pyxllib 0.3.96__py3-none-any.whl → 0.3.197__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (306) hide show
  1. pyxllib/algo/geo.py +12 -0
  2. pyxllib/algo/intervals.py +1 -1
  3. pyxllib/algo/matcher.py +78 -0
  4. pyxllib/algo/pupil.py +187 -19
  5. pyxllib/algo/specialist.py +2 -1
  6. pyxllib/algo/stat.py +38 -2
  7. {pyxlpr → pyxllib/autogui}/__init__.py +1 -1
  8. pyxllib/autogui/activewin.py +246 -0
  9. pyxllib/autogui/all.py +9 -0
  10. pyxllib/{ext/autogui → autogui}/autogui.py +40 -11
  11. pyxllib/autogui/uiautolib.py +362 -0
  12. pyxllib/autogui/wechat.py +827 -0
  13. pyxllib/autogui/wechat_msg.py +421 -0
  14. pyxllib/autogui/wxautolib.py +84 -0
  15. pyxllib/cv/slidercaptcha.py +137 -0
  16. pyxllib/data/echarts.py +123 -12
  17. pyxllib/data/jsonlib.py +89 -0
  18. pyxllib/data/pglib.py +514 -30
  19. pyxllib/data/sqlite.py +231 -4
  20. pyxllib/ext/JLineViewer.py +14 -1
  21. pyxllib/ext/drissionlib.py +277 -0
  22. pyxllib/ext/kq5034lib.py +0 -1594
  23. pyxllib/ext/robustprocfile.py +497 -0
  24. pyxllib/ext/unixlib.py +6 -5
  25. pyxllib/ext/utools.py +108 -95
  26. pyxllib/ext/webhook.py +32 -14
  27. pyxllib/ext/wjxlib.py +88 -0
  28. pyxllib/ext/wpsapi.py +124 -0
  29. pyxllib/ext/xlwork.py +9 -0
  30. pyxllib/ext/yuquelib.py +1003 -71
  31. pyxllib/file/docxlib.py +1 -1
  32. pyxllib/file/libreoffice.py +165 -0
  33. pyxllib/file/movielib.py +9 -0
  34. pyxllib/file/packlib/__init__.py +112 -75
  35. pyxllib/file/pdflib.py +1 -1
  36. pyxllib/file/pupil.py +1 -1
  37. pyxllib/file/specialist/dirlib.py +1 -1
  38. pyxllib/file/specialist/download.py +10 -3
  39. pyxllib/file/specialist/filelib.py +266 -55
  40. pyxllib/file/xlsxlib.py +205 -50
  41. pyxllib/file/xlsyncfile.py +341 -0
  42. pyxllib/prog/cachetools.py +64 -0
  43. pyxllib/prog/filelock.py +42 -0
  44. pyxllib/prog/multiprogs.py +940 -0
  45. pyxllib/prog/newbie.py +9 -2
  46. pyxllib/prog/pupil.py +129 -60
  47. pyxllib/prog/specialist/__init__.py +176 -2
  48. pyxllib/prog/specialist/bc.py +5 -2
  49. pyxllib/prog/specialist/browser.py +11 -2
  50. pyxllib/prog/specialist/datetime.py +68 -0
  51. pyxllib/prog/specialist/tictoc.py +12 -13
  52. pyxllib/prog/specialist/xllog.py +5 -5
  53. pyxllib/prog/xlosenv.py +7 -0
  54. pyxllib/text/airscript.js +744 -0
  55. pyxllib/text/charclasslib.py +17 -5
  56. pyxllib/text/jiebalib.py +6 -3
  57. pyxllib/text/jinjalib.py +32 -0
  58. pyxllib/text/jsa_ai_prompt.md +271 -0
  59. pyxllib/text/jscode.py +159 -4
  60. pyxllib/text/nestenv.py +1 -1
  61. pyxllib/text/newbie.py +12 -0
  62. pyxllib/text/pupil/common.py +26 -0
  63. pyxllib/text/specialist/ptag.py +2 -2
  64. pyxllib/text/templates/echart_base.html +11 -0
  65. pyxllib/text/templates/highlight_code.html +17 -0
  66. pyxllib/text/templates/latex_editor.html +103 -0
  67. pyxllib/text/xmllib.py +76 -14
  68. pyxllib/xl.py +2 -1
  69. pyxllib-0.3.197.dist-info/METADATA +48 -0
  70. pyxllib-0.3.197.dist-info/RECORD +126 -0
  71. {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info}/WHEEL +1 -2
  72. pyxllib/ext/autogui/__init__.py +0 -8
  73. pyxllib-0.3.96.dist-info/METADATA +0 -51
  74. pyxllib-0.3.96.dist-info/RECORD +0 -333
  75. pyxllib-0.3.96.dist-info/top_level.txt +0 -2
  76. pyxlpr/ai/__init__.py +0 -5
  77. pyxlpr/ai/clientlib.py +0 -1281
  78. pyxlpr/ai/specialist.py +0 -286
