passagemath-schemes 10.6.40__cp314-cp314-macosx_13_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of passagemath-schemes might be problematic. Click here for more details.

Files changed (314) hide show
  1. passagemath_schemes/.dylibs/libflint.22.0.dylib +0 -0
  2. passagemath_schemes/.dylibs/libgmp.10.dylib +0 -0
  3. passagemath_schemes/.dylibs/libgmpxx.4.dylib +0 -0
  4. passagemath_schemes/.dylibs/libmpfr.6.dylib +0 -0
  5. passagemath_schemes/__init__.py +3 -0
  6. passagemath_schemes-10.6.40.dist-info/METADATA +204 -0
  7. passagemath_schemes-10.6.40.dist-info/METADATA.bak +205 -0
  8. passagemath_schemes-10.6.40.dist-info/RECORD +314 -0
  9. passagemath_schemes-10.6.40.dist-info/WHEEL +6 -0
  10. passagemath_schemes-10.6.40.dist-info/top_level.txt +3 -0
  11. sage/all__sagemath_schemes.py +23 -0
  12. sage/databases/all__sagemath_schemes.py +7 -0
  13. sage/databases/cremona.py +1723 -0
  14. sage/dynamics/all__sagemath_schemes.py +2 -0
  15. sage/dynamics/arithmetic_dynamics/affine_ds.py +1083 -0
  16. sage/dynamics/arithmetic_dynamics/all.py +14 -0
  17. sage/dynamics/arithmetic_dynamics/berkovich_ds.py +1101 -0
  18. sage/dynamics/arithmetic_dynamics/dynamical_semigroup.py +1543 -0
  19. sage/dynamics/arithmetic_dynamics/endPN_automorphism_group.py +2426 -0
  20. sage/dynamics/arithmetic_dynamics/endPN_minimal_model.py +1169 -0
  21. sage/dynamics/arithmetic_dynamics/generic_ds.py +663 -0
  22. sage/dynamics/arithmetic_dynamics/product_projective_ds.py +339 -0
  23. sage/dynamics/arithmetic_dynamics/projective_ds.py +9558 -0
  24. sage/dynamics/arithmetic_dynamics/projective_ds_helper.cpython-314-darwin.so +0 -0
  25. sage/dynamics/arithmetic_dynamics/projective_ds_helper.pyx +301 -0
  26. sage/dynamics/arithmetic_dynamics/wehlerK3.py +2576 -0
  27. sage/lfunctions/all.py +18 -0
  28. sage/lfunctions/dokchitser.py +745 -0
  29. sage/lfunctions/pari.py +818 -0
  30. sage/lfunctions/zero_sums.cpython-314-darwin.so +0 -0
  31. sage/lfunctions/zero_sums.pyx +1847 -0
  32. sage/modular/abvar/abvar.py +5135 -0
  33. sage/modular/abvar/abvar_ambient_jacobian.py +413 -0
  34. sage/modular/abvar/abvar_newform.py +244 -0
  35. sage/modular/abvar/all.py +8 -0
  36. sage/modular/abvar/constructor.py +186 -0
  37. sage/modular/abvar/cuspidal_subgroup.py +371 -0
  38. sage/modular/abvar/finite_subgroup.py +896 -0
  39. sage/modular/abvar/homology.py +720 -0
  40. sage/modular/abvar/homspace.py +998 -0
  41. sage/modular/abvar/lseries.py +415 -0
  42. sage/modular/abvar/morphism.py +935 -0
  43. sage/modular/abvar/torsion_point.py +274 -0
  44. sage/modular/abvar/torsion_subgroup.py +740 -0
  45. sage/modular/all.py +43 -0
  46. sage/modular/arithgroup/all.py +20 -0
  47. sage/modular/arithgroup/arithgroup_element.cpython-314-darwin.so +0 -0
  48. sage/modular/arithgroup/arithgroup_element.pyx +474 -0
  49. sage/modular/arithgroup/arithgroup_generic.py +1402 -0
  50. sage/modular/arithgroup/arithgroup_perm.py +2692 -0
  51. sage/modular/arithgroup/congroup.cpython-314-darwin.so +0 -0
  52. sage/modular/arithgroup/congroup.pyx +334 -0
  53. sage/modular/arithgroup/congroup_gamma.py +363 -0
  54. sage/modular/arithgroup/congroup_gamma0.py +692 -0
  55. sage/modular/arithgroup/congroup_gamma1.py +653 -0
  56. sage/modular/arithgroup/congroup_gammaH.py +1469 -0
  57. sage/modular/arithgroup/congroup_generic.py +628 -0
  58. sage/modular/arithgroup/congroup_sl2z.py +267 -0
  59. sage/modular/arithgroup/farey_symbol.cpython-314-darwin.so +0 -0
  60. sage/modular/arithgroup/farey_symbol.pyx +1066 -0
  61. sage/modular/arithgroup/tests.py +418 -0
  62. sage/modular/btquotients/all.py +4 -0
  63. sage/modular/btquotients/btquotient.py +3753 -0
  64. sage/modular/btquotients/pautomorphicform.py +2570 -0
  65. sage/modular/buzzard.py +100 -0
  66. sage/modular/congroup.py +29 -0
  67. sage/modular/congroup_element.py +13 -0
  68. sage/modular/cusps.py +1109 -0
  69. sage/modular/cusps_nf.py +1270 -0
  70. sage/modular/dims.py +569 -0
  71. sage/modular/dirichlet.py +3310 -0
  72. sage/modular/drinfeld_modform/all.py +2 -0
  73. sage/modular/drinfeld_modform/element.py +446 -0
  74. sage/modular/drinfeld_modform/ring.py +773 -0
  75. sage/modular/drinfeld_modform/tutorial.py +236 -0
  76. sage/modular/etaproducts.py +1065 -0
  77. sage/modular/hecke/algebra.py +746 -0
  78. sage/modular/hecke/all.py +20 -0
  79. sage/modular/hecke/ambient_module.py +1019 -0
  80. sage/modular/hecke/degenmap.py +119 -0
  81. sage/modular/hecke/element.py +325 -0
  82. sage/modular/hecke/hecke_operator.py +780 -0
  83. sage/modular/hecke/homspace.py +206 -0
  84. sage/modular/hecke/module.py +1767 -0
  85. sage/modular/hecke/morphism.py +174 -0
  86. sage/modular/hecke/submodule.py +989 -0
  87. sage/modular/hypergeometric_misc.cpython-314-darwin.so +0 -0
  88. sage/modular/hypergeometric_misc.pxd +4 -0
  89. sage/modular/hypergeometric_misc.pyx +166 -0
  90. sage/modular/hypergeometric_motive.py +2017 -0
  91. sage/modular/local_comp/all.py +2 -0
  92. sage/modular/local_comp/liftings.py +292 -0
  93. sage/modular/local_comp/local_comp.py +1071 -0
  94. sage/modular/local_comp/smoothchar.py +1825 -0
  95. sage/modular/local_comp/type_space.py +748 -0
  96. sage/modular/modform/all.py +30 -0
