pyxllib 0.3.96__py3-none-any.whl → 0.3.197__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- pyxllib/algo/geo.py +12 -0
- pyxllib/algo/intervals.py +1 -1
- pyxllib/algo/matcher.py +78 -0
- pyxllib/algo/pupil.py +187 -19
- pyxllib/algo/specialist.py +2 -1
- pyxllib/algo/stat.py +38 -2
- {pyxlpr → pyxllib/autogui}/__init__.py +1 -1
- pyxllib/autogui/activewin.py +246 -0
- pyxllib/autogui/all.py +9 -0
- pyxllib/{ext/autogui → autogui}/autogui.py +40 -11
- pyxllib/autogui/uiautolib.py +362 -0
- pyxllib/autogui/wechat.py +827 -0
- pyxllib/autogui/wechat_msg.py +421 -0
- pyxllib/autogui/wxautolib.py +84 -0
- pyxllib/cv/slidercaptcha.py +137 -0
- pyxllib/data/echarts.py +123 -12
- pyxllib/data/jsonlib.py +89 -0
- pyxllib/data/pglib.py +514 -30
- pyxllib/data/sqlite.py +231 -4
- pyxllib/ext/JLineViewer.py +14 -1
- pyxllib/ext/drissionlib.py +277 -0
- pyxllib/ext/kq5034lib.py +0 -1594
- pyxllib/ext/robustprocfile.py +497 -0
- pyxllib/ext/unixlib.py +6 -5
- pyxllib/ext/utools.py +108 -95
- pyxllib/ext/webhook.py +32 -14
- pyxllib/ext/wjxlib.py +88 -0
- pyxllib/ext/wpsapi.py +124 -0
- pyxllib/ext/xlwork.py +9 -0
- pyxllib/ext/yuquelib.py +1003 -71
- pyxllib/file/docxlib.py +1 -1
- pyxllib/file/libreoffice.py +165 -0
- pyxllib/file/movielib.py +9 -0
- pyxllib/file/packlib/__init__.py +112 -75
- pyxllib/file/pdflib.py +1 -1
- pyxllib/file/pupil.py +1 -1
- pyxllib/file/specialist/dirlib.py +1 -1
- pyxllib/file/specialist/download.py +10 -3
- pyxllib/file/specialist/filelib.py +266 -55
- pyxllib/file/xlsxlib.py +205 -50
- pyxllib/file/xlsyncfile.py +341 -0
- pyxllib/prog/cachetools.py +64 -0
- pyxllib/prog/filelock.py +42 -0
- pyxllib/prog/multiprogs.py +940 -0
- pyxllib/prog/newbie.py +9 -2
- pyxllib/prog/pupil.py +129 -60
- pyxllib/prog/specialist/__init__.py +176 -2
- pyxllib/prog/specialist/bc.py +5 -2
- pyxllib/prog/specialist/browser.py +11 -2
- pyxllib/prog/specialist/datetime.py +68 -0
- pyxllib/prog/specialist/tictoc.py +12 -13
- pyxllib/prog/specialist/xllog.py +5 -5
- pyxllib/prog/xlosenv.py +7 -0
- pyxllib/text/airscript.js +744 -0
- pyxllib/text/charclasslib.py +17 -5
- pyxllib/text/jiebalib.py +6 -3
- pyxllib/text/jinjalib.py +32 -0
- pyxllib/text/jsa_ai_prompt.md +271 -0
- pyxllib/text/jscode.py +159 -4
- pyxllib/text/nestenv.py +1 -1
- pyxllib/text/newbie.py +12 -0
- pyxllib/text/pupil/common.py +26 -0
- pyxllib/text/specialist/ptag.py +2 -2
- pyxllib/text/templates/echart_base.html +11 -0
- pyxllib/text/templates/highlight_code.html +17 -0
- pyxllib/text/templates/latex_editor.html +103 -0
- pyxllib/text/xmllib.py +76 -14
- pyxllib/xl.py +2 -1
- pyxllib-0.3.197.dist-info/METADATA +48 -0
- pyxllib-0.3.197.dist-info/RECORD +126 -0
- {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info}/WHEEL +1 -2
- pyxllib/ext/autogui/__init__.py +0 -8
- pyxllib-0.3.96.dist-info/METADATA +0 -51
- pyxllib-0.3.96.dist-info/RECORD +0 -333
- pyxllib-0.3.96.dist-info/top_level.txt +0 -2
- pyxlpr/ai/__init__.py +0 -5
- pyxlpr/ai/clientlib.py +0 -1281
- pyxlpr/ai/specialist.py +0 -286
- pyxlpr/ai/torch_app.py +0 -172
- pyxlpr/ai/xlpaddle.py +0 -655
- pyxlpr/ai/xltorch.py +0 -705
- pyxlpr/data/__init__.py +0 -11
- pyxlpr/data/coco.py +0 -1325
- pyxlpr/data/datacls.py +0 -365
- pyxlpr/data/datasets.py +0 -200
- pyxlpr/data/gptlib.py +0 -1291
- pyxlpr/data/icdar/__init__.py +0 -96
- pyxlpr/data/icdar/deteval.py +0 -377
- pyxlpr/data/icdar/icdar2013.py +0 -341
- pyxlpr/data/icdar/iou.py +0 -340
- pyxlpr/data/icdar/rrc_evaluation_funcs_1_1.py +0 -463
- pyxlpr/data/imtextline.py +0 -473
- pyxlpr/data/labelme.py +0 -866
- pyxlpr/data/removeline.py +0 -179
- pyxlpr/data/specialist.py +0 -57
- pyxlpr/eval/__init__.py +0 -85
- pyxlpr/paddleocr.py +0 -776
- pyxlpr/ppocr/__init__.py +0 -15
- pyxlpr/ppocr/configs/rec/multi_language/generate_multi_language_configs.py +0 -226
- pyxlpr/ppocr/data/__init__.py +0 -135
- pyxlpr/ppocr/data/imaug/ColorJitter.py +0 -26
- pyxlpr/ppocr/data/imaug/__init__.py +0 -67
- pyxlpr/ppocr/data/imaug/copy_paste.py +0 -170