  79. pyxlpr/ai/torch_app.py +0 -172
  80. pyxlpr/ai/xlpaddle.py +0 -655
  81. pyxlpr/ai/xltorch.py +0 -705
  82. pyxlpr/data/__init__.py +0 -11
  83. pyxlpr/data/coco.py +0 -1325
  84. pyxlpr/data/datacls.py +0 -365
  85. pyxlpr/data/datasets.py +0 -200
  86. pyxlpr/data/gptlib.py +0 -1291
  87. pyxlpr/data/icdar/__init__.py +0 -96
  88. pyxlpr/data/icdar/deteval.py +0 -377
  89. pyxlpr/data/icdar/icdar2013.py +0 -341
  90. pyxlpr/data/icdar/iou.py +0 -340
  91. pyxlpr/data/icdar/rrc_evaluation_funcs_1_1.py +0 -463
  92. pyxlpr/data/imtextline.py +0 -473
  93. pyxlpr/data/labelme.py +0 -866
  94. pyxlpr/data/removeline.py +0 -179
  95. pyxlpr/data/specialist.py +0 -57
  96. pyxlpr/eval/__init__.py +0 -85
  97. pyxlpr/paddleocr.py +0 -776
  98. pyxlpr/ppocr/__init__.py +0 -15
  99. pyxlpr/ppocr/configs/rec/multi_language/generate_multi_language_configs.py +0 -226
  100. pyxlpr/ppocr/data/__init__.py +0 -135
  101. pyxlpr/ppocr/data/imaug/ColorJitter.py +0 -26
  102. pyxlpr/ppocr/data/imaug/__init__.py +0 -67
  103. pyxlpr/ppocr/data/imaug/copy_paste.py +0 -170
  104. pyxlpr/ppocr/data/imaug/east_process.py +0 -437
  105. pyxlpr/ppocr/data/imaug/gen_table_mask.py +0 -244
  106. pyxlpr/ppocr/data/imaug/iaa_augment.py +0 -114
  107. pyxlpr/ppocr/data/imaug/label_ops.py +0 -789
  108. pyxlpr/ppocr/data/imaug/make_border_map.py +0 -184
  109. pyxlpr/ppocr/data/imaug/make_pse_gt.py +0 -106
  110. pyxlpr/ppocr/data/imaug/make_shrink_map.py +0 -126
  111. pyxlpr/ppocr/data/imaug/operators.py +0 -433
  112. pyxlpr/ppocr/data/imaug/pg_process.py +0 -906
  113. pyxlpr/ppocr/data/imaug/randaugment.py +0 -143
  114. pyxlpr/ppocr/data/imaug/random_crop_data.py +0 -239
  115. pyxlpr/ppocr/data/imaug/rec_img_aug.py +0 -533
  116. pyxlpr/ppocr/data/imaug/sast_process.py +0 -777
  117. pyxlpr/ppocr/data/imaug/text_image_aug/__init__.py +0 -17
  118. pyxlpr/ppocr/data/imaug/text_image_aug/augment.py +0 -120
  119. pyxlpr/ppocr/data/imaug/text_image_aug/warp_mls.py +0 -168
  120. pyxlpr/ppocr/data/lmdb_dataset.py +0 -115
  121. pyxlpr/ppocr/data/pgnet_dataset.py +0 -104
  122. pyxlpr/ppocr/data/pubtab_dataset.py +0 -107
  123. pyxlpr/ppocr/data/simple_dataset.py +0 -372
  124. pyxlpr/ppocr/losses/__init__.py +0 -61
  125. pyxlpr/ppocr/losses/ace_loss.py +0 -52
  126. pyxlpr/ppocr/losses/basic_loss.py +0 -135
  127. pyxlpr/ppocr/losses/center_loss.py +0 -88
  128. pyxlpr/ppocr/losses/cls_loss.py +0 -30
  129. pyxlpr/ppocr/losses/combined_loss.py +0 -67
  130. pyxlpr/ppocr/losses/det_basic_loss.py +0 -208
  131. pyxlpr/ppocr/losses/det_db_loss.py +0 -80
  132. pyxlpr/ppocr/losses/det_east_loss.py +0 -63
  133. pyxlpr/ppocr/losses/det_pse_loss.py +0 -149
  134. pyxlpr/ppocr/losses/det_sast_loss.py +0 -121
  135. pyxlpr/ppocr/losses/distillation_loss.py +0 -272
  136. pyxlpr/ppocr/losses/e2e_pg_loss.py +0 -140
  137. pyxlpr/ppocr/losses/kie_sdmgr_loss.py +0 -113
  138. pyxlpr/ppocr/losses/rec_aster_loss.py +0 -99
  139. pyxlpr/ppocr/losses/rec_att_loss.py +0 -39
  140. pyxlpr/ppocr/losses/rec_ctc_loss.py +0 -44
  141. pyxlpr/ppocr/losses/rec_enhanced_ctc_loss.py +0 -70
  142. pyxlpr/ppocr/losses/rec_nrtr_loss.py +0 -30
  143. pyxlpr/ppocr/losses/rec_sar_loss.py +0 -28
  144. pyxlpr/ppocr/losses/rec_srn_loss.py +0 -47
  145. pyxlpr/ppocr/losses/table_att_loss.py +0 -109
  146. pyxlpr/ppocr/metrics/__init__.py +0 -44
  147. pyxlpr/ppocr/metrics/cls_metric.py +0 -45
