pyxllib 0.3.96__py3-none-any.whl → 0.3.197__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (306) hide show
  1. pyxllib/algo/geo.py +12 -0
  2. pyxllib/algo/intervals.py +1 -1
  3. pyxllib/algo/matcher.py +78 -0
  4. pyxllib/algo/pupil.py +187 -19
  5. pyxllib/algo/specialist.py +2 -1
  6. pyxllib/algo/stat.py +38 -2
  7. {pyxlpr → pyxllib/autogui}/__init__.py +1 -1
  8. pyxllib/autogui/activewin.py +246 -0
  9. pyxllib/autogui/all.py +9 -0
  10. pyxllib/{ext/autogui → autogui}/autogui.py +40 -11
  11. pyxllib/autogui/uiautolib.py +362 -0
  12. pyxllib/autogui/wechat.py +827 -0
  13. pyxllib/autogui/wechat_msg.py +421 -0
  14. pyxllib/autogui/wxautolib.py +84 -0
  15. pyxllib/cv/slidercaptcha.py +137 -0
  16. pyxllib/data/echarts.py +123 -12
  17. pyxllib/data/jsonlib.py +89 -0
  18. pyxllib/data/pglib.py +514 -30
  19. pyxllib/data/sqlite.py +231 -4
  20. pyxllib/ext/JLineViewer.py +14 -1
  21. pyxllib/ext/drissionlib.py +277 -0
  22. pyxllib/ext/kq5034lib.py +0 -1594
  23. pyxllib/ext/robustprocfile.py +497 -0
  24. pyxllib/ext/unixlib.py +6 -5
  25. pyxllib/ext/utools.py +108 -95
  26. pyxllib/ext/webhook.py +32 -14
  27. pyxllib/ext/wjxlib.py +88 -0
  28. pyxllib/ext/wpsapi.py +124 -0
  29. pyxllib/ext/xlwork.py +9 -0
  30. pyxllib/ext/yuquelib.py +1003 -71
  31. pyxllib/file/docxlib.py +1 -1
  32. pyxllib/file/libreoffice.py +165 -0
  33. pyxllib/file/movielib.py +9 -0
  34. pyxllib/file/packlib/__init__.py +112 -75
  35. pyxllib/file/pdflib.py +1 -1
  36. pyxllib/file/pupil.py +1 -1
  37. pyxllib/file/specialist/dirlib.py +1 -1
  38. pyxllib/file/specialist/download.py +10 -3
  39. pyxllib/file/specialist/filelib.py +266 -55
  40. pyxllib/file/xlsxlib.py +205 -50
  41. pyxllib/file/xlsyncfile.py +341 -0
  42. pyxllib/prog/cachetools.py +64 -0
  43. pyxllib/prog/filelock.py +42 -0
  44. pyxllib/prog/multiprogs.py +940 -0
  45. pyxllib/prog/newbie.py +9 -2
  46. pyxllib/prog/pupil.py +129 -60
  47. pyxllib/prog/specialist/__init__.py +176 -2
  48. pyxllib/prog/specialist/bc.py +5 -2
  49. pyxllib/prog/specialist/browser.py +11 -2
  50. pyxllib/prog/specialist/datetime.py +68 -0
  51. pyxllib/prog/specialist/tictoc.py +12 -13
  52. pyxllib/prog/specialist/xllog.py +5 -5
  53. pyxllib/prog/xlosenv.py +7 -0
  54. pyxllib/text/airscript.js +744 -0
  55. pyxllib/text/charclasslib.py +17 -5
  56. pyxllib/text/jiebalib.py +6 -3
  57. pyxllib/text/jinjalib.py +32 -0
  58. pyxllib/text/jsa_ai_prompt.md +271 -0
  59. pyxllib/text/jscode.py +159 -4
  60. pyxllib/text/nestenv.py +1 -1
  61. pyxllib/text/newbie.py +12 -0
  62. pyxllib/text/pupil/common.py +26 -0
  63. pyxllib/text/specialist/ptag.py +2 -2
  64. pyxllib/text/templates/echart_base.html +11 -0
  65. pyxllib/text/templates/highlight_code.html +17 -0
  66. pyxllib/text/templates/latex_editor.html +103 -0
  67. pyxllib/text/xmllib.py +76 -14
  68. pyxllib/xl.py +2 -1
  69. pyxllib-0.3.197.dist-info/METADATA +48 -0
  70. pyxllib-0.3.197.dist-info/RECORD +126 -0
  71. {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info}/WHEEL +1 -2
  72. pyxllib/ext/autogui/__init__.py +0 -8
  73. pyxllib-0.3.96.dist-info/METADATA +0 -51
  74. pyxllib-0.3.96.dist-info/RECORD +0 -333
  75. pyxllib-0.3.96.dist-info/top_level.txt +0 -2
  76. pyxlpr/ai/__init__.py +0 -5
  77. pyxlpr/ai/clientlib.py +0 -1281
  78. pyxlpr/ai/specialist.py +0 -286
  79. pyxlpr/ai/torch_app.py +0 -172
  80. pyxlpr/ai/xlpaddle.py +0 -655
  81. pyxlpr/ai/xltorch.py +0 -705
  82. pyxlpr/data/__init__.py +0 -11
  83. pyxlpr/data/coco.py +0 -1325
  84. pyxlpr/data/datacls.py +0 -365
