2[1], p3_2[0]])
83
-
84
- def expand_poly_along_width(self, poly, shrink_ratio_of_width=0.3):
85
- """
86
- expand poly along width.
87
- """
88
- point_num = poly.shape[0]
89
- left_quad = np.array(
90
- [poly[0], poly[1], poly[-2], poly[-1]], dtype=np.float32)
91
- left_ratio = -shrink_ratio_of_width * np.linalg.norm(left_quad[0] - left_quad[3]) / \
92
- (np.linalg.norm(left_quad[0] - left_quad[1]) + 1e-6)
93
- left_quad_expand = self.shrink_quad_along_width(left_quad, left_ratio,
94
- 1.0)
95
- right_quad = np.array(
96
- [
97
- poly[point_num // 2 - 2], poly[point_num // 2 - 1],
98
- poly[point_num // 2], poly[point_num // 2 + 1]
99
- ],
100
- dtype=np.float32)
101
- right_ratio = 1.0 + \
102
- shrink_ratio_of_width * np.linalg.norm(right_quad[0] - right_quad[3]) / \
103
- (np.linalg.norm(right_quad[0] - right_quad[1]) + 1e-6)
104
- right_quad_expand = self.shrink_quad_along_width(right_quad, 0.0,
105
- right_ratio)
106
- poly[0] = left_quad_expand[0]
107
- poly[-1] = left_quad_expand[-1]
108
- poly[point_num // 2 - 1] = right_quad_expand[1]
109
- poly[point_num // 2] = right_quad_expand[2]
110
- return poly
111
-
112
- def restore_quad(self, tcl_map, tcl_map_thresh, tvo_map):
113
- """Restore quad."""
114
- xy_text = np.argwhere(tcl_map[:, :, 0] > tcl_map_thresh)
115
- xy_text = xy_text[:, ::-1] # (n, 2)
116
-
117
- # Sort the text boxes via the y axis
118
- xy_text = xy_text[np.argsort(xy_text[:, 1])]
119
-
120
- scores = tcl_map[xy_text[:, 1], xy_text[:, 0], 0]
121
- scores = scores[:, np.newaxis]
122
-
123
- # Restore
124
- point_num = int(tvo_map.shape[-1] / 2)
125
- assert point_num == 4
126
- tvo_map = tvo_map[xy_text[:, 1], xy_text[:, 0], :]
127
- xy_text_tile = np.tile(xy_text, (1, point_num)) # (n, point_num * 2)
128
- quads = xy_text_tile - tvo_map
129
-
130
- return scores, quads, xy_text
131
-
132
- def quad_area(self, quad):
133
- """
134
- compute area of a quad.
135
- """
136
- edge = [(quad[1][0] - quad[0][0]) * (quad[1][1] + quad[0][1]),
137
- (quad[2][0] - quad[1][0]) * (quad[2][1] + quad[1][1]),
138
- (quad[3][0] - quad[2][0]) * (quad[3][1] + quad[2][1]),
139
- (quad[0][0] - quad[3][0]) * (quad[0][1] + quad[3][1])]
140
- return np.sum(edge) / 2.
141
-
142
- def nms(self, dets):
143
- if self.is_python35:
144
- import lanms
145
- dets = lanms.merge_quadrangle_n9(dets, self.nms_thresh)
146
- else:
147
- dets = nms_locality(dets, self.nms_thresh)
148
- return dets
149
-
150
- def cluster_by_quads_tco(self, tcl_map, tcl_map_thresh, quads, tco_map):
151
- """
152
- Cluster pixels in tcl_map based on quads.
153
- """
154
- instance_count = quads.shape[0] + 1 # contain background
155
- instance_label_map = np.zeros(tcl_map.shape[:2], dtype=np.int32)
156
- if instance_count == 1:
157
- return instance_count, instance_label_map
158
-
159
- # predict text center
160
- xy_text = np.argwhere(tcl_map[:, :, 0] > tcl_map_thresh)
161
- n = xy_text.shape[0]
162
- xy_text = xy_text[:, ::-1] # (n, 2)
163
- tco = tco_map[xy_text[:, 1], xy_text[:, 0], :] # (n, 2)
164
- pred_tc = xy_text - tco
165
-
166
- # get gt text center
167
- m = quads.shape[0]
168
- gt_tc = np.mean(quads, axis=1) # (m, 2)
169
-
170
- pred_tc_tile = np.tile(pred_tc[:, np.newaxis, :],
171
- (1, m, 1)) # (n, m, 2)
172
- gt_tc_tile = np.tile(gt_tc[np.newaxis, :, :], (n, 1, 1)) # (n, m, 2)
173
- dist_mat = np.linalg.norm(pred_tc_tile - gt_tc_tile, axis=2) # (n, m)
174
- xy_text_assign = np.argmin(dist_mat, axis=1) + 1 # (n,)
175
-
176
- instance_label_map[xy_text[:, 1], xy_text[:, 0]] = xy_text_assign
177
- return instance_count, instance_label_map
178
-
179
- def estimate_sample_pts_num(self, quad, xy_text):
180
- """
181
- Estimate sample points number.