  148. pyxlpr/ppocr/metrics/det_metric.py +0 -82
  149. pyxlpr/ppocr/metrics/distillation_metric.py +0 -73
  150. pyxlpr/ppocr/metrics/e2e_metric.py +0 -86
  151. pyxlpr/ppocr/metrics/eval_det_iou.py +0 -274
  152. pyxlpr/ppocr/metrics/kie_metric.py +0 -70
  153. pyxlpr/ppocr/metrics/rec_metric.py +0 -75
  154. pyxlpr/ppocr/metrics/table_metric.py +0 -50
  155. pyxlpr/ppocr/modeling/architectures/__init__.py +0 -32
  156. pyxlpr/ppocr/modeling/architectures/base_model.py +0 -88
  157. pyxlpr/ppocr/modeling/architectures/distillation_model.py +0 -60
  158. pyxlpr/ppocr/modeling/backbones/__init__.py +0 -54
  159. pyxlpr/ppocr/modeling/backbones/det_mobilenet_v3.py +0 -268
  160. pyxlpr/ppocr/modeling/backbones/det_resnet_vd.py +0 -246
  161. pyxlpr/ppocr/modeling/backbones/det_resnet_vd_sast.py +0 -285
  162. pyxlpr/ppocr/modeling/backbones/e2e_resnet_vd_pg.py +0 -265
  163. pyxlpr/ppocr/modeling/backbones/kie_unet_sdmgr.py +0 -186
  164. pyxlpr/ppocr/modeling/backbones/rec_mobilenet_v3.py +0 -138
  165. pyxlpr/ppocr/modeling/backbones/rec_mv1_enhance.py +0 -258
  166. pyxlpr/ppocr/modeling/backbones/rec_nrtr_mtb.py +0 -48
  167. pyxlpr/ppocr/modeling/backbones/rec_resnet_31.py +0 -210
  168. pyxlpr/ppocr/modeling/backbones/rec_resnet_aster.py +0 -143
  169. pyxlpr/ppocr/modeling/backbones/rec_resnet_fpn.py +0 -307
  170. pyxlpr/ppocr/modeling/backbones/rec_resnet_vd.py +0 -286
  171. pyxlpr/ppocr/modeling/heads/__init__.py +0 -54
  172. pyxlpr/ppocr/modeling/heads/cls_head.py +0 -52
  173. pyxlpr/ppocr/modeling/heads/det_db_head.py +0 -118
  174. pyxlpr/ppocr/modeling/heads/det_east_head.py +0 -121
  175. pyxlpr/ppocr/modeling/heads/det_pse_head.py +0 -37
  176. pyxlpr/ppocr/modeling/heads/det_sast_head.py +0 -128
  177. pyxlpr/ppocr/modeling/heads/e2e_pg_head.py +0 -253
  178. pyxlpr/ppocr/modeling/heads/kie_sdmgr_head.py +0 -206
  179. pyxlpr/ppocr/modeling/heads/multiheadAttention.py +0 -163
  180. pyxlpr/ppocr/modeling/heads/rec_aster_head.py +0 -393
  181. pyxlpr/ppocr/modeling/heads/rec_att_head.py +0 -202
  182. pyxlpr/ppocr/modeling/heads/rec_ctc_head.py +0 -88
  183. pyxlpr/ppocr/modeling/heads/rec_nrtr_head.py +0 -826
  184. pyxlpr/ppocr/modeling/heads/rec_sar_head.py +0 -402
  185. pyxlpr/ppocr/modeling/heads/rec_srn_head.py +0 -280
  186. pyxlpr/ppocr/modeling/heads/self_attention.py +0 -406
  187. pyxlpr/ppocr/modeling/heads/table_att_head.py +0 -246
  188. pyxlpr/ppocr/modeling/necks/__init__.py +0 -32
  189. pyxlpr/ppocr/modeling/necks/db_fpn.py +0 -111
  190. pyxlpr/ppocr/modeling/necks/east_fpn.py +0 -188
  191. pyxlpr/ppocr/modeling/necks/fpn.py +0 -138
  192. pyxlpr/ppocr/modeling/necks/pg_fpn.py +0 -314
  193. pyxlpr/ppocr/modeling/necks/rnn.py +0 -92
  194. pyxlpr/ppocr/modeling/necks/sast_fpn.py +0 -284
  195. pyxlpr/ppocr/modeling/necks/table_fpn.py +0 -110
  196. pyxlpr/ppocr/modeling/transforms/__init__.py +0 -28
  197. pyxlpr/ppocr/modeling/transforms/stn.py +0 -135
  198. pyxlpr/ppocr/modeling/transforms/tps.py +0 -308
  199. pyxlpr/ppocr/modeling/transforms/tps_spatial_transformer.py +0 -156
  200. pyxlpr/ppocr/optimizer/__init__.py +0 -61
  201. pyxlpr/ppocr/optimizer/learning_rate.py +0 -228
  202. pyxlpr/ppocr/optimizer/lr_scheduler.py +0 -49
  203. pyxlpr/ppocr/optimizer/optimizer.py +0 -160
  204. pyxlpr/ppocr/optimizer/regularizer.py +0 -52