- pyxlpr/ppocr/data/imaug/east_process.py +0 -437
- pyxlpr/ppocr/data/imaug/gen_table_mask.py +0 -244
- pyxlpr/ppocr/data/imaug/iaa_augment.py +0 -114
- pyxlpr/ppocr/data/imaug/label_ops.py +0 -789
- pyxlpr/ppocr/data/imaug/make_border_map.py +0 -184
- pyxlpr/ppocr/data/imaug/make_pse_gt.py +0 -106
- pyxlpr/ppocr/data/imaug/make_shrink_map.py +0 -126
- pyxlpr/ppocr/data/imaug/operators.py +0 -433
- pyxlpr/ppocr/data/imaug/pg_process.py +0 -906
- pyxlpr/ppocr/data/imaug/randaugment.py +0 -143
- pyxlpr/ppocr/data/imaug/random_crop_data.py +0 -239
- pyxlpr/ppocr/data/imaug/rec_img_aug.py +0 -533
- pyxlpr/ppocr/data/imaug/sast_process.py +0 -777
- pyxlpr/ppocr/data/imaug/text_image_aug/__init__.py +0 -17
- pyxlpr/ppocr/data/imaug/text_image_aug/augment.py +0 -120
- pyxlpr/ppocr/data/imaug/text_image_aug/warp_mls.py +0 -168
- pyxlpr/ppocr/data/lmdb_dataset.py +0 -115
- pyxlpr/ppocr/data/pgnet_dataset.py +0 -104
- pyxlpr/ppocr/data/pubtab_dataset.py +0 -107
- pyxlpr/ppocr/data/simple_dataset.py +0 -372
- pyxlpr/ppocr/losses/__init__.py +0 -61
- pyxlpr/ppocr/losses/ace_loss.py +0 -52
- pyxlpr/ppocr/losses/basic_loss.py +0 -135
- pyxlpr/ppocr/losses/center_loss.py +0 -88
- pyxlpr/ppocr/losses/cls_loss.py +0 -30
- pyxlpr/ppocr/losses/combined_loss.py +0 -67
- pyxlpr/ppocr/losses/det_basic_loss.py +0 -208
- pyxlpr/ppocr/losses/det_db_loss.py +0 -80
- pyxlpr/ppocr/losses/det_east_loss.py +0 -63
- pyxlpr/ppocr/losses/det_pse_loss.py +0 -149
- pyxlpr/ppocr/losses/det_sast_loss.py +0 -121
- pyxlpr/ppocr/losses/distillation_loss.py +0 -272
- pyxlpr/ppocr/losses/e2e_pg_loss.py +0 -140
- pyxlpr/ppocr/losses/kie_sdmgr_loss.py +0 -113
- pyxlpr/ppocr/losses/rec_aster_loss.py +0 -99
- pyxlpr/ppocr/losses/rec_att_loss.py +0 -39
- pyxlpr/ppocr/losses/rec_ctc_loss.py +0 -44
- pyxlpr/ppocr/losses/rec_enhanced_ctc_loss.py +0 -70
- pyxlpr/ppocr/losses/rec_nrtr_loss.py +0 -30
- pyxlpr/ppocr/losses/rec_sar_loss.py +0 -28
- pyxlpr/ppocr/losses/rec_srn_loss.py +0 -47
- pyxlpr/ppocr/losses/table_att_loss.py +0 -109
- pyxlpr/ppocr/metrics/__init__.py +0 -44
- pyxlpr/ppocr/metrics/cls_metric.py +0 -45
- pyxlpr/ppocr/metrics/det_metric.py +0 -82
- pyxlpr/ppocr/metrics/distillation_metric.py +0 -73
- pyxlpr/ppocr/metrics/e2e_metric.py +0 -86
- pyxlpr/ppocr/metrics/eval_det_iou.py +0 -274
- pyxlpr/ppocr/metrics/kie_metric.py +0 -70
- pyxlpr/ppocr/metrics/rec_metric.py +0 -75
- pyxlpr/ppocr/metrics/table_metric.py +0 -50
- pyxlpr/ppocr/modeling/architectures/__init__.py +0 -32
- pyxlpr/ppocr/modeling/architectures/base_model.py +0 -88
- pyxlpr/ppocr/modeling/architectures/distillation_model.py +0 -60
- pyxlpr/ppocr/modeling/backbones/__init__.py +0 -54
- pyxlpr/ppocr/modeling/backbones/det_mobilenet_v3.py +0 -268
- pyxlpr/ppocr/modeling/backbones/det_resnet_vd.py +0 -246
- pyxlpr/ppocr/modeling/backbones/det_resnet_vd_sast.py +0 -285
- pyxlpr/ppocr/modeling/backbones/e2e_resnet_vd_pg.py +0 -265
- pyxlpr/ppocr/modeling/backbones/kie_unet_sdmgr.py +0 -186
- pyxlpr/ppocr/modeling/backbones/rec_mobilenet_v3.py +0 -138
- pyxlpr/ppocr/modeling/backbones/rec_mv1_enhance.py +0 -258
- pyxlpr/ppocr/modeling/backbones/rec_nrtr_mtb.py +0 -48
- pyxlpr/ppocr/modeling/backbones/rec_resnet_31.py +0 -210
- pyxlpr/ppocr/modeling/backbones/rec_resnet_aster.py +0 -143
- pyxlpr/ppocr/modeling/backbones/rec_resnet_fpn.py +0 -307
- pyxlpr/ppocr/modeling/backbones/rec_resnet_vd.py +0 -286
- pyxlpr/ppocr/modeling/heads/__init__.py +0 -54
- pyxlpr/ppocr/modeling/heads/cls_head.py +0 -52
- pyxlpr/ppocr/modeling/heads/det_db_head.py +0 -118
- pyxlpr/ppocr/modeling/heads/det_east_head.py +0 -121
- pyxlpr/ppocr/modeling/heads/det_pse_head.py +0 -37
- pyxlpr/ppocr/modeling/heads/det_sast_head.py +0 -128
- pyxlpr/ppocr/modeling/heads/e2e_pg_head.py +0 -253
- pyxlpr/ppocr/modeling/heads/kie_sdmgr_head.py +0 -206
- pyxlpr/ppocr/modeling/heads/multiheadAttention.py +0 -163
- pyxlpr/ppocr/modeling/heads/rec_aster_head.py +0 -393
- pyxlpr/ppocr/modeling/heads/rec_att_head.py +0 -202
- pyxlpr/ppocr/modeling/heads/rec_ctc_head.py +0 -88