  97. sage/modular/modform/ambient.py +815 -0
  98. sage/modular/modform/ambient_R.py +177 -0
  99. sage/modular/modform/ambient_eps.py +306 -0
  100. sage/modular/modform/ambient_g0.py +124 -0
  101. sage/modular/modform/ambient_g1.py +204 -0
  102. sage/modular/modform/constructor.py +545 -0
  103. sage/modular/modform/cuspidal_submodule.py +708 -0
  104. sage/modular/modform/defaults.py +14 -0
  105. sage/modular/modform/eis_series.py +505 -0
  106. sage/modular/modform/eisenstein_submodule.py +663 -0
  107. sage/modular/modform/element.py +4131 -0
  108. sage/modular/modform/find_generators.py +59 -0
  109. sage/modular/modform/half_integral.py +154 -0
  110. sage/modular/modform/hecke_operator_on_qexp.py +247 -0
  111. sage/modular/modform/j_invariant.py +47 -0
  112. sage/modular/modform/l_series_gross_zagier.py +133 -0
  113. sage/modular/modform/l_series_gross_zagier_coeffs.cpython-314-darwin.so +0 -0
  114. sage/modular/modform/l_series_gross_zagier_coeffs.pyx +177 -0
  115. sage/modular/modform/notes.py +45 -0
  116. sage/modular/modform/numerical.py +514 -0
  117. sage/modular/modform/periods.py +14 -0
  118. sage/modular/modform/ring.py +1257 -0
  119. sage/modular/modform/space.py +1860 -0
  120. sage/modular/modform/submodule.py +118 -0
  121. sage/modular/modform/tests.py +64 -0
  122. sage/modular/modform/theta.py +110 -0
  123. sage/modular/modform/vm_basis.py +381 -0
  124. sage/modular/modform/weight1.py +220 -0
  125. sage/modular/modform_hecketriangle/abstract_ring.py +1932 -0
  126. sage/modular/modform_hecketriangle/abstract_space.py +2528 -0
  127. sage/modular/modform_hecketriangle/all.py +30 -0
  128. sage/modular/modform_hecketriangle/analytic_type.py +590 -0
  129. sage/modular/modform_hecketriangle/constructor.py +416 -0
  130. sage/modular/modform_hecketriangle/element.py +351 -0
  131. sage/modular/modform_hecketriangle/functors.py +752 -0
  132. sage/modular/modform_hecketriangle/graded_ring.py +541 -0
  133. sage/modular/modform_hecketriangle/graded_ring_element.py +2225 -0
  134. sage/modular/modform_hecketriangle/hecke_triangle_group_element.py +3352 -0
  135. sage/modular/modform_hecketriangle/hecke_triangle_groups.py +1432 -0
  136. sage/modular/modform_hecketriangle/readme.py +1214 -0
  137. sage/modular/modform_hecketriangle/series_constructor.py +580 -0
  138. sage/modular/modform_hecketriangle/space.py +1037 -0
  139. sage/modular/modform_hecketriangle/subspace.py +423 -0
  140. sage/modular/modsym/all.py +17 -0
  141. sage/modular/modsym/ambient.py +3846 -0
  142. sage/modular/modsym/boundary.py +1420 -0
  143. sage/modular/modsym/element.py +336 -0
  144. sage/modular/modsym/g1list.py +178 -0
  145. sage/modular/modsym/ghlist.py +182 -0
  146. sage/modular/modsym/hecke_operator.py +73 -0
  147. sage/modular/modsym/manin_symbol.cpython-314-darwin.so +0 -0
  148. sage/modular/modsym/manin_symbol.pxd +5 -0
  149. sage/modular/modsym/manin_symbol.pyx +497 -0
  150. sage/modular/modsym/manin_symbol_list.py +1295 -0
  151. sage/modular/modsym/modsym.py +400 -0
  152. sage/modular/modsym/modular_symbols.py +384 -0
  153. sage/modular/modsym/p1list.cpython-314-darwin.so +0 -0
  154. sage/modular/modsym/p1list.pxd +29 -0
  155. sage/modular/modsym/p1list.pyx +1372 -0
  156. sage/modular/modsym/p1list_nf.py +1241 -0
  157. sage/modular/modsym/relation_matrix.py +591 -0
  158. sage/modular/modsym/relation_matrix_pyx.cpython-314-darwin.so +0 -0
  159. sage/modular/modsym/relation_matrix_pyx.pyx +108 -0
  160. sage/modular/modsym/space.py +2468 -0
  161. sage/modular/modsym/subspace.py +455 -0
  162. sage/modular/modsym/tests.py +375 -0
  163. sage/modular/multiple_zeta.py +2632 -0
  164. sage/modular/multiple_zeta_F_algebra.py +786 -0
  165. sage/modular/overconvergent/all.py +6 -0
  166. sage/modular/overconvergent/genus0.py +1878 -0
  167. sage/modular/overconvergent/hecke_series.py +1187 -0
  168. sage/modular/overconvergent/weightspace.py +778 -0
  169. sage/modular/pollack_stevens/all.py +4 -0
  170. sage/modular/pollack_stevens/distributions.py +874 -0
  171. sage/modular/pollack_stevens/fund_domain.py +1572 -0
  172. sage/modular/pollack_stevens/manin_map.py +859 -0
  173. sage/modular/pollack_stevens/modsym.py +1593 -0
  174. sage/modular/pollack_stevens/padic_lseries.py +417 -0
  175. sage/modular/pollack_stevens/sigma0.py +534 -0
  176. sage/modular/pollack_stevens/space.py +1076 -0
  177. sage/modular/quasimodform/all.py +3 -0
  178. sage/modular/quasimodform/element.py +845 -0
  179. sage/modular/quasimodform/ring.py +828 -0
  180. sage/modular/quatalg/all.py +3 -0
  181. sage/modular/quatalg/brandt.py +1642 -0
  182. sage/modular/ssmod/all.py +8 -0
  183. sage/modular/ssmod/ssmod.py +827 -0
  184. sage/rings/all__sagemath_schemes.py +1 -0
  185. sage/rings/polynomial/all__sagemath_schemes.py +1 -0
  186. sage/rings/polynomial/binary_form_reduce.py +585 -0
  187. sage/schemes/all.py +41 -0
  188. sage/schemes/berkovich/all.py +6 -0
  189. sage/schemes/berkovich/berkovich_cp_element.py +2582 -0
  190. sage/schemes/berkovich/berkovich_space.py +748 -0
  191. sage/schemes/curves/affine_curve.py +2928 -0
  192. sage/schemes/curves/all.py +33 -0
  193. sage/schemes/curves/closed_point.py +434 -0
  194. sage/schemes/curves/constructor.py +381 -0