182
- """
183
- eh = (np.linalg.norm(quad[0] - quad[3]) +
184
- np.linalg.norm(quad[1] - quad[2])) / 2.0
185
- ew = (np.linalg.norm(quad[0] - quad[1]) +
186
- np.linalg.norm(quad[2] - quad[3])) / 2.0
187
-
188
- dense_sample_pts_num = max(2, int(ew))
189
- dense_xy_center_line = xy_text[np.linspace(
190
- 0,
191
- xy_text.shape[0] - 1,
192
- dense_sample_pts_num,
193
- endpoint=True,
194
- dtype=np.float32).astype(np.int32)]
195
-
196
- dense_xy_center_line_diff = dense_xy_center_line[
197
- 1:] - dense_xy_center_line[:-1]
198
- estimate_arc_len = np.sum(
199
- np.linalg.norm(
200
- dense_xy_center_line_diff, axis=1))
201
-
202
- sample_pts_num = max(2, int(estimate_arc_len / eh))
203
- return sample_pts_num
204
-
205
- def detect_sast(self,
206
- tcl_map,
207
- tvo_map,
208
- tbo_map,
209
- tco_map,
210
- ratio_w,
211
- ratio_h,
212
- src_w,
213
- src_h,
214
- shrink_ratio_of_width=0.3,
215
- tcl_map_thresh=0.5,
216
- offset_expand=1.0,
217
- out_strid=4.0):
218
- """
219
- first resize the tcl_map, tvo_map and tbo_map to the input_size, then restore the polys
220
- """
221
- # restore quad
222
- scores, quads, xy_text = self.restore_quad(tcl_map, tcl_map_thresh,
223
- tvo_map)
224
- dets = np.hstack((quads, scores)).astype(np.float32, copy=False)
225
- dets = self.nms(dets)
226
- if dets.shape[0] == 0:
227
- return []
228
- quads = dets[:, :-1].reshape(-1, 4, 2)
229
-
230
- # Compute quad area
231
- quad_areas = []
232
- for quad in quads:
233
- quad_areas.append(-self.quad_area(quad))
234
-
235
- # instance segmentation
236
- # instance_count, instance_label_map = cv2.connectedComponents(tcl_map.astype(np.uint8), connectivity=8)
237
- instance_count, instance_label_map = self.cluster_by_quads_tco(
238
- tcl_map, tcl_map_thresh, quads, tco_map)
239
-
240
- # restore single poly with tcl instance.
241
- poly_list = []
242
- for instance_idx in range(1, instance_count):
243
- xy_text = np.argwhere(instance_label_map == instance_idx)[:, ::-1]
244
- quad = quads[instance_idx - 1]
245
- q_area = quad_areas[instance_idx - 1]
246
- if q_area < 5:
247
- continue
248
-
249
- #
250
- len1 = float(np.linalg.norm(quad[0] - quad[1]))
251
- len2 = float(np.linalg.norm(quad[1] - quad[2]))
252
- min_len = min(len1, len2)
253
- if min_len < 3:
254
- continue
255
-
256
- # filter small CC
257
- if xy_text.shape[0] <= 0:
258
- continue
259
-
260
- # filter low confidence instance
261
- xy_text_scores = tcl_map[xy_text[:, 1], xy_text[:, 0], 0]
262
- if np.sum(xy_text_scores) / quad_areas[instance_idx - 1] < 0.1:
263
- # if np.sum(xy_text_scores) / quad_areas[instance_idx - 1] < 0.05:
264
- continue
265
-
266
- # sort xy_text
267
- left_center_pt = np.array(
268
- [[(quad[0, 0] + quad[-1, 0]) / 2.0,
269
- (quad[0, 1] + quad[-1, 1]) / 2.0]]) # (1, 2)
270
- right_center_pt = np.array(
271
- [[(quad[1, 0] + quad[2, 0]) / 2.0,
272
- (quad[1, 1] + quad[2, 1]) / 2.0]]) # (1, 2)
273
- proj_unit_vec = (right_center_pt - left_center_pt) / \
274
- (np.linalg.norm(right_center_pt - left_center_pt) + 1e-6)
275
- proj_value = np.sum(xy_text * proj_unit_vec, axis=1)
276
- xy_text = xy_text[np.argsort(proj_value)]
277
-
278
- # Sample pts in tcl map
279
- if self.sample_pts_num == 0:
280
- sample_pts_num = self.estimate_sample_pts_num(quad, xy_text)
281
- else:
282
- sample_pts_num = self.sample_pts_num
283
- xy_center_line = xy_text[np.linspace(
284
- 0,
285
- xy_text.shape[0] - 1,
286
- sample_pts_num,
287
- endpoint=True,
288
- dtype=np.float32).astype(np.int32)]
289
-
290
- point_pair_list = []
291
- for x, y in xy_center_line:
292
- # get corresponding offset
293
- offset = tbo_map[y, x, :].reshape(2, 2)
