pyxllib 0.3.96__py3-none-any.whl → 0.3.197__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (306) hide show
  1. pyxllib/algo/geo.py +12 -0
  2. pyxllib/algo/intervals.py +1 -1
  3. pyxllib/algo/matcher.py +78 -0
  4. pyxllib/algo/pupil.py +187 -19
  5. pyxllib/algo/specialist.py +2 -1
  6. pyxllib/algo/stat.py +38 -2
  7. {pyxlpr → pyxllib/autogui}/__init__.py +1 -1
  8. pyxllib/autogui/activewin.py +246 -0
  9. pyxllib/autogui/all.py +9 -0
  10. pyxllib/{ext/autogui → autogui}/autogui.py +40 -11
  11. pyxllib/autogui/uiautolib.py +362 -0
  12. pyxllib/autogui/wechat.py +827 -0
  13. pyxllib/autogui/wechat_msg.py +421 -0
  14. pyxllib/autogui/wxautolib.py +84 -0
  15. pyxllib/cv/slidercaptcha.py +137 -0
  16. pyxllib/data/echarts.py +123 -12
  17. pyxllib/data/jsonlib.py +89 -0
  18. pyxllib/data/pglib.py +514 -30
  19. pyxllib/data/sqlite.py +231 -4
  20. pyxllib/ext/JLineViewer.py +14 -1
  21. pyxllib/ext/drissionlib.py +277 -0
  22. pyxllib/ext/kq5034lib.py +0 -1594
  23. pyxllib/ext/robustprocfile.py +497 -0
  24. pyxllib/ext/unixlib.py +6 -5
  25. pyxllib/ext/utools.py +108 -95
  26. pyxllib/ext/webhook.py +32 -14
  27. pyxllib/ext/wjxlib.py +88 -0
  28. pyxllib/ext/wpsapi.py +124 -0
  29. pyxllib/ext/xlwork.py +9 -0
  30. pyxllib/ext/yuquelib.py +1003 -71
  31. pyxllib/file/docxlib.py +1 -1
  32. pyxllib/file/libreoffice.py +165 -0
  33. pyxllib/file/movielib.py +9 -0
  34. pyxllib/file/packlib/__init__.py +112 -75
  35. pyxllib/file/pdflib.py +1 -1
  36. pyxllib/file/pupil.py +1 -1
  37. pyxllib/file/specialist/dirlib.py +1 -1
  38. pyxllib/file/specialist/download.py +10 -3
  39. pyxllib/file/specialist/filelib.py +266 -55
  40. pyxllib/file/xlsxlib.py +205 -50
  41. pyxllib/file/xlsyncfile.py +341 -0
  42. pyxllib/prog/cachetools.py +64 -0
  43. pyxllib/prog/filelock.py +42 -0
  44. pyxllib/prog/multiprogs.py +940 -0
  45. pyxllib/prog/newbie.py +9 -2
  46. pyxllib/prog/pupil.py +129 -60
  47. pyxllib/prog/specialist/__init__.py +176 -2
  48. pyxllib/prog/specialist/bc.py +5 -2
  49. pyxllib/prog/specialist/browser.py +11 -2
  50. pyxllib/prog/specialist/datetime.py +68 -0
  51. pyxllib/prog/specialist/tictoc.py +12 -13
  52. pyxllib/prog/specialist/xllog.py +5 -5
  53. pyxllib/prog/xlosenv.py +7 -0
  54. pyxllib/text/airscript.js +744 -0
  55. pyxllib/text/charclasslib.py +17 -5
  56. pyxllib/text/jiebalib.py +6 -3
  57. pyxllib/text/jinjalib.py +32 -0
  58. pyxllib/text/jsa_ai_prompt.md +271 -0
  59. pyxllib/text/jscode.py +159 -4
  60. pyxllib/text/nestenv.py +1 -1
  61. pyxllib/text/newbie.py +12 -0
  62. pyxllib/text/pupil/common.py +26 -0
  63. pyxllib/text/specialist/ptag.py +2 -2
  64. pyxllib/text/templates/echart_base.html +11 -0
  65. pyxllib/text/templates/highlight_code.html +17 -0
  66. pyxllib/text/templates/latex_editor.html +103 -0
  67. pyxllib/text/xmllib.py +76 -14
  68. pyxllib/xl.py +2 -1
  69. pyxllib-0.3.197.dist-info/METADATA +48 -0
  70. pyxllib-0.3.197.dist-info/RECORD +126 -0
  71. {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info}/WHEEL +1 -2
  72. pyxllib/ext/autogui/__init__.py +0 -8
  73. pyxllib-0.3.96.dist-info/METADATA +0 -51
  74. pyxllib-0.3.96.dist-info/RECORD +0 -333
  75. pyxllib-0.3.96.dist-info/top_level.txt +0 -2
  76. pyxlpr/ai/__init__.py +0 -5
  77. pyxlpr/ai/clientlib.py +0 -1281
  78. pyxlpr/ai/specialist.py +0 -286
  79. pyxlpr/ai/torch_app.py +0 -172
  80. pyxlpr/ai/xlpaddle.py +0 -655
  81. pyxlpr/ai/xltorch.py +0 -705
  82. pyxlpr/data/__init__.py +0 -11
  83. pyxlpr/data/coco.py +0 -1325
  84. pyxlpr/data/datacls.py +0 -365
  85. pyxlpr/data/datasets.py +0 -200
  86. pyxlpr/data/gptlib.py +0 -1291
  87. pyxlpr/data/icdar/__init__.py +0 -96
  88. pyxlpr/data/icdar/deteval.py +0 -377
  89. pyxlpr/data/icdar/icdar2013.py +0 -341
  90. pyxlpr/data/icdar/iou.py +0 -340
  91. pyxlpr/data/icdar/rrc_evaluation_funcs_1_1.py +0 -463
  92. pyxlpr/data/imtextline.py +0 -473
  93. pyxlpr/data/labelme.py +0 -866
