pyxllib 0.3.96__py3-none-any.whl → 0.3.197__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (306) hide show
  1. pyxllib/algo/geo.py +12 -0
  2. pyxllib/algo/intervals.py +1 -1
  3. pyxllib/algo/matcher.py +78 -0
  4. pyxllib/algo/pupil.py +187 -19
  5. pyxllib/algo/specialist.py +2 -1
  6. pyxllib/algo/stat.py +38 -2
  7. {pyxlpr → pyxllib/autogui}/__init__.py +1 -1
  8. pyxllib/autogui/activewin.py +246 -0
  9. pyxllib/autogui/all.py +9 -0
  10. pyxllib/{ext/autogui → autogui}/autogui.py +40 -11
  11. pyxllib/autogui/uiautolib.py +362 -0
  12. pyxllib/autogui/wechat.py +827 -0
  13. pyxllib/autogui/wechat_msg.py +421 -0
  14. pyxllib/autogui/wxautolib.py +84 -0
  15. pyxllib/cv/slidercaptcha.py +137 -0
  16. pyxllib/data/echarts.py +123 -12
  17. pyxllib/data/jsonlib.py +89 -0
  18. pyxllib/data/pglib.py +514 -30
  19. pyxllib/data/sqlite.py +231 -4
  20. pyxllib/ext/JLineViewer.py +14 -1
  21. pyxllib/ext/drissionlib.py +277 -0
  22. pyxllib/ext/kq5034lib.py +0 -1594
  23. pyxllib/ext/robustprocfile.py +497 -0
  24. pyxllib/ext/unixlib.py +6 -5
  25. pyxllib/ext/utools.py +108 -95
  26. pyxllib/ext/webhook.py +32 -14
  27. pyxllib/ext/wjxlib.py +88 -0
  28. pyxllib/ext/wpsapi.py +124 -0
  29. pyxllib/ext/xlwork.py +9 -0
  30. pyxllib/ext/yuquelib.py +1003 -71
  31. pyxllib/file/docxlib.py +1 -1
  32. pyxllib/file/libreoffice.py +165 -0
  33. pyxllib/file/movielib.py +9 -0
  34. pyxllib/file/packlib/__init__.py +112 -75
  35. pyxllib/file/pdflib.py +1 -1
  36. pyxllib/file/pupil.py +1 -1
  37. pyxllib/file/specialist/dirlib.py +1 -1
  38. pyxllib/file/specialist/download.py +10 -3
  39. pyxllib/file/specialist/filelib.py +266 -55
  40. pyxllib/file/xlsxlib.py +205 -50
  41. pyxllib/file/xlsyncfile.py +341 -0
  42. pyxllib/prog/cachetools.py +64 -0
  43. pyxllib/prog/filelock.py +42 -0
  44. pyxllib/prog/multiprogs.py +940 -0
  45. pyxllib/prog/newbie.py +9 -2
  46. pyxllib/prog/pupil.py +129 -60
  47. pyxllib/prog/specialist/__init__.py +176 -2
  48. pyxllib/prog/specialist/bc.py +5 -2
  49. pyxllib/prog/specialist/browser.py +11 -2
  50. pyxllib/prog/specialist/datetime.py +68 -0
  51. pyxllib/prog/specialist/tictoc.py +12 -13
  52. pyxllib/prog/specialist/xllog.py +5 -5
  53. pyxllib/prog/xlosenv.py +7 -0
  54. pyxllib/text/airscript.js +744 -0
  55. pyxllib/text/charclasslib.py +17 -5
  56. pyxllib/text/jiebalib.py +6 -3
  57. pyxllib/text/jinjalib.py +32 -0
  58. pyxllib/text/jsa_ai_prompt.md +271 -0
  59. pyxllib/text/jscode.py +159 -4
  60. pyxllib/text/nestenv.py +1 -1
  61. pyxllib/text/newbie.py +12 -0
  62. pyxllib/text/pupil/common.py +26 -0
  63. pyxllib/text/specialist/ptag.py +2 -2
  64. pyxllib/text/templates/echart_base.html +11 -0
  65. pyxllib/text/templates/highlight_code.html +17 -0
  66. pyxllib/text/templates/latex_editor.html +103 -0
  67. pyxllib/text/xmllib.py +76 -14
  68. pyxllib/xl.py +2 -1
  69. pyxllib-0.3.197.dist-info/METADATA +48 -0
  70. pyxllib-0.3.197.dist-info/RECORD +126 -0
  71. {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info}/WHEEL +1 -2
  72. pyxllib/ext/autogui/__init__.py +0 -8
  73. pyxllib-0.3.96.dist-info/METADATA +0 -51
  74. pyxllib-0.3.96.dist-info/RECORD +0 -333
  75. pyxllib-0.3.96.dist-info/top_level.txt +0 -2
  76. pyxlpr/ai/__init__.py +0 -5
  77. pyxlpr/ai/clientlib.py +0 -1281
  78. pyxlpr/ai/specialist.py +0 -286
  79. pyxlpr/ai/torch_app.py +0 -172
  80. pyxlpr/ai/xlpaddle.py +0 -655
  81. pyxlpr/ai/xltorch.py +0 -705
  82. pyxlpr/data/__init__.py +0 -11
  83. pyxlpr/data/coco.py +0 -1325
  84. pyxlpr/data/datacls.py +0 -365
  85. pyxlpr/data/datasets.py +0 -200
  86. pyxlpr/data/gptlib.py +0 -1291
  87. pyxlpr/data/icdar/__init__.py +0 -96
  88. pyxlpr/data/icdar/deteval.py +0 -377
  89. pyxlpr/data/icdar/icdar2013.py +0 -341
  90. pyxlpr/data/icdar/iou.py +0 -340
  91. pyxlpr/data/icdar/rrc_evaluation_funcs_1_1.py +0 -463
  92. pyxlpr/data/imtextline.py +0 -473
  93. pyxlpr/data/labelme.py +0 -866
  94. pyxlpr/data/removeline.py +0 -179
  95. pyxlpr/data/specialist.py +0 -57
  96. pyxlpr/eval/__init__.py +0 -85