294
- if offset_expand != 1.0:
295
- offset_length = np.linalg.norm(
296
- offset, axis=1, keepdims=True)
297
- expand_length = np.clip(
298
- offset_length * (offset_expand - 1),
299
- a_min=0.5,
300
- a_max=3.0)
301
- offset_detal = offset / offset_length * expand_length
302
- offset = offset + offset_detal
303
- # original point
304
- ori_yx = np.array([y, x], dtype=np.float32)
305
- point_pair = (ori_yx + offset)[:, ::-1] * out_strid / np.array(
306
- [ratio_w, ratio_h]).reshape(-1, 2)
307
- point_pair_list.append(point_pair)
308
-
309
- # ndarry: (x, 2), expand poly along width
310
- detected_poly = self.point_pair2poly(point_pair_list)
311
- detected_poly = self.expand_poly_along_width(detected_poly,
312
- shrink_ratio_of_width)
313
- detected_poly[:, 0] = np.clip(
314
- detected_poly[:, 0], a_min=0, a_max=src_w)
315
- detected_poly[:, 1] = np.clip(
316
- detected_poly[:, 1], a_min=0, a_max=src_h)
317
- poly_list.append(detected_poly)
318
-
319
- return poly_list
320
-
321
- def __call__(self, outs_dict, shape_list):
322
- score_list = outs_dict['f_score']
323
- border_list = outs_dict['f_border']
324
- tvo_list = outs_dict['f_tvo']
325
- tco_list = outs_dict['f_tco']
326
- if isinstance(score_list, paddle.Tensor):
327
- score_list = score_list.numpy()
328
- border_list = border_list.numpy()
329
- tvo_list = tvo_list.numpy()
330
- tco_list = tco_list.numpy()
331
-
332
- img_num = len(shape_list)
333
- poly_lists = []
334
- for ino in range(img_num):
335
- p_score = score_list[ino].transpose((1, 2, 0))
336
- p_border = border_list[ino].transpose((1, 2, 0))
337
- p_tvo = tvo_list[ino].transpose((1, 2, 0))
338
- p_tco = tco_list[ino].transpose((1, 2, 0))
339
- src_h, src_w, ratio_h, ratio_w = shape_list[ino]
340
-
341
- poly_list = self.detect_sast(
342
- p_score,
343
- p_tvo,
344
- p_border,
345
- p_tco,
346
- ratio_w,
347
- ratio_h,
348
- src_w,
349
- src_h,
350
- shrink_ratio_of_width=self.shrink_ratio_of_width,
351
- tcl_map_thresh=self.tcl_map_thresh,
352
- offset_expand=self.expand_scale)
353
- poly_lists.append({'points': np.array(poly_list)})
354
-
355
- return poly_lists
@@ -1,14 +0,0 @@
1
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
- # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
@@ -1,83 +0,0 @@
1
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from __future__ import absolute_import
16
- from __future__ import division
17
- from __future__ import print_function
18
-
19
- import os
20
- import sys
21
- import time
22
-
23
- __dir__ = os.path.dirname(os.path.abspath(__file__))
24
-
25
- sys.path.append(__dir__)
26
- sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
27
-
28
- from pyxlpr.ppocr.data import build_dataloader
29
- from pyxlpr.ppocr.modeling.architectures import build_model
30
- from pyxlpr.ppocr.postprocess import build_post_process
31
- from pyxlpr.ppocr.metrics import build_metric
32
- from pyxlpr.ppocr.utils.save_load import load_model
33
- from pyxlpr.ppocr.utils.utility import print_dict
34
- import pyxlpr.ppocr.tools.program as program
35
-
36
-
37
- def main(config, device, logger):
38
- global_config = config['Global']
39
- # build dataloader
40
- valid_dataloader = build_dataloader(config, 'Eval', device, logger)
41
-
42
- # build post process
43
- post_process_class = build_post_process(config['PostProcess'],
44
- global_config)
45
-
46
- # build model
47
- # for rec algorithm
48
- if hasattr(post_process_class, 'character'):
49
- char_num = len(getattr(post_process_class, 'character'))
50
- if config['Architecture']["algorithm"] in ["Distillation",
51
- ]: # distillation model
52
