pyxllib 0.3.96__py3-none-any.whl → 0.3.197__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (306) hide show
  1. pyxllib/algo/geo.py +12 -0
  2. pyxllib/algo/intervals.py +1 -1
  3. pyxllib/algo/matcher.py +78 -0
  4. pyxllib/algo/pupil.py +187 -19
  5. pyxllib/algo/specialist.py +2 -1
  6. pyxllib/algo/stat.py +38 -2
  7. {pyxlpr → pyxllib/autogui}/__init__.py +1 -1
  8. pyxllib/autogui/activewin.py +246 -0
  9. pyxllib/autogui/all.py +9 -0
  10. pyxllib/{ext/autogui → autogui}/autogui.py +40 -11
  11. pyxllib/autogui/uiautolib.py +362 -0
  12. pyxllib/autogui/wechat.py +827 -0
  13. pyxllib/autogui/wechat_msg.py +421 -0
  14. pyxllib/autogui/wxautolib.py +84 -0
  15. pyxllib/cv/slidercaptcha.py +137 -0
  16. pyxllib/data/echarts.py +123 -12
  17. pyxllib/data/jsonlib.py +89 -0
  18. pyxllib/data/pglib.py +514 -30
  19. pyxllib/data/sqlite.py +231 -4
  20. pyxllib/ext/JLineViewer.py +14 -1
  21. pyxllib/ext/drissionlib.py +277 -0
  22. pyxllib/ext/kq5034lib.py +0 -1594
  23. pyxllib/ext/robustprocfile.py +497 -0
  24. pyxllib/ext/unixlib.py +6 -5
  25. pyxllib/ext/utools.py +108 -95
  26. pyxllib/ext/webhook.py +32 -14
  27. pyxllib/ext/wjxlib.py +88 -0
  28. pyxllib/ext/wpsapi.py +124 -0
  29. pyxllib/ext/xlwork.py +9 -0
  30. pyxllib/ext/yuquelib.py +1003 -71
  31. pyxllib/file/docxlib.py +1 -1
  32. pyxllib/file/libreoffice.py +165 -0
  33. pyxllib/file/movielib.py +9 -0
  34. pyxllib/file/packlib/__init__.py +112 -75
  35. pyxllib/file/pdflib.py +1 -1
  36. pyxllib/file/pupil.py +1 -1
  37. pyxllib/file/specialist/dirlib.py +1 -1
  38. pyxllib/file/specialist/download.py +10 -3
  39. pyxllib/file/specialist/filelib.py +266 -55
  40. pyxllib/file/xlsxlib.py +205 -50
  41. pyxllib/file/xlsyncfile.py +341 -0
  42. pyxllib/prog/cachetools.py +64 -0
  43. pyxllib/prog/filelock.py +42 -0
  44. pyxllib/prog/multiprogs.py +940 -0
  45. pyxllib/prog/newbie.py +9 -2
  46. pyxllib/prog/pupil.py +129 -60
  47. pyxllib/prog/specialist/__init__.py +176 -2
  48. pyxllib/prog/specialist/bc.py +5 -2
  49. pyxllib/prog/specialist/browser.py +11 -2
  50. pyxllib/prog/specialist/datetime.py +68 -0
  51. pyxllib/prog/specialist/tictoc.py +12 -13
  52. pyxllib/prog/specialist/xllog.py +5 -5
  53. pyxllib/prog/xlosenv.py +7 -0
  54. pyxllib/text/airscript.js +744 -0
  55. pyxllib/text/charclasslib.py +17 -5
  56. pyxllib/text/jiebalib.py +6 -3
  57. pyxllib/text/jinjalib.py +32 -0
  58. pyxllib/text/jsa_ai_prompt.md +271 -0
  59. pyxllib/text/jscode.py +159 -4
  60. pyxllib/text/nestenv.py +1 -1
  61. pyxllib/text/newbie.py +12 -0
  62. pyxllib/text/pupil/common.py +26 -0
  63. pyxllib/text/specialist/ptag.py +2 -2
  64. pyxllib/text/templates/echart_base.html +11 -0
  65. pyxllib/text/templates/highlight_code.html +17 -0
  66. pyxllib/text/templates/latex_editor.html +103 -0
  67. pyxllib/text/xmllib.py +76 -14
  68. pyxllib/xl.py +2 -1
  69. pyxllib-0.3.197.dist-info/METADATA +48 -0
  70. pyxllib-0.3.197.dist-info/RECORD +126 -0
  71. {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info}/WHEEL +1 -2
  72. pyxllib/ext/autogui/__init__.py +0 -8
  73. pyxllib-0.3.96.dist-info/METADATA +0 -51
  74. pyxllib-0.3.96.dist-info/RECORD +0 -333
  75. pyxllib-0.3.96.dist-info/top_level.txt +0 -2
  76. pyxlpr/ai/__init__.py +0 -5
  77. pyxlpr/ai/clientlib.py +0 -1281
  78. pyxlpr/ai/specialist.py +0 -286
  79. pyxlpr/ai/torch_app.py +0 -172
  80. pyxlpr/ai/xlpaddle.py +0 -655
  81. pyxlpr/ai/xltorch.py +0 -705
  82. pyxlpr/data/__init__.py +0 -11
  83. pyxlpr/data/coco.py +0 -1325
  84. pyxlpr/data/datacls.py +0 -365
  85. pyxlpr/data/datasets.py +0 -200
  86. pyxlpr/data/gptlib.py +0 -1291
  87. pyxlpr/data/icdar/__init__.py +0 -96
  88. pyxlpr/data/icdar/deteval.py +0 -377
  89. pyxlpr/data/icdar/icdar2013.py +0 -341
  90. pyxlpr/data/icdar/iou.py +0 -340
  91. pyxlpr/data/icdar/rrc_evaluation_funcs_1_1.py +0 -463
  92. pyxlpr/data/imtextline.py +0 -473
  93. pyxlpr/data/labelme.py +0 -866
  94. pyxlpr/data/removeline.py +0 -179
  95. pyxlpr/data/specialist.py +0 -57
  96. pyxlpr/eval/__init__.py +0 -85
  97. pyxlpr/paddleocr.py +0 -776
  98. pyxlpr/ppocr/__init__.py +0 -15
  99. pyxlpr/ppocr/configs/rec/multi_language/generate_multi_language_configs.py +0 -226