  97. pyxlpr/paddleocr.py +0 -776
  98. pyxlpr/ppocr/__init__.py +0 -15
  99. pyxlpr/ppocr/configs/rec/multi_language/generate_multi_language_configs.py +0 -226
  100. pyxlpr/ppocr/data/__init__.py +0 -135
  101. pyxlpr/ppocr/data/imaug/ColorJitter.py +0 -26
  102. pyxlpr/ppocr/data/imaug/__init__.py +0 -67
  103. pyxlpr/ppocr/data/imaug/copy_paste.py +0 -170
  104. pyxlpr/ppocr/data/imaug/east_process.py +0 -437
  105. pyxlpr/ppocr/data/imaug/gen_table_mask.py +0 -244
  106. pyxlpr/ppocr/data/imaug/iaa_augment.py +0 -114
  107. pyxlpr/ppocr/data/imaug/label_ops.py +0 -789
  108. pyxlpr/ppocr/data/imaug/make_border_map.py +0 -184
  109. pyxlpr/ppocr/data/imaug/make_pse_gt.py +0 -106
  110. pyxlpr/ppocr/data/imaug/make_shrink_map.py +0 -126
  111. pyxlpr/ppocr/data/imaug/operators.py +0 -433
  112. pyxlpr/ppocr/data/imaug/pg_process.py +0 -906
  113. pyxlpr/ppocr/data/imaug/randaugment.py +0 -143
  114. pyxlpr/ppocr/data/imaug/random_crop_data.py +0 -239
  115. pyxlpr/ppocr/data/imaug/rec_img_aug.py +0 -533
  116. pyxlpr/ppocr/data/imaug/sast_process.py +0 -777
  117. pyxlpr/ppocr/data/imaug/text_image_aug/__init__.py +0 -17
  118. pyxlpr/ppocr/data/imaug/text_image_aug/augment.py +0 -120
  119. pyxlpr/ppocr/data/imaug/text_image_aug/warp_mls.py +0 -168
  120. pyxlpr/ppocr/data/lmdb_dataset.py +0 -115
  121. pyxlpr/ppocr/data/pgnet_dataset.py +0 -104
  122. pyxlpr/ppocr/data/pubtab_dataset.py +0 -107
  123. pyxlpr/ppocr/data/simple_dataset.py +0 -372
  124. pyxlpr/ppocr/losses/__init__.py +0 -61
  125. pyxlpr/ppocr/losses/ace_loss.py +0 -52
  126. pyxlpr/ppocr/losses/basic_loss.py +0 -135
  127. pyxlpr/ppocr/losses/center_loss.py +0 -88
  128. pyxlpr/ppocr/losses/cls_loss.py +0 -30
  129. pyxlpr/ppocr/losses/combined_loss.py +0 -67
  130. pyxlpr/ppocr/losses/det_basic_loss.py +0 -208
  131. pyxlpr/ppocr/losses/det_db_loss.py +0 -80
  132. pyxlpr/ppocr/losses/det_east_loss.py +0 -63
  133. pyxlpr/ppocr/losses/det_pse_loss.py +0 -149
  134. pyxlpr/ppocr/losses/det_sast_loss.py +0 -121
  135. pyxlpr/ppocr/losses/distillation_loss.py +0 -272
  136. pyxlpr/ppocr/losses/e2e_pg_loss.py +0 -140
  137. pyxlpr/ppocr/losses/kie_sdmgr_loss.py +0 -113
  138. pyxlpr/ppocr/losses/rec_aster_loss.py +0 -99
  139. pyxlpr/ppocr/losses/rec_att_loss.py +0 -39
  140. pyxlpr/ppocr/losses/rec_ctc_loss.py +0 -44
  141. pyxlpr/ppocr/losses/rec_enhanced_ctc_loss.py +0 -70
  142. pyxlpr/ppocr/losses/rec_nrtr_loss.py +0 -30
  143. pyxlpr/ppocr/losses/rec_sar_loss.py +0 -28
  144. pyxlpr/ppocr/losses/rec_srn_loss.py +0 -47
  145. pyxlpr/ppocr/losses/table_att_loss.py +0 -109
  146. pyxlpr/ppocr/metrics/__init__.py +0 -44
  147. pyxlpr/ppocr/metrics/cls_metric.py +0 -45
  148. pyxlpr/ppocr/metrics/det_metric.py +0 -82
  149. pyxlpr/ppocr/metrics/distillation_metric.py +0 -73
  150. pyxlpr/ppocr/metrics/e2e_metric.py +0 -86
  151. pyxlpr/ppocr/metrics/eval_det_iou.py +0 -274
  152. pyxlpr/ppocr/metrics/kie_metric.py +0 -70
  153. pyxlpr/ppocr/metrics/rec_metric.py +0 -75
  154. pyxlpr/ppocr/metrics/table_metric.py +0 -50
  155. pyxlpr/ppocr/modeling/architectures/__init__.py +0 -32
  156. pyxlpr/ppocr/modeling/architectures/base_model.py +0 -88
  157. pyxlpr/ppocr/modeling/architectures/distillation_model.py +0 -60
  158. pyxlpr/ppocr/modeling/backbones/__init__.py +0 -54
  159. pyxlpr/ppocr/modeling/backbones/det_mobilenet_v3.py +0 -268
  160. pyxlpr/ppocr/modeling/backbones/det_resnet_vd.py +0 -246
  161. pyxlpr/ppocr/modeling/backbones/det_resnet_vd_sast.py +0 -285
  162. pyxlpr/ppocr/modeling/backbones/e2e_resnet_vd_pg.py +0 -265
  163. pyxlpr/ppocr/modeling/backbones/kie_unet_sdmgr.py +0 -186
  164. pyxlpr/ppocr/modeling/backbones/rec_mobilenet_v3.py +0 -138
  165. pyxlpr/ppocr/modeling/backbones/rec_mv1_enhance.py +0 -258
  166. pyxlpr/ppocr/modeling/backbones/rec_nrtr_mtb.py +0 -48
  167. pyxlpr/ppocr/modeling/backbones/rec_resnet_31.py +0 -210
  168. pyxlpr/ppocr/modeling/backbones/rec_resnet_aster.py +0 -143
  169. pyxlpr/ppocr/modeling/backbones/rec_resnet_fpn.py +0 -307
  170. pyxlpr/ppocr/modeling/backbones/rec_resnet_vd.py +0 -286