  195. sage/schemes/curves/curve.py +542 -0
  196. sage/schemes/curves/plane_curve_arrangement.py +1283 -0
  197. sage/schemes/curves/point.py +463 -0
  198. sage/schemes/curves/projective_curve.py +3026 -0
  199. sage/schemes/curves/zariski_vankampen.py +1932 -0
  200. sage/schemes/cyclic_covers/all.py +2 -0
  201. sage/schemes/cyclic_covers/charpoly_frobenius.py +320 -0
  202. sage/schemes/cyclic_covers/constructor.py +137 -0
  203. sage/schemes/cyclic_covers/cycliccover_finite_field.py +1309 -0
  204. sage/schemes/cyclic_covers/cycliccover_generic.py +310 -0
  205. sage/schemes/elliptic_curves/BSD.py +1036 -0
  206. sage/schemes/elliptic_curves/Qcurves.py +592 -0
  207. sage/schemes/elliptic_curves/addition_formulas_ring.py +94 -0
  208. sage/schemes/elliptic_curves/all.py +49 -0
  209. sage/schemes/elliptic_curves/cardinality.py +609 -0
  210. sage/schemes/elliptic_curves/cm.py +1102 -0
  211. sage/schemes/elliptic_curves/constructor.py +1552 -0
  212. sage/schemes/elliptic_curves/ec_database.py +175 -0
  213. sage/schemes/elliptic_curves/ell_curve_isogeny.py +3972 -0
  214. sage/schemes/elliptic_curves/ell_egros.py +459 -0
  215. sage/schemes/elliptic_curves/ell_field.py +2836 -0
  216. sage/schemes/elliptic_curves/ell_finite_field.py +3359 -0
  217. sage/schemes/elliptic_curves/ell_generic.py +3760 -0
  218. sage/schemes/elliptic_curves/ell_local_data.py +1207 -0
  219. sage/schemes/elliptic_curves/ell_modular_symbols.py +775 -0
  220. sage/schemes/elliptic_curves/ell_number_field.py +4220 -0
  221. sage/schemes/elliptic_curves/ell_padic_field.py +107 -0
  222. sage/schemes/elliptic_curves/ell_point.py +4787 -0
  223. sage/schemes/elliptic_curves/ell_rational_field.py +7368 -0
  224. sage/schemes/elliptic_curves/ell_tate_curve.py +671 -0
  225. sage/schemes/elliptic_curves/ell_torsion.py +436 -0
  226. sage/schemes/elliptic_curves/ell_wp.py +352 -0
  227. sage/schemes/elliptic_curves/formal_group.py +760 -0
  228. sage/schemes/elliptic_curves/gal_reps.py +1459 -0
  229. sage/schemes/elliptic_curves/gal_reps_number_field.py +1669 -0
  230. sage/schemes/elliptic_curves/gp_simon.py +152 -0
  231. sage/schemes/elliptic_curves/heegner.py +7335 -0
  232. sage/schemes/elliptic_curves/height.py +2109 -0
  233. sage/schemes/elliptic_curves/hom.py +1406 -0
  234. sage/schemes/elliptic_curves/hom_composite.py +934 -0
  235. sage/schemes/elliptic_curves/hom_frobenius.py +522 -0
  236. sage/schemes/elliptic_curves/hom_scalar.py +531 -0
  237. sage/schemes/elliptic_curves/hom_sum.py +682 -0
  238. sage/schemes/elliptic_curves/hom_velusqrt.py +1290 -0
  239. sage/schemes/elliptic_curves/homset.py +271 -0
  240. sage/schemes/elliptic_curves/isogeny_class.py +1521 -0
  241. sage/schemes/elliptic_curves/isogeny_small_degree.py +2797 -0
  242. sage/schemes/elliptic_curves/jacobian.py +237 -0
  243. sage/schemes/elliptic_curves/kodaira_symbol.py +344 -0
  244. sage/schemes/elliptic_curves/kraus.py +1014 -0
  245. sage/schemes/elliptic_curves/lseries_ell.py +943 -0
  246. sage/schemes/elliptic_curves/mod5family.py +105 -0
  247. sage/schemes/elliptic_curves/mod_poly.py +197 -0
  248. sage/schemes/elliptic_curves/mod_sym_num.cpython-314-darwin.so +0 -0
  249. sage/schemes/elliptic_curves/mod_sym_num.pyx +3796 -0
  250. sage/schemes/elliptic_curves/modular_parametrization.py +305 -0
  251. sage/schemes/elliptic_curves/padic_lseries.py +1793 -0
  252. sage/schemes/elliptic_curves/padics.py +1816 -0
  253. sage/schemes/elliptic_curves/period_lattice.py +2234 -0
  254. sage/schemes/elliptic_curves/period_lattice_region.cpython-314-darwin.so +0 -0
  255. sage/schemes/elliptic_curves/period_lattice_region.pyx +722 -0
  256. sage/schemes/elliptic_curves/saturation.py +715 -0
  257. sage/schemes/elliptic_curves/sha_tate.py +1158 -0
  258. sage/schemes/elliptic_curves/weierstrass_morphism.py +1117 -0
  259. sage/schemes/elliptic_curves/weierstrass_transform.py +200 -0
  260. sage/schemes/hyperelliptic_curves/all.py +6 -0
  261. sage/schemes/hyperelliptic_curves/constructor.py +291 -0
  262. sage/schemes/hyperelliptic_curves/hyperelliptic_finite_field.py +1914 -0
  263. sage/schemes/hyperelliptic_curves/hyperelliptic_g2.py +192 -0
  264. sage/schemes/hyperelliptic_curves/hyperelliptic_generic.py +954 -0
  265. sage/schemes/hyperelliptic_curves/hyperelliptic_padic_field.py +1332 -0
  266. sage/schemes/hyperelliptic_curves/hyperelliptic_rational_field.py +84 -0
  267. sage/schemes/hyperelliptic_curves/invariants.py +410 -0
  268. sage/schemes/hyperelliptic_curves/jacobian_endomorphism_utils.py +315 -0
  269. sage/schemes/hyperelliptic_curves/jacobian_g2.py +32 -0
  270. sage/schemes/hyperelliptic_curves/jacobian_generic.py +419 -0
  271. sage/schemes/hyperelliptic_curves/jacobian_homset.py +186 -0
  272. sage/schemes/hyperelliptic_curves/jacobian_morphism.py +875 -0
  273. sage/schemes/hyperelliptic_curves/kummer_surface.py +99 -0
  274. sage/schemes/hyperelliptic_curves/mestre.py +302 -0
  275. sage/schemes/hyperelliptic_curves/monsky_washnitzer.py +3871 -0
  276. sage/schemes/jacobians/abstract_jacobian.py +277 -0
  277. sage/schemes/jacobians/all.py +2 -0
  278. sage/schemes/overview.py +161 -0
  279. sage/schemes/plane_conics/all.py +22 -0
  280. sage/schemes/plane_conics/con_field.py +1296 -0