  100. pyxlpr/ppocr/data/__init__.py +0 -135
  101. pyxlpr/ppocr/data/imaug/ColorJitter.py +0 -26
  102. pyxlpr/ppocr/data/imaug/__init__.py +0 -67
  103. pyxlpr/ppocr/data/imaug/copy_paste.py +0 -170
  104. pyxlpr/ppocr/data/imaug/east_process.py +0 -437
  105. pyxlpr/ppocr/data/imaug/gen_table_mask.py +0 -244
  106. pyxlpr/ppocr/data/imaug/iaa_augment.py +0 -114
  107. pyxlpr/ppocr/data/imaug/label_ops.py +0 -789
  108. pyxlpr/ppocr/data/imaug/make_border_map.py +0 -184
  109. pyxlpr/ppocr/data/imaug/make_pse_gt.py +0 -106
  110. pyxlpr/ppocr/data/imaug/make_shrink_map.py +0 -126
  111. pyxlpr/ppocr/data/imaug/operators.py +0 -433
  112. pyxlpr/ppocr/data/imaug/pg_process.py +0 -906
  113. pyxlpr/ppocr/data/imaug/randaugment.py +0 -143
  114. pyxlpr/ppocr/data/imaug/random_crop_data.py +0 -239
  115. pyxlpr/ppocr/data/imaug/rec_img_aug.py +0 -533
  116. pyxlpr/ppocr/data/imaug/sast_process.py +0 -777
  117. pyxlpr/ppocr/data/imaug/text_image_aug/__init__.py +0 -17
  118. pyxlpr/ppocr/data/imaug/text_image_aug/augment.py +0 -120
  119. pyxlpr/ppocr/data/imaug/text_image_aug/warp_mls.py +0 -168
  120. pyxlpr/ppocr/data/lmdb_dataset.py +0 -115
  121. pyxlpr/ppocr/data/pgnet_dataset.py +0 -104
  122. pyxlpr/ppocr/data/pubtab_dataset.py +0 -107
  123. pyxlpr/ppocr/data/simple_dataset.py +0 -372
  124. pyxlpr/ppocr/losses/__init__.py +0 -61
  125. pyxlpr/ppocr/losses/ace_loss.py +0 -52
  126. pyxlpr/ppocr/losses/basic_loss.py +0 -135
  127. pyxlpr/ppocr/losses/center_loss.py +0 -88
  128. pyxlpr/ppocr/losses/cls_loss.py +0 -30
  129. pyxlpr/ppocr/losses/combined_loss.py +0 -67
  130. pyxlpr/ppocr/losses/det_basic_loss.py +0 -208
  131. pyxlpr/ppocr/losses/det_db_loss.py +0 -80
  132. pyxlpr/ppocr/losses/det_east_loss.py +0 -63
  133. pyxlpr/ppocr/losses/det_pse_loss.py +0 -149
  134. pyxlpr/ppocr/losses/det_sast_loss.py +0 -121
  135. pyxlpr/ppocr/losses/distillation_loss.py +0 -272
  136. pyxlpr/ppocr/losses/e2e_pg_loss.py +0 -140
  137. pyxlpr/ppocr/losses/kie_sdmgr_loss.py +0 -113
  138. pyxlpr/ppocr/losses/rec_aster_loss.py +0 -99
  139. pyxlpr/ppocr/losses/rec_att_loss.py +0 -39
  140. pyxlpr/ppocr/losses/rec_ctc_loss.py +0 -44
  141. pyxlpr/ppocr/losses/rec_enhanced_ctc_loss.py +0 -70
  142. pyxlpr/ppocr/losses/rec_nrtr_loss.py +0 -30
  143. pyxlpr/ppocr/losses/rec_sar_loss.py +0 -28
  144. pyxlpr/ppocr/losses/rec_srn_loss.py +0 -47
  145. pyxlpr/ppocr/losses/table_att_loss.py +0 -109
  146. pyxlpr/ppocr/metrics/__init__.py +0 -44
  147. pyxlpr/ppocr/metrics/cls_metric.py +0 -45
  148. pyxlpr/ppocr/metrics/det_metric.py +0 -82
  149. pyxlpr/ppocr/metrics/distillation_metric.py +0 -73
  150. pyxlpr/ppocr/metrics/e2e_metric.py +0 -86
  151. pyxlpr/ppocr/metrics/eval_det_iou.py +0 -274
  152. pyxlpr/ppocr/metrics/kie_metric.py +0 -70
  153. pyxlpr/ppocr/metrics/rec_metric.py +0 -75
  154. pyxlpr/ppocr/metrics/table_metric.py +0 -50
  155. pyxlpr/ppocr/modeling/architectures/__init__.py +0 -32
  156. pyxlpr/ppocr/modeling/architectures/base_model.py +0 -88
  157. pyxlpr/ppocr/modeling/architectures/distillation_model.py +0 -60
  158. pyxlpr/ppocr/modeling/backbones/__init__.py +0 -54
  159. pyxlpr/ppocr/modeling/backbones/det_mobilenet_v3.py +0 -268
  160. pyxlpr/ppocr/modeling/backbones/det_resnet_vd.py +0 -246
  161. pyxlpr/ppocr/modeling/backbones/det_resnet_vd_sast.py +0 -285
  162. pyxlpr/ppocr/modeling/backbones/e2e_resnet_vd_pg.py +0 -265
  163. pyxlpr/ppocr/modeling/backbones/kie_unet_sdmgr.py +0 -186
  164. pyxlpr/ppocr/modeling/backbones/rec_mobilenet_v3.py +0 -138
  165. pyxlpr/ppocr/modeling/backbones/rec_mv1_enhance.py +0 -258
  166. pyxlpr/ppocr/modeling/backbones/rec_nrtr_mtb.py +0 -48
  167. pyxlpr/ppocr/modeling/backbones/rec_resnet_31.py +0 -210
  168. pyxlpr/ppocr/modeling/backbones/rec_resnet_aster.py +0 -143
  169. pyxlpr/ppocr/modeling/backbones/rec_resnet_fpn.py +0 -307
  170. pyxlpr/ppocr/modeling/backbones/rec_resnet_vd.py +0 -286
  171. pyxlpr/ppocr/modeling/heads/__init__.py +0 -54
  172. pyxlpr/ppocr/modeling/heads/cls_head.py +0 -52
  173. pyxlpr/ppocr/modeling/heads/det_db_head.py +0 -118
  174. pyxlpr/ppocr/modeling/heads/det_east_head.py +0 -121
  175. pyxlpr/ppocr/modeling/heads/det_pse_head.py +0 -37
  176. pyxlpr/ppocr/modeling/heads/det_sast_head.py +0 -128