  171. pyxlpr/ppocr/modeling/heads/__init__.py +0 -54
  172. pyxlpr/ppocr/modeling/heads/cls_head.py +0 -52
  173. pyxlpr/ppocr/modeling/heads/det_db_head.py +0 -118
  174. pyxlpr/ppocr/modeling/heads/det_east_head.py +0 -121
  175. pyxlpr/ppocr/modeling/heads/det_pse_head.py +0 -37
  176. pyxlpr/ppocr/modeling/heads/det_sast_head.py +0 -128
  177. pyxlpr/ppocr/modeling/heads/e2e_pg_head.py +0 -253
  178. pyxlpr/ppocr/modeling/heads/kie_sdmgr_head.py +0 -206
  179. pyxlpr/ppocr/modeling/heads/multiheadAttention.py +0 -163
  180. pyxlpr/ppocr/modeling/heads/rec_aster_head.py +0 -393
  181. pyxlpr/ppocr/modeling/heads/rec_att_head.py +0 -202
  182. pyxlpr/ppocr/modeling/heads/rec_ctc_head.py +0 -88
  183. pyxlpr/ppocr/modeling/heads/rec_nrtr_head.py +0 -826
  184. pyxlpr/ppocr/modeling/heads/rec_sar_head.py +0 -402
  185. pyxlpr/ppocr/modeling/heads/rec_srn_head.py +0 -280
  186. pyxlpr/ppocr/modeling/heads/self_attention.py +0 -406
  187. pyxlpr/ppocr/modeling/heads/table_att_head.py +0 -246
  188. pyxlpr/ppocr/modeling/necks/__init__.py +0 -32
  189. pyxlpr/ppocr/modeling/necks/db_fpn.py +0 -111
  190. pyxlpr/ppocr/modeling/necks/east_fpn.py +0 -188
  191. pyxlpr/ppocr/modeling/necks/fpn.py +0 -138
  192. pyxlpr/ppocr/modeling/necks/pg_fpn.py +0 -314
  193. pyxlpr/ppocr/modeling/necks/rnn.py +0 -92
  194. pyxlpr/ppocr/modeling/necks/sast_fpn.py +0 -284
  195. pyxlpr/ppocr/modeling/necks/table_fpn.py +0 -110
  196. pyxlpr/ppocr/modeling/transforms/__init__.py +0 -28
  197. pyxlpr/ppocr/modeling/transforms/stn.py +0 -135
  198. pyxlpr/ppocr/modeling/transforms/tps.py +0 -308
  199. pyxlpr/ppocr/modeling/transforms/tps_spatial_transformer.py +0 -156
  200. pyxlpr/ppocr/optimizer/__init__.py +0 -61
  201. pyxlpr/ppocr/optimizer/learning_rate.py +0 -228
  202. pyxlpr/ppocr/optimizer/lr_scheduler.py +0 -49
  203. pyxlpr/ppocr/optimizer/optimizer.py +0 -160
  204. pyxlpr/ppocr/optimizer/regularizer.py +0 -52
  205. pyxlpr/ppocr/postprocess/__init__.py +0 -55
  206. pyxlpr/ppocr/postprocess/cls_postprocess.py +0 -33
  207. pyxlpr/ppocr/postprocess/db_postprocess.py +0 -234
  208. pyxlpr/ppocr/postprocess/east_postprocess.py +0 -143
  209. pyxlpr/ppocr/postprocess/locality_aware_nms.py +0 -200
  210. pyxlpr/ppocr/postprocess/pg_postprocess.py +0 -52
  211. pyxlpr/ppocr/postprocess/pse_postprocess/__init__.py +0 -15
  212. pyxlpr/ppocr/postprocess/pse_postprocess/pse/__init__.py +0 -29
  213. pyxlpr/ppocr/postprocess/pse_postprocess/pse/setup.py +0 -14
  214. pyxlpr/ppocr/postprocess/pse_postprocess/pse_postprocess.py +0 -118
  215. pyxlpr/ppocr/postprocess/rec_postprocess.py +0 -654
  216. pyxlpr/ppocr/postprocess/sast_postprocess.py +0 -355
  217. pyxlpr/ppocr/tools/__init__.py +0 -14
  218. pyxlpr/ppocr/tools/eval.py +0 -83
  219. pyxlpr/ppocr/tools/export_center.py +0 -77
  220. pyxlpr/ppocr/tools/export_model.py +0 -129
  221. pyxlpr/ppocr/tools/infer/predict_cls.py +0 -151
  222. pyxlpr/ppocr/tools/infer/predict_det.py +0 -300
  223. pyxlpr/ppocr/tools/infer/predict_e2e.py +0 -169
  224. pyxlpr/ppocr/tools/infer/predict_rec.py +0 -414
  225. pyxlpr/ppocr/tools/infer/predict_system.py +0 -204
  226. pyxlpr/ppocr/tools/infer/utility.py +0 -629
  227. pyxlpr/ppocr/tools/infer_cls.py +0 -83
  228. pyxlpr/ppocr/tools/infer_det.py +0 -134
  229. pyxlpr/ppocr/tools/infer_e2e.py +0 -122
  230. pyxlpr/ppocr/tools/infer_kie.py +0 -153
  231. pyxlpr/ppocr/tools/infer_rec.py +0 -146
  232. pyxlpr/ppocr/tools/infer_table.py +0 -107
  233. pyxlpr/ppocr/tools/program.py +0 -596
  234. pyxlpr/ppocr/tools/test_hubserving.py +0 -117
  235. pyxlpr/ppocr/tools/train.py +0 -163
  236. pyxlpr/ppocr/tools/xlprog.py +0 -748
  237. pyxlpr/ppocr/utils/EN_symbol_dict.txt +0 -94
  238. pyxlpr/ppocr/utils/__init__.py +0 -24
  239. pyxlpr/ppocr/utils/dict/ar_dict.txt +0 -117
  240. pyxlpr/ppocr/utils/dict/arabic_dict.txt +0 -162
  241. pyxlpr/ppocr/utils/dict/be_dict.txt +0 -145
  242. pyxlpr/ppocr/utils/dict/bg_dict.txt +0 -140
  243. pyxlpr/ppocr/utils/dict/chinese_cht_dict.txt +0 -8421
  244. pyxlpr/ppocr/utils/dict/cyrillic_dict.txt +0 -163