  94. pyxlpr/data/removeline.py +0 -179
  95. pyxlpr/data/specialist.py +0 -57
  96. pyxlpr/eval/__init__.py +0 -85
  97. pyxlpr/paddleocr.py +0 -776
  98. pyxlpr/ppocr/__init__.py +0 -15
  99. pyxlpr/ppocr/configs/rec/multi_language/generate_multi_language_configs.py +0 -226
  100. pyxlpr/ppocr/data/__init__.py +0 -135
  101. pyxlpr/ppocr/data/imaug/ColorJitter.py +0 -26
  102. pyxlpr/ppocr/data/imaug/__init__.py +0 -67
  103. pyxlpr/ppocr/data/imaug/copy_paste.py +0 -170
  104. pyxlpr/ppocr/data/imaug/east_process.py +0 -437
  105. pyxlpr/ppocr/data/imaug/gen_table_mask.py +0 -244
  106. pyxlpr/ppocr/data/imaug/iaa_augment.py +0 -114
  107. pyxlpr/ppocr/data/imaug/label_ops.py +0 -789
  108. pyxlpr/ppocr/data/imaug/make_border_map.py +0 -184
  109. pyxlpr/ppocr/data/imaug/make_pse_gt.py +0 -106
  110. pyxlpr/ppocr/data/imaug/make_shrink_map.py +0 -126
  111. pyxlpr/ppocr/data/imaug/operators.py +0 -433
  112. pyxlpr/ppocr/data/imaug/pg_process.py +0 -906
  113. pyxlpr/ppocr/data/imaug/randaugment.py +0 -143
  114. pyxlpr/ppocr/data/imaug/random_crop_data.py +0 -239
  115. pyxlpr/ppocr/data/imaug/rec_img_aug.py +0 -533
  116. pyxlpr/ppocr/data/imaug/sast_process.py +0 -777
  117. pyxlpr/ppocr/data/imaug/text_image_aug/__init__.py +0 -17
  118. pyxlpr/ppocr/data/imaug/text_image_aug/augment.py +0 -120
  119. pyxlpr/ppocr/data/imaug/text_image_aug/warp_mls.py +0 -168
  120. pyxlpr/ppocr/data/lmdb_dataset.py +0 -115
  121. pyxlpr/ppocr/data/pgnet_dataset.py +0 -104
  122. pyxlpr/ppocr/data/pubtab_dataset.py +0 -107
  123. pyxlpr/ppocr/data/simple_dataset.py +0 -372
  124. pyxlpr/ppocr/losses/__init__.py +0 -61
  125. pyxlpr/ppocr/losses/ace_loss.py +0 -52
  126. pyxlpr/ppocr/losses/basic_loss.py +0 -135
  127. pyxlpr/ppocr/losses/center_loss.py +0 -88
  128. pyxlpr/ppocr/losses/cls_loss.py +0 -30
  129. pyxlpr/ppocr/losses/combined_loss.py +0 -67
  130. pyxlpr/ppocr/losses/det_basic_loss.py +0 -208
  131. pyxlpr/ppocr/losses/det_db_loss.py +0 -80
  132. pyxlpr/ppocr/losses/det_east_loss.py +0 -63
  133. pyxlpr/ppocr/losses/det_pse_loss.py +0 -149
  134. pyxlpr/ppocr/losses/det_sast_loss.py +0 -121
  135. pyxlpr/ppocr/losses/distillation_loss.py +0 -272
  136. pyxlpr/ppocr/losses/e2e_pg_loss.py +0 -140
  137. pyxlpr/ppocr/losses/kie_sdmgr_loss.py +0 -113
  138. pyxlpr/ppocr/losses/rec_aster_loss.py +0 -99
  139. pyxlpr/ppocr/losses/rec_att_loss.py +0 -39
  140. pyxlpr/ppocr/losses/rec_ctc_loss.py +0 -44
  141. pyxlpr/ppocr/losses/rec_enhanced_ctc_loss.py +0 -70
  142. pyxlpr/ppocr/losses/rec_nrtr_loss.py +0 -30
  143. pyxlpr/ppocr/losses/rec_sar_loss.py +0 -28
  144. pyxlpr/ppocr/losses/rec_srn_loss.py +0 -47
  145. pyxlpr/ppocr/losses/table_att_loss.py +0 -109
  146. pyxlpr/ppocr/metrics/__init__.py +0 -44
  147. pyxlpr/ppocr/metrics/cls_metric.py +0 -45
  148. pyxlpr/ppocr/metrics/det_metric.py +0 -82
  149. pyxlpr/ppocr/metrics/distillation_metric.py +0 -73
  150. pyxlpr/ppocr/metrics/e2e_metric.py +0 -86
  151. pyxlpr/ppocr/metrics/eval_det_iou.py +0 -274
  152. pyxlpr/ppocr/metrics/kie_metric.py +0 -70
  153. pyxlpr/ppocr/metrics/rec_metric.py +0 -75
  154. pyxlpr/ppocr/metrics/table_metric.py +0 -50
  155. pyxlpr/ppocr/modeling/architectures/__init__.py +0 -32
  156. pyxlpr/ppocr/modeling/architectures/base_model.py +0 -88
  157. pyxlpr/ppocr/modeling/architectures/distillation_model.py +0 -60
  158. pyxlpr/ppocr/modeling/backbones/__init__.py +0 -54
  159. pyxlpr/ppocr/modeling/backbones/det_mobilenet_v3.py +0 -268
  160. pyxlpr/ppocr/modeling/backbones/det_resnet_vd.py +0 -246
  161. pyxlpr/ppocr/modeling/backbones/det_resnet_vd_sast.py +0 -285
  162. pyxlpr/ppocr/modeling/backbones/e2e_resnet_vd_pg.py +0 -265
  163. pyxlpr/ppocr/modeling/backbones/kie_unet_sdmgr.py +0 -186
  164. pyxlpr/ppocr/modeling/backbones/rec_mobilenet_v3.py +0 -138
  165. pyxlpr/ppocr/modeling/backbones/rec_mv1_enhance.py +0 -258
  166. pyxlpr/ppocr/modeling/backbones/rec_nrtr_mtb.py +0 -48