- pyxlpr/ppocr/modeling/heads/rec_nrtr_head.py +0 -826
- pyxlpr/ppocr/modeling/heads/rec_sar_head.py +0 -402
- pyxlpr/ppocr/modeling/heads/rec_srn_head.py +0 -280
- pyxlpr/ppocr/modeling/heads/self_attention.py +0 -406
- pyxlpr/ppocr/modeling/heads/table_att_head.py +0 -246
- pyxlpr/ppocr/modeling/necks/__init__.py +0 -32
- pyxlpr/ppocr/modeling/necks/db_fpn.py +0 -111
- pyxlpr/ppocr/modeling/necks/east_fpn.py +0 -188
- pyxlpr/ppocr/modeling/necks/fpn.py +0 -138
- pyxlpr/ppocr/modeling/necks/pg_fpn.py +0 -314
- pyxlpr/ppocr/modeling/necks/rnn.py +0 -92
- pyxlpr/ppocr/modeling/necks/sast_fpn.py +0 -284
- pyxlpr/ppocr/modeling/necks/table_fpn.py +0 -110
- pyxlpr/ppocr/modeling/transforms/__init__.py +0 -28
- pyxlpr/ppocr/modeling/transforms/stn.py +0 -135
- pyxlpr/ppocr/modeling/transforms/tps.py +0 -308
- pyxlpr/ppocr/modeling/transforms/tps_spatial_transformer.py +0 -156
- pyxlpr/ppocr/optimizer/__init__.py +0 -61
- pyxlpr/ppocr/optimizer/learning_rate.py +0 -228
- pyxlpr/ppocr/optimizer/lr_scheduler.py +0 -49
- pyxlpr/ppocr/optimizer/optimizer.py +0 -160
- pyxlpr/ppocr/optimizer/regularizer.py +0 -52
- pyxlpr/ppocr/postprocess/__init__.py +0 -55
- pyxlpr/ppocr/postprocess/cls_postprocess.py +0 -33
- pyxlpr/ppocr/postprocess/db_postprocess.py +0 -234
- pyxlpr/ppocr/postprocess/east_postprocess.py +0 -143
- pyxlpr/ppocr/postprocess/locality_aware_nms.py +0 -200
- pyxlpr/ppocr/postprocess/pg_postprocess.py +0 -52
- pyxlpr/ppocr/postprocess/pse_postprocess/__init__.py +0 -15
- pyxlpr/ppocr/postprocess/pse_postprocess/pse/__init__.py +0 -29
- pyxlpr/ppocr/postprocess/pse_postprocess/pse/setup.py +0 -14
- pyxlpr/ppocr/postprocess/pse_postprocess/pse_postprocess.py +0 -118
- pyxlpr/ppocr/postprocess/rec_postprocess.py +0 -654
- pyxlpr/ppocr/postprocess/sast_postprocess.py +0 -355
- pyxlpr/ppocr/tools/__init__.py +0 -14
- pyxlpr/ppocr/tools/eval.py +0 -83
- pyxlpr/ppocr/tools/export_center.py +0 -77
- pyxlpr/ppocr/tools/export_model.py +0 -129
- pyxlpr/ppocr/tools/infer/predict_cls.py +0 -151
- pyxlpr/ppocr/tools/infer/predict_det.py +0 -300
- pyxlpr/ppocr/tools/infer/predict_e2e.py +0 -169
- pyxlpr/ppocr/tools/infer/predict_rec.py +0 -414
- pyxlpr/ppocr/tools/infer/predict_system.py +0 -204
- pyxlpr/ppocr/tools/infer/utility.py +0 -629
- pyxlpr/ppocr/tools/infer_cls.py +0 -83
- pyxlpr/ppocr/tools/infer_det.py +0 -134
- pyxlpr/ppocr/tools/infer_e2e.py +0 -122
- pyxlpr/ppocr/tools/infer_kie.py +0 -153
- pyxlpr/ppocr/tools/infer_rec.py +0 -146
- pyxlpr/ppocr/tools/infer_table.py +0 -107
- pyxlpr/ppocr/tools/program.py +0 -596
- pyxlpr/ppocr/tools/test_hubserving.py +0 -117
- pyxlpr/ppocr/tools/train.py +0 -163
- pyxlpr/ppocr/tools/xlprog.py +0 -748
- pyxlpr/ppocr/utils/EN_symbol_dict.txt +0 -94
- pyxlpr/ppocr/utils/__init__.py +0 -24
- pyxlpr/ppocr/utils/dict/ar_dict.txt +0 -117
- pyxlpr/ppocr/utils/dict/arabic_dict.txt +0 -162
- pyxlpr/ppocr/utils/dict/be_dict.txt +0 -145
- pyxlpr/ppocr/utils/dict/bg_dict.txt +0 -140
- pyxlpr/ppocr/utils/dict/chinese_cht_dict.txt +0 -8421
- pyxlpr/ppocr/utils/dict/cyrillic_dict.txt +0 -163
- pyxlpr/ppocr/utils/dict/devanagari_dict.txt +0 -167
- pyxlpr/ppocr/utils/dict/en_dict.txt +0 -63
- pyxlpr/ppocr/utils/dict/fa_dict.txt +0 -136
- pyxlpr/ppocr/utils/dict/french_dict.txt +0 -136
- pyxlpr/ppocr/utils/dict/german_dict.txt +0 -143
- pyxlpr/ppocr/utils/dict/hi_dict.txt +0 -162
- pyxlpr/ppocr/utils/dict/it_dict.txt +0 -118
- pyxlpr/ppocr/utils/dict/japan_dict.txt +0 -4399
- pyxlpr/ppocr/utils/dict/ka_dict.txt +0 -153
- pyxlpr/ppocr/utils/dict/korean_dict.txt +0 -3688
- pyxlpr/ppocr/utils/dict/latin_dict.txt +0 -185
- pyxlpr/ppocr/utils/dict/mr_dict.txt +0 -153
- pyxlpr/ppocr/utils/dict/ne_dict.txt +0 -153
- pyxlpr/ppocr/utils/dict/oc_dict.txt +0 -96
- pyxlpr/ppocr/utils/dict/pu_dict.txt +0 -130
- pyxlpr/ppocr/utils/dict/rs_dict.txt +0 -91
- pyxlpr/ppocr/utils/dict/rsc_dict.txt +0 -134
- pyxlpr/ppocr/utils/dict/ru_dict.txt +0 -125
- pyxlpr/ppocr/utils/dict/ta_dict.txt +0 -128
- pyxlpr/ppocr/utils/dict/table_dict.txt +0 -277