  245. pyxlpr/ppocr/utils/dict/devanagari_dict.txt +0 -167
  246. pyxlpr/ppocr/utils/dict/en_dict.txt +0 -63
  247. pyxlpr/ppocr/utils/dict/fa_dict.txt +0 -136
  248. pyxlpr/ppocr/utils/dict/french_dict.txt +0 -136
  249. pyxlpr/ppocr/utils/dict/german_dict.txt +0 -143
  250. pyxlpr/ppocr/utils/dict/hi_dict.txt +0 -162
  251. pyxlpr/ppocr/utils/dict/it_dict.txt +0 -118
  252. pyxlpr/ppocr/utils/dict/japan_dict.txt +0 -4399
  253. pyxlpr/ppocr/utils/dict/ka_dict.txt +0 -153
  254. pyxlpr/ppocr/utils/dict/korean_dict.txt +0 -3688
  255. pyxlpr/ppocr/utils/dict/latin_dict.txt +0 -185
  256. pyxlpr/ppocr/utils/dict/mr_dict.txt +0 -153
  257. pyxlpr/ppocr/utils/dict/ne_dict.txt +0 -153
  258. pyxlpr/ppocr/utils/dict/oc_dict.txt +0 -96
  259. pyxlpr/ppocr/utils/dict/pu_dict.txt +0 -130
  260. pyxlpr/ppocr/utils/dict/rs_dict.txt +0 -91
  261. pyxlpr/ppocr/utils/dict/rsc_dict.txt +0 -134
  262. pyxlpr/ppocr/utils/dict/ru_dict.txt +0 -125
  263. pyxlpr/ppocr/utils/dict/ta_dict.txt +0 -128
  264. pyxlpr/ppocr/utils/dict/table_dict.txt +0 -277
  265. pyxlpr/ppocr/utils/dict/table_structure_dict.txt +0 -2759
  266. pyxlpr/ppocr/utils/dict/te_dict.txt +0 -151
  267. pyxlpr/ppocr/utils/dict/ug_dict.txt +0 -114
  268. pyxlpr/ppocr/utils/dict/uk_dict.txt +0 -142
  269. pyxlpr/ppocr/utils/dict/ur_dict.txt +0 -137
  270. pyxlpr/ppocr/utils/dict/xi_dict.txt +0 -110
  271. pyxlpr/ppocr/utils/dict90.txt +0 -90
  272. pyxlpr/ppocr/utils/e2e_metric/Deteval.py +0 -574
  273. pyxlpr/ppocr/utils/e2e_metric/polygon_fast.py +0 -83
  274. pyxlpr/ppocr/utils/e2e_utils/extract_batchsize.py +0 -87
  275. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_fast.py +0 -457
  276. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_slow.py +0 -592
  277. pyxlpr/ppocr/utils/e2e_utils/pgnet_pp_utils.py +0 -162
  278. pyxlpr/ppocr/utils/e2e_utils/visual.py +0 -162
  279. pyxlpr/ppocr/utils/en_dict.txt +0 -95
  280. pyxlpr/ppocr/utils/gen_label.py +0 -81
  281. pyxlpr/ppocr/utils/ic15_dict.txt +0 -36
  282. pyxlpr/ppocr/utils/iou.py +0 -54
  283. pyxlpr/ppocr/utils/logging.py +0 -69
  284. pyxlpr/ppocr/utils/network.py +0 -84
  285. pyxlpr/ppocr/utils/ppocr_keys_v1.txt +0 -6623
  286. pyxlpr/ppocr/utils/profiler.py +0 -110
  287. pyxlpr/ppocr/utils/save_load.py +0 -150
  288. pyxlpr/ppocr/utils/stats.py +0 -72
  289. pyxlpr/ppocr/utils/utility.py +0 -80
  290. pyxlpr/ppstructure/__init__.py +0 -13
  291. pyxlpr/ppstructure/predict_system.py +0 -187
  292. pyxlpr/ppstructure/table/__init__.py +0 -13
  293. pyxlpr/ppstructure/table/eval_table.py +0 -72
  294. pyxlpr/ppstructure/table/matcher.py +0 -192
  295. pyxlpr/ppstructure/table/predict_structure.py +0 -136
  296. pyxlpr/ppstructure/table/predict_table.py +0 -221
  297. pyxlpr/ppstructure/table/table_metric/__init__.py +0 -16
  298. pyxlpr/ppstructure/table/table_metric/parallel.py +0 -51
  299. pyxlpr/ppstructure/table/table_metric/table_metric.py +0 -247
  300. pyxlpr/ppstructure/table/tablepyxl/__init__.py +0 -13
  301. pyxlpr/ppstructure/table/tablepyxl/style.py +0 -283
  302. pyxlpr/ppstructure/table/tablepyxl/tablepyxl.py +0 -118
  303. pyxlpr/ppstructure/utility.py +0 -71
  304. pyxlpr/xlai.py +0 -10
  305. /pyxllib/{ext/autogui → autogui}/virtualkey.py +0 -0
  306. {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info/licenses}/LICENSE +0 -0
@@ -1,110 +0,0 @@
1
- # copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from __future__ import absolute_import
16
- from __future__ import division
17
- from __future__ import print_function
18
-
19
- import paddle
20
- from paddle import nn
21
- import paddle.nn.functional as F
22
- from paddle import ParamAttr
23
-
24
-
25
- class TableFPN(nn.Layer):
26
- def __init__(self, in_channels, out_channels, **kwargs):
27
- super(TableFPN, self).__init__()
28
- self.out_channels = 512
29
- weight_attr = paddle.nn.initializer.KaimingUniform()
30
- self.in2_conv = nn.Conv2D(
31
- in_channels=in_channels[0],
32
- out_channels=self.out_channels,
33
- kernel_size=1,
34
- weight_attr=ParamAttr(initializer=weight_attr),
35