  167. pyxlpr/ppocr/modeling/backbones/rec_resnet_31.py +0 -210
  168. pyxlpr/ppocr/modeling/backbones/rec_resnet_aster.py +0 -143
  169. pyxlpr/ppocr/modeling/backbones/rec_resnet_fpn.py +0 -307
  170. pyxlpr/ppocr/modeling/backbones/rec_resnet_vd.py +0 -286
  171. pyxlpr/ppocr/modeling/heads/__init__.py +0 -54
  172. pyxlpr/ppocr/modeling/heads/cls_head.py +0 -52
  173. pyxlpr/ppocr/modeling/heads/det_db_head.py +0 -118
  174. pyxlpr/ppocr/modeling/heads/det_east_head.py +0 -121
  175. pyxlpr/ppocr/modeling/heads/det_pse_head.py +0 -37
  176. pyxlpr/ppocr/modeling/heads/det_sast_head.py +0 -128
  177. pyxlpr/ppocr/modeling/heads/e2e_pg_head.py +0 -253
  178. pyxlpr/ppocr/modeling/heads/kie_sdmgr_head.py +0 -206
  179. pyxlpr/ppocr/modeling/heads/multiheadAttention.py +0 -163
  180. pyxlpr/ppocr/modeling/heads/rec_aster_head.py +0 -393
  181. pyxlpr/ppocr/modeling/heads/rec_att_head.py +0 -202
  182. pyxlpr/ppocr/modeling/heads/rec_ctc_head.py +0 -88
  183. pyxlpr/ppocr/modeling/heads/rec_nrtr_head.py +0 -826
  184. pyxlpr/ppocr/modeling/heads/rec_sar_head.py +0 -402
  185. pyxlpr/ppocr/modeling/heads/rec_srn_head.py +0 -280
  186. pyxlpr/ppocr/modeling/heads/self_attention.py +0 -406
  187. pyxlpr/ppocr/modeling/heads/table_att_head.py +0 -246
  188. pyxlpr/ppocr/modeling/necks/__init__.py +0 -32
  189. pyxlpr/ppocr/modeling/necks/db_fpn.py +0 -111
  190. pyxlpr/ppocr/modeling/necks/east_fpn.py +0 -188
  191. pyxlpr/ppocr/modeling/necks/fpn.py +0 -138
  192. pyxlpr/ppocr/modeling/necks/pg_fpn.py +0 -314
  193. pyxlpr/ppocr/modeling/necks/rnn.py +0 -92
  194. pyxlpr/ppocr/modeling/necks/sast_fpn.py +0 -284
  195. pyxlpr/ppocr/modeling/necks/table_fpn.py +0 -110
  196. pyxlpr/ppocr/modeling/transforms/__init__.py +0 -28
  197. pyxlpr/ppocr/modeling/transforms/stn.py +0 -135
  198. pyxlpr/ppocr/modeling/transforms/tps.py +0 -308
  199. pyxlpr/ppocr/modeling/transforms/tps_spatial_transformer.py +0 -156
  200. pyxlpr/ppocr/optimizer/__init__.py +0 -61
  201. pyxlpr/ppocr/optimizer/learning_rate.py +0 -228
  202. pyxlpr/ppocr/optimizer/lr_scheduler.py +0 -49
  203. pyxlpr/ppocr/optimizer/optimizer.py +0 -160
  204. pyxlpr/ppocr/optimizer/regularizer.py +0 -52
  205. pyxlpr/ppocr/postprocess/__init__.py +0 -55
  206. pyxlpr/ppocr/postprocess/cls_postprocess.py +0 -33
  207. pyxlpr/ppocr/postprocess/db_postprocess.py +0 -234
  208. pyxlpr/ppocr/postprocess/east_postprocess.py +0 -143
  209. pyxlpr/ppocr/postprocess/locality_aware_nms.py +0 -200
  210. pyxlpr/ppocr/postprocess/pg_postprocess.py +0 -52
  211. pyxlpr/ppocr/postprocess/pse_postprocess/__init__.py +0 -15
  212. pyxlpr/ppocr/postprocess/pse_postprocess/pse/__init__.py +0 -29
  213. pyxlpr/ppocr/postprocess/pse_postprocess/pse/setup.py +0 -14
  214. pyxlpr/ppocr/postprocess/pse_postprocess/pse_postprocess.py +0 -118
  215. pyxlpr/ppocr/postprocess/rec_postprocess.py +0 -654
  216. pyxlpr/ppocr/postprocess/sast_postprocess.py +0 -355
  217. pyxlpr/ppocr/tools/__init__.py +0 -14
  218. pyxlpr/ppocr/tools/eval.py +0 -83
  219. pyxlpr/ppocr/tools/export_center.py +0 -77
  220. pyxlpr/ppocr/tools/export_model.py +0 -129
  221. pyxlpr/ppocr/tools/infer/predict_cls.py +0 -151
  222. pyxlpr/ppocr/tools/infer/predict_det.py +0 -300
  223. pyxlpr/ppocr/tools/infer/predict_e2e.py +0 -169
  224. pyxlpr/ppocr/tools/infer/predict_rec.py +0 -414
  225. pyxlpr/ppocr/tools/infer/predict_system.py +0 -204
  226. pyxlpr/ppocr/tools/infer/utility.py +0 -629
  227. pyxlpr/ppocr/tools/infer_cls.py +0 -83
  228. pyxlpr/ppocr/tools/infer_det.py +0 -134
  229. pyxlpr/ppocr/tools/infer_e2e.py +0 -122
  230. pyxlpr/ppocr/tools/infer_kie.py +0 -153
  231. pyxlpr/ppocr/tools/infer_rec.py +0 -146
  232. pyxlpr/ppocr/tools/infer_table.py +0 -107
  233. pyxlpr/ppocr/tools/program.py +0 -596
  234. pyxlpr/ppocr/tools/test_hubserving.py +0 -117
  235. pyxlpr/ppocr/tools/train.py +0 -163
  236. pyxlpr/ppocr/tools/xlprog.py +0 -748