- pyxlpr/ppocr/utils/dict/table_structure_dict.txt +0 -2759
- pyxlpr/ppocr/utils/dict/te_dict.txt +0 -151
- pyxlpr/ppocr/utils/dict/ug_dict.txt +0 -114
- pyxlpr/ppocr/utils/dict/uk_dict.txt +0 -142
- pyxlpr/ppocr/utils/dict/ur_dict.txt +0 -137
- pyxlpr/ppocr/utils/dict/xi_dict.txt +0 -110
- pyxlpr/ppocr/utils/dict90.txt +0 -90
- pyxlpr/ppocr/utils/e2e_metric/Deteval.py +0 -574
- pyxlpr/ppocr/utils/e2e_metric/polygon_fast.py +0 -83
- pyxlpr/ppocr/utils/e2e_utils/extract_batchsize.py +0 -87
- pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_fast.py +0 -457
- pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_slow.py +0 -592
- pyxlpr/ppocr/utils/e2e_utils/pgnet_pp_utils.py +0 -162
- pyxlpr/ppocr/utils/e2e_utils/visual.py +0 -162
- pyxlpr/ppocr/utils/en_dict.txt +0 -95
- pyxlpr/ppocr/utils/gen_label.py +0 -81
- pyxlpr/ppocr/utils/ic15_dict.txt +0 -36
- pyxlpr/ppocr/utils/iou.py +0 -54
- pyxlpr/ppocr/utils/logging.py +0 -69
- pyxlpr/ppocr/utils/network.py +0 -84
- pyxlpr/ppocr/utils/ppocr_keys_v1.txt +0 -6623
- pyxlpr/ppocr/utils/profiler.py +0 -110
- pyxlpr/ppocr/utils/save_load.py +0 -150
- pyxlpr/ppocr/utils/stats.py +0 -72
- pyxlpr/ppocr/utils/utility.py +0 -80
- pyxlpr/ppstructure/__init__.py +0 -13
- pyxlpr/ppstructure/predict_system.py +0 -187
- pyxlpr/ppstructure/table/__init__.py +0 -13
- pyxlpr/ppstructure/table/eval_table.py +0 -72
- pyxlpr/ppstructure/table/matcher.py +0 -192
- pyxlpr/ppstructure/table/predict_structure.py +0 -136
- pyxlpr/ppstructure/table/predict_table.py +0 -221
- pyxlpr/ppstructure/table/table_metric/__init__.py +0 -16
- pyxlpr/ppstructure/table/table_metric/parallel.py +0 -51
- pyxlpr/ppstructure/table/table_metric/table_metric.py +0 -247
- pyxlpr/ppstructure/table/tablepyxl/__init__.py +0 -13
- pyxlpr/ppstructure/table/tablepyxl/style.py +0 -283
- pyxlpr/ppstructure/table/tablepyxl/tablepyxl.py +0 -118
- pyxlpr/ppstructure/utility.py +0 -71
- pyxlpr/xlai.py +0 -10
- /pyxllib/{ext/autogui → autogui}/virtualkey.py +0 -0
- {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info/licenses}/LICENSE +0 -0
@@ -1,533 +0,0 @@
|
|
1
|
-
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
|
15
|
-
import math
|
16
|
-
import cv2
|
17
|
-
import numpy as np
|
18
|
-
import random
|
19
|
-
from PIL import Image
|
20
|
-
from .text_image_aug import tia_perspective, tia_stretch, tia_distort
|
21
|
-
|
22
|
-
|
23
|
-
class RecAug(object):
|
24
|
-
def __init__(self, use_tia=True, aug_prob=0.4, **kwargs):
|
25
|
-
self.use_tia = use_tia
|
26
|
-
self.aug_prob = aug_prob
|
27
|
-
|
28
|
-
def __call__(self, data):
|
29
|
-
img = data['image']
|
30
|
-
img = warp(img, 10, self.use_tia, self.aug_prob)
|
31
|
-
data['image'] = img
|
32
|
-
return data
|
33
|
-
|
34
|
-
|
35
|
-
class ClsResizeImg(object):
|
36
|
-
def __init__(self, image_shape, **kwargs):
|
37
|
-
self.image_shape = image_shape
|
38
|
-
|
39
|
-
def __call__(self, data):
|
40
|
-
img = data['image']
|
41
|
-
norm_img = resize_norm_img(img, self.image_shape)
|
42
|
-
data['image'] = norm_img
|
43
|
-
return data
|
44
|
-
|
45
|
-
|
46
|
-
class NRTRRecResizeImg(object):
|
47
|
-
def __init__(self, image_shape, resize_type, padding=False, **kwargs):
|
48
|
-
self.image_shape = image_shape
|
49
|
-
self.resize_type = resize_type
|
50
|
-
self.padding = padding
|
51
|
-
|
52
|
-
def __call__(self, data):
|
53
|
-
img = data['image']
|
54
|
-
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
55
|
-
image_shape = self.image_shape
|
56
|
-
if self.padding:
|
57
|
-
imgC, imgH, imgW = image_shape
|
58
|
-
# todo: change to 0 and modified image shape
|
59
|
-
h = img.shape[0]
|
60
|
-
w = img.shape[1]
|
61
|
-
ratio = w / float(h)
|
62
|
-
if math.ceil(imgH * ratio) > imgW:
|
63
|
-
resized_w = imgW
|
64
|
-
else:
|
65
|
-
resized_w = int(math.ceil(imgH * ratio))
|
66
|
-
resized_image = cv2.resize(img, (resized_w, imgH))
|
67
|
-
norm_img = np.expand_dims(resized_image, -1)
|
68
|
-
norm_img = norm_img.transpose((2, 0, 1))
|
69
|
-
resized_image = norm_img.astype(np.float32) / 128. - 1.