  177. pyxlpr/ppocr/modeling/heads/e2e_pg_head.py +0 -253
  178. pyxlpr/ppocr/modeling/heads/kie_sdmgr_head.py +0 -206
  179. pyxlpr/ppocr/modeling/heads/multiheadAttention.py +0 -163
  180. pyxlpr/ppocr/modeling/heads/rec_aster_head.py +0 -393
  181. pyxlpr/ppocr/modeling/heads/rec_att_head.py +0 -202
  182. pyxlpr/ppocr/modeling/heads/rec_ctc_head.py +0 -88
  183. pyxlpr/ppocr/modeling/heads/rec_nrtr_head.py +0 -826
  184. pyxlpr/ppocr/modeling/heads/rec_sar_head.py +0 -402
  185. pyxlpr/ppocr/modeling/heads/rec_srn_head.py +0 -280
  186. pyxlpr/ppocr/modeling/heads/self_attention.py +0 -406
  187. pyxlpr/ppocr/modeling/heads/table_att_head.py +0 -246
  188. pyxlpr/ppocr/modeling/necks/__init__.py +0 -32
  189. pyxlpr/ppocr/modeling/necks/db_fpn.py +0 -111
  190. pyxlpr/ppocr/modeling/necks/east_fpn.py +0 -188
  191. pyxlpr/ppocr/modeling/necks/fpn.py +0 -138
  192. pyxlpr/ppocr/modeling/necks/pg_fpn.py +0 -314
  193. pyxlpr/ppocr/modeling/necks/rnn.py +0 -92
  194. pyxlpr/ppocr/modeling/necks/sast_fpn.py +0 -284
  195. pyxlpr/ppocr/modeling/necks/table_fpn.py +0 -110
  196. pyxlpr/ppocr/modeling/transforms/__init__.py +0 -28
  197. pyxlpr/ppocr/modeling/transforms/stn.py +0 -135
  198. pyxlpr/ppocr/modeling/transforms/tps.py +0 -308
  199. pyxlpr/ppocr/modeling/transforms/tps_spatial_transformer.py +0 -156
  200. pyxlpr/ppocr/optimizer/__init__.py +0 -61
  201. pyxlpr/ppocr/optimizer/learning_rate.py +0 -228
  202. pyxlpr/ppocr/optimizer/lr_scheduler.py +0 -49
  203. pyxlpr/ppocr/optimizer/optimizer.py +0 -160
  204. pyxlpr/ppocr/optimizer/regularizer.py +0 -52
  205. pyxlpr/ppocr/postprocess/__init__.py +0 -55
  206. pyxlpr/ppocr/postprocess/cls_postprocess.py +0 -33
  207. pyxlpr/ppocr/postprocess/db_postprocess.py +0 -234
  208. pyxlpr/ppocr/postprocess/east_postprocess.py +0 -143
  209. pyxlpr/ppocr/postprocess/locality_aware_nms.py +0 -200
  210. pyxlpr/ppocr/postprocess/pg_postprocess.py +0 -52
  211. pyxlpr/ppocr/postprocess/pse_postprocess/__init__.py +0 -15
  212. pyxlpr/ppocr/postprocess/pse_postprocess/pse/__init__.py +0 -29
  213. pyxlpr/ppocr/postprocess/pse_postprocess/pse/setup.py +0 -14
  214. pyxlpr/ppocr/postprocess/pse_postprocess/pse_postprocess.py +0 -118
  215. pyxlpr/ppocr/postprocess/rec_postprocess.py +0 -654
  216. pyxlpr/ppocr/postprocess/sast_postprocess.py +0 -355
  217. pyxlpr/ppocr/tools/__init__.py +0 -14
  218. pyxlpr/ppocr/tools/eval.py +0 -83
  219. pyxlpr/ppocr/tools/export_center.py +0 -77
  220. pyxlpr/ppocr/tools/export_model.py +0 -129
  221. pyxlpr/ppocr/tools/infer/predict_cls.py +0 -151
  222. pyxlpr/ppocr/tools/infer/predict_det.py +0 -300
  223. pyxlpr/ppocr/tools/infer/predict_e2e.py +0 -169
  224. pyxlpr/ppocr/tools/infer/predict_rec.py +0 -414
  225. pyxlpr/ppocr/tools/infer/predict_system.py +0 -204
  226. pyxlpr/ppocr/tools/infer/utility.py +0 -629
  227. pyxlpr/ppocr/tools/infer_cls.py +0 -83
  228. pyxlpr/ppocr/tools/infer_det.py +0 -134
  229. pyxlpr/ppocr/tools/infer_e2e.py +0 -122
  230. pyxlpr/ppocr/tools/infer_kie.py +0 -153
  231. pyxlpr/ppocr/tools/infer_rec.py +0 -146
  232. pyxlpr/ppocr/tools/infer_table.py +0 -107
  233. pyxlpr/ppocr/tools/program.py +0 -596
  234. pyxlpr/ppocr/tools/test_hubserving.py +0 -117
  235. pyxlpr/ppocr/tools/train.py +0 -163
  236. pyxlpr/ppocr/tools/xlprog.py +0 -748
  237. pyxlpr/ppocr/utils/EN_symbol_dict.txt +0 -94
  238. pyxlpr/ppocr/utils/__init__.py +0 -24
  239. pyxlpr/ppocr/utils/dict/ar_dict.txt +0 -117
  240. pyxlpr/ppocr/utils/dict/arabic_dict.txt +0 -162
  241. pyxlpr/ppocr/utils/dict/be_dict.txt +0 -145
  242. pyxlpr/ppocr/utils/dict/bg_dict.txt +0 -140
  243. pyxlpr/ppocr/utils/dict/chinese_cht_dict.txt +0 -8421
  244. pyxlpr/ppocr/utils/dict/cyrillic_dict.txt +0 -163
  245. pyxlpr/ppocr/utils/dict/devanagari_dict.txt +0 -167
  246. pyxlpr/ppocr/utils/dict/en_dict.txt +0 -63
  247. pyxlpr/ppocr/utils/dict/fa_dict.txt +0 -136
  248. pyxlpr/ppocr/utils/dict/french_dict.txt +0 -136
  249. pyxlpr/ppocr/utils/dict/german_dict.txt +0 -143
  250. pyxlpr/ppocr/utils/dict/hi_dict.txt +0 -162
  251. pyxlpr/ppocr/utils/dict/it_dict.txt +0 -118
  252. pyxlpr/ppocr/utils/dict/japan_dict.txt +0 -4399
  253. pyxlpr/ppocr/utils/dict/ka_dict.txt +0 -153