  281. sage/schemes/plane_conics/con_finite_field.py +158 -0
  282. sage/schemes/plane_conics/con_number_field.py +456 -0
  283. sage/schemes/plane_conics/con_rational_field.py +406 -0
  284. sage/schemes/plane_conics/con_rational_function_field.py +580 -0
  285. sage/schemes/plane_conics/constructor.py +249 -0
  286. sage/schemes/plane_quartics/all.py +2 -0
  287. sage/schemes/plane_quartics/quartic_constructor.py +71 -0
  288. sage/schemes/plane_quartics/quartic_generic.py +73 -0
  289. sage/schemes/riemann_surfaces/all.py +1 -0
  290. sage/schemes/riemann_surfaces/riemann_surface.py +4117 -0
  291. sage_wheels/share/cremona/cremona_mini.db +0 -0
  292. sage_wheels/share/ellcurves/rank0 +30427 -0
  293. sage_wheels/share/ellcurves/rank1 +31871 -0
  294. sage_wheels/share/ellcurves/rank10 +6 -0
  295. sage_wheels/share/ellcurves/rank11 +6 -0
  296. sage_wheels/share/ellcurves/rank12 +1 -0
  297. sage_wheels/share/ellcurves/rank14 +1 -0
  298. sage_wheels/share/ellcurves/rank15 +1 -0
  299. sage_wheels/share/ellcurves/rank17 +1 -0
  300. sage_wheels/share/ellcurves/rank19 +1 -0
  301. sage_wheels/share/ellcurves/rank2 +2388 -0
  302. sage_wheels/share/ellcurves/rank20 +1 -0
  303. sage_wheels/share/ellcurves/rank21 +1 -0
  304. sage_wheels/share/ellcurves/rank22 +1 -0
  305. sage_wheels/share/ellcurves/rank23 +1 -0
  306. sage_wheels/share/ellcurves/rank24 +1 -0
  307. sage_wheels/share/ellcurves/rank28 +1 -0
  308. sage_wheels/share/ellcurves/rank3 +836 -0
  309. sage_wheels/share/ellcurves/rank4 +10 -0
  310. sage_wheels/share/ellcurves/rank5 +5 -0
  311. sage_wheels/share/ellcurves/rank6 +5 -0
  312. sage_wheels/share/ellcurves/rank7 +5 -0
  313. sage_wheels/share/ellcurves/rank8 +6 -0
  314. sage_wheels/share/ellcurves/rank9 +7 -0
@@ -0,0 +1,748 @@
1
+ # sage_setup: distribution = sagemath-schemes
2
+ # sage.doctest: needs sage.libs.pari
3
+ r"""
4
+ Type spaces of newforms
5
+
6
+ Let `f` be a new modular eigenform of level `\Gamma_1(N)`, and `p` a prime
7
+ dividing `N`, with `N = Mp^r` (`M` coprime to `p`). Suppose the power of `p`
8
+ dividing the conductor of the character of `f` is `p^c` (so `c \le r`).
9
+
10
+ Then there is an integer `u`, which is `\operatorname{min}([r/2], r-c)`, such
11
+ that any twist of `f` by a character mod `p^u` also has level `N`. The *type
12
+ space* of `f` is the span of the modular eigensymbols corresponding to all of
13
+ these twists, which lie in a space of modular symbols for a suitable `\Gamma_H`
14
+ subgroup. This space is the key to computing the isomorphism class of the local
15
+ component of the newform at `p`.
16
+ """
17
+
18
+ import operator
19
+
20
+ from sage.arith.misc import crt
21
+ from sage.matrix.constructor import matrix
22
+ from sage.misc.cachefunc import cached_method, cached_function
23
+ from sage.modular.arithgroup.all import GammaH
24
+ from sage.modular.modform.constructor import ModularForms
25
+ from sage.modular.modform.element import Newform
26
+ from sage.modular.modsym.modsym import ModularSymbols
27
+ from sage.rings.fast_arith import prime_range
28
+ from sage.rings.finite_rings.integer_mod_ring import Zmod
29
+ from sage.rings.integer_ring import ZZ
30
+ from sage.rings.rational_field import QQ
31
+ from sage.structure.sage_object import SageObject
32
+
33
+ from .liftings import lift_gen_to_gamma1, lift_ramified
34
+
35
+
36
+ @cached_function
37
+ def example_type_space(example_no=0):
38
+ r"""
39
+ Quickly return an example of a type space. Used mainly to speed up
40
+ doctesting.
41
+
42
+ EXAMPLES::
43
+
44
+ sage: from sage.modular.local_comp.type_space import example_type_space
45
+ sage: example_type_space() # takes a while but caches stuff (21s on sage.math, 2012)
46
+ 6-dimensional type space at prime 7 of form q + ... + O(q^6)
47
+
48
+ The above test takes a long time, but it precomputes and caches
49
+ various things such that subsequent doctests can be very quick.
50
+ So we don't want to mark it ``# long time``.
51
+ """
52
+ from sage.modular.modform.constructor import Newform as Newform_constructor
53
+ if example_no == 0:
54
+ # a fairly generic example
55
+ return TypeSpace(Newform_constructor('98b', names='a'), 7)
56
+ elif example_no == 1:
57
+ # a non-minimal example
58
+ return TypeSpace(Newform_constructor('98a', names='a'), 7)
59
+ elif example_no == 2:
60
+ # a smaller example with QQ coefficients
61
+ return TypeSpace(Newform_constructor('50a'), 5)
62
+ elif example_no == 3:
63
+ # a ramified (odd p-power level) case
64
+ return TypeSpace(Newform_constructor('27a'), 3)
65
+
66
+
67
+ def find_in_space(f, A, base_extend=False):
68
+ r"""
69
+ Given a Newform object `f`, and a space `A` of modular symbols of the same
70
+ weight and level, find the subspace of `A` which corresponds to the Hecke
71
+ eigenvalues of `f`.
72
+
73
+ If ``base_extend = True``, this will return a 2-dimensional space generated
74
+ by the plus and minus eigensymbols of `f`. If ``base_extend = False`` it
75
+ will return a larger space spanned by the eigensymbols of `f` and its
76
+ Galois conjugates.
77
+
78
+ (NB: "Galois conjugates" needs to be interpreted carefully -- see the last
79
+ example below.)
80
+
81
+ `A` should be an ambient space (because non-ambient spaces don't implement
82
+ ``base_extend``).