- for key in config['Architecture']["Models"]:
53
- config['Architecture']["Models"][key]["Head"][
54
- 'out_channels'] = char_num
55
- else: # base rec model
56
- config['Architecture']["Head"]['out_channels'] = char_num
57
-
58
- model = build_model(config['Architecture'])
59
- extra_input = config['Architecture'][
60
- 'algorithm'] in ["SRN", "NRTR", "SAR", "SEED"]
61
- if "model_type" in config['Architecture'].keys():
62
- model_type = config['Architecture']['model_type']
63
- else:
64
- model_type = None
65
-
66
- best_model_dict = load_model(config, model)
67
- if len(best_model_dict):
68
- logger.info('metric in ckpt ***************')
69
- for k, v in best_model_dict.items():
70
- logger.info('{}:{}'.format(k, v))
71
-
72
- # build metric
73
- eval_class = build_metric(config['Metric'])
74
- # start eval
75
- metric = program.eval(model, valid_dataloader, post_process_class,
76
- eval_class, model_type, extra_input)
77
- logger.info(str(metric))
78
- return metric
79
-
80
-
81
- if __name__ == '__main__':
82
- config, device, logger, vdl_writer = program.preprocess()
83
- main(config, device, logger)
@@ -1,77 +0,0 @@
1
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from __future__ import absolute_import
16
- from __future__ import division
17
- from __future__ import print_function
18
-
19
- import os
20
- import sys
21
- import pickle
22
-
23
- __dir__ = os.path.dirname(os.path.abspath(__file__))
24
- sys.path.append(__dir__)
25
- sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
26
-
27
- from pyxlpr.ppocr.data import build_dataloader
28
- from pyxlpr.ppocr.modeling.architectures import build_model
29
- from pyxlpr.ppocr.postprocess import build_post_process
30
- from pyxlpr.ppocr.utils.save_load import load_model
31
- from pyxlpr.ppocr.utils.utility import print_dict
32
- import pyxlpr.ppocr.tools.program as program
33
-
34
-
35
- def main():
36
- global_config = config['Global']
37
- # build dataloader
38
- config['Eval']['dataset']['name'] = config['Train']['dataset']['name']
39
- config['Eval']['dataset']['data_dir'] = config['Train']['dataset'][
40
- 'data_dir']
41
- config['Eval']['dataset']['label_file_list'] = config['Train']['dataset'][
42
- 'label_file_list']
43
- eval_dataloader = build_dataloader(config, 'Eval', device, logger)
44
-
45
- # build post process
46
- post_process_class = build_post_process(config['PostProcess'],
47
- global_config)
48
-
49
- # build model
50
- # for rec algorithm
51
- if hasattr(post_process_class, 'character'):
52
- char_num = len(getattr(post_process_class, 'character'))
53
- config['Architecture']["Head"]['out_channels'] = char_num
54
-
55
- #set return_features = True
56
- config['Architecture']["Head"]["return_feats"] = True
57
-
58
- model = build_model(config['Architecture'])
59
-
60
- best_model_dict = load_model(config, model)
61
- if len(best_model_dict):
62
- logger.info('metric in ckpt ***************')
63
- for k, v in best_model_dict.items():
64
- logger.info('{}:{}'.format(k, v))
65
-
66
- # get features from train data
67
- char_center = program.get_center(model, eval_dataloader, post_process_class)
68
-
69
- #serialize to disk
70
- with open("train_center.pkl", 'wb') as f:
71
- pickle.dump(char_center, f)
72
- return
73
-
74
-
75
- if __name__ == '__main__':
76
- config, device, logger, vdl_writer = program.preprocess()
77
- main()
@@ -1,129 +0,0 @@
1
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- import os
16
- import sys
17
-
18
- __dir__ = os.path.dirname(os.path.abspath(__file__))
19
- sys.path.append(__dir__)
20
- sys.path.append(os.path.abspath(os.path.join(__dir__, "..")))