  85. pyxlpr/data/datasets.py +0 -200
  86. pyxlpr/data/gptlib.py +0 -1291
  87. pyxlpr/data/icdar/__init__.py +0 -96
  88. pyxlpr/data/icdar/deteval.py +0 -377
  89. pyxlpr/data/icdar/icdar2013.py +0 -341
  90. pyxlpr/data/icdar/iou.py +0 -340
  91. pyxlpr/data/icdar/rrc_evaluation_funcs_1_1.py +0 -463
  92. pyxlpr/data/imtextline.py +0 -473
  93. pyxlpr/data/labelme.py +0 -866
  94. pyxlpr/data/removeline.py +0 -179
  95. pyxlpr/data/specialist.py +0 -57
  96. pyxlpr/eval/__init__.py +0 -85
  97. pyxlpr/paddleocr.py +0 -776
  98. pyxlpr/ppocr/__init__.py +0 -15
  99. pyxlpr/ppocr/configs/rec/multi_language/generate_multi_language_configs.py +0 -226
  100. pyxlpr/ppocr/data/__init__.py +0 -135
  101. pyxlpr/ppocr/data/imaug/ColorJitter.py +0 -26
  102. pyxlpr/ppocr/data/imaug/__init__.py +0 -67
  103. pyxlpr/ppocr/data/imaug/copy_paste.py +0 -170
  104. pyxlpr/ppocr/data/imaug/east_process.py +0 -437
  105. pyxlpr/ppocr/data/imaug/gen_table_mask.py +0 -244
  106. pyxlpr/ppocr/data/imaug/iaa_augment.py +0 -114
  107. pyxlpr/ppocr/data/imaug/label_ops.py +0 -789
  108. pyxlpr/ppocr/data/imaug/make_border_map.py +0 -184
  109. pyxlpr/ppocr/data/imaug/make_pse_gt.py +0 -106
  110. pyxlpr/ppocr/data/imaug/make_shrink_map.py +0 -126
  111. pyxlpr/ppocr/data/imaug/operators.py +0 -433
  112. pyxlpr/ppocr/data/imaug/pg_process.py +0 -906
  113. pyxlpr/ppocr/data/imaug/randaugment.py +0 -143
  114. pyxlpr/ppocr/data/imaug/random_crop_data.py +0 -239
  115. pyxlpr/ppocr/data/imaug/rec_img_aug.py +0 -533
  116. pyxlpr/ppocr/data/imaug/sast_process.py +0 -777
  117. pyxlpr/ppocr/data/imaug/text_image_aug/__init__.py +0 -17
  118. pyxlpr/ppocr/data/imaug/text_image_aug/augment.py +0 -120
  119. pyxlpr/ppocr/data/imaug/text_image_aug/warp_mls.py +0 -168
  120. pyxlpr/ppocr/data/lmdb_dataset.py +0 -115
  121. pyxlpr/ppocr/data/pgnet_dataset.py +0 -104
  122. pyxlpr/ppocr/data/pubtab_dataset.py +0 -107
  123. pyxlpr/ppocr/data/simple_dataset.py +0 -372
  124. pyxlpr/ppocr/losses/__init__.py +0 -61
  125. pyxlpr/ppocr/losses/ace_loss.py +0 -52
  126. pyxlpr/ppocr/losses/basic_loss.py +0 -135
  127. pyxlpr/ppocr/losses/center_loss.py +0 -88
  128. pyxlpr/ppocr/losses/cls_loss.py +0 -30
  129. pyxlpr/ppocr/losses/combined_loss.py +0 -67
  130. pyxlpr/ppocr/losses/det_basic_loss.py +0 -208
  131. pyxlpr/ppocr/losses/det_db_loss.py +0 -80
  132. pyxlpr/ppocr/losses/det_east_loss.py +0 -63
  133. pyxlpr/ppocr/losses/det_pse_loss.py +0 -149
  134. pyxlpr/ppocr/losses/det_sast_loss.py +0 -121
  135. pyxlpr/ppocr/losses/distillation_loss.py +0 -272
  136. pyxlpr/ppocr/losses/e2e_pg_loss.py +0 -140
  137. pyxlpr/ppocr/losses/kie_sdmgr_loss.py +0 -113
  138. pyxlpr/ppocr/losses/rec_aster_loss.py +0 -99
  139. pyxlpr/ppocr/losses/rec_att_loss.py +0 -39
  140. pyxlpr/ppocr/losses/rec_ctc_loss.py +0 -44
  141. pyxlpr/ppocr/losses/rec_enhanced_ctc_loss.py +0 -70
  142. pyxlpr/ppocr/losses/rec_nrtr_loss.py +0 -30
  143. pyxlpr/ppocr/losses/rec_sar_loss.py +0 -28
  144. pyxlpr/ppocr/losses/rec_srn_loss.py +0 -47
  145. pyxlpr/ppocr/losses/table_att_loss.py +0 -109
  146. pyxlpr/ppocr/metrics/__init__.py +0 -44
  147. pyxlpr/ppocr/metrics/cls_metric.py +0 -45
  148. pyxlpr/ppocr/metrics/det_metric.py +0 -82
  149. pyxlpr/ppocr/metrics/distillation_metric.py +0 -73
  150. pyxlpr/ppocr/metrics/e2e_metric.py +0 -86
  151. pyxlpr/ppocr/metrics/eval_det_iou.py +0 -274
  152. pyxlpr/ppocr/metrics/kie_metric.py +0 -70
  153. pyxlpr/ppocr/metrics/rec_metric.py +0 -75
  154. pyxlpr/ppocr/metrics/table_metric.py +0 -50
  155. pyxlpr/ppocr/modeling/architectures/__init__.py +0 -32