83
+
84
+ EXAMPLES::
85
+
86
+ sage: from sage.modular.local_comp.type_space import find_in_space
87
+
88
+ Easy case (`f` has rational coefficients)::
89
+
90
+ sage: f = Newform('99a'); f
91
+ q - q^2 - q^4 - 4*q^5 + O(q^6)
92
+ sage: A = ModularSymbols(GammaH(99, [13]))
93
+ sage: find_in_space(f, A)
94
+ Modular Symbols subspace of dimension 2 of Modular Symbols space of dimension 25 for Congruence Subgroup Gamma_H(99) with H generated by [13] of weight 2 with sign 0 over Rational Field
95
+
96
+ Harder case::
97
+
98
+ sage: f = Newforms(23, names='a')[0]
99
+ sage: A = ModularSymbols(Gamma1(23))
100
+ sage: find_in_space(f, A, base_extend=True)
101
+ Modular Symbols subspace of dimension 2 of Modular Symbols space of dimension 45 for Gamma_1(23) of weight 2 with sign 0 over Number Field in a0 with defining polynomial x^2 + x - 1
102
+ sage: find_in_space(f, A, base_extend=False)
103
+ Modular Symbols subspace of dimension 4 of Modular Symbols space of dimension 45 for Gamma_1(23) of weight 2 with sign 0 over Rational Field
104
+
105
+ An example with character, indicating the rather subtle behaviour of
106
+ ``base_extend``::
107
+
108
+ sage: chi = DirichletGroup(5).0
109
+ sage: f = Newforms(chi, 7, names='c')[0]; f # long time (4s on sage.math, 2012)
110
+ q + c0*q^2 + (zeta4*c0 - 5*zeta4 + 5)*q^3 + ((-5*zeta4 - 5)*c0 + 24*zeta4)*q^4 + ((10*zeta4 - 5)*c0 - 40*zeta4 - 55)*q^5 + O(q^6)
111
+ sage: find_in_space(f, ModularSymbols(Gamma1(5), 7), base_extend=True) # long time
112
+ Modular Symbols subspace of dimension 2 of Modular Symbols space of dimension 12 for Gamma_1(5) of weight 7 with sign 0 over Number Field in c0 with defining polynomial x^2 + (5*zeta4 + 5)*x - 88*zeta4 over its base field
113
+ sage: find_in_space(f, ModularSymbols(Gamma1(5), 7), base_extend=False) # long time (27s on sage.math, 2012)
114
+ Modular Symbols subspace of dimension 4 of Modular Symbols space of dimension 12 for Gamma_1(5) of weight 7 with sign 0 over Cyclotomic Field of order 4 and degree 2
115
+
116
+ Note that the base ring in the second example is `\QQ(\zeta_4)` (the base
117
+ ring of the character of `f`), *not* `\QQ`.
118
+ """
119
+ if not A.weight() == f.weight():
120
+ raise ValueError( "Weight of space does not match weight of form" )
121
+ if not A.level() == f.level():
122
+ raise ValueError( "Level of space does not match level of form" )
123
+
124
+ if base_extend:
125
+ D = A.base_extend(f.hecke_eigenvalue_field())
126
+ else:
127
+ M = f.modular_symbols(sign=1)
128
+ D = A.base_extend(M.base_ring())
129
+
130
+ expected_dimension = 2 if base_extend else 2*M.dimension()
131
+
132
+ for p in prime_range(1 + A.sturm_bound()):
133
+ h = D.hecke_operator(p)
134
+ if base_extend:
135
+ hh = h - f[p]
136
+ else:
137
+ f = M.hecke_polynomial(p)
138
+ hh = f(h)
139
+ DD = hh.kernel()
140
+ if DD.dimension() < D.dimension():
141
+ D = DD
142
+
143
+ if D.dimension() <= expected_dimension:
144
+ break
145
+
146
+ if D.dimension() != expected_dimension:
147
+ raise ArithmeticError( "Error in find_in_space: "
148
+ + "got dimension %s (should be %s)" % (D.dimension(), expected_dimension) )
149
+
150
+ return D
151
+
152
+
153
+ class TypeSpace(SageObject):
154
+ r"""
155
+ The modular symbol type space associated to a newform, at a prime dividing
156
+ the level.
157
+ """
158
+ #################################################
159
+ # Basic initialisation and data-access functions
160
+ #################################################
161
+
162
+ def __init__(self, f, p, base_extend=True):
163
+ r"""
164
+ EXAMPLES::
165
+
166
+ sage: from sage.modular.local_comp.type_space import example_type_space
167
+ sage: example_type_space() # indirect doctest
168
+ 6-dimensional type space at prime 7 of form q + ... + O(q^6)
169
+ """
170
+ self._p = p
171
+ self._f = f
172
+ if f.level() % p:
173
+ raise ValueError( "p must divide level" )
174
+
175
+ amb = ModularSymbols(self.group(), f.weight())
176
+ self.e_space = find_in_space(f, amb, base_extend=base_extend).sign_submodule(1)
177
+ R = self.e_space.base_ring()
178
+ mat = amb._action_on_modular_symbols([p**self.u(), 1, 0, p**self.u()])
179
+ V = amb.free_module().base_extend(R)
180
+ bvecs = []
181
+ for v in self.e_space.free_module().basis():
182
+ bvecs += mat.maxspin(v)
183
+ T = V.submodule(bvecs)
184
+ self._unipmat = mat.change_ring(R).restrict(T).transpose() / ZZ(p ** (self.u() * (f.weight() - 2)))
185
+ self.t_space = amb.base_extend(R).submodule(T, check=False)
186
+
187
+ def _repr_(self):
188
+ r"""
189
+ String representation of ``self``.
190
+
191
+ EXAMPLES::
192
+
193
+ sage: from sage.modular.local_comp.type_space import example_type_space
194
+ sage: example_type_space()._repr_()
195
+ '6-dimensional type space at prime 7 of form q + ... + O(q^6)'
196
+ """
197
+ return "%s-dimensional type space at prime %s of form %s" % (self.t_space.rank(), self.prime(), self.form())
198
+
199
+ def prime(self):
200
+ r"""
201
+ Return the prime `p`.
202
+
203
+ EXAMPLES::
204
+
205
+ sage: from sage.modular.local_comp.type_space import example_type_space
206
+ sage: example_type_space().prime()
207
+ 7
208
+ """
209
+ return self._p
210
+
211
+ def form(self):
212
+ r"""
213
+ The newform of which this is the type space.
214
+
215
+ EXAMPLES::
216
+
217
+ sage: from sage.modular.local_comp.type_space import example_type_space
218
+ sage: example_type_space().form()
219
+ q + ... + O(q^6)
220
+ """
221
+ return self._f
222
+
223
+ def conductor(self):
224
+ r"""
225
+ Exponent of `p` dividing the level of the form.
226
+
227
+ EXAMPLES::
228
+
229
+ sage: from sage.modular.local_comp.type_space import example_type_space
230
+ sage: example_type_space().conductor()
231
+ 2
232
+ """
233
+ return self.form().level().valuation(self.prime())
234
+
235
+ def character_conductor(self):
236
+ r"""
237
+ Exponent of `p` dividing the conductor of the character of the form.
238
+
239
+ EXAMPLES::
240
+
241
+ sage: from sage.modular.local_comp.type_space import example_type_space
242
+ sage: example_type_space().character_conductor()
243
+ 0
244
+ """
245
+ return ZZ(self.form().character().conductor()).valuation(self.prime())
246
+
247
+ def u(self):
248
+ r"""
249
+ Largest integer `u` such that level of `f_\chi` = level of `f` for all
250
+ Dirichlet characters `\chi` modulo `p^u`.
251
+
252
+ EXAMPLES::
253
+
254
+ sage: from sage.modular.local_comp.type_space import example_type_space
255
+ sage: example_type_space().u()
256
+ 1
257
+ sage: from sage.modular.local_comp.type_space import TypeSpace
258
+ sage: f = Newforms(Gamma1(5), 5, names='a')[0]
259
+ sage: TypeSpace(f, 5).u()
260
+ 0
261
+ """
262
+ return min(self.conductor() - self.character_conductor(), self.conductor() // 2)
263
+
264
+ def free_module(self):
265
+ r"""
266
+ Return the underlying vector space of this type space.