|
70
|
-
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
|
71
|
-
padding_im[:, :, 0:resized_w] = resized_image
|
72
|
-
data['image'] = padding_im
|
73
|
-
return data
|
74
|
-
if self.resize_type == 'PIL':
|
75
|
-
image_pil = Image.fromarray(np.uint8(img))
|
76
|
-
img = image_pil.resize(self.image_shape, Image.ANTIALIAS)
|
77
|
-
img = np.array(img)
|
78
|
-
if self.resize_type == 'OpenCV':
|
79
|
-
img = cv2.resize(img, self.image_shape)
|
80
|
-
norm_img = np.expand_dims(img, -1)
|
81
|
-
norm_img = norm_img.transpose((2, 0, 1))
|
82
|
-
data['image'] = norm_img.astype(np.float32) / 128. - 1.
|
83
|
-
return data
|
84
|
-
|
85
|
-
|
86
|
-
class RecResizeImg(object):
|
87
|
-
def __init__(self,
|
88
|
-
image_shape,
|
89
|
-
infer_mode=False,
|
90
|
-
character_dict_path='./ppocr/utils/ppocr_keys_v1.txt',
|
91
|
-
padding=True,
|
92
|
-
**kwargs):
|
93
|
-
self.image_shape = image_shape
|
94
|
-
self.infer_mode = infer_mode
|
95
|
-
self.character_dict_path = character_dict_path
|
96
|
-
self.padding = padding
|
97
|
-
|
98
|
-
def __call__(self, data):
|
99
|
-
img = data['image']
|
100
|
-
if self.infer_mode and self.character_dict_path is not None:
|
101
|
-
norm_img = resize_norm_img_chinese(img, self.image_shape)
|
102
|
-
else:
|
103
|
-
norm_img = resize_norm_img(img, self.image_shape, self.padding)
|
104
|
-
data['image'] = norm_img
|
105
|
-
return data
|
106
|
-
|
107
|
-
|
108
|
-
class SRNRecResizeImg(object):
|
109
|
-
def __init__(self, image_shape, num_heads, max_text_length, **kwargs):
|
110
|
-
self.image_shape = image_shape
|
111
|
-
self.num_heads = num_heads
|
112
|
-
self.max_text_length = max_text_length
|
113
|
-
|
114
|
-
def __call__(self, data):
|
115
|
-
img = data['image']
|
116
|
-
norm_img = resize_norm_img_srn(img, self.image_shape)
|
117
|
-
data['image'] = norm_img
|
118
|
-
[encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
|
119
|
-
srn_other_inputs(self.image_shape, self.num_heads, self.max_text_length)
|
120
|
-
|
121
|
-
data['encoder_word_pos'] = encoder_word_pos
|
122
|
-
data['gsrm_word_pos'] = gsrm_word_pos
|
123
|
-
data['gsrm_slf_attn_bias1'] = gsrm_slf_attn_bias1
|
124
|
-
data['gsrm_slf_attn_bias2'] = gsrm_slf_attn_bias2
|
125
|
-
return data
|
126
|
-
|
127
|
-
|
128
|
-
class SARRecResizeImg(object):
|
129
|
-
def __init__(self, image_shape, width_downsample_ratio=0.25, **kwargs):
|
130
|
-
self.image_shape = image_shape
|
131
|
-
self.width_downsample_ratio = width_downsample_ratio
|
132
|
-
|
133
|
-
def __call__(self, data):
|
134
|
-
img = data['image']
|
135
|
-
norm_img, resize_shape, pad_shape, valid_ratio = resize_norm_img_sar(
|
136
|
-
img, self.image_shape, self.width_downsample_ratio)
|
137
|
-
data['image'] = norm_img
|
138
|
-
data['resized_shape'] = resize_shape
|
139
|
-
data['pad_shape'] = pad_shape
|
140
|
-
data['valid_ratio'] = valid_ratio
|
141
|
-
return data
|
142
|
-
|
143
|
-
|
144
|
-
def resize_norm_img_sar(img, image_shape, width_downsample_ratio=0.25):
|
145
|
-
imgC, imgH, imgW_min, imgW_max = image_shape
|
146
|
-
h = img.shape[0]
|
147
|
-
w = img.shape[1]