  205. pyxlpr/ppocr/postprocess/__init__.py +0 -55
  206. pyxlpr/ppocr/postprocess/cls_postprocess.py +0 -33
  207. pyxlpr/ppocr/postprocess/db_postprocess.py +0 -234
  208. pyxlpr/ppocr/postprocess/east_postprocess.py +0 -143
  209. pyxlpr/ppocr/postprocess/locality_aware_nms.py +0 -200
  210. pyxlpr/ppocr/postprocess/pg_postprocess.py +0 -52
  211. pyxlpr/ppocr/postprocess/pse_postprocess/__init__.py +0 -15
  212. pyxlpr/ppocr/postprocess/pse_postprocess/pse/__init__.py +0 -29
  213. pyxlpr/ppocr/postprocess/pse_postprocess/pse/setup.py +0 -14
  214. pyxlpr/ppocr/postprocess/pse_postprocess/pse_postprocess.py +0 -118
  215. pyxlpr/ppocr/postprocess/rec_postprocess.py +0 -654
  216. pyxlpr/ppocr/postprocess/sast_postprocess.py +0 -355
  217. pyxlpr/ppocr/tools/__init__.py +0 -14
  218. pyxlpr/ppocr/tools/eval.py +0 -83
  219. pyxlpr/ppocr/tools/export_center.py +0 -77
  220. pyxlpr/ppocr/tools/export_model.py +0 -129
  221. pyxlpr/ppocr/tools/infer/predict_cls.py +0 -151
  222. pyxlpr/ppocr/tools/infer/predict_det.py +0 -300
  223. pyxlpr/ppocr/tools/infer/predict_e2e.py +0 -169
  224. pyxlpr/ppocr/tools/infer/predict_rec.py +0 -414
  225. pyxlpr/ppocr/tools/infer/predict_system.py +0 -204
  226. pyxlpr/ppocr/tools/infer/utility.py +0 -629
  227. pyxlpr/ppocr/tools/infer_cls.py +0 -83
  228. pyxlpr/ppocr/tools/infer_det.py +0 -134
  229. pyxlpr/ppocr/tools/infer_e2e.py +0 -122
  230. pyxlpr/ppocr/tools/infer_kie.py +0 -153
  231. pyxlpr/ppocr/tools/infer_rec.py +0 -146
  232. pyxlpr/ppocr/tools/infer_table.py +0 -107
  233. pyxlpr/ppocr/tools/program.py +0 -596
  234. pyxlpr/ppocr/tools/test_hubserving.py +0 -117
  235. pyxlpr/ppocr/tools/train.py +0 -163
  236. pyxlpr/ppocr/tools/xlprog.py +0 -748
  237. pyxlpr/ppocr/utils/EN_symbol_dict.txt +0 -94
  238. pyxlpr/ppocr/utils/__init__.py +0 -24
  239. pyxlpr/ppocr/utils/dict/ar_dict.txt +0 -117
  240. pyxlpr/ppocr/utils/dict/arabic_dict.txt +0 -162
  241. pyxlpr/ppocr/utils/dict/be_dict.txt +0 -145
  242. pyxlpr/ppocr/utils/dict/bg_dict.txt +0 -140
  243. pyxlpr/ppocr/utils/dict/chinese_cht_dict.txt +0 -8421
  244. pyxlpr/ppocr/utils/dict/cyrillic_dict.txt +0 -163
  245. pyxlpr/ppocr/utils/dict/devanagari_dict.txt +0 -167
  246. pyxlpr/ppocr/utils/dict/en_dict.txt +0 -63
  247. pyxlpr/ppocr/utils/dict/fa_dict.txt +0 -136
  248. pyxlpr/ppocr/utils/dict/french_dict.txt +0 -136
  249. pyxlpr/ppocr/utils/dict/german_dict.txt +0 -143
  250. pyxlpr/ppocr/utils/dict/hi_dict.txt +0 -162
  251. pyxlpr/ppocr/utils/dict/it_dict.txt +0 -118
  252. pyxlpr/ppocr/utils/dict/japan_dict.txt +0 -4399
  253. pyxlpr/ppocr/utils/dict/ka_dict.txt +0 -153
  254. pyxlpr/ppocr/utils/dict/korean_dict.txt +0 -3688
  255. pyxlpr/ppocr/utils/dict/latin_dict.txt +0 -185
  256. pyxlpr/ppocr/utils/dict/mr_dict.txt +0 -153
  257. pyxlpr/ppocr/utils/dict/ne_dict.txt +0 -153
  258. pyxlpr/ppocr/utils/dict/oc_dict.txt +0 -96
  259. pyxlpr/ppocr/utils/dict/pu_dict.txt +0 -130
  260. pyxlpr/ppocr/utils/dict/rs_dict.txt +0 -91
  261. pyxlpr/ppocr/utils/dict/rsc_dict.txt +0 -134
  262. pyxlpr/ppocr/utils/dict/ru_dict.txt +0 -125
  263. pyxlpr/ppocr/utils/dict/ta_dict.txt +0 -128
  264. pyxlpr/ppocr/utils/dict/table_dict.txt +0 -277
  265. pyxlpr/ppocr/utils/dict/table_structure_dict.txt +0 -2759
  266. pyxlpr/ppocr/utils/dict/te_dict.txt +0 -151
  267. pyxlpr/ppocr/utils/dict/ug_dict.txt +0 -114