267
+
268
+ EXAMPLES::
269
+
270
+ sage: from sage.modular.local_comp.type_space import example_type_space
271
+ sage: example_type_space().free_module()
272
+ Vector space of dimension 6 over Number Field in a1 with defining polynomial ...
273
+ """
274
+ return self.t_space.nonembedded_free_module()
275
+
276
+ def eigensymbol_subspace(self):
277
+ r"""
278
+ Return the subspace of ``self`` corresponding to the plus eigensymbols of
279
+ `f` and its Galois conjugates (as a subspace of the vector space
280
+ returned by :meth:`~free_module`).
281
+
282
+ EXAMPLES::
283
+
284
+ sage: from sage.modular.local_comp.type_space import example_type_space
285
+ sage: T = example_type_space(); T.eigensymbol_subspace()
286
+ Vector space of degree 6 and dimension 1 over Number Field in a1 with defining polynomial ...
287
+ Basis matrix:
288
+ [...]
289
+ sage: T.eigensymbol_subspace().is_submodule(T.free_module())
290
+ True
291
+ """
292
+ V = self.t_space.free_module()
293
+ vecs = [V.coordinate_vector(x) for x in self.e_space.free_module().basis()]
294
+ return vecs[0].parent().submodule(vecs)
295
+
296
+ def tame_level(self):
297
+ r"""
298
+ The level away from `p`.
299
+
300
+ EXAMPLES::
301
+
302
+ sage: from sage.modular.local_comp.type_space import example_type_space
303
+ sage: example_type_space().tame_level()
304
+ 2
305
+ """
306
+ return self.form().level() // self.prime() ** self.conductor()
307
+
308
+ def group(self):
309
+ r"""
310
+ Return a `\Gamma_H` group which is the level of all of the relevant
311
+ twists of `f`.
312
+
313
+ EXAMPLES::
314
+
315
+ sage: from sage.modular.local_comp.type_space import example_type_space
316
+ sage: example_type_space().group()
317
+ Congruence Subgroup Gamma_H(98) with H generated by [15, 29, 43]
318
+ """
319
+ # Implementation here is not the most efficient but this is heavily not
320
+ # time-critical, and getting it wrong can lead to subtle bugs.
321
+ p = self.prime()
322
+ r = self.conductor()
323
+ d = max(self.character_conductor(), r // 2)
324
+ n = self.tame_level()
325
+ chi = self.form().character()
326
+ tame_H = [i for i in chi.kernel() if (i % p**r) == 1]
327
+ wild_H = [crt(x, 1, p**r, n) for x in range(p**r) if x % (p**d) == 1]
328
+ return GammaH(n * p**r, tame_H + wild_H)
329
+
330
+ ##########################################################################
331
+ # Testing minimality:
332
+ # is this form a twist of a form of strictly smaller level?
333
+ ##########################################################################
334
+
335
+ @cached_method
336
+ def is_minimal(self) -> bool:
337
+ r"""
338
+ Return ``True`` if there exists a newform `g` of level strictly smaller
339
+ than `N`, and a Dirichlet character `\chi` of `p`-power conductor, such
340
+ that `f = g \otimes \chi` where `f` is the form of which this is the
341
+ type space. To find such a form, use :meth:`~minimal_twist`.
342
+
343
+ The result is cached.
344
+
345
+ EXAMPLES::
346
+
347
+ sage: from sage.modular.local_comp.type_space import example_type_space
348
+ sage: example_type_space().is_minimal()
349
+ True
350
+ sage: example_type_space(1).is_minimal()
351
+ False
352
+ """
353
+ return self.t_space.is_submodule(self.t_space.ambient().new_submodule())
354
+
355
+ def minimal_twist(self):
356
+ r"""
357
+ Return a newform (not necessarily unique) which is a twist of the
358
+ original form `f` by a Dirichlet character of `p`-power conductor, and
359
+ which has minimal level among such twists of `f`.
360
+
361
+ An error will be raised if `f` is already minimal.
362
+
363
+ EXAMPLES::
364
+
365
+ sage: from sage.modular.local_comp.type_space import TypeSpace, example_type_space
366
+ sage: T = example_type_space(1)
367
+ sage: T.form().q_expansion(12)
368
+ q - q^2 + 2*q^3 + q^4 - 2*q^6 - q^8 + q^9 + O(q^12)
369
+ sage: g = T.minimal_twist()
370
+ sage: g.q_expansion(12)
371
+ q - q^2 - 2*q^3 + q^4 + 2*q^6 + q^7 - q^8 + q^9 + O(q^12)
372
+ sage: g.level()
373
+ 14
374
+ sage: TypeSpace(g, 7).is_minimal()
375
+ True
376
+
377
+ Test that :issue:`13158` is fixed::
378
+
379
+ sage: f = Newforms(256,names='a')[0]
380
+ sage: T = TypeSpace(f,2) # long time
381
+ sage: g = T.minimal_twist() # long time
382
+ sage: g[0:3] # long time
383
+ [0, 1, 0]
384
+ sage: str(g[3]) in ('a', '-a', '-1/2*a', '1/2*a') # long time
385
+ True
386
+ sage: g[4:] # long time
387
+ []
388
+ sage: g.level() # long time
389
+ 64
390
+ """
391
+ if self.is_minimal():
392
+ raise ValueError( "Form is already minimal" )
393
+
394
+ NN = self.form().level()
395
+ V = self.t_space
396
+ A = V.ambient()
397
+
398
+ while not V.is_submodule(A.new_submodule()):
399
+ NN = NN / self.prime()
400
+ D1 = A.degeneracy_map(NN, 1)
401
+ Dp = A.degeneracy_map(NN, self.prime())
402
+ A = D1.codomain()
403
+ vecs = [D1(v).element() for v in V.basis()] + [Dp(v).element() for v in V.basis()]
404
+ VV = A.free_module().submodule(vecs)
405
+ V = A.submodule(VV, check=False)
406
+
407
+ D = V.decomposition()[0]
408
+ # if len(D.star_eigenvalues()) == 2:
409
+ # D = D.sign_submodule(1)
410
+ D1 = D.modular_symbols_of_sign(1)
411
+ M = ModularForms(D1.group(), D1.weight(), D1.base_ring())
412
+ return Newform(M, D1, names='a')
413
+
414
+ #####################################
415
+ # The group action on the type space.
416
+ #####################################
417
+
418
+ def _rho_s(self, g):
419
+ r"""
420
+ Calculate the action of ``g`` on the type space, where ``g`` has determinant `1`.
421
+ For internal use; this gets called by :meth:`~rho`.