- bias_attr=False)
36
- self.in3_conv = nn.Conv2D(
37
- in_channels=in_channels[1],
38
- out_channels=self.out_channels,
39
- kernel_size=1,
40
- stride = 1,
41
- weight_attr=ParamAttr(initializer=weight_attr),
42
- bias_attr=False)
43
- self.in4_conv = nn.Conv2D(
44
- in_channels=in_channels[2],
45
- out_channels=self.out_channels,
46
- kernel_size=1,
47
- weight_attr=ParamAttr(initializer=weight_attr),
48
- bias_attr=False)
49
- self.in5_conv = nn.Conv2D(
50
- in_channels=in_channels[3],
51
- out_channels=self.out_channels,
52
- kernel_size=1,
53
- weight_attr=ParamAttr(initializer=weight_attr),
54
- bias_attr=False)
55
- self.p5_conv = nn.Conv2D(
56
- in_channels=self.out_channels,
57
- out_channels=self.out_channels // 4,
58
- kernel_size=3,
59
- padding=1,
60
- weight_attr=ParamAttr(initializer=weight_attr),
61
- bias_attr=False)
62
- self.p4_conv = nn.Conv2D(
63
- in_channels=self.out_channels,
64
- out_channels=self.out_channels // 4,
65
- kernel_size=3,
66
- padding=1,
67
- weight_attr=ParamAttr(initializer=weight_attr),
68
- bias_attr=False)
69
- self.p3_conv = nn.Conv2D(
70
- in_channels=self.out_channels,
71
- out_channels=self.out_channels // 4,
72
- kernel_size=3,
73
- padding=1,
74
- weight_attr=ParamAttr(initializer=weight_attr),
75
- bias_attr=False)
76
- self.p2_conv = nn.Conv2D(
77
- in_channels=self.out_channels,
78
- out_channels=self.out_channels // 4,
79
- kernel_size=3,
80
- padding=1,
81
- weight_attr=ParamAttr(initializer=weight_attr),
82
- bias_attr=False)
83
- self.fuse_conv = nn.Conv2D(
84
- in_channels=self.out_channels * 4,
85
- out_channels=512,
86
- kernel_size=3,
87
- padding=1,
88
- weight_attr=ParamAttr(initializer=weight_attr), bias_attr=False)
89
-
90
- def forward(self, x):
91
- c2, c3, c4, c5 = x
92
-
93
- in5 = self.in5_conv(c5)
94
- in4 = self.in4_conv(c4)
95
- in3 = self.in3_conv(c3)
96
- in2 = self.in2_conv(c2)
97
-
98
- out4 = in4 + F.upsample(
99
- in5, size=in4.shape[2:4], mode="nearest", align_mode=1) # 1/16
100
- out3 = in3 + F.upsample(
101
- out4, size=in3.shape[2:4], mode="nearest", align_mode=1) # 1/8
102
- out2 = in2 + F.upsample(
103
- out3, size=in2.shape[2:4], mode="nearest", align_mode=1) # 1/4
104
-
105
- p4 = F.upsample(out4, size=in5.shape[2:4], mode="nearest", align_mode=1)
106
- p3 = F.upsample(out3, size=in5.shape[2:4], mode="nearest", align_mode=1)
107
- p2 = F.upsample(out2, size=in5.shape[2:4], mode="nearest", align_mode=1)
108
- fuse = paddle.concat([in5, p4, p3, p2], axis=1)
109
- fuse_conv = self.fuse_conv(fuse) * 0.005
110
- return [c5 + fuse_conv]
@@ -1,28 +0,0 @@
1
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- __all__ = ['build_transform']
16
-
17
-
18
- def build_transform(config):
19
- from .tps import TPS
20
- from .stn import STN_ON
21
-
22
- support_dict = ['TPS', 'STN_ON']
23
-
24
- module_name = config.pop('name')
25
- assert module_name in support_dict, Exception(
26
- 'transform only support {}'.format(support_dict))
27
- module_class = eval(module_name)(**config)
28
- return module_class
@@ -1,135 +0,0 @@
1
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- """
15
- This code is refer from:
16
- https://github.com/ayumiymk/aster.pytorch/blob/master/lib/models/stn_head.py
17
- """
18
- from __future__ import absolute_import
19
- from __future__ import division
20
- from __future__ import print_function
21
-
22
- import math
23
- import paddle
24
- from paddle import nn, ParamAttr
25
- from paddle.nn import functional as F
26
- import numpy as np
27
-
28
- from .tps_spatial_transformer import TPSSpatialTransformer
29
-
30
-
31
- def conv3x3_block(in_channels, out_channels, stride=1):
32
- n = 3 * 3 * out_channels
33
- w = math.sqrt(2. / n)
34
- conv_layer = nn.Conv2D(
35
- in_channels,
36
- out_channels,
37
- kernel_size=3,
38
- stride=stride,
39
- padding=1,
40
- weight_attr=nn.initializer.Normal(
41
- mean=0.0, std=w),
42
- bias_attr=nn.initializer.Constant(0))
43
- block = nn.Sequential(conv_layer, nn.BatchNorm2D(out_channels), nn.ReLU())
44
- return block
45
-
46
-
47
- class STN(nn.Layer):
48