  156. pyxlpr/ppocr/modeling/architectures/base_model.py +0 -88
  157. pyxlpr/ppocr/modeling/architectures/distillation_model.py +0 -60
  158. pyxlpr/ppocr/modeling/backbones/__init__.py +0 -54
  159. pyxlpr/ppocr/modeling/backbones/det_mobilenet_v3.py +0 -268
  160. pyxlpr/ppocr/modeling/backbones/det_resnet_vd.py +0 -246
  161. pyxlpr/ppocr/modeling/backbones/det_resnet_vd_sast.py +0 -285
  162. pyxlpr/ppocr/modeling/backbones/e2e_resnet_vd_pg.py +0 -265
  163. pyxlpr/ppocr/modeling/backbones/kie_unet_sdmgr.py +0 -186
  164. pyxlpr/ppocr/modeling/backbones/rec_mobilenet_v3.py +0 -138
  165. pyxlpr/ppocr/modeling/backbones/rec_mv1_enhance.py +0 -258
  166. pyxlpr/ppocr/modeling/backbones/rec_nrtr_mtb.py +0 -48
  167. pyxlpr/ppocr/modeling/backbones/rec_resnet_31.py +0 -210
  168. pyxlpr/ppocr/modeling/backbones/rec_resnet_aster.py +0 -143
  169. pyxlpr/ppocr/modeling/backbones/rec_resnet_fpn.py +0 -307
  170. pyxlpr/ppocr/modeling/backbones/rec_resnet_vd.py +0 -286
  171. pyxlpr/ppocr/modeling/heads/__init__.py +0 -54
  172. pyxlpr/ppocr/modeling/heads/cls_head.py +0 -52
  173. pyxlpr/ppocr/modeling/heads/det_db_head.py +0 -118
  174. pyxlpr/ppocr/modeling/heads/det_east_head.py +0 -121
  175. pyxlpr/ppocr/modeling/heads/det_pse_head.py +0 -37
  176. pyxlpr/ppocr/modeling/heads/det_sast_head.py +0 -128
  177. pyxlpr/ppocr/modeling/heads/e2e_pg_head.py +0 -253
  178. pyxlpr/ppocr/modeling/heads/kie_sdmgr_head.py +0 -206
  179. pyxlpr/ppocr/modeling/heads/multiheadAttention.py +0 -163
  180. pyxlpr/ppocr/modeling/heads/rec_aster_head.py +0 -393
  181. pyxlpr/ppocr/modeling/heads/rec_att_head.py +0 -202
  182. pyxlpr/ppocr/modeling/heads/rec_ctc_head.py +0 -88
  183. pyxlpr/ppocr/modeling/heads/rec_nrtr_head.py +0 -826
  184. pyxlpr/ppocr/modeling/heads/rec_sar_head.py +0 -402
  185. pyxlpr/ppocr/modeling/heads/rec_srn_head.py +0 -280
  186. pyxlpr/ppocr/modeling/heads/self_attention.py +0 -406
  187. pyxlpr/ppocr/modeling/heads/table_att_head.py +0 -246
  188. pyxlpr/ppocr/modeling/necks/__init__.py +0 -32
  189. pyxlpr/ppocr/modeling/necks/db_fpn.py +0 -111
  190. pyxlpr/ppocr/modeling/necks/east_fpn.py +0 -188
  191. pyxlpr/ppocr/modeling/necks/fpn.py +0 -138
  192. pyxlpr/ppocr/modeling/necks/pg_fpn.py +0 -314
  193. pyxlpr/ppocr/modeling/necks/rnn.py +0 -92
  194. pyxlpr/ppocr/modeling/necks/sast_fpn.py +0 -284
  195. pyxlpr/ppocr/modeling/necks/table_fpn.py +0 -110
  196. pyxlpr/ppocr/modeling/transforms/__init__.py +0 -28
  197. pyxlpr/ppocr/modeling/transforms/stn.py +0 -135
  198. pyxlpr/ppocr/modeling/transforms/tps.py +0 -308
  199. pyxlpr/ppocr/modeling/transforms/tps_spatial_transformer.py +0 -156
  200. pyxlpr/ppocr/optimizer/__init__.py +0 -61
  201. pyxlpr/ppocr/optimizer/learning_rate.py +0 -228
  202. pyxlpr/ppocr/optimizer/lr_scheduler.py +0 -49
  203. pyxlpr/ppocr/optimizer/optimizer.py +0 -160
  204. pyxlpr/ppocr/optimizer/regularizer.py +0 -52
  205. pyxlpr/ppocr/postprocess/__init__.py +0 -55
  206. pyxlpr/ppocr/postprocess/cls_postprocess.py +0 -33
  207. pyxlpr/ppocr/postprocess/db_postprocess.py +0 -234
  208. pyxlpr/ppocr/postprocess/east_postprocess.py +0 -143
  209. pyxlpr/ppocr/postprocess/locality_aware_nms.py +0 -200
  210. pyxlpr/ppocr/postprocess/pg_postprocess.py +0 -52
  211. pyxlpr/ppocr/postprocess/pse_postprocess/__init__.py +0 -15
  212. pyxlpr/ppocr/postprocess/pse_postprocess/pse/__init__.py +0 -29
  213. pyxlpr/ppocr/postprocess/pse_postprocess/pse/setup.py +0 -14
  214. pyxlpr/ppocr/postprocess/pse_postprocess/pse_postprocess.py +0 -118