  254. pyxlpr/ppocr/utils/dict/korean_dict.txt +0 -3688
  255. pyxlpr/ppocr/utils/dict/latin_dict.txt +0 -185
  256. pyxlpr/ppocr/utils/dict/mr_dict.txt +0 -153
  257. pyxlpr/ppocr/utils/dict/ne_dict.txt +0 -153
  258. pyxlpr/ppocr/utils/dict/oc_dict.txt +0 -96
  259. pyxlpr/ppocr/utils/dict/pu_dict.txt +0 -130
  260. pyxlpr/ppocr/utils/dict/rs_dict.txt +0 -91
  261. pyxlpr/ppocr/utils/dict/rsc_dict.txt +0 -134
  262. pyxlpr/ppocr/utils/dict/ru_dict.txt +0 -125
  263. pyxlpr/ppocr/utils/dict/ta_dict.txt +0 -128
  264. pyxlpr/ppocr/utils/dict/table_dict.txt +0 -277
  265. pyxlpr/ppocr/utils/dict/table_structure_dict.txt +0 -2759
  266. pyxlpr/ppocr/utils/dict/te_dict.txt +0 -151
  267. pyxlpr/ppocr/utils/dict/ug_dict.txt +0 -114
  268. pyxlpr/ppocr/utils/dict/uk_dict.txt +0 -142
  269. pyxlpr/ppocr/utils/dict/ur_dict.txt +0 -137
  270. pyxlpr/ppocr/utils/dict/xi_dict.txt +0 -110
  271. pyxlpr/ppocr/utils/dict90.txt +0 -90
  272. pyxlpr/ppocr/utils/e2e_metric/Deteval.py +0 -574
  273. pyxlpr/ppocr/utils/e2e_metric/polygon_fast.py +0 -83
  274. pyxlpr/ppocr/utils/e2e_utils/extract_batchsize.py +0 -87
  275. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_fast.py +0 -457
  276. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_slow.py +0 -592
  277. pyxlpr/ppocr/utils/e2e_utils/pgnet_pp_utils.py +0 -162
  278. pyxlpr/ppocr/utils/e2e_utils/visual.py +0 -162
  279. pyxlpr/ppocr/utils/en_dict.txt +0 -95
  280. pyxlpr/ppocr/utils/gen_label.py +0 -81
  281. pyxlpr/ppocr/utils/ic15_dict.txt +0 -36
  282. pyxlpr/ppocr/utils/iou.py +0 -54
  283. pyxlpr/ppocr/utils/logging.py +0 -69
  284. pyxlpr/ppocr/utils/network.py +0 -84
  285. pyxlpr/ppocr/utils/ppocr_keys_v1.txt +0 -6623
  286. pyxlpr/ppocr/utils/profiler.py +0 -110
  287. pyxlpr/ppocr/utils/save_load.py +0 -150
  288. pyxlpr/ppocr/utils/stats.py +0 -72
  289. pyxlpr/ppocr/utils/utility.py +0 -80
  290. pyxlpr/ppstructure/__init__.py +0 -13
  291. pyxlpr/ppstructure/predict_system.py +0 -187
  292. pyxlpr/ppstructure/table/__init__.py +0 -13
  293. pyxlpr/ppstructure/table/eval_table.py +0 -72
  294. pyxlpr/ppstructure/table/matcher.py +0 -192
  295. pyxlpr/ppstructure/table/predict_structure.py +0 -136
  296. pyxlpr/ppstructure/table/predict_table.py +0 -221
  297. pyxlpr/ppstructure/table/table_metric/__init__.py +0 -16
  298. pyxlpr/ppstructure/table/table_metric/parallel.py +0 -51
  299. pyxlpr/ppstructure/table/table_metric/table_metric.py +0 -247
  300. pyxlpr/ppstructure/table/tablepyxl/__init__.py +0 -13
  301. pyxlpr/ppstructure/table/tablepyxl/style.py +0 -283
  302. pyxlpr/ppstructure/table/tablepyxl/tablepyxl.py +0 -118
  303. pyxlpr/ppstructure/utility.py +0 -71
  304. pyxlpr/xlai.py +0 -10
  305. /pyxllib/{ext/autogui → autogui}/virtualkey.py +0 -0
  306. {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info/licenses}/LICENSE +0 -0
@@ -1,156 +0,0 @@
1
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- """
15
- This code is refer from:
16
- https://github.com/ayumiymk/aster.pytorch/blob/master/lib/models/tps_spatial_transformer.py
17
- """
18
- from __future__ import absolute_import
19
- from __future__ import division
20
- from __future__ import print_function
21
-
22
- import math
23
- import paddle
24
- from paddle import nn, ParamAttr
25
- from paddle.nn import functional as F
26
- import numpy as np
27
- import itertools
28
-
29
-
30
- def grid_sample(input, grid, canvas=None):
31
- input.stop_gradient = False
32
- output = F.grid_sample(input, grid)
33
- if canvas is None:
34
- return output
35
- else:
36
- input_mask = paddle.ones(shape=input.shape)
37
- output_mask = F.grid_sample(input_mask, grid)
38
- padded_output = output * output_mask + canvas * (1 - output_mask)
39
- return padded_output
40
-
41
-
42
- # phi(x1, x2) = r^2 * log(r), where r = ||x1 - x2||_2
43
- def compute_partial_repr(input_points, control_points):
44
- N = input_points.shape[0]
45
- M = control_points.shape[0]
46
- pairwise_diff = paddle.reshape(
47
- input_points, shape=[N, 1, 2]) - paddle.reshape(
48
- control_points, shape=[1, M, 2])
49
- # original implementation, very slow
50
- # pairwise_dist = torch.sum(pairwise_diff ** 2, dim = 2) # square of distance
51
- pairwise_diff_square = pairwise_diff * pairwise_diff
52