  268. pyxlpr/ppocr/utils/dict/uk_dict.txt +0 -142
  269. pyxlpr/ppocr/utils/dict/ur_dict.txt +0 -137
  270. pyxlpr/ppocr/utils/dict/xi_dict.txt +0 -110
  271. pyxlpr/ppocr/utils/dict90.txt +0 -90
  272. pyxlpr/ppocr/utils/e2e_metric/Deteval.py +0 -574
  273. pyxlpr/ppocr/utils/e2e_metric/polygon_fast.py +0 -83
  274. pyxlpr/ppocr/utils/e2e_utils/extract_batchsize.py +0 -87
  275. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_fast.py +0 -457
  276. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_slow.py +0 -592
  277. pyxlpr/ppocr/utils/e2e_utils/pgnet_pp_utils.py +0 -162
  278. pyxlpr/ppocr/utils/e2e_utils/visual.py +0 -162
  279. pyxlpr/ppocr/utils/en_dict.txt +0 -95
  280. pyxlpr/ppocr/utils/gen_label.py +0 -81
  281. pyxlpr/ppocr/utils/ic15_dict.txt +0 -36
  282. pyxlpr/ppocr/utils/iou.py +0 -54
  283. pyxlpr/ppocr/utils/logging.py +0 -69
  284. pyxlpr/ppocr/utils/network.py +0 -84
  285. pyxlpr/ppocr/utils/ppocr_keys_v1.txt +0 -6623
  286. pyxlpr/ppocr/utils/profiler.py +0 -110
  287. pyxlpr/ppocr/utils/save_load.py +0 -150
  288. pyxlpr/ppocr/utils/stats.py +0 -72
  289. pyxlpr/ppocr/utils/utility.py +0 -80
  290. pyxlpr/ppstructure/__init__.py +0 -13
  291. pyxlpr/ppstructure/predict_system.py +0 -187
  292. pyxlpr/ppstructure/table/__init__.py +0 -13
  293. pyxlpr/ppstructure/table/eval_table.py +0 -72
  294. pyxlpr/ppstructure/table/matcher.py +0 -192
  295. pyxlpr/ppstructure/table/predict_structure.py +0 -136
  296. pyxlpr/ppstructure/table/predict_table.py +0 -221
  297. pyxlpr/ppstructure/table/table_metric/__init__.py +0 -16
  298. pyxlpr/ppstructure/table/table_metric/parallel.py +0 -51
  299. pyxlpr/ppstructure/table/table_metric/table_metric.py +0 -247
  300. pyxlpr/ppstructure/table/tablepyxl/__init__.py +0 -13
  301. pyxlpr/ppstructure/table/tablepyxl/style.py +0 -283
  302. pyxlpr/ppstructure/table/tablepyxl/tablepyxl.py +0 -118
  303. pyxlpr/ppstructure/utility.py +0 -71
  304. pyxlpr/xlai.py +0 -10
  305. /pyxllib/{ext/autogui → autogui}/virtualkey.py +0 -0
  306. {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info/licenses}/LICENSE +0 -0
@@ -1,433 +0,0 @@
1
- """
2
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- """
16
-
17
- from __future__ import absolute_import
18
- from __future__ import division
19
- from __future__ import print_function
20
- from __future__ import unicode_literals
21
-
22
- import sys
23
- import six
24
- import cv2
25
- import numpy as np
26
-
27
-
28
- class DecodeImage(object):
29
- """ decode image """
30
-
31
- def __init__(self, img_mode='RGB', channel_first=False, **kwargs):
32
- # img_mode是输入的图片格式,不过这个因为cv2.imdecode参数1的实现有bug,准确来说是-1,会导致不能传GRAP参数
33
-
34
- # **kwargs在有些场合,能获取Global的配置信息
35
- self.img_mode = img_mode
36
- self.channel_first = channel_first
37
-
38
- def __call__(self, data):
39
- # operators 要统一写成仿函数类,初始化带**kwargs方便获取扩展参数
40
- # __call__的输入是一个data字典,处理好返回新的data字典
41
- # 这个框架部分也不一定是写数据增广的功能,也可以写很多对label等的处理
42
- img = data['image']
43
- if six.PY2:
44
- assert type(img) is str and len(
45
- img) > 0, "invalid input 'img' in DecodeImage"
46
- else:
47
- assert type(img) is bytes and len(
48
- img) > 0, "invalid input 'img' in DecodeImage"
49
- img = np.frombuffer(img, dtype='uint8')
50
- img = cv2.imdecode(img, 1) # 这是有bug的,应该把1改成0,不过影响不大,我先不动
51
- if img is None:
52
- return None
53
- if self.img_mode == 'GRAY':
54