  215. pyxlpr/ppocr/postprocess/rec_postprocess.py +0 -654
  216. pyxlpr/ppocr/postprocess/sast_postprocess.py +0 -355
  217. pyxlpr/ppocr/tools/__init__.py +0 -14
  218. pyxlpr/ppocr/tools/eval.py +0 -83
  219. pyxlpr/ppocr/tools/export_center.py +0 -77
  220. pyxlpr/ppocr/tools/export_model.py +0 -129
  221. pyxlpr/ppocr/tools/infer/predict_cls.py +0 -151
  222. pyxlpr/ppocr/tools/infer/predict_det.py +0 -300
  223. pyxlpr/ppocr/tools/infer/predict_e2e.py +0 -169
  224. pyxlpr/ppocr/tools/infer/predict_rec.py +0 -414
  225. pyxlpr/ppocr/tools/infer/predict_system.py +0 -204
  226. pyxlpr/ppocr/tools/infer/utility.py +0 -629
  227. pyxlpr/ppocr/tools/infer_cls.py +0 -83
  228. pyxlpr/ppocr/tools/infer_det.py +0 -134
  229. pyxlpr/ppocr/tools/infer_e2e.py +0 -122
  230. pyxlpr/ppocr/tools/infer_kie.py +0 -153
  231. pyxlpr/ppocr/tools/infer_rec.py +0 -146
  232. pyxlpr/ppocr/tools/infer_table.py +0 -107
  233. pyxlpr/ppocr/tools/program.py +0 -596
  234. pyxlpr/ppocr/tools/test_hubserving.py +0 -117
  235. pyxlpr/ppocr/tools/train.py +0 -163
  236. pyxlpr/ppocr/tools/xlprog.py +0 -748
  237. pyxlpr/ppocr/utils/EN_symbol_dict.txt +0 -94
  238. pyxlpr/ppocr/utils/__init__.py +0 -24
  239. pyxlpr/ppocr/utils/dict/ar_dict.txt +0 -117
  240. pyxlpr/ppocr/utils/dict/arabic_dict.txt +0 -162
  241. pyxlpr/ppocr/utils/dict/be_dict.txt +0 -145
  242. pyxlpr/ppocr/utils/dict/bg_dict.txt +0 -140
  243. pyxlpr/ppocr/utils/dict/chinese_cht_dict.txt +0 -8421
  244. pyxlpr/ppocr/utils/dict/cyrillic_dict.txt +0 -163
  245. pyxlpr/ppocr/utils/dict/devanagari_dict.txt +0 -167
  246. pyxlpr/ppocr/utils/dict/en_dict.txt +0 -63
  247. pyxlpr/ppocr/utils/dict/fa_dict.txt +0 -136
  248. pyxlpr/ppocr/utils/dict/french_dict.txt +0 -136
  249. pyxlpr/ppocr/utils/dict/german_dict.txt +0 -143
  250. pyxlpr/ppocr/utils/dict/hi_dict.txt +0 -162
  251. pyxlpr/ppocr/utils/dict/it_dict.txt +0 -118
  252. pyxlpr/ppocr/utils/dict/japan_dict.txt +0 -4399
  253. pyxlpr/ppocr/utils/dict/ka_dict.txt +0 -153
  254. pyxlpr/ppocr/utils/dict/korean_dict.txt +0 -3688
  255. pyxlpr/ppocr/utils/dict/latin_dict.txt +0 -185
  256. pyxlpr/ppocr/utils/dict/mr_dict.txt +0 -153
  257. pyxlpr/ppocr/utils/dict/ne_dict.txt +0 -153
  258. pyxlpr/ppocr/utils/dict/oc_dict.txt +0 -96
  259. pyxlpr/ppocr/utils/dict/pu_dict.txt +0 -130
  260. pyxlpr/ppocr/utils/dict/rs_dict.txt +0 -91
  261. pyxlpr/ppocr/utils/dict/rsc_dict.txt +0 -134
  262. pyxlpr/ppocr/utils/dict/ru_dict.txt +0 -125
  263. pyxlpr/ppocr/utils/dict/ta_dict.txt +0 -128
  264. pyxlpr/ppocr/utils/dict/table_dict.txt +0 -277
  265. pyxlpr/ppocr/utils/dict/table_structure_dict.txt +0 -2759
  266. pyxlpr/ppocr/utils/dict/te_dict.txt +0 -151
  267. pyxlpr/ppocr/utils/dict/ug_dict.txt +0 -114
  268. pyxlpr/ppocr/utils/dict/uk_dict.txt +0 -142
  269. pyxlpr/ppocr/utils/dict/ur_dict.txt +0 -137
  270. pyxlpr/ppocr/utils/dict/xi_dict.txt +0 -110
  271. pyxlpr/ppocr/utils/dict90.txt +0 -90
  272. pyxlpr/ppocr/utils/e2e_metric/Deteval.py +0 -574
  273. pyxlpr/ppocr/utils/e2e_metric/polygon_fast.py +0 -83
  274. pyxlpr/ppocr/utils/e2e_utils/extract_batchsize.py +0 -87
  275. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_fast.py +0 -457
  276. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_slow.py +0 -592
  277. pyxlpr/ppocr/utils/e2e_utils/pgnet_pp_utils.py +0 -162
  278. pyxlpr/ppocr/utils/e2e_utils/visual.py +0 -162
  279. pyxlpr/ppocr/utils/en_dict.txt +0 -95
  280. pyxlpr/ppocr/utils/gen_label.py +0 -81
  281. pyxlpr/ppocr/utils/ic15_dict.txt +0 -36
  282. pyxlpr/ppocr/utils/iou.py +0 -54
  283. pyxlpr/ppocr/utils/logging.py +0 -69