- pairwise_dist = pairwise_diff_square[:, :, 0] + pairwise_diff_square[:, :,
53
- 1]
54
- repr_matrix = 0.5 * pairwise_dist * paddle.log(pairwise_dist)
55
- # fix numerical error for 0 * log(0), substitute all nan with 0
56
- mask = np.array(repr_matrix != repr_matrix)
57
- repr_matrix[mask] = 0
58
- return repr_matrix
59
-
60
-
61
- # output_ctrl_pts are specified, according to our task.
62
- def build_output_control_points(num_control_points, margins):
63
- margin_x, margin_y = margins
64
- num_ctrl_pts_per_side = num_control_points // 2
65
- ctrl_pts_x = np.linspace(margin_x, 1.0 - margin_x, num_ctrl_pts_per_side)
66
- ctrl_pts_y_top = np.ones(num_ctrl_pts_per_side) * margin_y
67
- ctrl_pts_y_bottom = np.ones(num_ctrl_pts_per_side) * (1.0 - margin_y)
68
- ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
69
- ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
70
- output_ctrl_pts_arr = np.concatenate(
71
- [ctrl_pts_top, ctrl_pts_bottom], axis=0)
72
- output_ctrl_pts = paddle.to_tensor(output_ctrl_pts_arr)
73
- return output_ctrl_pts
74
-
75
-
76
- class TPSSpatialTransformer(nn.Layer):
77
- def __init__(self,
78
- output_image_size=None,
79
- num_control_points=None,
80
- margins=None):
81
- super(TPSSpatialTransformer, self).__init__()
82
- self.output_image_size = output_image_size
83
- self.num_control_points = num_control_points
84
- self.margins = margins
85
-
86
- self.target_height, self.target_width = output_image_size
87
- target_control_points = build_output_control_points(num_control_points,
88
- margins)
89
- N = num_control_points
90
-
91
- # create padded kernel matrix
92
- forward_kernel = paddle.zeros(shape=[N + 3, N + 3])
93
- target_control_partial_repr = compute_partial_repr(
94
- target_control_points, target_control_points)
95
- target_control_partial_repr = paddle.cast(target_control_partial_repr,
96
- forward_kernel.dtype)
97
- forward_kernel[:N, :N] = target_control_partial_repr
98
- forward_kernel[:N, -3] = 1
99
- forward_kernel[-3, :N] = 1
100
- target_control_points = paddle.cast(target_control_points,
101
- forward_kernel.dtype)
102
- forward_kernel[:N, -2:] = target_control_points
103
- forward_kernel[-2:, :N] = paddle.transpose(
104
- target_control_points, perm=[1, 0])
105
- # compute inverse matrix
106
- inverse_kernel = paddle.inverse(forward_kernel)
107
-
108
- # create target cordinate matrix
109
- HW = self.target_height * self.target_width
110
- target_coordinate = list(
111
- itertools.product(
112
- range(self.target_height), range(self.target_width)))
113
- target_coordinate = paddle.to_tensor(target_coordinate) # HW x 2
114
- Y, X = paddle.split(
115
- target_coordinate, target_coordinate.shape[1], axis=1)
116
- Y = Y / (self.target_height - 1)
117
- X = X / (self.target_width - 1)
118
- target_coordinate = paddle.concat(
119
- [X, Y], axis=1) # convert from (y, x) to (x, y)
120
- target_coordinate_partial_repr = compute_partial_repr(
121
- target_coordinate, target_control_points)
122
- target_coordinate_repr = paddle.concat(
123
- [
124
- target_coordinate_partial_repr, paddle.ones(shape=[HW, 1]),
125
- target_coordinate
126
- ],
127
- axis=1)
128
-
129
- # register precomputed matrices
130
- self.inverse_kernel = inverse_kernel
131
- self.padding_matrix = paddle.zeros(shape=[3, 2])
132
- self.target_coordinate_repr = target_coordinate_repr
133
- self.target_control_points = target_control_points
134
-
135
- def forward(self, input, source_control_points):
136
- assert source_control_points.ndimension() == 3
137
- assert source_control_points.shape[1] == self.num_control_points
138
- assert source_control_points.shape[2] == 2
139
- batch_size = paddle.shape(source_control_points)[0]
140
-
141
- self.padding_matrix = paddle.expand(
142
- self.padding_matrix, shape=[batch_size, 3, 2])
143
- Y = paddle.concat([source_control_points, self.padding_matrix], 1)
144
- mapping_matrix = paddle.matmul(self.inverse_kernel, Y)
145
- source_coordinate = paddle.matmul(self.target_coordinate_repr,
146
- mapping_matrix)
147
-
148
- grid = paddle.reshape(
149
- source_coordinate,
150
- shape=[-1, self.target_height, self.target_width, 2])
151
- grid = paddle.clip(grid, 0,
152
- 1) # the source_control_points may be out of [0, 1].