- def __init__(self, in_channels, num_ctrlpoints, activation='none'):
49
- super(STN, self).__init__()
50
- self.in_channels = in_channels
51
- self.num_ctrlpoints = num_ctrlpoints
52
- self.activation = activation
53
- self.stn_convnet = nn.Sequential(
54
- conv3x3_block(in_channels, 32), #32x64
55
- nn.MaxPool2D(
56
- kernel_size=2, stride=2),
57
- conv3x3_block(32, 64), #16x32
58
- nn.MaxPool2D(
59
- kernel_size=2, stride=2),
60
- conv3x3_block(64, 128), # 8*16
61
- nn.MaxPool2D(
62
- kernel_size=2, stride=2),
63
- conv3x3_block(128, 256), # 4*8
64
- nn.MaxPool2D(
65
- kernel_size=2, stride=2),
66
- conv3x3_block(256, 256), # 2*4,
67
- nn.MaxPool2D(
68
- kernel_size=2, stride=2),
69
- conv3x3_block(256, 256)) # 1*2
70
- self.stn_fc1 = nn.Sequential(
71
- nn.Linear(
72
- 2 * 256,
73
- 512,
74
- weight_attr=nn.initializer.Normal(0, 0.001),
75
- bias_attr=nn.initializer.Constant(0)),
76
- nn.BatchNorm1D(512),
77
- nn.ReLU())
78
- fc2_bias = self.init_stn()
79
- self.stn_fc2 = nn.Linear(
80
- 512,
81
- num_ctrlpoints * 2,
82
- weight_attr=nn.initializer.Constant(0.0),
83
- bias_attr=nn.initializer.Assign(fc2_bias))
84
-
85
- def init_stn(self):
86
- margin = 0.01
87
- sampling_num_per_side = int(self.num_ctrlpoints / 2)
88
- ctrl_pts_x = np.linspace(margin, 1. - margin, sampling_num_per_side)
89
- ctrl_pts_y_top = np.ones(sampling_num_per_side) * margin
90
- ctrl_pts_y_bottom = np.ones(sampling_num_per_side) * (1 - margin)
91
- ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
92
- ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
93
- ctrl_points = np.concatenate(
94
- [ctrl_pts_top, ctrl_pts_bottom], axis=0).astype(np.float32)
95
- if self.activation == 'none':
96
- pass
97
- elif self.activation == 'sigmoid':
98
- ctrl_points = -np.log(1. / ctrl_points - 1.)
99
- ctrl_points = paddle.to_tensor(ctrl_points)
100
- fc2_bias = paddle.reshape(
101
- ctrl_points, shape=[ctrl_points.shape[0] * ctrl_points.shape[1]])
102
- return fc2_bias
103
-
104
- def forward(self, x):
105
- x = self.stn_convnet(x)
106
- batch_size, _, h, w = x.shape
107
- x = paddle.reshape(x, shape=(batch_size, -1))
108
- img_feat = self.stn_fc1(x)
109
- x = self.stn_fc2(0.1 * img_feat)
110
- if self.activation == 'sigmoid':
111
- x = F.sigmoid(x)
112
- x = paddle.reshape(x, shape=[-1, self.num_ctrlpoints, 2])
113
- return img_feat, x
114
-
115
-
116
- class STN_ON(nn.Layer):
117
- def __init__(self, in_channels, tps_inputsize, tps_outputsize,
118
- num_control_points, tps_margins, stn_activation):
119
- super(STN_ON, self).__init__()
120
- self.tps = TPSSpatialTransformer(
121
- output_image_size=tuple(tps_outputsize),
122
- num_control_points=num_control_points,
123
- margins=tuple(tps_margins))
124
- self.stn_head = STN(in_channels=in_channels,
125
- num_ctrlpoints=num_control_points,
126
- activation=stn_activation)
127
- self.tps_inputsize = tps_inputsize
128
- self.out_channels = in_channels
129
-
130
- def forward(self, image):
131
- stn_input = paddle.nn.functional.interpolate(
132
- image, self.tps_inputsize, mode="bilinear", align_corners=True)
133
- stn_img_feat, ctrl_points = self.stn_head(stn_input)
134
- x, _ = self.tps(image, ctrl_points)
135
- return x
@@ -1,308 +0,0 @@
1
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- """
15
- This code is refer from:
16
- https://github.com/clovaai/deep-text-recognition-benchmark/blob/master/modules/transformation.py
17
- """
18
-
19
- from __future__ import absolute_import
20
- from __future__ import division
21
- from __future__ import print_function
22
-
23
- import math
24
- import paddle
25
- from paddle import nn, ParamAttr
26
- from paddle.nn import functional as F
27
- import numpy as np
28
-
29
-
30
- class ConvBNLayer(nn.Layer):
31
- def __init__(self,
32
- in_channels,
33
- out_channels,
34
- kernel_size,
35
- stride=1,
36
- groups=1,
37
- act=None,
38
- name=None):
39
- super(ConvBNLayer, self).__init__()
40
- self.conv = nn.Conv2D(
41
- in_channels=in_channels,
42
- out_channels=out_channels,
43
- kernel_size=kernel_size,
44
- stride=stride,
45
- padding=(kernel_size - 1) // 2,