|
148
|
-
valid_ratio = 1.0
|
149
|
-
# make sure new_width is an integral multiple of width_divisor.
|
150
|
-
width_divisor = int(1 / width_downsample_ratio)
|
151
|
-
# resize
|
152
|
-
ratio = w / float(h)
|
153
|
-
resize_w = math.ceil(imgH * ratio)
|
154
|
-
if resize_w % width_divisor != 0:
|
155
|
-
resize_w = round(resize_w / width_divisor) * width_divisor
|
156
|
-
if imgW_min is not None:
|
157
|
-
resize_w = max(imgW_min, resize_w)
|
158
|
-
if imgW_max is not None:
|
159
|
-
valid_ratio = min(1.0, 1.0 * resize_w / imgW_max)
|
160
|
-
resize_w = min(imgW_max, resize_w)
|
161
|
-
resized_image = cv2.resize(img, (resize_w, imgH))
|
162
|
-
resized_image = resized_image.astype('float32')
|
163
|
-
# norm
|
164
|
-
if image_shape[0] == 1:
|
165
|
-
resized_image = resized_image / 255
|
166
|
-
resized_image = resized_image[np.newaxis, :]
|
167
|
-
else:
|
168
|
-
resized_image = resized_image.transpose((2, 0, 1)) / 255
|
169
|
-
resized_image -= 0.5
|
170
|
-
resized_image /= 0.5
|
171
|
-
resize_shape = resized_image.shape
|
172
|
-
padding_im = -1.0 * np.ones((imgC, imgH, imgW_max), dtype=np.float32)
|
173
|
-
padding_im[:, :, 0:resize_w] = resized_image
|
174
|
-
pad_shape = padding_im.shape
|
175
|
-
|
176
|
-
return padding_im, resize_shape, pad_shape, valid_ratio
|
177
|
-
|
178
|
-
|
179
|
-
def resize_norm_img(img, image_shape, padding=True):
|
180
|
-
imgC, imgH, imgW = image_shape
|
181
|
-
h = img.shape[0]
|
182
|
-
w = img.shape[1]
|
183
|
-
if not padding:
|
184
|
-
resized_image = cv2.resize(
|
185
|
-
img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
|
186
|
-
resized_w = imgW
|
187
|
-
else:
|
188
|
-
ratio = w / float(h)
|
189
|
-
if math.ceil(imgH * ratio) > imgW:
|
190
|
-
resized_w = imgW
|
191
|
-
else:
|
192
|
-
resized_w = int(math.ceil(imgH * ratio))
|
193
|
-
resized_image = cv2.resize(img, (resized_w, imgH))
|
194
|
-
resized_image = resized_image.astype('float32')
|
195
|
-
if image_shape[0] == 1:
|
196
|
-
resized_image = resized_image / 255
|
197
|
-
resized_image = resized_image[np.newaxis, :]
|
198
|
-
else:
|
199
|
-
resized_image = resized_image.transpose((2, 0, 1)) / 255
|
200
|
-
resized_image -= 0.5
|
201
|
-
resized_image /= 0.5
|
202
|
-
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
|
203
|
-
padding_im[:, :, 0:resized_w] = resized_image
|
204
|
-
return padding_im
|
205
|
-
|
206
|
-
|
207
|
-
def resize_norm_img_chinese(img, image_shape):
|
208
|
-
imgC, imgH, imgW = image_shape
|
209
|
-
# todo: change to 0 and modified image shape
|
210
|
-
max_wh_ratio = imgW * 1.0 / imgH
|
211
|
-
h, w = img.shape[0], img.shape[1]
|
212
|
-
ratio = w * 1.0 / h
|
213
|
-
max_wh_ratio = max(max_wh_ratio, ratio)
|
214
|
-
imgW = int(32 * max_wh_ratio)
|
215
|
-
if math.ceil(imgH * ratio) > imgW:
|
216
|
-
resized_w = imgW
|
217
|
-
else:
|
218
|
-
resized_w = int(math.ceil(imgH * ratio))
|
219
|
-
resized_image = cv2.resize(img, (resized_w, imgH))
|
220
|
-
resized_image = resized_image.astype('float32')
|
221
|
-
if image_shape[0] == 1:
|
222
|
-
resized_image = resized_image / 255
|
223
|
-
resized_image = resized_image[np.newaxis, :]
|
224
|
-
else:
|
225
|
-
resized_image = resized_image.transpose((2, 0, 1)) / 255
|
226
|
-
resized_image -= 0.5
|
227
|
-
resized_image /= 0.5
|
228
|
-
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
|
229
|
-
padding_im[:, :, 0:resized_w] = resized_image
|
230
|
-
return padding_im
|
231
|
-
|
232
|
-
|
233
|
-
def resize_norm_img_srn(img, image_shape):
|
234
|
-
imgC, imgH, imgW = image_shape
|
235
|
-
|
236
|
-
img_black = np.zeros((imgH, imgW))
|
237
|
-
im_hei = img.shape[0]
|
238
|
-
im_wid = img.shape[1]
|
239
|
-
|
240
|
-
if im_wid <= im_hei * 1:
|
241
|
-
img_new = cv2.resize(img, (imgH * 1, imgH))
|
242
|
-
elif im_wid <= im_hei * 2:
|
243
|
-
img_new = cv2.resize(img, (imgH * 2, imgH))
|
244
|
-
elif im_wid <= im_hei * 3:
|
245
|
-
img_new = cv2.resize(img, (imgH * 3, imgH))
|
246
|
-
else:
|
247
|
-
img_new = cv2.resize(img, (imgW, imgH))
|
248
|
-
|
249
|
-
img_np = np.asarray(img_new)
|
250
|
-
img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
|
251
|
-
img_black[:, 0:img_np.shape[1]] = img_np
|
252
|
-
img_black = img_black[:, :, np.newaxis]
|
253
|
-
|
254
|
-
row, col, c = img_black.shape
|
255
|
-
c = 1
|
256
|
-
|
257
|
-
return np.reshape(img_black, (c, row, col)).astype(np.float32)
|
258
|
-
|
259
|
-
|
260
|
-