153
- # the input to grid_sample is normalized [-1, 1], but what we get is [0, 1]
154
- grid = 2.0 * grid - 1.0
155
- output_maps = grid_sample(input, grid, canvas=None)
156
- return output_maps, source_coordinate
@@ -1,61 +0,0 @@
1
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from __future__ import absolute_import
16
- from __future__ import division
17
- from __future__ import print_function
18
- from __future__ import unicode_literals
19
- import copy
20
- import paddle
21
-
22
- __all__ = ['build_optimizer']
23
-
24
-
25
- def build_lr_scheduler(lr_config, epochs, step_each_epoch):
26
- from . import learning_rate
27
- lr_config.update({'epochs': epochs, 'step_each_epoch': step_each_epoch})
28
- if 'name' in lr_config:
29
- lr_name = lr_config.pop('name')
30
- lr = getattr(learning_rate, lr_name)(**lr_config)()
31
- else:
32
- lr = lr_config['learning_rate']
33
- return lr
34
-
35
-
36
- def build_optimizer(config, epochs, step_each_epoch, parameters):
37
- from . import regularizer, optimizer
38
- config = copy.deepcopy(config)
39
- # step1 build lr
40
- lr = build_lr_scheduler(config.pop('lr'), epochs, step_each_epoch)
41
-
42
- # step2 build regularization
43
- if 'regularizer' in config and config['regularizer'] is not None:
44
- reg_config = config.pop('regularizer')
45
- reg_name = reg_config.pop('name') + 'Decay'
46
- reg = getattr(regularizer, reg_name)(**reg_config)()
47
- else:
48
- reg = None
49
-
50
- # step3 build optimizer
51
- optim_name = config.pop('name')
52
- if 'clip_norm' in config:
53
- clip_norm = config.pop('clip_norm')
54
- grad_clip = paddle.nn.ClipGradByNorm(clip_norm=clip_norm)
55
- else:
56
- grad_clip = None
57
- optim = getattr(optimizer, optim_name)(learning_rate=lr,
58
- weight_decay=reg,
59
- grad_clip=grad_clip,
60
- **config)
61
- return optim(parameters), lr
@@ -1,228 +0,0 @@
1
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from __future__ import absolute_import
16
- from __future__ import division
17
- from __future__ import print_function
18
- from __future__ import unicode_literals
19
-
20
- from paddle.optimizer import lr
21
- from .lr_scheduler import CyclicalCosineDecay
22
-
23
-
24
- class Linear(object):
25
- """
26
- Linear learning rate decay
27
- Args:
28
- lr (float): The initial learning rate. It is a python float number.
29
- epochs(int): The decay step size. It determines the decay cycle.
30
- end_lr(float, optional): The minimum final learning rate. Default: 0.0001.
31
- power(float, optional): Power of polynomial. Default: 1.0.
32
- last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
33
- """
34
-
35
- def __init__(self,
36
- learning_rate,
37
- epochs,
38
- step_each_epoch,
39
- end_lr=0.0,
40
- power=1.0,
41
- warmup_epoch=0,
42
- last_epoch=-1,
43
- **kwargs):
44
- super(Linear, self).__init__()
45
- self.learning_rate = learning_rate
46
- self.epochs = epochs * step_each_epoch
47
- self.end_lr = end_lr
48
- self.power = power
49
- self.last_epoch = last_epoch
50
- self.warmup_epoch = round(warmup_epoch * step_each_epoch)
51
-
52
- def __call__(self):
53
- learning_rate = lr.PolynomialDecay(
54
- learning_rate=self.learning_rate,
55
- decay_steps=self.epochs,
56
- end_lr=self.end_lr,
57
- power=self.power,
58
- last_epoch=self.last_epoch)
59
- if self.warmup_epoch > 0:
60
- learning_rate = lr.LinearWarmup(
61
- learning_rate=learning_rate,
62
- warmup_steps=self.warmup_epoch,
63
- start_lr=0.0,
64
- end_lr=self.learning_rate,
65
- last_epoch=self.last_epoch)
66
- return learning_rate
67
-
68
-
69
- class Cosine(object):
70
- """
71
- Cosine learning rate decay
72
- lr = 0.05 * (math.cos(epoch * (math.pi / epochs)) + 1)
73
- Args:
74
- lr(float): initial learning rate
75
- step_each_epoch(int): steps each epoch
76
- epochs(int): total training epochs
77
- last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
78
- """
79
-
80
- def __init__(self,
81
- learning_rate,
82
- step_each_epoch,
83
- epochs,
84
- warmup_epoch=0,
85
- last_epoch=-1,
86
- **kwargs):
87
- super(Cosine, self).__init__()
88
- self.learning_rate = learning_rate
89
- self.T_max = step_each_epoch * epochs
90
- self.last_epoch = last_epoch
91
- self.warmup_epoch = round(warmup_epoch * step_each_epoch)
92
-
93
- def __call__(self):
94
- learning_rate = lr.CosineAnnealingDecay(
95
- learning_rate=self.learning_rate,
96
- T_max=self.T_max,
97
- last_epoch=self.last_epoch)
98
- if self.warmup_epoch > 0:
99
- learning_rate = lr.LinearWarmup(
100
- learning_rate=learning_rate,
101
- warmup_steps=self.warmup_epoch,
102
- start_lr=0.0,
103
- end_lr=self.learning_rate,
104
- last_epoch=self.last_epoch)
105
- return learning_rate
106
-
107
-
108
- class Step(object):
109
- """
110
- Piecewise learning rate decay
111
- Args:
112
- step_each_epoch(int): steps each epoch
113
- learning_rate (float): The initial learning rate. It is a python float number.