46
- groups=groups,
47
- weight_attr=ParamAttr(name=name + "_weights"),
48
- bias_attr=False)
49
- bn_name = "bn_" + name
50
- self.bn = nn.BatchNorm(
51
- out_channels,
52
- act=act,
53
- param_attr=ParamAttr(name=bn_name + '_scale'),
54
- bias_attr=ParamAttr(bn_name + '_offset'),
55
- moving_mean_name=bn_name + '_mean',
56
- moving_variance_name=bn_name + '_variance')
57
-
58
- def forward(self, x):
59
- x = self.conv(x)
60
- x = self.bn(x)
61
- return x
62
-
63
-
64
- class LocalizationNetwork(nn.Layer):
65
- def __init__(self, in_channels, num_fiducial, loc_lr, model_name):
66
- super(LocalizationNetwork, self).__init__()
67
- self.F = num_fiducial
68
- F = num_fiducial
69
- if model_name == "large":
70
- num_filters_list = [64, 128, 256, 512]
71
- fc_dim = 256
72
- else:
73
- num_filters_list = [16, 32, 64, 128]
74
- fc_dim = 64
75
-
76
- self.block_list = []
77
- for fno in range(0, len(num_filters_list)):
78
- num_filters = num_filters_list[fno]
79
- name = "loc_conv%d" % fno
80
- conv = self.add_sublayer(
81
- name,
82
- ConvBNLayer(
83
- in_channels=in_channels,
84
- out_channels=num_filters,
85
- kernel_size=3,
86
- act='relu',
87
- name=name))
88
- self.block_list.append(conv)
89
- if fno == len(num_filters_list) - 1:
90
- pool = nn.AdaptiveAvgPool2D(1)
91
- else:
92
- pool = nn.MaxPool2D(kernel_size=2, stride=2, padding=0)
93
- in_channels = num_filters
94
- self.block_list.append(pool)
95
- name = "loc_fc1"
96
- stdv = 1.0 / math.sqrt(num_filters_list[-1] * 1.0)
97
- self.fc1 = nn.Linear(
98
- in_channels,
99
- fc_dim,
100
- weight_attr=ParamAttr(
101
- learning_rate=loc_lr,
102
- name=name + "_w",
103
- initializer=nn.initializer.Uniform(-stdv, stdv)),
104
- bias_attr=ParamAttr(name=name + '.b_0'),
105
- name=name)
106
-
107
- # Init fc2 in LocalizationNetwork
108
- initial_bias = self.get_initial_fiducials()
109
- initial_bias = initial_bias.reshape(-1)
110
- name = "loc_fc2"
111
- param_attr = ParamAttr(
112
- learning_rate=loc_lr,
113
- initializer=nn.initializer.Assign(np.zeros([fc_dim, F * 2])),
114
- name=name + "_w")
115
- bias_attr = ParamAttr(
116
- learning_rate=loc_lr,
117
- initializer=nn.initializer.Assign(initial_bias),
118
- name=name + "_b")
119
- self.fc2 = nn.Linear(
120
- fc_dim,
121
- F * 2,
122
- weight_attr=param_attr,
123
- bias_attr=bias_attr,
124
- name=name)
125
- self.out_channels = F * 2
126
-
127
- def forward(self, x):
128
- """
129
- Estimating parameters of geometric transformation
130
- Args:
131
- image: input
132
- Return:
133
- batch_C_prime: the matrix of the geometric transformation
134
- """
135
- B = x.shape[0]
136
- i = 0
137
- for block in self.block_list:
138
- x = block(x)
139
- x = x.squeeze(axis=2).squeeze(axis=2)
140
- x = self.fc1(x)
141
-
142
- x = F.relu(x)
143
- x = self.fc2(x)
144
- x = x.reshape(shape=[-1, self.F, 2])
145
- return x
146
-
147
- def get_initial_fiducials(self):
148
- """ see RARE paper Fig. 6 (a) """
149
- F = self.F
150
- ctrl_pts_x = np.linspace(-1.0, 1.0, int(F / 2))
151
- ctrl_pts_y_top = np.linspace(0.0, -1.0, num=int(F / 2))
152
- ctrl_pts_y_bottom = np.linspace(1.0, 0.0, num=int(F / 2))
153
- ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
154
- ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
155
- initial_bias = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0)
156
- return initial_bias
157
-
158
-
159
- class GridGenerator(nn.Layer):
160
- def __init__(self, in_channels, num_fiducial):
161
- super(GridGenerator, self).__init__()
162
- self.eps = 1e-6
163
- self.F = num_fiducial
164
-
165
- name = "ex_fc"
166
- initializer = nn.initializer.Constant(value=0.0)
167
- param_attr = ParamAttr(
168
- learning_rate=0.0, initializer=initializer, name=name + "_w")
169
- bias_attr = ParamAttr(
170
- learning_rate=0.0, initializer=initializer, name=name + "_b")
171
- self.fc = nn.Linear(
172
- in_channels,
173
- 6,
174
- weight_attr=param_attr,
175
- bias_attr=bias_attr,
176
- name=name)
177
-
178
- def forward(self, batch_C_prime, I_r_size):
179
- """
180
- Generate the grid for the grid_sampler.