  237. pyxlpr/ppocr/utils/EN_symbol_dict.txt +0 -94
  238. pyxlpr/ppocr/utils/__init__.py +0 -24
  239. pyxlpr/ppocr/utils/dict/ar_dict.txt +0 -117
  240. pyxlpr/ppocr/utils/dict/arabic_dict.txt +0 -162
  241. pyxlpr/ppocr/utils/dict/be_dict.txt +0 -145
  242. pyxlpr/ppocr/utils/dict/bg_dict.txt +0 -140
  243. pyxlpr/ppocr/utils/dict/chinese_cht_dict.txt +0 -8421
  244. pyxlpr/ppocr/utils/dict/cyrillic_dict.txt +0 -163
  245. pyxlpr/ppocr/utils/dict/devanagari_dict.txt +0 -167
  246. pyxlpr/ppocr/utils/dict/en_dict.txt +0 -63
  247. pyxlpr/ppocr/utils/dict/fa_dict.txt +0 -136
  248. pyxlpr/ppocr/utils/dict/french_dict.txt +0 -136
  249. pyxlpr/ppocr/utils/dict/german_dict.txt +0 -143
  250. pyxlpr/ppocr/utils/dict/hi_dict.txt +0 -162
  251. pyxlpr/ppocr/utils/dict/it_dict.txt +0 -118
  252. pyxlpr/ppocr/utils/dict/japan_dict.txt +0 -4399
  253. pyxlpr/ppocr/utils/dict/ka_dict.txt +0 -153
  254. pyxlpr/ppocr/utils/dict/korean_dict.txt +0 -3688
  255. pyxlpr/ppocr/utils/dict/latin_dict.txt +0 -185
  256. pyxlpr/ppocr/utils/dict/mr_dict.txt +0 -153
  257. pyxlpr/ppocr/utils/dict/ne_dict.txt +0 -153
  258. pyxlpr/ppocr/utils/dict/oc_dict.txt +0 -96
  259. pyxlpr/ppocr/utils/dict/pu_dict.txt +0 -130
  260. pyxlpr/ppocr/utils/dict/rs_dict.txt +0 -91
  261. pyxlpr/ppocr/utils/dict/rsc_dict.txt +0 -134
  262. pyxlpr/ppocr/utils/dict/ru_dict.txt +0 -125
  263. pyxlpr/ppocr/utils/dict/ta_dict.txt +0 -128
  264. pyxlpr/ppocr/utils/dict/table_dict.txt +0 -277
  265. pyxlpr/ppocr/utils/dict/table_structure_dict.txt +0 -2759
  266. pyxlpr/ppocr/utils/dict/te_dict.txt +0 -151
  267. pyxlpr/ppocr/utils/dict/ug_dict.txt +0 -114
  268. pyxlpr/ppocr/utils/dict/uk_dict.txt +0 -142
  269. pyxlpr/ppocr/utils/dict/ur_dict.txt +0 -137
  270. pyxlpr/ppocr/utils/dict/xi_dict.txt +0 -110
  271. pyxlpr/ppocr/utils/dict90.txt +0 -90
  272. pyxlpr/ppocr/utils/e2e_metric/Deteval.py +0 -574
  273. pyxlpr/ppocr/utils/e2e_metric/polygon_fast.py +0 -83
  274. pyxlpr/ppocr/utils/e2e_utils/extract_batchsize.py +0 -87
  275. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_fast.py +0 -457
  276. pyxlpr/ppocr/utils/e2e_utils/extract_textpoint_slow.py +0 -592
  277. pyxlpr/ppocr/utils/e2e_utils/pgnet_pp_utils.py +0 -162
  278. pyxlpr/ppocr/utils/e2e_utils/visual.py +0 -162
  279. pyxlpr/ppocr/utils/en_dict.txt +0 -95
  280. pyxlpr/ppocr/utils/gen_label.py +0 -81
  281. pyxlpr/ppocr/utils/ic15_dict.txt +0 -36
  282. pyxlpr/ppocr/utils/iou.py +0 -54
  283. pyxlpr/ppocr/utils/logging.py +0 -69
  284. pyxlpr/ppocr/utils/network.py +0 -84
  285. pyxlpr/ppocr/utils/ppocr_keys_v1.txt +0 -6623
  286. pyxlpr/ppocr/utils/profiler.py +0 -110
  287. pyxlpr/ppocr/utils/save_load.py +0 -150
  288. pyxlpr/ppocr/utils/stats.py +0 -72
  289. pyxlpr/ppocr/utils/utility.py +0 -80
  290. pyxlpr/ppstructure/__init__.py +0 -13
  291. pyxlpr/ppstructure/predict_system.py +0 -187
  292. pyxlpr/ppstructure/table/__init__.py +0 -13
  293. pyxlpr/ppstructure/table/eval_table.py +0 -72
  294. pyxlpr/ppstructure/table/matcher.py +0 -192
  295. pyxlpr/ppstructure/table/predict_structure.py +0 -136
  296. pyxlpr/ppstructure/table/predict_table.py +0 -221
  297. pyxlpr/ppstructure/table/table_metric/__init__.py +0 -16
  298. pyxlpr/ppstructure/table/table_metric/parallel.py +0 -51
  299. pyxlpr/ppstructure/table/table_metric/table_metric.py +0 -247
  300. pyxlpr/ppstructure/table/tablepyxl/__init__.py +0 -13
  301. pyxlpr/ppstructure/table/tablepyxl/style.py +0 -283
  302. pyxlpr/ppstructure/table/tablepyxl/tablepyxl.py +0 -118
  303. pyxlpr/ppstructure/utility.py +0 -71
  304. pyxlpr/xlai.py +0 -10
  305. /pyxllib/{ext/autogui → autogui}/virtualkey.py +0 -0
  306. {pyxllib-0.3.96.dist-info → pyxllib-0.3.197.dist-info/licenses}/LICENSE +0 -0
@@ -1,307 +0,0 @@
1
- #copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- #Licensed under the Apache License, Version 2.0 (the "License");
4
- #you may not use this file except in compliance with the License.