- img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
55
- elif self.img_mode == 'RGB':
56
- assert img.shape[2] == 3, 'invalid shape of image[%s]' % (img.shape)
57
- img = img[:, :, ::-1]
58
-
59
- if self.channel_first:
60
- img = img.transpose((2, 0, 1))
61
-
62
- data['image'] = img
63
- # 返回的是cv2格式的图片
64
- return data
65
-
66
-
67
- class NRTRDecodeImage(object):
68
- """ decode image """
69
-
70
- def __init__(self, img_mode='RGB', channel_first=False, **kwargs):
71
- self.img_mode = img_mode
72
- self.channel_first = channel_first
73
-
74
- def __call__(self, data):
75
- img = data['image']
76
- if six.PY2:
77
- assert type(img) is str and len(
78
- img) > 0, "invalid input 'img' in DecodeImage"
79
- else:
80
- assert type(img) is bytes and len(
81
- img) > 0, "invalid input 'img' in DecodeImage"
82
- img = np.frombuffer(img, dtype='uint8')
83
-
84
- img = cv2.imdecode(img, 1)
85
-
86
- if img is None:
87
- return None
88
- if self.img_mode == 'GRAY':
89
- img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
90
- elif self.img_mode == 'RGB':
91
- assert img.shape[2] == 3, 'invalid shape of image[%s]' % (img.shape)
92
- img = img[:, :, ::-1]
93
- img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
94
- if self.channel_first:
95
- img = img.transpose((2, 0, 1))
96
- # 读取为灰度图的功能,返回 [1, H, W]
97
- data['image'] = img
98
- return data
99
-
100
-
101
- class NormalizeImage(object):
102
- """ normalize image such as substract mean, divide std
103
-
104
- 图像归一化类
105
- """
106
-
107
- def __init__(self, scale=None, mean=None, std=None, order='chw', **kwargs):
108
- if isinstance(scale, str):
109
- scale = eval(scale)
110
- self.scale = np.float32(scale if scale is not None else 1.0 / 255.0)
111
- # 1 获得归一化的均值和方差
112
- mean = mean if mean is not None else [0.485, 0.456, 0.406]
113
- std = std if std is not None else [0.229, 0.224, 0.225]
114
-
115
- shape = (3, 1, 1) if order == 'chw' else (1, 1, 3)
116
- self.mean = np.array(mean).reshape(shape).astype('float32')
117
- self.std = np.array(std).reshape(shape).astype('float32')
118
-
119
- def __call__(self, data):
120
- # 2 从字典中获取图像数据
121
- img = data['image']
122
- from PIL import Image
123
- if isinstance(img, Image.Image):
124
- img = np.array(img)
125
-
126
- assert isinstance(img,
127
- np.ndarray), "invalid input 'img' in NormalizeImage"
128
- # 3 图像归一化
129
- data['image'] = (img.astype('float32') * self.scale - self.mean) / self.std
130
- return data
131
-
132
-
133
- class ToCHWImage(object):
134
- """ convert hwc image to chw image
135
- """
136
-
137
- def __init__(self, **kwargs):
138
- pass
139
-
140
- def __call__(self, data):
141
- img = data['image']
142
- from PIL import Image
143
- if isinstance(img, Image.Image):
144
- img = np.array(img)
145
- data['image'] = img.transpose((2, 0, 1))
146
- return data
147
-
148
-
149
- class Fasttext(object):
150
- def __init__(self, path="None", **kwargs):
151
- import fasttext
152
- self.fast_model = fasttext.load_model(path)
153
-
154
- def __call__(self, data):
155
- label = data['label']
156
- fast_label = self.fast_model[label]
157
- data['fast_label'] = fast_label
158
- return data
159
-
160
-
161
- class KeepKeys(object):
162
- def __init__(self, keep_keys, **kwargs):
163
- self.keep_keys = keep_keys
164
-
165
- def __call__(self, data):
166
- data_list = []
167
- for key in self.keep_keys:
168
- data_list.append(data[key])
169
- return data_list
170
-
171
-
172
- class Resize(object):
173
- def __init__(self, size=(640, 640), **kwargs):
174
- self.size = size
175
-
176
- def resize_image(self, img):
177
- resize_h, resize_w = self.size
178
- ori_h, ori_w = img.shape[:2] # (h, w, c)
179
- ratio_h = float(resize_h) / ori_h
180
- ratio_w = float(resize_w) / ori_w
181
- img = cv2.resize(img, (int(resize_w), int(resize_h)))
182
- return img, [ratio_h, ratio_w]
183
-
184
- def __call__(self, data):
185
- img = data['image']
186
- text_polys = data['polys']
187
-
188
- img_resize, [ratio_h, ratio_w] = self.resize_image(img)
189
- new_boxes = []
190
- for box in text_polys:
191
- new_box = []
192
- for cord in box:
193
- new_box.append([cord[0] * ratio_w, cord[1] * ratio_h])
194
- new_boxes.append(new_box)
195
- data['image'] = img_resize
196
- data['polys'] = np.array(new_boxes, dtype=np.float32)
197
- return data
198
-
199
-
200
- class DetResizeForTest(object):
201
- def __init__(self, **kwargs):
202
- super(DetResizeForTest, self).__init__()
203
- self.resize_type = 0
204
- if 'image_shape' in kwargs:
205
- self.image_shape = kwargs['image_shape']
206
- self.resize_type = 1
207
- elif 'limit_side_len' in kwargs:
208
- self.limit_side_len = kwargs['limit_side_len']
209
- self.limit_type = kwargs.get('limit_type', 'min')
210
- elif 'resize_long' in kwargs:
211
- self.resize_type = 2
212
- self.resize_long = kwargs.get('resize_long', 960)
213
- else:
214
- self.limit_side_len = 736
215
- self.limit_type = 'min'
216
-
217
- def __call__(self, data):
218
- img = data['image']
219
- src_h, src_w, src_c = img.shape
220
- if src_c == 4: # ckz: pp没有考虑到的一个地方,输入的原始图如果带有A通道会有些问题
221
- img = cv2.cvtColor(img, cv2.COLOR_BGRA2BGR)
222
-
223
- if self.resize_type == 0:
224
- # img, shape = self.resize_image_type0(img)
225
- img, [ratio_h, ratio_w] = self.resize_image_type0(img)
226
- elif self.resize_type == 2:
227
- img, [ratio_h, ratio_w] = self.resize_image_type2(img)
228
- else:
229
- # img, shape = self.resize_image_type1(img)
230
- img, [ratio_h, ratio_w] = self.resize_image_type1(img)
231
- data['image'] = img
232
- data['shape'] = np.array([src_h, src_w, ratio_h, ratio_w])
233
- return data
234
-
235
- def resize_image_type1(self, img):
236
- resize_h, resize_w = self.image_shape
237
- ori_h, ori_w = img.shape[:2] # (h, w, c)
238
- ratio_h = float(resize_h) / ori_h
239
- ratio_w = float(resize_w) / ori_w
240
- img = cv2.resize(img, (int(resize_w), int(resize_h)))
241
- # return img, np.array([ori_h, ori_w])
242
- return img, [ratio_h, ratio_w]
243
-
244
- def resize_image_type0(self, img):
245
- """
246
- resize image to a size multiple of 32 which is required by the network
247
- args:
248
- img(array): array with shape [h, w, c]
249
- return(tuple):
250
- img, (ratio_h, ratio_w)
251
- """
252
- limit_side_len = self.limit_side_len
253
- h, w, c = img.shape
254
-
255
- # limit the max side
256
- if self.limit_type == 'max':
257
- if max(h, w) > limit_side_len:
258
- if h > w:
259
- ratio = float(limit_side_len) / h
260
- else:
261
- ratio = float(limit_side_len) / w
262
- else:
263
- ratio = 1.
264
- elif self.limit_type == 'min':
265
- if min(h, w) < limit_side_len:
266
- if h < w:
267
- ratio = float(limit_side_len) / h
268
- else:
269
- ratio = float(limit_side_len) / w
270
- else:
271
- ratio = 1.