  284. pyxlpr/ppocr/utils/network.py +0 -84
  285. pyxlpr/ppocr/utils/ppocr_keys_v1.txt +0 -6623
  286. pyxlpr/ppocr/utils/profiler.py +0 -110
  287. pyxlpr/ppocr/utils/save_load.py +0 -150
  288. pyxlpr/ppocr/utils/stats.py +0 -72
  289. pyxlpr/ppocr/utils/utility.py +0 -80
  290. pyxlpr/ppstructure/__init__.py +0 -13
  291. pyxlpr/ppstructure/predict_system.py +0 -187
  292. pyxlpr/ppstructure/table/__init__.py +0 -13
  293. pyxlpr/ppstructure/table/eval_table.py +0 -72
  294. pyxlpr/ppstructure/table/matcher.py +0 -192
  295. pyxlpr/ppstructure/table/predict_structure.py +0 -136
  296. pyxlpr/ppstructure/table/predict_table.py +0 -221
  297. pyxlpr/ppstructure/table/table_metric/__init__.py +0 -16
  298. pyxlpr/ppstructure/table/table_metric/parallel.py +0 -51
  299. pyxlpr/ppstructure/table/table_metric/table_metric.py +0 -247
  300. pyxlpr/ppstructure/table/tablepyxl/__init__.py +0 -13
  301. pyxlpr/ppstructure/table/tablepyxl/style.py +0 -283
  302. pyxlpr/ppstructure/table/tablepyxl/tablepyxl.py +0 -118
  303. pyxlpr/ppstructure/utility.py +0 -71
  304. pyxlpr/xlai.py +0 -10
  305. /pyxllib/{ext/autogui → autogui}/virtualkey.py +0 -0
  306. {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info/licenses}/LICENSE +0 -0
@@ -1,533 +0,0 @@
1
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- import math
16
- import cv2
17
- import numpy as np
18
- import random
19
- from PIL import Image
20
- from .text_image_aug import tia_perspective, tia_stretch, tia_distort
21
-
22
-
23
- class RecAug(object):
24
- def __init__(self, use_tia=True, aug_prob=0.4, **kwargs):
25
- self.use_tia = use_tia
26
- self.aug_prob = aug_prob
27
-
28
- def __call__(self, data):
29
- img = data['image']
30
- img = warp(img, 10, self.use_tia, self.aug_prob)
31
- data['image'] = img
32
- return data
33
-
34
-
35
- class ClsResizeImg(object):
36
- def __init__(self, image_shape, **kwargs):
37
- self.image_shape = image_shape
38
-
39
- def __call__(self, data):
40
- img = data['image']
41
- norm_img = resize_norm_img(img, self.image_shape)
42
- data['image'] = norm_img
43
- return data
44
-
45
-
46
- class NRTRRecResizeImg(object):
47
- def __init__(self, image_shape, resize_type, padding=False, **kwargs):
48
- self.image_shape = image_shape
49
- self.resize_type = resize_type
50
- self.padding = padding
51
-
52
- def __call__(self, data):
53
- img = data['image']
54
- img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
55
- image_shape = self.image_shape
56
- if self.padding:
57
- imgC, imgH, imgW = image_shape
58
- # todo: change to 0 and modified image shape
59
- h = img.shape[0]
60
- w = img.shape[1]
61
- ratio = w / float(h)
62
- if math.ceil(imgH * ratio) > imgW:
63
- resized_w = imgW
64
- else:
65
- resized_w = int(math.ceil(imgH * ratio))
66
- resized_image = cv2.resize(img, (resized_w, imgH))
67
- norm_img = np.expand_dims(resized_image, -1)
68
- norm_img = norm_img.transpose((2, 0, 1))
69
- resized_image = norm_img.astype(np.float32) / 128. - 1.
70
- padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
71
- padding_im[:, :, 0:resized_w] = resized_image
72
- data['image'] = padding_im
73
- return data
74
- if self.resize_type == 'PIL':
75
- image_pil = Image.fromarray(np.uint8(img))
76
- img = image_pil.resize(self.image_shape, Image.ANTIALIAS)
77
- img = np.array(img)
78
- if self.resize_type == 'OpenCV':
79
- img = cv2.resize(img, self.image_shape)
80
- norm_img = np.expand_dims(img, -1)
81
- norm_img = norm_img.transpose((2, 0, 1))
82
- data['image'] = norm_img.astype(np.float32) / 128. - 1.