5
- #You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- #Unless required by applicable law or agreed to in writing, software
10
- #distributed under the License is distributed on an "AS IS" BASIS,
11
- #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- #See the License for the specific language governing permissions and
13
- #limitations under the License.
14
-
15
- from __future__ import absolute_import
16
- from __future__ import division
17
- from __future__ import print_function
18
-
19
- from paddle import nn, ParamAttr
20
- from paddle.nn import functional as F
21
- import paddle.fluid as fluid
22
- import paddle
23
- import numpy as np
24
-
25
- __all__ = ["ResNetFPN"]
26
-
27
-
28
- class ResNetFPN(nn.Layer):
29
- def __init__(self, in_channels=1, layers=50, **kwargs):
30
- super(ResNetFPN, self).__init__()
31
- supported_layers = {
32
- 18: {
33
- 'depth': [2, 2, 2, 2],
34
- 'block_class': BasicBlock
35
- },
36
- 34: {
37
- 'depth': [3, 4, 6, 3],
38
- 'block_class': BasicBlock
39
- },
40
- 50: {
41
- 'depth': [3, 4, 6, 3],
42
- 'block_class': BottleneckBlock
43
- },
44
- 101: {
45
- 'depth': [3, 4, 23, 3],
46
- 'block_class': BottleneckBlock
47
- },
48
- 152: {
49
- 'depth': [3, 8, 36, 3],
50
- 'block_class': BottleneckBlock
51
- }
52
- }
53
- stride_list = [(2, 2), (2, 2), (1, 1), (1, 1)]
54
- num_filters = [64, 128, 256, 512]
55
- self.depth = supported_layers[layers]['depth']
56
- self.F = []
57
- self.conv = ConvBNLayer(
58
- in_channels=in_channels,
59
- out_channels=64,
60
- kernel_size=7,
61
- stride=2,
62
- act="relu",
63
- name="conv1")
64
- self.block_list = []
65
- in_ch = 64
66
- if layers >= 50:
67
- for block in range(len(self.depth)):
68
- for i in range(self.depth[block]):
69
- if layers in [101, 152] and block == 2:
70
- if i == 0:
71
- conv_name = "res" + str(block + 2) + "a"
72
- else:
73
- conv_name = "res" + str(block + 2) + "b" + str(i)
74
- else:
75
- conv_name = "res" + str(block + 2) + chr(97 + i)
76
- block_list = self.add_sublayer(
77
- "bottleneckBlock_{}_{}".format(block, i),
78
- BottleneckBlock(
79
- in_channels=in_ch,
80
- out_channels=num_filters[block],
81
- stride=stride_list[block] if i == 0 else 1,
82
- name=conv_name))
83
- in_ch = num_filters[block] * 4
84
- self.block_list.append(block_list)
85
- self.F.append(block_list)
86
- else:
87
- for block in range(len(self.depth)):
88
- for i in range(self.depth[block]):
89
- conv_name = "res" + str(block + 2) + chr(97 + i)
90
- if i == 0 and block != 0:
91
- stride = (2, 1)
92
- else:
93
- stride = (1, 1)
94
- basic_block = self.add_sublayer(
95
- conv_name,
96
- BasicBlock(
97
- in_channels=in_ch,
98
- out_channels=num_filters[block],
99
- stride=stride_list[block] if i == 0 else 1,
100
- is_first=block == i == 0,
101
- name=conv_name))
102
- in_ch = basic_block.out_channels
103
- self.block_list.append(basic_block)
104
- out_ch_list = [in_ch // 4, in_ch // 2, in_ch]
105
- self.base_block = []
106
- self.conv_trans = []
107
- self.bn_block = []
108
- for i in [-2, -3]:
109
- in_channels = out_ch_list[i + 1] + out_ch_list[i]
110
-
111
- self.base_block.append(
112
- self.add_sublayer(
113
- "F_{}_base_block_0".format(i),
114
- nn.Conv2D(
115
- in_channels=in_channels,
116
- out_channels=out_ch_list[i],
117
- kernel_size=1,
118
- weight_attr=ParamAttr(trainable=True),
119
- bias_attr=ParamAttr(trainable=True))))
120
- self.base_block.append(
121
- self.add_sublayer(
122
- "F_{}_base_block_1".format(i),
123
- nn.Conv2D(
124
- in_channels=out_ch_list[i],
125
- out_channels=out_ch_list[i],
126
- kernel_size=3,
127
- padding=1,
128
- weight_attr=ParamAttr(trainable=True),
129
- bias_attr=ParamAttr(trainable=True))))
130
- self.base_block.append(
131
- self.add_sublayer(
132
- "F_{}_base_block_2".format(i),
133
- nn.BatchNorm(
134
- num_channels=out_ch_list[i],
135
- act="relu",
136
- param_attr=ParamAttr(trainable=True),
137
- bias_attr=ParamAttr(trainable=True))))
138
- self.base_block.append(
139
- self.add_sublayer(
140
- "F_{}_base_block_3".format(i),
141
- nn.Conv2D(
142
- in_channels=out_ch_list[i],
143
- out_channels=512,
144
- kernel_size=1,
145
- bias_attr=ParamAttr(trainable=True),
146
- weight_attr=ParamAttr(trainable=True))))
147
- self.out_channels = 512
148
-
149
- def __call__(self, x):
150
- x = self.conv(x)
151
- fpn_list = []
152
- F = []
153
- for i in range(len(self.depth)):
154
- fpn_list.append(np.sum(self.depth[:i + 1]))
155
-
156
- for i, block in enumerate(self.block_list):
157
- x = block(x)
158
- for number in fpn_list:
159
- if i + 1 == number:
160
- F.append(x)
161