21
-
22
- import argparse
23
-
24
- import paddle
25
- from paddle.jit import to_static
26
-
27
- from pyxlpr.ppocr.modeling.architectures import build_model
28
- from pyxlpr.ppocr.postprocess import build_post_process
29
- from pyxlpr.ppocr.utils.save_load import load_model
30
- from pyxlpr.ppocr.utils.logging import get_logger
31
- from pyxlpr.ppocr.tools.program import load_config, merge_config, ArgsParser
32
-
33
-
34
- def export_single_model(model, arch_config, save_path, logger):
35
- if arch_config["algorithm"] == "SRN":
36
- max_text_length = arch_config["Head"]["max_text_length"]
37
- other_shape = [
38
- paddle.static.InputSpec(
39
- shape=[None, 1, 64, 256], dtype="float32"), [
40
- paddle.static.InputSpec(
41
- shape=[None, 256, 1],
42
- dtype="int64"), paddle.static.InputSpec(
43
- shape=[None, max_text_length, 1], dtype="int64"),
44
- paddle.static.InputSpec(
45
- shape=[None, 8, max_text_length, max_text_length],
46
- dtype="int64"), paddle.static.InputSpec(
47
- shape=[None, 8, max_text_length, max_text_length],
48
- dtype="int64")
49
- ]
50
- ]
51
- model = to_static(model, input_spec=other_shape)
52
- elif arch_config["algorithm"] == "SAR":
53
- other_shape = [
54
- paddle.static.InputSpec(
55
- shape=[None, 3, 48, 160], dtype="float32"),
56
- ]
57
- model = to_static(model, input_spec=other_shape)
58
- else:
59
- infer_shape = [3, -1, -1]
60
- if arch_config["model_type"] == "rec":
61
- infer_shape = [3, 32, -1] # for rec model, H must be 32
62
- if "Transform" in arch_config and arch_config[
63
- "Transform"] is not None and arch_config["Transform"][
64
- "name"] == "TPS":
65
- logger.info(
66
- "When there is tps in the network, variable length input is not supported, and the input size needs to be the same as during training"
67
- )
68
- infer_shape[-1] = 100
69
- if arch_config["algorithm"] == "NRTR":
70
- infer_shape = [1, 32, 100]
71
- elif arch_config["model_type"] == "table":
72
- infer_shape = [3, 488, 488]
73
- model = to_static(
74
- model,
75
- input_spec=[
76
- paddle.static.InputSpec(
77
- shape=[None] + infer_shape, dtype="float32")
78
- ])
79
-
80
- paddle.jit.save(model, save_path)
81
- logger.info("inference model is saved to {}".format(save_path))
82
- return
83
-
84
-
85
- def main(config, logger):
86
- # FLAGS = ArgsParser().parse_args()
87
- # config = load_config(FLAGS.config)
88
- # merge_config(FLAGS.opt)
89
- # logger = get_logger()
90
- # build post process
91
-
92
- post_process_class = build_post_process(config["PostProcess"],
93
- config["Global"])
94
-
95
- # build model
96
- # for rec algorithm
97
- if hasattr(post_process_class, "character"):
98
- char_num = len(getattr(post_process_class, "character"))
99
- if config["Architecture"]["algorithm"] in ["Distillation",
100
- ]: # distillation model
101
- for key in config["Architecture"]["Models"]:
102
- config["Architecture"]["Models"][key]["Head"][
103
- "out_channels"] = char_num
104
- # just one final tensor needs to to exported for inference
105
- config["Architecture"]["Models"][key][
106
- "return_all_feats"] = False
107
- else: # base rec model
108
- config["Architecture"]["Head"]["out_channels"] = char_num
109
- model = build_model(config["Architecture"])
110
- load_model(config, model)
111
- model.eval()
112
-
113
- save_path = config["Global"]["save_inference_dir"]
114
-
115
- arch_config = config["Architecture"]
116
-
117
- if arch_config["algorithm"] in ["Distillation", ]: # distillation model
118
- archs = list(arch_config["Models"].values())
119
- for idx, name in enumerate(model.model_name_list):
120
- sub_model_save_path = os.path.join(save_path, name, "inference")
121
- export_single_model(model.model_list[idx], archs[idx],
122
- sub_model_save_path, logger)
123
- else:
124
- save_path = os.path.join(save_path, "inference")
125
- export_single_model(model, arch_config, save_path, logger)
126
-
127
-
128
- if __name__ == "__main__":
129
- main()