114
- step_size (int): the interval to update.
115
- gamma (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * gamma`` .
116
- It should be less than 1.0. Default: 0.1.
117
- last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
118
- """
119
-
120
- def __init__(self,
121
- learning_rate,
122
- step_size,
123
- step_each_epoch,
124
- gamma,
125
- warmup_epoch=0,
126
- last_epoch=-1,
127
- **kwargs):
128
- super(Step, self).__init__()
129
- self.step_size = step_each_epoch * step_size
130
- self.learning_rate = learning_rate
131
- self.gamma = gamma
132
- self.last_epoch = last_epoch
133
- self.warmup_epoch = round(warmup_epoch * step_each_epoch)
134
-
135
- def __call__(self):
136
- learning_rate = lr.StepDecay(
137
- learning_rate=self.learning_rate,
138
- step_size=self.step_size,
139
- gamma=self.gamma,
140
- last_epoch=self.last_epoch)
141
- if self.warmup_epoch > 0:
142
- learning_rate = lr.LinearWarmup(
143
- learning_rate=learning_rate,
144
- warmup_steps=self.warmup_epoch,
145
- start_lr=0.0,
146
- end_lr=self.learning_rate,
147
- last_epoch=self.last_epoch)
148
- return learning_rate
149
-
150
-
151
- class Piecewise(object):
152
- """
153
- Piecewise learning rate decay
154
- Args:
155
- boundaries(list): A list of steps numbers. The type of element in the list is python int.
156
- values(list): A list of learning rate values that will be picked during different epoch boundaries.
157
- The type of element in the list is python float.
158
- last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
159
- """
160
-
161
- def __init__(self,
162
- step_each_epoch,
163
- decay_epochs,
164
- values,
165
- warmup_epoch=0,
166
- last_epoch=-1,
167
- **kwargs):
168
- super(Piecewise, self).__init__()
169
- self.boundaries = [step_each_epoch * e for e in decay_epochs]
170
- self.values = values
171
- self.last_epoch = last_epoch
172
- self.warmup_epoch = round(warmup_epoch * step_each_epoch)
173
-
174
- def __call__(self):
175
- learning_rate = lr.PiecewiseDecay(
176
- boundaries=self.boundaries,
177
- values=self.values,
178
- last_epoch=self.last_epoch)
179
- if self.warmup_epoch > 0:
180
- learning_rate = lr.LinearWarmup(
181
- learning_rate=learning_rate,
182
- warmup_steps=self.warmup_epoch,
183
- start_lr=0.0,
184
- end_lr=self.values[0],
185
- last_epoch=self.last_epoch)
186
- return learning_rate
187
-
188
-
189
- class CyclicalCosine(object):
190
- """
191
- Cyclical cosine learning rate decay
192
- Args:
193
- learning_rate(float): initial learning rate
194
- step_each_epoch(int): steps each epoch
195
- epochs(int): total training epochs
196
- cycle(int): period of the cosine learning rate
197
- last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
198
- """
199
-
200
- def __init__(self,
201
- learning_rate,
202
- step_each_epoch,
203
- epochs,
204
- cycle,
205
- warmup_epoch=0,
206
- last_epoch=-1,
207
- **kwargs):
208
- super(CyclicalCosine, self).__init__()
209
- self.learning_rate = learning_rate
210
- self.T_max = step_each_epoch * epochs
211
- self.last_epoch = last_epoch
212
- self.warmup_epoch = round(warmup_epoch * step_each_epoch)
213
- self.cycle = round(cycle * step_each_epoch)
214
-
215
- def __call__(self):
216
- learning_rate = CyclicalCosineDecay(
217
- learning_rate=self.learning_rate,
218
- T_max=self.T_max,
219
- cycle=self.cycle,
220
- last_epoch=self.last_epoch)
221
- if self.warmup_epoch > 0:
222
- learning_rate = lr.LinearWarmup(
223
- learning_rate=learning_rate,
224
- warmup_steps=self.warmup_epoch,
225
- start_lr=0.0,
226
- end_lr=self.learning_rate,
227
- last_epoch=self.last_epoch)
228
- return learning_rate
@@ -1,49 +0,0 @@
1
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- import math
16
- from paddle.optimizer.lr import LRScheduler
17
-
18
-
19
- class CyclicalCosineDecay(LRScheduler):
20
- def __init__(self,
21
- learning_rate,
22
- T_max,
23
- cycle=1,
24
- last_epoch=-1,
25
- eta_min=0.0,
26
- verbose=False):
27
- """
28
- Cyclical cosine learning rate decay
29
- A learning rate which can be referred in https://arxiv.org/pdf/2012.12645.pdf
30
- Args:
31
- learning rate(float): learning rate
32
- T_max(int): maximum epoch num
33
- cycle(int): period of the cosine decay
34
- last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
35
- eta_min(float): minimum learning rate during training
36
- verbose(bool): whether to print learning rate for each epoch
37
- """
38
- super(CyclicalCosineDecay, self).__init__(learning_rate, last_epoch,
39
- verbose)
40
- self.cycle = cycle
41
- self.eta_min = eta_min
42
-
43
- def get_lr(self):
44
- if self.last_epoch == 0:
45
- return self.base_lr
46
- reletive_epoch = self.last_epoch % self.cycle
47
- lr = self.eta_min + 0.5 * (self.base_lr - self.eta_min) * \
48
- (1 + math.cos(math.pi * reletive_epoch / self.cycle))
49
- return lr
@@ -1,160 +0,0 @@
1
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from __future__ import absolute_import
16
- from __future__ import division
17
- from __future__ import print_function
18
- from __future__ import unicode_literals
19
-
20
- from paddle import optimizer as optim
21
-
22
-
23
- class Momentum(object):
24
- """
25
- Simple Momentum optimizer with velocity state.