- base = F[-1]
162
-
163
- j = 0
164
- for i, block in enumerate(self.base_block):
165
- if i % 3 == 0 and i < 6:
166
- j = j + 1
167
- b, c, w, h = F[-j - 1].shape
168
- if [w, h] == list(base.shape[2:]):
169
- base = base
170
- else:
171
- base = self.conv_trans[j - 1](base)
172
- base = self.bn_block[j - 1](base)
173
- base = paddle.concat([base, F[-j - 1]], axis=1)
174
- base = block(base)
175
- return base
176
-
177
-
178
- class ConvBNLayer(nn.Layer):
179
- def __init__(self,
180
- in_channels,
181
- out_channels,
182
- kernel_size,
183
- stride=1,
184
- groups=1,
185
- act=None,
186
- name=None):
187
- super(ConvBNLayer, self).__init__()
188
- self.conv = nn.Conv2D(
189
- in_channels=in_channels,
190
- out_channels=out_channels,
191
- kernel_size=2 if stride == (1, 1) else kernel_size,
192
- dilation=2 if stride == (1, 1) else 1,
193
- stride=stride,
194
- padding=(kernel_size - 1) // 2,
195
- groups=groups,
196
- weight_attr=ParamAttr(name=name + '.conv2d.output.1.w_0'),
197
- bias_attr=False, )
198
-
199
- if name == "conv1":
200
- bn_name = "bn_" + name
201
- else:
202
- bn_name = "bn" + name[3:]
203
- self.bn = nn.BatchNorm(
204
- num_channels=out_channels,
205
- act=act,
206
- param_attr=ParamAttr(name=name + '.output.1.w_0'),
207
- bias_attr=ParamAttr(name=name + '.output.1.b_0'),
208
- moving_mean_name=bn_name + "_mean",
209
- moving_variance_name=bn_name + "_variance")
210
-
211
- def __call__(self, x):
212
- x = self.conv(x)
213
- x = self.bn(x)
214
- return x
215
-
216
-
217
- class ShortCut(nn.Layer):
218
- def __init__(self, in_channels, out_channels, stride, name, is_first=False):
219
- super(ShortCut, self).__init__()
220
- self.use_conv = True
221
-
222
- if in_channels != out_channels or stride != 1 or is_first == True:
223
- if stride == (1, 1):
224
- self.conv = ConvBNLayer(
225
- in_channels, out_channels, 1, 1, name=name)
226
- else: # stride==(2,2)
227
- self.conv = ConvBNLayer(
228
- in_channels, out_channels, 1, stride, name=name)
229
- else:
230
- self.use_conv = False
231
-
232
- def forward(self, x):
233
- if self.use_conv:
234
- x = self.conv(x)
235
- return x
236
-
237
-
238
- class BottleneckBlock(nn.Layer):
239
- def __init__(self, in_channels, out_channels, stride, name):
240
- super(BottleneckBlock, self).__init__()
241
- self.conv0 = ConvBNLayer(
242
- in_channels=in_channels,
243
- out_channels=out_channels,
244
- kernel_size=1,
245
- act='relu',
246
- name=name + "_branch2a")
247
- self.conv1 = ConvBNLayer(
248
- in_channels=out_channels,
249
- out_channels=out_channels,
250
- kernel_size=3,
251
- stride=stride,
252
- act='relu',
253
- name=name + "_branch2b")
254
-
255
- self.conv2 = ConvBNLayer(
256
- in_channels=out_channels,
257
- out_channels=out_channels * 4,
258
- kernel_size=1,
259
- act=None,
260
- name=name + "_branch2c")
261
-
262
- self.short = ShortCut(
263
- in_channels=in_channels,
264
- out_channels=out_channels * 4,
265
- stride=stride,
266
- is_first=False,
267
- name=name + "_branch1")
268
- self.out_channels = out_channels * 4
269
-
270
- def forward(self, x):
271
- y = self.conv0(x)
272
- y = self.conv1(y)
273
- y = self.conv2(y)
274
- y = y + self.short(x)
275
- y = F.relu(y)
276
- return y
277
-
278
-
279
- class BasicBlock(nn.Layer):
280
- def __init__(self, in_channels, out_channels, stride, name, is_first):
281
- super(BasicBlock, self).__init__()
282
- self.conv0 = ConvBNLayer(
283
- in_channels=in_channels,
284
- out_channels=out_channels,
285
- kernel_size=3,
286
- act='relu',
287
- stride=stride,
288
- name=name + "_branch2a")
289
- self.conv1 = ConvBNLayer(
290
- in_channels=out_channels,
291
- out_channels=out_channels,
292
- kernel_size=3,
293
- act=None,
294
- name=name + "_branch2b")
295
- self.short = ShortCut(
296
- in_channels=in_channels,
297
- out_channels=out_channels,
298
- stride=stride,
299
- is_first=is_first,
300
- name=name + "_branch1")
301
- self.out_channels = out_channels
302
-
303
- def forward(self, x):
304
- y = self.conv0(x)
305
- y = self.conv1(y)
306
- y = y + self.short(x)
307
- return F.relu(y)
@@ -1,286 +0,0 @@
1
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from __future__ import absolute_import
16
- from __future__ import division
17
- from __future__ import print_function
18
-
19
- import paddle
20
- from paddle import ParamAttr
21
- import paddle.nn as nn
22
- import paddle.nn.functional as F
23
-
24
- __all__ = ["ResNet"]
25
-
26
-
27
- class ConvBNLayer(nn.Layer):
28
- def __init__(
29
- self,
30
- in_channels,
31
- out_channels,
32
- kernel_size,
33
- stride=1,
34
- groups=1,
35