422
+
423
+ EXAMPLES::
424
+
425
+ sage: from sage.modular.local_comp.type_space import example_type_space
426
+ sage: T = example_type_space(2)
427
+ sage: TT = T._rho_s([1,1,0,1]); TT
428
+ [ 0 0 1 0]
429
+ [ 1 0 -1 1]
430
+ [ 0 0 -2 1]
431
+ [ 0 -1 -2 1]
432
+ sage: TT**5 == 1
433
+ True
434
+ sage: TS = T._rho_s([0,-1,1,0]); TS
435
+ [ 0 0 1 0]
436
+ [ 0 0 1 -1]
437
+ [ 1 0 0 0]
438
+ [ 1 -1 0 0]
439
+ sage: TS**2 == 1
440
+ True
441
+ sage: example_type_space(3)._rho_s([1,1,0,1])
442
+ [-1 -1]
443
+ [ 1 0]
444
+ """
445
+ if self.conductor() % 2 == 1:
446
+ return self._rho_ramified(g)
447
+
448
+ else:
449
+ return self._rho_unramified(g)
450
+
451
+ @cached_method
452
+ def _second_gen_unramified(self):
453
+ r"""
454
+ Calculate the action of the matrix [0, -1; 1, 0] on the type space,
455
+ in the unramified (even level) case.
456
+
457
+ EXAMPLES::
458
+
459
+ sage: from sage.modular.local_comp.type_space import example_type_space
460
+ sage: T = example_type_space(2)
461
+ sage: TS = T._second_gen_unramified(); TS
462
+ [ 0 0 1 0]
463
+ [ 0 0 1 -1]
464
+ [ 1 0 0 0]
465
+ [ 1 -1 0 0]
466
+ sage: TS**2 == 1
467
+ True
468
+ """
469
+ f = self.prime() ** self.u()
470
+ g2 = lift_gen_to_gamma1(f, self.tame_level())
471
+
472
+ g3 = [f * g2[0], g2[1], f**2 * g2[2], f*g2[3]]
473
+ A = self.t_space.ambient()
474
+ mm = A._action_on_modular_symbols(g3).restrict(self.t_space.free_module()).transpose()
475
+ return mm / ZZ(f**(self.form().weight() - 2))
476
+
477
+ def _rho_unramified(self, g):
478
+ r"""
479
+ Calculate the action of ``g`` on the type space, in the unramified (even
480
+ level) case.
481
+
482
+ This uses the two standard generators, and a solution of the
483
+ word problem in `\SL_2(\ZZ / p^u \ZZ)`.
484
+
485
+ INPUT:
486
+
487
+ - ``g`` -- 4-tuple of integers (or more generally anything that can be
488
+ converted into an element of the matrix group `\SL_2(\ZZ / p^u
489
+ \ZZ)`).
490
+
491
+ EXAMPLES::
492
+
493
+ sage: from sage.modular.local_comp.type_space import example_type_space
494
+ sage: T = example_type_space(2)
495
+ sage: T._rho_unramified([2,1,1,1])
496
+ [-1 0 0 -1]
497
+ [ 0 -1 1 0]
498
+ [ 1 -1 0 1]
499
+ [ 2 -1 1 1]
500
+ sage: T._rho_unramified([1,-2,1,-1]) == T._rho_unramified([2,1,1,1]) * T._rho_unramified([0,-1,1,0])
501
+ True
502
+ """
503
+ f = self.prime() ** self.u()
504
+ from sage.groups.matrix_gps.linear import SL
505
+ G = SL(2, Zmod(f))
506
+ gg = G(g)
507
+ s = G([1,1,0,1])
508
+ t = G([0,-1,1,0])
509
+ S = self._unipmat
510
+ T = self._second_gen_unramified()
511
+
512
+ w = gg.word_problem([s,t])
513
+ answer = S**0
514
+ for (x, n) in w:
515
+ if x == s:
516
+ answer = answer * S**n
517
+ elif x == t:
518
+ answer = answer * T**n
519
+ return answer
520
+
521
+ def _rho_ramified(self, g):
522
+ r"""
523
+ Calculate the action of a group element on the type space in the
524
+ ramified (odd conductor) case.
525
+
526
+ For internal use (called by :meth:`~rho`).
527
+
528
+ EXAMPLES::
529
+
530
+ sage: from sage.modular.local_comp.type_space import example_type_space
531
+ sage: T = example_type_space(3)
532
+ sage: T._rho_ramified([1,0,3,1])
533
+ [ 0 1]
534
+ [-1 -1]
535
+ sage: T._rho_ramified([1,3,0,1]) == 1
536
+ True
537
+ """
538
+ A = self.t_space.ambient()
539
+ g = [ZZ(_) for _ in g]
540
+ p = self.prime()
541
+ assert g[2] % p == 0
542
+ gg = lift_ramified(g, p, self.u(), self.tame_level())
543
+ g3 = [p**self.u() * gg[0], gg[1], p**(2*self.u()) * gg[2], p**self.u() * gg[3]]
544
+ return A._action_on_modular_symbols(g3).restrict(self.t_space.free_module()).transpose() / ZZ(p**(self.u() * (self.form().weight()-2) ) )
545
+
546
+ def _group_gens(self):
547
+ r"""
548
+ Return a set of generators of the group `S(K_0) / S(K_u)` (which is
549
+ either `\SL_2(\ZZ / p^u \ZZ)` if the conductor is even, and a
550
+ quotient of an Iwahori subgroup if the conductor is odd).
551
+
552
+ EXAMPLES::
553
+
554
+ sage: from sage.modular.local_comp.type_space import example_type_space
555
+ sage: example_type_space()._group_gens()
556
+ [[1, 1, 0, 1], [0, -1, 1, 0]]
557
+ sage: example_type_space(3)._group_gens()
558
+ [[1, 1, 0, 1], [1, 0, 3, 1], [2, 0, 0, 5]]
559
+ """
560
+ if (self.conductor() % 2) == 0:
561
+ return [ [ZZ(1), ZZ(1), ZZ(0), ZZ(1)], [ZZ(0), ZZ(-1), ZZ(1), ZZ(0)] ]
562
+ else:
563
+ p = self.prime()
564
+ if p == 2:
565
+ return [ [ZZ(1), ZZ(1), ZZ(0), ZZ(1)], [ZZ(1), ZZ(0), ZZ(p), ZZ(1)] ]
566
+ else:
567
+ a = Zmod(p**(self.u() + 1))(ZZ(Zmod(p).unit_gens()[0]))
568
+ return [ [ZZ(1), ZZ(1), ZZ(0), ZZ(1)], [ZZ(1), ZZ(0), ZZ(p), ZZ(1)],
569
+ [ZZ(a), 0, 0, ZZ(~a)] ]
570
+
571
+ def _intertwining_basis(self, a):
572
+ r"""
573
+ Return a basis for the set of homomorphisms between
574
+ this representation and the same representation conjugated by
575
+ [a,0; 0,1], where a is a generator of `(Z/p^uZ)^\times`. These are
576
+ the "candidates" for extending the rep to a `\mathrm{GL}_2`-rep.
577
+
578
+ Depending on the example, the hom-space has dimension either `1` or `2`.