83
- return data
84
-
85
-
86
- class RecResizeImg(object):
87
- def __init__(self,
88
- image_shape,
89
- infer_mode=False,
90
- character_dict_path='./ppocr/utils/ppocr_keys_v1.txt',
91
- padding=True,
92
- **kwargs):
93
- self.image_shape = image_shape
94
- self.infer_mode = infer_mode
95
- self.character_dict_path = character_dict_path
96
- self.padding = padding
97
-
98
- def __call__(self, data):
99
- img = data['image']
100
- if self.infer_mode and self.character_dict_path is not None:
101
- norm_img = resize_norm_img_chinese(img, self.image_shape)
102
- else:
103
- norm_img = resize_norm_img(img, self.image_shape, self.padding)
104
- data['image'] = norm_img
105
- return data
106
-
107
-
108
- class SRNRecResizeImg(object):
109
- def __init__(self, image_shape, num_heads, max_text_length, **kwargs):
110
- self.image_shape = image_shape
111
- self.num_heads = num_heads
112
- self.max_text_length = max_text_length
113
-
114
- def __call__(self, data):
115
- img = data['image']
116
- norm_img = resize_norm_img_srn(img, self.image_shape)
117
- data['image'] = norm_img
118
- [encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
119
- srn_other_inputs(self.image_shape, self.num_heads, self.max_text_length)
120
-
121
- data['encoder_word_pos'] = encoder_word_pos
122
- data['gsrm_word_pos'] = gsrm_word_pos
123
- data['gsrm_slf_attn_bias1'] = gsrm_slf_attn_bias1
124
- data['gsrm_slf_attn_bias2'] = gsrm_slf_attn_bias2
125
- return data
126
-
127
-
128
- class SARRecResizeImg(object):
129
- def __init__(self, image_shape, width_downsample_ratio=0.25, **kwargs):
130
- self.image_shape = image_shape
131
- self.width_downsample_ratio = width_downsample_ratio
132
-
133
- def __call__(self, data):
134
- img = data['image']
135
- norm_img, resize_shape, pad_shape, valid_ratio = resize_norm_img_sar(
136
- img, self.image_shape, self.width_downsample_ratio)
137
- data['image'] = norm_img
138
- data['resized_shape'] = resize_shape
139
- data['pad_shape'] = pad_shape
140
- data['valid_ratio'] = valid_ratio
141
- return data
142
-
143
-
144
- def resize_norm_img_sar(img, image_shape, width_downsample_ratio=0.25):
145
- imgC, imgH, imgW_min, imgW_max = image_shape
146
- h = img.shape[0]
147
- w = img.shape[1]
148
- valid_ratio = 1.0
149
- # make sure new_width is an integral multiple of width_divisor.
150
- width_divisor = int(1 / width_downsample_ratio)
151
- # resize
152
- ratio = w / float(h)
153
- resize_w = math.ceil(imgH * ratio)
154
- if resize_w % width_divisor != 0:
155
- resize_w = round(resize_w / width_divisor) * width_divisor
156
- if imgW_min is not None:
157
- resize_w = max(imgW_min, resize_w)
158
- if imgW_max is not None:
159
- valid_ratio = min(1.0, 1.0 * resize_w / imgW_max)
160
- resize_w = min(imgW_max, resize_w)
161
- resized_image = cv2.resize(img, (resize_w, imgH))
162
- resized_image = resized_image.astype('float32')
163
- # norm
164
- if image_shape[0] == 1:
165
- resized_image = resized_image / 255
166
- resized_image = resized_image[np.newaxis, :]
167
- else:
168
- resized_image = resized_image.transpose((2, 0, 1)) / 255
169
- resized_image -= 0.5
170
- resized_image /= 0.5
171
- resize_shape = resized_image.shape
172
- padding_im = -1.0 * np.ones((imgC, imgH, imgW_max), dtype=np.float32)
173
- padding_im[:, :, 0:resize_w] = resized_image
174
- pad_shape = padding_im.shape
175
-
176
- return padding_im, resize_shape, pad_shape, valid_ratio
177
-
178
-
179
- def resize_norm_img(img, image_shape, padding=True):
180
- imgC, imgH, imgW = image_shape
181
- h = img.shape[0]
182
- w = img.shape[1]
183
- if not padding:
184
- resized_image = cv2.resize(
185
- img, (imgW, imgH), interpolation=cv2.INTER_LINEAR)
186
- resized_w = imgW
187
- else:
188
- ratio = w / float(h)
189
- if math.ceil(imgH * ratio) > imgW:
190
- resized_w = imgW
191
- else:
192
- resized_w = int(math.ceil(imgH * ratio))
193
- resized_image = cv2.resize(img, (resized_w, imgH))
194
- resized_image = resized_image.astype('float32')
195
- if image_shape[0] == 1:
196
- resized_image = resized_image / 255
197
- resized_image = resized_image[np.newaxis, :]
198
- else:
199
- resized_image = resized_image.transpose((2, 0, 1)) / 255
200
- resized_image -= 0.5
201
- resized_image /= 0.5
202
- padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
203
- padding_im[:, :, 0:resized_w] = resized_image
204
- return padding_im
205
-
206
-
207
- def resize_norm_img_chinese(img, image_shape):
208
- imgC, imgH, imgW = image_shape
209
- # todo: change to 0 and modified image shape
210
- max_wh_ratio = imgW * 1.0 / imgH
211
- h, w = img.shape[0], img.shape[1]
212
- ratio = w * 1.0 / h
213
- max_wh_ratio = max(max_wh_ratio, ratio)