- is_vd_mode=False,
36
- act=None,
37
- name=None, ):
38
- super(ConvBNLayer, self).__init__()
39
-
40
- self.is_vd_mode = is_vd_mode
41
- self._pool2d_avg = nn.AvgPool2D(
42
- kernel_size=stride, stride=stride, padding=0, ceil_mode=True)
43
- self._conv = nn.Conv2D(
44
- in_channels=in_channels,
45
- out_channels=out_channels,
46
- kernel_size=kernel_size,
47
- stride=1 if is_vd_mode else stride,
48
- padding=(kernel_size - 1) // 2,
49
- groups=groups,
50
- weight_attr=ParamAttr(name=name + "_weights"),
51
- bias_attr=False)
52
- if name == "conv1":
53
- bn_name = "bn_" + name
54
- else:
55
- bn_name = "bn" + name[3:]
56
- self._batch_norm = nn.BatchNorm(
57
- out_channels,
58
- act=act,
59
- param_attr=ParamAttr(name=bn_name + '_scale'),
60
- bias_attr=ParamAttr(bn_name + '_offset'),
61
- moving_mean_name=bn_name + '_mean',
62
- moving_variance_name=bn_name + '_variance')
63
-
64
- def forward(self, inputs):
65
- if self.is_vd_mode:
66
- inputs = self._pool2d_avg(inputs)
67
- y = self._conv(inputs)
68
- y = self._batch_norm(y)
69
- return y
70
-
71
-
72
- class BottleneckBlock(nn.Layer):
73
- def __init__(self,
74
- in_channels,
75
- out_channels,
76
- stride,
77
- shortcut=True,
78
- if_first=False,
79
- name=None):
80
- super(BottleneckBlock, self).__init__()
81
-
82
- self.conv0 = ConvBNLayer(
83
- in_channels=in_channels,
84
- out_channels=out_channels,
85
- kernel_size=1,
86
- act='relu',
87
- name=name + "_branch2a")
88
- self.conv1 = ConvBNLayer(
89
- in_channels=out_channels,
90
- out_channels=out_channels,
91
- kernel_size=3,
92
- stride=stride,
93
- act='relu',
94
- name=name + "_branch2b")
95
- self.conv2 = ConvBNLayer(
96
- in_channels=out_channels,
97
- out_channels=out_channels * 4,
98
- kernel_size=1,
99
- act=None,
100
- name=name + "_branch2c")
101
-
102
- if not shortcut:
103
- self.short = ConvBNLayer(
104
- in_channels=in_channels,
105
- out_channels=out_channels * 4,
106
- kernel_size=1,
107
- stride=stride,
108
- is_vd_mode=not if_first and stride[0] != 1,
109
- name=name + "_branch1")
110
-
111
- self.shortcut = shortcut
112
-
113
- def forward(self, inputs):
114
- y = self.conv0(inputs)
115
-
116
- conv1 = self.conv1(y)
117
- conv2 = self.conv2(conv1)
118
-
119
- if self.shortcut:
120
- short = inputs
121
- else:
122
- short = self.short(inputs)
123
- y = paddle.add(x=short, y=conv2)
124
- y = F.relu(y)
125
- return y
126
-
127
-
128
- class BasicBlock(nn.Layer):
129
- def __init__(self,
130
- in_channels,
131
- out_channels,
132
- stride,
133
- shortcut=True,
134
- if_first=False,
135
- name=None):
136
- super(BasicBlock, self).__init__()
137
- self.stride = stride
138
- self.conv0 = ConvBNLayer(
139
- in_channels=in_channels,
140
- out_channels=out_channels,
141
- kernel_size=3,
142
- stride=stride,
143
- act='relu',
144
- name=name + "_branch2a")
145
- self.conv1 = ConvBNLayer(
146
- in_channels=out_channels,
147
- out_channels=out_channels,
148
- kernel_size=3,
149
- act=None,
150
- name=name + "_branch2b")
151
-
152
- if not shortcut:
153
- self.short = ConvBNLayer(
154
- in_channels=in_channels,
155
- out_channels=out_channels,
156
- kernel_size=1,
157
- stride=stride,
158
- is_vd_mode=not if_first and stride[0] != 1,
159
- name=name + "_branch1")
160
-
161
- self.shortcut = shortcut
162
-
163
- def forward(self, inputs):
164
- y = self.conv0(inputs)
165
- conv1 = self.conv1(y)
166
-
167
- if self.shortcut:
168
- short = inputs
169
- else:
170
- short = self.short(inputs)
171
- y = paddle.add(x=short, y=conv1)
172
- y = F.relu(y)
173
- return y
174
-
175
-
176
- class ResNet(nn.Layer):
177
- def __init__(self, in_channels=3, layers=50, **kwargs):
178
- super(ResNet, self).__init__()
179
-
180
- self.layers = layers
181
- supported_layers = [18, 34, 50, 101, 152, 200]
182
- assert layers in supported_layers, \
183
- "supported layers are {} but input layer is {}".format(
184
- supported_layers, layers)
185
-
186
- if layers == 18:
187
- depth = [2, 2, 2, 2]
188
- elif layers == 34 or layers == 50:
189
- depth = [3, 4, 6, 3]
190
- elif layers == 101:
191
- depth = [3, 4, 23, 3]
192
- elif layers == 152:
193
- depth = [3, 8, 36, 3]
194
- elif layers == 200:
195
- depth = [3, 12, 48, 3]
196
- num_channels = [64, 256, 512,
197
- 1024] if layers >= 50 else [64, 64, 128, 256]
198
- num_filters = [64, 128, 256, 512]
199
-
200
- self.conv1_1 = ConvBNLayer(
201
- in_channels=in_channels,
202
- out_channels=32,
203
- kernel_size=3,
204
- stride=1,
205
- act='relu',
206
- name="conv1_1")
207
- self.conv1_2 = ConvBNLayer(
208
- in_channels=32,
209
- out_channels=32,
210