181
- Args:
182
- batch_C_prime: the matrix of the geometric transformation
183
- I_r_size: the shape of the input image
184
- Return:
185
- batch_P_prime: the grid for the grid_sampler
186
- """
187
- C = self.build_C_paddle()
188
- P = self.build_P_paddle(I_r_size)
189
-
190
- inv_delta_C_tensor = self.build_inv_delta_C_paddle(C).astype('float32')
191
- P_hat_tensor = self.build_P_hat_paddle(
192
- C, paddle.to_tensor(P)).astype('float32')
193
-
194
- inv_delta_C_tensor.stop_gradient = True
195
- P_hat_tensor.stop_gradient = True
196
-
197
- batch_C_ex_part_tensor = self.get_expand_tensor(batch_C_prime)
198
-
199
- batch_C_ex_part_tensor.stop_gradient = True
200
-
201
- batch_C_prime_with_zeros = paddle.concat(
202
- [batch_C_prime, batch_C_ex_part_tensor], axis=1)
203
- batch_T = paddle.matmul(inv_delta_C_tensor, batch_C_prime_with_zeros)
204
- batch_P_prime = paddle.matmul(P_hat_tensor, batch_T)
205
- return batch_P_prime
206
-
207
- def build_C_paddle(self):
208
- """ Return coordinates of fiducial points in I_r; C """
209
- F = self.F
210
- ctrl_pts_x = paddle.linspace(-1.0, 1.0, int(F / 2), dtype='float64')
211
- ctrl_pts_y_top = -1 * paddle.ones([int(F / 2)], dtype='float64')
212
- ctrl_pts_y_bottom = paddle.ones([int(F / 2)], dtype='float64')
213
- ctrl_pts_top = paddle.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
214
- ctrl_pts_bottom = paddle.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
215
- C = paddle.concat([ctrl_pts_top, ctrl_pts_bottom], axis=0)
216
- return C # F x 2
217
-
218
- def build_P_paddle(self, I_r_size):
219
- I_r_height, I_r_width = I_r_size
220
- I_r_grid_x = (paddle.arange(
221
- -I_r_width, I_r_width, 2, dtype='float64') + 1.0
222
- ) / paddle.to_tensor(np.array([I_r_width]))
223
-
224
- I_r_grid_y = (paddle.arange(
225
- -I_r_height, I_r_height, 2, dtype='float64') + 1.0
226
- ) / paddle.to_tensor(np.array([I_r_height]))
227
-
228
- # P: self.I_r_width x self.I_r_height x 2
229
- P = paddle.stack(paddle.meshgrid(I_r_grid_x, I_r_grid_y), axis=2)
230
- P = paddle.transpose(P, perm=[1, 0, 2])
231
- # n (= self.I_r_width x self.I_r_height) x 2
232
- return P.reshape([-1, 2])
233
-
234
- def build_inv_delta_C_paddle(self, C):
235
- """ Return inv_delta_C which is needed to calculate T """
236
- F = self.F
237
- hat_eye = paddle.eye(F, dtype='float64') # F x F
238
- hat_C = paddle.norm(
239
- C.reshape([1, F, 2]) - C.reshape([F, 1, 2]), axis=2) + hat_eye
240
- hat_C = (hat_C**2) * paddle.log(hat_C)
241
- delta_C = paddle.concat( # F+3 x F+3
242
- [
243
- paddle.concat(
244
- [paddle.ones(
245
- (F, 1), dtype='float64'), C, hat_C], axis=1), # F x F+3
246
- paddle.concat(
247
- [
248
- paddle.zeros(
249
- (2, 3), dtype='float64'), paddle.transpose(
250
- C, perm=[1, 0])
251
- ],
252
- axis=1), # 2 x F+3
253
- paddle.concat(
254
- [
255
- paddle.zeros(
256
- (1, 3), dtype='float64'), paddle.ones(
257
- (1, F), dtype='float64')
258
- ],
259
- axis=1) # 1 x F+3
260
- ],
261
- axis=0)
262
- inv_delta_C = paddle.inverse(delta_C)
263
- return inv_delta_C # F+3 x F+3
264
-
265
- def build_P_hat_paddle(self, C, P):
266
- F = self.F
267
- eps = self.eps
268
- n = P.shape[0] # n (= self.I_r_width x self.I_r_height)
269
- # P_tile: n x 2 -> n x 1 x 2 -> n x F x 2
270
- P_tile = paddle.tile(paddle.unsqueeze(P, axis=1), (1, F, 1))
271
- C_tile = paddle.unsqueeze(C, axis=0) # 1 x F x 2
272
- P_diff = P_tile - C_tile # n x F x 2
273
- # rbf_norm: n x F
274
- rbf_norm = paddle.norm(P_diff, p=2, axis=2, keepdim=False)
275
-
276
- # rbf: n x F
277
- rbf = paddle.multiply(
278
- paddle.square(rbf_norm), paddle.log(rbf_norm + eps))
279
- P_hat = paddle.concat(
280
- [paddle.ones(
281
- (n, 1), dtype='float64'), P, rbf], axis=1)
282
- return P_hat # n x F+3
283
-
284
- def get_expand_tensor(self, batch_C_prime):
285
- B, H, C = batch_C_prime.shape
286
- batch_C_prime = batch_C_prime.reshape([B, H * C])
287
- batch_C_ex_part_tensor = self.fc(batch_C_prime)
288
- batch_C_ex_part_tensor = batch_C_ex_part_tensor.reshape([-1, 3, 2])
289
- return batch_C_ex_part_tensor
290
-
291
-
292
- class TPS(nn.Layer):
293
- def __init__(self, in_channels, num_fiducial, loc_lr, model_name):
294
- super(TPS, self).__init__()
295
- self.loc_net = LocalizationNetwork(in_channels, num_fiducial, loc_lr,
296
- model_name)
297
- self.grid_generator = GridGenerator(self.loc_net.out_channels,
298
- num_fiducial)
299
- self.out_channels = in_channels
300
-
301
- def forward(self, image):
302
- image.stop_gradient = False
303
- batch_C_prime = self.loc_net(image)
304
- batch_P_prime = self.grid_generator(batch_C_prime, image.shape[2:])
305
- batch_P_prime = batch_P_prime.reshape(
306
- [-1, image.shape[2], image.shape[3], 2])
307
- batch_I_r = F.grid_sample(x=image, grid=batch_P_prime)
308
- return batch_I_r