def srn_other_inputs(image_shape, num_heads, max_text_length):
|
261
|
-
|
262
|
-
imgC, imgH, imgW = image_shape
|
263
|
-
feature_dim = int((imgH / 8) * (imgW / 8))
|
264
|
-
|
265
|
-
encoder_word_pos = np.array(range(0, feature_dim)).reshape(
|
266
|
-
(feature_dim, 1)).astype('int64')
|
267
|
-
gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
|
268
|
-
(max_text_length, 1)).astype('int64')
|
269
|
-
|
270
|
-
gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
|
271
|
-
gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
|
272
|
-
[1, max_text_length, max_text_length])
|
273
|
-
gsrm_slf_attn_bias1 = np.tile(gsrm_slf_attn_bias1,
|
274
|
-
[num_heads, 1, 1]) * [-1e9]
|
275
|
-
|
276
|
-
gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
|
277
|
-
[1, max_text_length, max_text_length])
|
278
|
-
gsrm_slf_attn_bias2 = np.tile(gsrm_slf_attn_bias2,
|
279
|
-
[num_heads, 1, 1]) * [-1e9]
|
280
|
-
|
281
|
-
return [
|
282
|
-
encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
|
283
|
-
gsrm_slf_attn_bias2
|
284
|
-
]
|
285
|
-
|
286
|
-
|
287
|
-
def flag():
|
288
|
-
"""
|
289
|
-
flag
|
290
|
-
"""
|
291
|
-
return 1 if random.random() > 0.5000001 else -1
|
292
|
-
|
293
|
-
|
294
|
-
def cvtColor(img):
|
295
|
-
"""
|
296
|
-
cvtColor
|
297
|
-
"""
|
298
|
-
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
|
299
|
-
delta = 0.001 * random.random() * flag()
|
300
|
-
hsv[:, :, 2] = hsv[:, :, 2] * (1 + delta)
|
301
|
-
new_img = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
|
302
|
-
return new_img
|
303
|
-
|
304
|
-
|
305
|
-
def blur(img):
|
306
|
-
"""
|
307
|
-
blur
|
308
|
-
"""
|
309
|
-
h, w, _ = img.shape
|
310
|
-
if h > 10 and w > 10:
|
311
|
-
return cv2.GaussianBlur(img, (5, 5), 1)
|
312
|
-
else:
|
313
|
-
return img
|
314
|
-
|
315
|
-
|
316
|
-
def jitter(img):
|
317
|
-
"""
|
318
|
-
jitter
|
319
|
-
"""
|
320
|
-
w, h, _ = img.shape
|
321
|
-
if h > 10 and w > 10:
|
322
|
-
thres = min(w, h)
|
323
|
-
s = int(random.random() * thres * 0.01)
|
324
|
-
src_img = img.copy()
|
325
|
-
for i in range(s):
|
326
|
-
img[i:, i:, :] = src_img[:w - i, :h - i, :]
|
327
|
-
return img
|
328
|
-
else:
|
329
|
-
return img
|
330
|
-
|
331
|
-
|
332
|
-
def add_gasuss_noise(image, mean=0, var=0.1):
|
333
|
-
"""
|
334
|
-
Gasuss noise
|
335
|
-
"""
|
336
|
-
|
337
|
-
noise = np.random.normal(mean, var**0.5, image.shape)
|
338
|
-
out = image + 0.5 * noise
|
339
|
-
out = np.clip(out, 0, 255)
|
340
|
-
out = np.uint8(out)
|
341
|
-
return out
|
342
|
-
|
343
|
-
|
344
|
-
def get_crop(image):
|
345
|
-
"""
|
346
|
-
random crop
|
347
|
-
"""
|
348
|
-
h, w, _ = image.shape
|
349
|
-
top_min = 1
|
350
|
-
top_max = 8
|
351
|
-
top_crop = int(random.randint(top_min, top_max))
|
352
|
-
top_crop = min(top_crop, h - 1)
|
353
|
-
crop_img = image.copy()
|
354
|
-
ratio = random.randint(0, 1)
|
355
|
-
if ratio:
|
356
|
-
crop_img = crop_img[top_crop:h, :, :]
|
357
|
-
else:
|
358
|
-
crop_img = crop_img[0:h - top_crop, :, :]
|
359
|
-
return crop_img
|
360
|
-
|
361
|
-
|
362
|
-
class Config:
|
363
|
-
"""
|
364
|
-
Config
|
365
|
-
"""
|
366
|
-
|
367
|
-
def __init__(self, use_tia):
|
368
|
-
self.anglex = random.random() * 30
|
369
|
-
self.angley = random.random() * 15
|
370
|
-
self.anglez = random.random() * 10
|
371
|
-
self.fov = 42
|
372
|
-
self.r = 0
|
373
|
-
self.shearx = random.random() * 0.3
|
374
|
-
self.sheary = random.random() * 0.05
|
375
|
-
self.borderMode = cv2.BORDER_REPLICATE
|
376
|
-
self.use_tia = use_tia
|
377
|
-
|
378
|
-
def make(self, w, h, ang):
|
379
|
-
"""
|
380
|
-
make
|
381
|
-
"""
|
382
|
-
self.anglex = random.random() * 5 * flag()
|
383
|
-
self.angley = random.random() * 5 * flag()
|
384
|
-
self.anglez = -1 * random.random() * int(ang) * flag()
|
385
|
-
self.fov = 42
|
386
|
-
self.r = 0
|
387
|
-
self.shearx = 0
|
388
|
-
self.sheary = 0
|
389
|
-
self.borderMode = cv2.BORDER_REPLICATE
|
390
|
-
self.w = w
|
391
|
-
self.h = h
|
392
|
-
|
393
|
-
self.perspective = self.use_tia
|
394
|
-
self.stretch = self.use_tia
|
395
|
-
self.distort = self.use_tia
|
396
|
-
|
397
|
-
self.crop = True
|
398
|
-
self.affine = False
|
399
|
-
self.reverse = True
|
400
|
-
self.noise = True
|
401
|
-
self.jitter = True
|
402
|
-
self.blur = True
|
403
|
-
self.color = True
|
404
|
-
|
405
|
-
|
406
|
-
def rad(x):
|
407
|
-
"""
|
408
|
-
rad
|
409
|
-
"""
|
410
|
-
return x * np.pi / 180
|
411
|
-
|
412
|
-
|
413
|
-