- kernel_size=3,
211
- stride=1,
212
- act='relu',
213
- name="conv1_2")
214
- self.conv1_3 = ConvBNLayer(
215
- in_channels=32,
216
- out_channels=64,
217
- kernel_size=3,
218
- stride=1,
219
- act='relu',
220
- name="conv1_3")
221
- self.pool2d_max = nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
222
-
223
- self.block_list = []
224
- if layers >= 50:
225
- for block in range(len(depth)):
226
- shortcut = False
227
- for i in range(depth[block]):
228
- if layers in [101, 152, 200] and block == 2:
229
- if i == 0:
230
- conv_name = "res" + str(block + 2) + "a"
231
- else:
232
- conv_name = "res" + str(block + 2) + "b" + str(i)
233
- else:
234
- conv_name = "res" + str(block + 2) + chr(97 + i)
235
-
236
- if i == 0 and block != 0:
237
- stride = (2, 1)
238
- else:
239
- stride = (1, 1)
240
- bottleneck_block = self.add_sublayer(
241
- 'bb_%d_%d' % (block, i),
242
- BottleneckBlock(
243
- in_channels=num_channels[block]
244
- if i == 0 else num_filters[block] * 4,
245
- out_channels=num_filters[block],
246
- stride=stride,
247
- shortcut=shortcut,
248
- if_first=block == i == 0,
249
- name=conv_name))
250
- shortcut = True
251
- self.block_list.append(bottleneck_block)
252
- self.out_channels = num_filters[block] * 4
253
- else:
254
- for block in range(len(depth)):
255
- shortcut = False
256
- for i in range(depth[block]):
257
- conv_name = "res" + str(block + 2) + chr(97 + i)
258
- if i == 0 and block != 0:
259
- stride = (2, 1)
260
- else:
261
- stride = (1, 1)
262
-
263
- basic_block = self.add_sublayer(
264
- 'bb_%d_%d' % (block, i),
265
- BasicBlock(
266
- in_channels=num_channels[block]
267
- if i == 0 else num_filters[block],
268
- out_channels=num_filters[block],
269
- stride=stride,
270
- shortcut=shortcut,
271
- if_first=block == i == 0,
272
- name=conv_name))
273
- shortcut = True
274
- self.block_list.append(basic_block)
275
- self.out_channels = num_filters[block]
276
- self.out_pool = nn.MaxPool2D(kernel_size=2, stride=2, padding=0)
277
-
278
- def forward(self, inputs):
279
- y = self.conv1_1(inputs)
280
- y = self.conv1_2(y)
281
- y = self.conv1_3(y)
282
- y = self.pool2d_max(y)
283
- for block in self.block_list:
284
- y = block(y)
285
- y = self.out_pool(y)
286
- return y
@@ -1,54 +0,0 @@
1
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- __all__ = ['build_head']
16
-
17
-
18
- def build_head(config):
19
- # det head
20
- from .det_db_head import DBHead
21
- from .det_east_head import EASTHead
22
- from .det_sast_head import SASTHead
23
- from .det_pse_head import PSEHead
24
- from .e2e_pg_head import PGHead
25
-
26
- # rec head
27
- from .rec_ctc_head import CTCHead
28
- from .rec_att_head import AttentionHead
29
- from .rec_srn_head import SRNHead
30
- from .rec_nrtr_head import Transformer
31
- from .rec_sar_head import SARHead
32
- from .rec_aster_head import AsterHead
33
-
34
- # cls head
35
- from .cls_head import ClsHead
36
-
37
- #kie head
38
- from .kie_sdmgr_head import SDMGRHead
39
-
40
- from .table_att_head import TableAttentionHead
41
-
42
- support_dict = [
43
- 'DBHead', 'PSEHead', 'EASTHead', 'SASTHead', 'CTCHead', 'ClsHead',
44
- 'AttentionHead', 'SRNHead', 'PGHead', 'Transformer',
45
- 'TableAttentionHead', 'SARHead', 'AsterHead', 'SDMGRHead'
46
- ]
47
-
48
- #table head
49
-
50
- module_name = config.pop('name')
51
- assert module_name in support_dict, Exception('head only support {}'.format(
52
- support_dict))
53
- module_class = eval(module_name)(**config)
54
- return module_class
@@ -1,52 +0,0 @@
1
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from __future__ import absolute_import
16
- from __future__ import division
17
- from __future__ import print_function
18
-
19
- import math
20
- import paddle
21
- from paddle import nn, ParamAttr
22
- import paddle.nn.functional as F
23
-
24
-
25
- class ClsHead(nn.Layer):
26
- """
27
- Class orientation
28
-
29
- Args:
30
-
31
- params(dict): super parameters for build Class network
32
- """
33
-
34
- def __init__(self, in_channels, class_dim, **kwargs):
35
- super(ClsHead, self).__init__()
36
- self.pool = nn.AdaptiveAvgPool2D(1)
37
- stdv = 1.0 / math.sqrt(in_channels * 1.0)
38
- self.fc = nn.Linear(
39
- in_channels,
40
- class_dim,
41
- weight_attr=ParamAttr(
42
- name="fc_0.w_0",
43
- initializer=nn.initializer.Uniform(-stdv, stdv)),
44
- bias_attr=ParamAttr(name="fc_0.b_0"), )
45
-
46
- def forward(self, x, targets=None):
47
- x = self.pool(x)
48
- x = paddle.reshape(x, shape=[x.shape[0], x.shape[1]])
49
- x = self.fc(x)
50
- if not self.training:
51
- x = F.softmax(x, axis=1)
52
- return x