579
+
580
+ EXAMPLES::
581
+
582
+ sage: from sage.modular.local_comp.type_space import example_type_space
583
+ sage: example_type_space(2)._intertwining_basis(2)
584
+ [
585
+ [ 1 -1 0 1]
586
+ [ 0 0 1 -1]
587
+ [ 0 1 1 -1]
588
+ [-1 1 2 -2]
589
+ ]
590
+ sage: example_type_space(3)._intertwining_basis(2)
591
+ [
592
+ [ 1 0] [0 1]
593
+ [-1 -1], [1 0]
594
+ ]
595
+ """
596
+ if self.conductor() % 2:
597
+ f = self.prime() ** (self.u() + 1)
598
+ else:
599
+ f = self.prime() ** self.u()
600
+
601
+ # f is smallest p-power such that rho is trivial modulo f
602
+ ainv = (~Zmod(f)(a)).lift()
603
+ gens = self._group_gens()
604
+ gensconj = [[x[0], ainv*x[1], a*x[2], x[3]] for x in gens]
605
+ rgens = [self._rho_s(x) for x in gens]
606
+ rgensinv = [operator.inv(_) for _ in rgens]
607
+ rgensconj = [self._rho_s(x) for x in gensconj]
608
+
609
+ rows = []
610
+ MS = rgens[0].parent()
611
+ for m in MS.basis():
612
+ rows.append([])
613
+ for i in range(len(gens)):
614
+ rows[-1] += (m - rgensinv[i] * m * rgensconj[i]).list()
615
+ S = matrix(rows).left_kernel()
616
+ return [MS(u.list()) for u in S.gens()]
617
+
618
+ def _discover_torus_action(self):
619
+ r"""
620
+ Calculate and store the data necessary to extend the action of `S(K_0)`
621
+ to `K_0`.
622
+
623
+ EXAMPLES::
624
+
625
+ sage: from sage.modular.local_comp.type_space import example_type_space
626
+ sage: example_type_space(2).rho([2,0,0,1]) # indirect doctest
627
+ [-1 1 0 -1]
628
+ [ 0 0 -1 1]
629
+ [ 0 -1 -1 1]
630
+ [ 1 -1 -2 2]
631
+ """
632
+ f = self.prime() ** self.u()
633
+ if not (f % 8):
634
+ a = ZZ(5)
635
+ else:
636
+ a = ZZ(Zmod(f).unit_gens()[0])
637
+
638
+ mats = self._intertwining_basis(a)
639
+ V = self.t_space.nonembedded_free_module()
640
+ v = self.eigensymbol_subspace().gen(0)
641
+ w = V.submodule_with_basis([m * v for m in mats]).coordinates(v) # v * self.e_space.diamond_eigenvalue(crt(a, 1, f, self.tame_level())))
642
+ self._a = a
643
+ self._amat = sum([mats[i] * w[i] for i in range(len(mats))])
644
+
645
+ def rho(self, g):
646
+ r"""
647
+ Calculate the action of the group element `g` on the type space.
648
+
649
+ EXAMPLES::
650
+
651
+ sage: from sage.modular.local_comp.type_space import example_type_space
652
+ sage: T = example_type_space(2)
653
+ sage: m = T.rho([2,0,0,1]); m
654
+ [-1 1 0 -1]
655
+ [ 0 0 -1 1]
656
+ [ 0 -1 -1 1]
657
+ [ 1 -1 -2 2]
658
+ sage: v = T.eigensymbol_subspace().basis()[0]
659
+ sage: m * v == v
660
+ True
661
+
662
+ We test that it is a left action::
663
+
664
+ sage: T = example_type_space(0)
665
+ sage: a = [0,5,4,3]; b = [0,2,3,5]; ab = [1,4,2,2]
666
+ sage: T.rho(ab) == T.rho(a) * T.rho(b)
667
+ True
668
+
669
+ An odd level example::
670
+
671
+ sage: from sage.modular.local_comp.type_space import TypeSpace
672
+ sage: T = TypeSpace(Newform('54a'), 3)
673
+ sage: a = [0,1,3,0]; b = [2,1,0,1]; ab = [0,1,6,3]
674
+ sage: T.rho(ab) == T.rho(a) * T.rho(b)
675
+ True
676
+ """
677
+ if not self.is_minimal():
678
+ raise NotImplementedError("Group action on non-minimal type space not implemented")
679
+
680
+ if self.u() == 0:
681
+ # silly special case: rep is principal series or special, so SL2
682
+ # action on type space is trivial
683
+ raise ValueError("Representation is not supercuspidal")
684
+
685
+ p = self.prime()
686
+ f = p**self.u()
687
+ g = [ZZ(_) for _ in g]
688
+ d = (g[0] * g[3] - g[2] * g[1])
689
+
690
+ # g is in S(K_0) (easy case)
691
+ if d % f == 1:
692
+ return self._rho_s(g)
693
+
694
+ # g is in K_0, but not in S(K_0)
695
+
696
+ if d % p != 0:
697
+ try:
698
+ a = self._a
699
+ except AttributeError:
700
+ self._discover_torus_action()
701
+ a = self._a
702
+
703
+ if not (f % 8):
704
+ if d % 4 == 3:
705
+ return (self.rho([-g[0], g[1], -g[2], g[3]]) *
706
+ self.t_space.star_involution().matrix().transpose())
707
+
708
+ i = 0
709
+ while (d * a**i) % f != 1:
710
+ i += 1
711
+ if i > f:
712
+ raise ArithmeticError
713
+ return self._rho_s([a**i*g[0], g[1], a**i*g[2], g[3]]) * self._amat**(-i)
714
+
715
+ # det(g) is not a unit
716
+
717
+ if (self.conductor() % 2 == 0):
718
+ if all(x.valuation(p) > 0 for x in g):
719
+ eps = self.form().character()(crt(1, p, f, self.tame_level()))
720
+ return ~eps * p**(self.form().weight() - 2) * self.rho([x // p for x in g])
721
+ else:
722
+ raise ArithmeticError( "g(={0}) not in K".format(g) )
723
+
724
+ else:
725
+ m = matrix(ZZ, 2, g)
726
+ s = m.det().valuation(p)
727
+ mm = (matrix(QQ, 2, [0, -1, p, 0])**(-s) * m).change_ring(ZZ)
728
+ return self._unif_ramified()**s * self.rho(mm.list())
729
+
730
+ def _unif_ramified(self):
731
+ r"""
732
+ Return the action of [0,-1,p,0], in the ramified (odd p-power level)
733
+ case.
734
+
735
+ EXAMPLES::
736
+
737
+ sage: from sage.modular.local_comp.type_space import example_type_space
738
+ sage: T = example_type_space(3)
739
+ sage: T._unif_ramified()
740
+ [-1 0]
741
+ [ 0 -1]
742
+ """
743
+ p = self.prime()
744
+ k = self.form().weight()
745
+ return (self.t_space.atkin_lehner_operator(p).matrix().transpose()
746
+ * p ** ( -(k-2)*self.u() )
747
+ * self.t_space.diamond_bracket_matrix(
748
+ crt(1, p**self.u(), p**self.u(), self.tame_level())).transpose())