272
- elif self.limit_type == 'resize_long':
273
- ratio = float(limit_side_len) / max(h, w)
274
- else:
275
- raise Exception('not support limit type, image ')
276
- resize_h = int(h * ratio)
277
- resize_w = int(w * ratio)
278
-
279
- resize_h = max(int(round(resize_h / 32) * 32), 32)
280
- resize_w = max(int(round(resize_w / 32) * 32), 32)
281
-
282
- try:
283
- if int(resize_w) <= 0 or int(resize_h) <= 0:
284
- return None, (None, None)
285
- img = cv2.resize(img, (int(resize_w), int(resize_h)))
286
- except:
287
- print(img.shape, resize_w, resize_h)
288
- sys.exit(0)
289
- ratio_h = resize_h / float(h)
290
- ratio_w = resize_w / float(w)
291
- return img, [ratio_h, ratio_w]
292
-
293
- def resize_image_type2(self, img):
294
- h, w, _ = img.shape
295
-
296
- resize_w = w
297
- resize_h = h
298
-
299
- if resize_h > resize_w:
300
- ratio = float(self.resize_long) / resize_h
301
- else:
302
- ratio = float(self.resize_long) / resize_w
303
-
304
- resize_h = int(resize_h * ratio)
305
- resize_w = int(resize_w * ratio)
306
-
307
- max_stride = 128
308
- resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
309
- resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
310
- img = cv2.resize(img, (int(resize_w), int(resize_h)))
311
- ratio_h = resize_h / float(h)
312
- ratio_w = resize_w / float(w)
313
-
314
- return img, [ratio_h, ratio_w]
315
-
316
-
317
- class E2EResizeForTest(object):
318
- def __init__(self, **kwargs):
319
- super(E2EResizeForTest, self).__init__()
320
- self.max_side_len = kwargs['max_side_len']
321
- self.valid_set = kwargs['valid_set']
322
-
323
- def __call__(self, data):
324
- img = data['image']
325
- src_h, src_w, _ = img.shape
326
- if self.valid_set == 'totaltext':
327
- im_resized, [ratio_h, ratio_w] = self.resize_image_for_totaltext(
328
- img, max_side_len=self.max_side_len)
329
- else:
330
- im_resized, (ratio_h, ratio_w) = self.resize_image(
331
- img, max_side_len=self.max_side_len)
332
- data['image'] = im_resized
333
- data['shape'] = np.array([src_h, src_w, ratio_h, ratio_w])
334
- return data
335
-
336
- def resize_image_for_totaltext(self, im, max_side_len=512):
337
-
338
- h, w, _ = im.shape
339
- resize_w = w
340
- resize_h = h
341
- ratio = 1.25
342
- if h * ratio > max_side_len:
343
- ratio = float(max_side_len) / resize_h
344
- resize_h = int(resize_h * ratio)
345
- resize_w = int(resize_w * ratio)
346
-
347
- max_stride = 128
348
- resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
349
- resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
350
- im = cv2.resize(im, (int(resize_w), int(resize_h)))
351
- ratio_h = resize_h / float(h)
352
- ratio_w = resize_w / float(w)
353
- return im, (ratio_h, ratio_w)
354
-
355
- def resize_image(self, im, max_side_len=512):
356
- """
357
- resize image to a size multiple of max_stride which is required by the network
358
- :param im: the resized image
359
- :param max_side_len: limit of max image size to avoid out of memory in gpu
360
- :return: the resized image and the resize ratio
361
- """
362
- h, w, _ = im.shape
363
-
364
- resize_w = w
365
- resize_h = h
366
-
367
- # Fix the longer side
368
- if resize_h > resize_w:
369
- ratio = float(max_side_len) / resize_h
370
- else:
371
- ratio = float(max_side_len) / resize_w
372
-
373
- resize_h = int(resize_h * ratio)
374
- resize_w = int(resize_w * ratio)
375
-
376
- max_stride = 128
377
- resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
378
- resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
379
- im = cv2.resize(im, (int(resize_w), int(resize_h)))
380
- ratio_h = resize_h / float(h)
381
- ratio_w = resize_w / float(w)
382
-
383
- return im, (ratio_h, ratio_w)
384
-
385
-
386
- class KieResize(object):
387
- def __init__(self, **kwargs):
388
- super(KieResize, self).__init__()
389
- self.max_side, self.min_side = kwargs['img_scale'][0], kwargs[
390
- 'img_scale'][1]
391
-
392
- def __call__(self, data):
393
- img = data['image']
394
- points = data['points']
395
- src_h, src_w, _ = img.shape
396
- im_resized, scale_factor, [ratio_h, ratio_w
397
- ], [new_h, new_w] = self.resize_image(img)
398
- resize_points = self.resize_boxes(img, points, scale_factor)
399
- data['ori_image'] = img
400
- data['ori_boxes'] = points
401
- data['points'] = resize_points
402
- data['image'] = im_resized
403
- data['shape'] = np.array([new_h, new_w])
404
- return data
405
-
406
- def resize_image(self, img):
407
- norm_img = np.zeros([1024, 1024, 3], dtype='float32')
408
- scale = [512, 1024]
409
- h, w = img.shape[:2]
410
- max_long_edge = max(scale)
411
- max_short_edge = min(scale)
412
- scale_factor = min(max_long_edge / max(h, w),
413
- max_short_edge / min(h, w))
414
- resize_w, resize_h = int(w * float(scale_factor) + 0.5), int(h * float(
415
- scale_factor) + 0.5)
416
- max_stride = 32
417
- resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
418
- resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
419
- im = cv2.resize(img, (resize_w, resize_h))
420
- new_h, new_w = im.shape[:2]
421
- w_scale = new_w / w
422
- h_scale = new_h / h
423
- scale_factor = np.array(
424
- [w_scale, h_scale, w_scale, h_scale], dtype=np.float32)
425
- norm_img[:new_h, :new_w, :] = im
426
- return norm_img, scale_factor, [h_scale, w_scale], [new_h, new_w]
427
-
428
- def resize_boxes(self, im, points, scale_factor):
429
- points = points * scale_factor
430
- img_shape = im.shape[:2]
431
- points[:, 0::2] = np.clip(points[:, 0::2], 0, img_shape[1])
432
- points[:, 1::2] = np.clip(points[:, 1::2], 0, img_shape[0])
433
- return points