26
- Args:
27
- learning_rate (float|Variable) - The learning rate used to update parameters.
28
- Can be a float value or a Variable with one float value as data element.
29
- momentum (float) - Momentum factor.
30
- regularization (WeightDecayRegularizer, optional) - The strategy of regularization.
31
- """
32
-
33
- def __init__(self,
34
- learning_rate,
35
- momentum,
36
- weight_decay=None,
37
- grad_clip=None,
38
- **args):
39
- super(Momentum, self).__init__()
40
- self.learning_rate = learning_rate
41
- self.momentum = momentum
42
- self.weight_decay = weight_decay
43
- self.grad_clip = grad_clip
44
-
45
- def __call__(self, parameters):
46
- opt = optim.Momentum(
47
- learning_rate=self.learning_rate,
48
- momentum=self.momentum,
49
- weight_decay=self.weight_decay,
50
- grad_clip=self.grad_clip,
51
- parameters=parameters)
52
- return opt
53
-
54
-
55
- class Adam(object):
56
- def __init__(self,
57
- learning_rate=0.001,
58
- beta1=0.9,
59
- beta2=0.999,
60
- epsilon=1e-08,
61
- parameter_list=None,
62
- weight_decay=None,
63
- grad_clip=None,
64
- name=None,
65
- lazy_mode=False,
66
- **kwargs):
67
- self.learning_rate = learning_rate
68
- self.beta1 = beta1
69
- self.beta2 = beta2
70
- self.epsilon = epsilon
71
- self.parameter_list = parameter_list
72
- self.learning_rate = learning_rate
73
- self.weight_decay = weight_decay
74
- self.grad_clip = grad_clip
75
- self.name = name
76
- self.lazy_mode = lazy_mode
77
-
78
- def __call__(self, parameters):
79
- opt = optim.Adam(
80
- learning_rate=self.learning_rate,
81
- beta1=self.beta1,
82
- beta2=self.beta2,
83
- epsilon=self.epsilon,
84
- weight_decay=self.weight_decay,
85
- grad_clip=self.grad_clip,
86
- name=self.name,
87
- lazy_mode=self.lazy_mode,
88
- parameters=parameters)
89
- return opt
90
-
91
-
92
- class RMSProp(object):
93
- """
94
- Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning rate method.
95
- Args:
96
- learning_rate (float|Variable) - The learning rate used to update parameters.
97
- Can be a float value or a Variable with one float value as data element.
98
- momentum (float) - Momentum factor.
99
- rho (float) - rho value in equation.
100
- epsilon (float) - avoid division by zero, default is 1e-6.
101
- regularization (WeightDecayRegularizer, optional) - The strategy of regularization.
102
- """
103
-
104
- def __init__(self,
105
- learning_rate,
106
- momentum=0.0,
107
- rho=0.95,
108
- epsilon=1e-6,
109
- weight_decay=None,
110
- grad_clip=None,
111
- **args):
112
- super(RMSProp, self).__init__()
113
- self.learning_rate = learning_rate
114
- self.momentum = momentum
115
- self.rho = rho
116
- self.epsilon = epsilon
117
- self.weight_decay = weight_decay
118
- self.grad_clip = grad_clip
119
-
120
- def __call__(self, parameters):
121
- opt = optim.RMSProp(
122
- learning_rate=self.learning_rate,
123
- momentum=self.momentum,
124
- rho=self.rho,
125
- epsilon=self.epsilon,
126
- weight_decay=self.weight_decay,
127
- grad_clip=self.grad_clip,
128
- parameters=parameters)
129
- return opt
130
-
131
-
132
- class Adadelta(object):
133
- def __init__(self,
134
- learning_rate=0.001,
135
- epsilon=1e-08,
136
- rho=0.95,
137
- parameter_list=None,
138
- weight_decay=None,
139
- grad_clip=None,
140
- name=None,
141
- **kwargs):
142
- self.learning_rate = learning_rate
143
- self.epsilon = epsilon
144
- self.rho = rho
145
- self.parameter_list = parameter_list
146
- self.learning_rate = learning_rate
147
- self.weight_decay = weight_decay
148
- self.grad_clip = grad_clip
149
- self.name = name
150
-
151
- def __call__(self, parameters):
152
- opt = optim.Adadelta(
153
- learning_rate=self.learning_rate,
154
- epsilon=self.epsilon,
155
- rho=self.rho,
156
- weight_decay=self.weight_decay,
157
- grad_clip=self.grad_clip,
158
- name=self.name,
159
- parameters=parameters)
160
- return opt