def get_warpR(config):
|
414
|
-
"""
|
415
|
-
get_warpR
|
416
|
-
"""
|
417
|
-
anglex, angley, anglez, fov, w, h, r = \
|
418
|
-
config.anglex, config.angley, config.anglez, config.fov, config.w, config.h, config.r
|
419
|
-
if w > 69 and w < 112:
|
420
|
-
anglex = anglex * 1.5
|
421
|
-
|
422
|
-
z = np.sqrt(w**2 + h**2) / 2 / np.tan(rad(fov / 2))
|
423
|
-
# Homogeneous coordinate transformation matrix
|
424
|
-
rx = np.array([[1, 0, 0, 0],
|
425
|
-
[0, np.cos(rad(anglex)), -np.sin(rad(anglex)), 0], [
|
426
|
-
0,
|
427
|
-
-np.sin(rad(anglex)),
|
428
|
-
np.cos(rad(anglex)),
|
429
|
-
0,
|
430
|
-
], [0, 0, 0, 1]], np.float32)
|
431
|
-
ry = np.array([[np.cos(rad(angley)), 0, np.sin(rad(angley)), 0],
|
432
|
-
[0, 1, 0, 0], [
|
433
|
-
-np.sin(rad(angley)),
|
434
|
-
0,
|
435
|
-
np.cos(rad(angley)),
|
436
|
-
0,
|
437
|
-
], [0, 0, 0, 1]], np.float32)
|
438
|
-
rz = np.array([[np.cos(rad(anglez)), np.sin(rad(anglez)), 0, 0],
|
439
|
-
[-np.sin(rad(anglez)), np.cos(rad(anglez)), 0, 0],
|
440
|
-
[0, 0, 1, 0], [0, 0, 0, 1]], np.float32)
|
441
|
-
r = rx.dot(ry).dot(rz)
|
442
|
-
# generate 4 points
|
443
|
-
pcenter = np.array([h / 2, w / 2, 0, 0], np.float32)
|
444
|
-
p1 = np.array([0, 0, 0, 0], np.float32) - pcenter
|
445
|
-
p2 = np.array([w, 0, 0, 0], np.float32) - pcenter
|
446
|
-
p3 = np.array([0, h, 0, 0], np.float32) - pcenter
|
447
|
-
p4 = np.array([w, h, 0, 0], np.float32) - pcenter
|
448
|
-
dst1 = r.dot(p1)
|
449
|
-
dst2 = r.dot(p2)
|
450
|
-
dst3 = r.dot(p3)
|
451
|
-
dst4 = r.dot(p4)
|
452
|
-
list_dst = np.array([dst1, dst2, dst3, dst4])
|
453
|
-
org = np.array([[0, 0], [w, 0], [0, h], [w, h]], np.float32)
|
454
|
-
dst = np.zeros((4, 2), np.float32)
|
455
|
-
# Project onto the image plane
|
456
|
-
dst[:, 0] = list_dst[:, 0] * z / (z - list_dst[:, 2]) + pcenter[0]
|
457
|
-
dst[:, 1] = list_dst[:, 1] * z / (z - list_dst[:, 2]) + pcenter[1]
|
458
|
-
|
459
|
-
warpR = cv2.getPerspectiveTransform(org, dst)
|
460
|
-
|
461
|
-
dst1, dst2, dst3, dst4 = dst
|
462
|
-
r1 = int(min(dst1[1], dst2[1]))
|
463
|
-
r2 = int(max(dst3[1], dst4[1]))
|
464
|
-
c1 = int(min(dst1[0], dst3[0]))
|
465
|
-
c2 = int(max(dst2[0], dst4[0]))
|
466
|
-
|
467
|
-
try:
|
468
|
-
ratio = min(1.0 * h / (r2 - r1), 1.0 * w / (c2 - c1))
|
469
|
-
|
470
|
-
dx = -c1
|
471
|
-
dy = -r1
|
472
|
-
T1 = np.float32([[1., 0, dx], [0, 1., dy], [0, 0, 1.0 / ratio]])
|
473
|
-
ret = T1.dot(warpR)
|
474
|
-
except:
|
475
|
-
ratio = 1.0
|
476
|
-
T1 = np.float32([[1., 0, 0], [0, 1., 0], [0, 0, 1.]])
|
477
|
-
ret = T1
|
478
|
-
return ret, (-r1, -c1), ratio, dst
|
479
|
-
|
480
|
-
|
481
|
-
def get_warpAffine(config):
|
482
|
-
"""
|
483
|
-
get_warpAffine
|
484
|
-
"""
|
485
|
-
anglez = config.anglez
|
486
|
-
rz = np.array([[np.cos(rad(anglez)), np.sin(rad(anglez)), 0],
|
487
|
-
[-np.sin(rad(anglez)), np.cos(rad(anglez)), 0]], np.float32)
|
488
|
-
return rz
|
489
|
-
|
490
|
-
|
491
|
-
def warp(img, ang, use_tia=True, prob=0.4):
|
492
|
-
"""
|
493
|
-
warp
|
494
|
-
"""
|
495
|
-
h, w, _ = img.shape
|
496
|
-
config = Config(use_tia=use_tia)
|
497
|
-
config.make(w, h, ang)
|
498
|
-
new_img = img
|
499
|
-
|
500
|
-
if config.distort:
|
501
|
-
img_height, img_width = img.shape[0:2]
|
502
|
-
if random.random() <= prob and img_height >= 20 and img_width >= 20:
|
503
|
-
new_img = tia_distort(new_img, random.randint(3, 6))
|
504
|
-
|
505
|
-
if config.stretch:
|
506
|
-
img_height, img_width = img.shape[0:2]
|
507
|
-
if random.random() <= prob and img_height >= 20 and img_width >= 20:
|
508
|
-
new_img = tia_stretch(new_img, random.randint(3, 6))
|
509
|
-
|
510
|
-
if config.perspective:
|
511
|
-
if random.random() <= prob:
|
512
|
-
new_img = tia_perspective(new_img)
|
513
|
-
|
514
|
-
if config.crop:
|
515
|
-
img_height, img_width = img.shape[0:2]
|
516
|
-
if random.random() <= prob and img_height >= 20 and img_width >= 20:
|
517
|
-
new_img = get_crop(new_img)
|
518
|
-
|
519
|
-
if config.blur:
|
520
|
-
if random.random() <= prob:
|
521
|
-
new_img = blur(new_img)
|
522
|
-
if config.color:
|
523
|
-
if random.random() <= prob:
|
524
|
-
new_img = cvtColor(new_img)
|
525
|
-
if config.jitter:
|
526
|
-
new_img = jitter(new_img)
|
527
|
-
if config.noise:
|
528
|
-
if random.random() <= prob:
|
529
|
-
new_img = add_gasuss_noise(new_img)
|
530
|
-
if config.reverse:
|
531
|
-
if random.random() <= prob:
|
532
|
-
new_img = 255 - new_img
|
533
|
-
return new_img
|