214
- imgW = int(32 * max_wh_ratio)
215
- if math.ceil(imgH * ratio) > imgW:
216
- resized_w = imgW
217
- else:
218
- resized_w = int(math.ceil(imgH * ratio))
219
- resized_image = cv2.resize(img, (resized_w, imgH))
220
- resized_image = resized_image.astype('float32')
221
- if image_shape[0] == 1:
222
- resized_image = resized_image / 255
223
- resized_image = resized_image[np.newaxis, :]
224
- else:
225
- resized_image = resized_image.transpose((2, 0, 1)) / 255
226
- resized_image -= 0.5
227
- resized_image /= 0.5
228
- padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
229
- padding_im[:, :, 0:resized_w] = resized_image
230
- return padding_im
231
-
232
-
233
- def resize_norm_img_srn(img, image_shape):
234
- imgC, imgH, imgW = image_shape
235
-
236
- img_black = np.zeros((imgH, imgW))
237
- im_hei = img.shape[0]
238
- im_wid = img.shape[1]
239
-
240
- if im_wid <= im_hei * 1:
241
- img_new = cv2.resize(img, (imgH * 1, imgH))
242
- elif im_wid <= im_hei * 2:
243
- img_new = cv2.resize(img, (imgH * 2, imgH))
244
- elif im_wid <= im_hei * 3:
245
- img_new = cv2.resize(img, (imgH * 3, imgH))
246
- else:
247
- img_new = cv2.resize(img, (imgW, imgH))
248
-
249
- img_np = np.asarray(img_new)
250
- img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
251
- img_black[:, 0:img_np.shape[1]] = img_np
252
- img_black = img_black[:, :, np.newaxis]
253
-
254
- row, col, c = img_black.shape
255
- c = 1
256
-
257
- return np.reshape(img_black, (c, row, col)).astype(np.float32)
258
-
259
-
260
- def srn_other_inputs(image_shape, num_heads, max_text_length):
261
-
262
- imgC, imgH, imgW = image_shape
263
- feature_dim = int((imgH / 8) * (imgW / 8))
264
-
265
- encoder_word_pos = np.array(range(0, feature_dim)).reshape(
266
- (feature_dim, 1)).astype('int64')
267
- gsrm_word_pos = np.array(range(0, max_text_length)).reshape(
268
- (max_text_length, 1)).astype('int64')
269
-
270
- gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
271
- gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape(
272
- [1, max_text_length, max_text_length])
273
- gsrm_slf_attn_bias1 = np.tile(gsrm_slf_attn_bias1,
274
- [num_heads, 1, 1]) * [-1e9]
275
-
276
- gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape(
277
- [1, max_text_length, max_text_length])
278
- gsrm_slf_attn_bias2 = np.tile(gsrm_slf_attn_bias2,
279
- [num_heads, 1, 1]) * [-1e9]
280
-
281
- return [
282
- encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
283
- gsrm_slf_attn_bias2
284
- ]
285
-
286
-
287
- def flag():
288
- """
289
- flag
290
- """
291
- return 1 if random.random() > 0.5000001 else -1
292
-
293
-
294
- def cvtColor(img):
295
- """
296
- cvtColor
297
- """
298
- hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
299
- delta = 0.001 * random.random() * flag()
300
- hsv[:, :, 2] = hsv[:, :, 2] * (1 + delta)
301
- new_img = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
302
- return new_img
303
-
304
-
305
- def blur(img):
306
- """
307
- blur
308
- """
309
- h, w, _ = img.shape
310
- if h > 10 and w > 10:
311
- return cv2.GaussianBlur(img, (5, 5), 1)
312
- else:
313
- return img
314
-
315
-
316
- def jitter(img):
317
- """
318
- jitter
319
- """
320
- w, h, _ = img.shape
321
- if h > 10 and w > 10:
322
- thres = min(w, h)
323
- s = int(random.random() * thres * 0.01)
324
- src_img = img.copy()
325
- for i in range(s):
326
- img[i:, i:, :] = src_img[:w - i, :h - i, :]
327
- return img
328
- else:
329
- return img
330
-
331
-
332
- def add_gasuss_noise(image, mean=0, var=0.1):
333
- """
334
- Gasuss noise
335
- """
336
-
337
- noise = np.random.normal(mean, var**0.5, image.shape)
338
- out = image + 0.5 * noise
339
- out = np.clip(out, 0, 255)
340
- out = np.uint8(out)
341
- return out
342
-
343
-
344
- def get_crop(image):
345
- """
346
- random crop
347
- """
348
- h, w, _ = image.shape
349
- top_min = 1
350
- top_max = 8
351
- top_crop = int(random.randint(top_min, top_max))
352
- top_crop = min(top_crop, h - 1)
353
- crop_img = image.copy()
354
- ratio = random.randint(0, 1)
355
- if ratio:
356
- crop_img = crop_img[top_crop:h, :, :]
357
- else:
358
- crop_img = crop_img[0:h - top_crop, :, :]
359
- return crop_img
360
-
361
-
362
- class Config:
363
- """
364
- Config
365
- """
366
-
367
- def __init__(self, use_tia):
368
- self.anglex = random.random() * 30
369
- self.angley = random.random() * 15
370
- self.anglez = random.random() * 10
371
- self.fov = 42
372
- self.r = 0
373
- self.shearx = random.random() * 0.3
374
- self.sheary = random.random() * 0.05
375
- self.borderMode = cv2.BORDER_REPLICATE
376
- self.use_tia = use_tia
377
-
378
- def make(self, w, h, ang):
379
- """
380
- make
381
- """
382
- self.anglex = random.random() * 5 * flag()
383
- self.angley = random.random() * 5 * flag()
384
- self.anglez = -1 * random.random() * int(ang) * flag()
385
- self.fov = 42
386
- self.r = 0
387
- self.shearx = 0
388
- self.sheary = 0
389
- self.borderMode = cv2.BORDER_REPLICATE
390
- self.w = w
391
- self.h = h
392
-
393
- self.perspective = self.use_tia
394
- self.stretch = self.use_tia
395
- self.distort = self.use_tia
396
-
397
- self.crop = True
398
- self.affine = False
399
- self.reverse = True
400
- self.noise = True
401
- self.jitter = True
402
- self.blur = True
403
- self.color = True
404
-
405
-
406
- def rad(x):
407
- """
408
- rad
409
- """
410
- return x * np.pi / 180
411
-
412
-
413
- def get_warpR(config):
414
- """
415
- get_warpR
416
- """
417
- anglex, angley, anglez, fov, w, h, r = \
418
- config.anglex, config.angley, config.anglez, config.fov, config.w, config.h, config.r
419
- if w > 69 and w < 112:
420
- anglex = anglex * 1.5
421
-
422
- z = np.sqrt(w**2 + h**2) / 2 / np.tan(rad(fov / 2))
423
- # Homogeneous coordinate transformation matrix
424
- rx = np.array([[1, 0, 0, 0],
425
- [0, np.cos(rad(anglex)), -np.sin(rad(anglex)), 0], [
426
- 0,
427
- -np.sin(rad(anglex)),
428
- np.cos(rad(anglex)),
429
- 0,
430
- ], [0, 0, 0, 1]], np.float32)
431
- ry = np.array([[np.cos(rad(angley)), 0, np.sin(rad(angley)), 0],
432
- [0, 1, 0, 0], [
433
- -np.sin(rad(angley)),
434
- 0,
435
- np.cos(rad(angley)),
436
- 0,
437
- ], [0, 0, 0, 1]], np.float32)
438
- rz = np.array([[np.cos(rad(anglez)), np.sin(rad(anglez)), 0, 0],
439
- [-np.sin(rad(anglez)), np.cos(rad(anglez)), 0, 0],
440
- [0, 0, 1, 0], [0, 0, 0, 1]], np.float32)
441
- r = rx.dot(ry).dot(rz)
442
- # generate 4 points
443
- pcenter = np.array([h / 2, w / 2, 0, 0], np.float32)
444
- p1 = np.array([0, 0, 0, 0], np.float32) - pcenter
445
- p2 = np.array([w, 0, 0, 0], np.float32) - pcenter
446
- p3 = np.array([0, h, 0, 0], np.float32) - pcenter
447
- p4 = np.array([w, h, 0, 0], np.float32) - pcenter
448
- dst1 = r.dot(p1)
449
- dst2 = r.dot(p2)
450
- dst3 = r.dot(p3)
451
- dst4 = r.dot(p4)
452
- list_dst = np.array([dst1, dst2, dst3, dst4])
453
- org = np.array([[0, 0], [w, 0], [0, h], [w, h]], np.float32)
454
- dst = np.zeros((4, 2), np.float32)
455
- # Project onto the image plane
456
- dst[:, 0] = list_dst[:, 0] * z / (z - list_dst[:, 2]) + pcenter[0]
457
- dst[:, 1] = list_dst[:, 1] * z / (z - list_dst[:, 2]) + pcenter[1]
458
-
459
- warpR = cv2.getPerspectiveTransform(org, dst)
460
-
461
- dst1, dst2, dst3, dst4 = dst
462
- r1 = int(min(dst1[1], dst2[1]))
463
- r2 = int(max(dst3[1], dst4[1]))
464
- c1 = int(min(dst1[0], dst3[0]))
465
- c2 = int(max(dst2[0], dst4[0]))
466
-
467
- try:
468
- ratio = min(1.0 * h / (r2 - r1), 1.0 * w / (c2 - c1))
469
-
470
- dx = -c1
471
- dy = -r1
472
- T1 = np.float32([[1., 0, dx], [0, 1., dy], [0, 0, 1.0 / ratio]])
473
- ret = T1.dot(warpR)
474
- except:
475
- ratio = 1.0
476
- T1 = np.float32([[1., 0, 0], [0, 1., 0], [0, 0, 1.]])
477
- ret = T1
478
- return ret, (-r1, -c1), ratio, dst
479
-
480
-
481
- def get_warpAffine(config):
482
- """
483
- get_warpAffine
484
- """
485
- anglez = config.anglez
486
- rz = np.array([[np.cos(rad(anglez)), np.sin(rad(anglez)), 0],
487
- [-np.sin(rad(anglez)), np.cos(rad(anglez)), 0]], np.float32)
488
- return rz
489
-
490
-
491
- def warp(img, ang, use_tia=True, prob=0.4):
492
- """
493
- warp
494
- """
495
- h, w, _ = img.shape
496
- config = Config(use_tia=use_tia)
497
- config.make(w, h, ang)
498
- new_img = img
499
-
500
- if config.distort:
501
- img_height, img_width = img.shape[0:2]
502
- if random.random() <= prob and img_height >= 20 and img_width >= 20:
503
- new_img = tia_distort(new_img, random.randint(3, 6))
504
-
505
- if config.stretch:
506
- img_height, img_width = img.shape[0:2]
507
- if random.random() <= prob and img_height >= 20 and img_width >= 20:
508
- new_img = tia_stretch(new_img, random.randint(3, 6))
509
-
510
- if config.perspective:
511
- if random.random() <= prob:
512
- new_img = tia_perspective(new_img)
513
-
514
- if config.crop:
515
- img_height, img_width = img.shape[0:2]
516
- if random.random() <= prob and img_height >= 20 and img_width >= 20:
517
- new_img = get_crop(new_img)
518
-
519
- if config.blur:
520
- if random.random() <= prob:
521
- new_img = blur(new_img)
522
- if config.color:
523
- if random.random() <= prob:
524
- new_img = cvtColor(new_img)
525
- if config.jitter:
526
- new_img = jitter(new_img)
527
- if config.noise:
528
- if random.random() <= prob:
529
- new_img = add_gasuss_noise(new_img)
530
- if config.reverse:
531
- if random.random() <= prob:
532
- new_img = 255 - new_img
533
- return new_img