passagemath-schemes 10.6.40__cp314-cp314-macosx_13_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-schemes might be problematic. Click here for more details.
- passagemath_schemes/.dylibs/libflint.22.0.dylib +0 -0
- passagemath_schemes/.dylibs/libgmp.10.dylib +0 -0
- passagemath_schemes/.dylibs/libgmpxx.4.dylib +0 -0
- passagemath_schemes/.dylibs/libmpfr.6.dylib +0 -0
- passagemath_schemes/__init__.py +3 -0
- passagemath_schemes-10.6.40.dist-info/METADATA +204 -0
- passagemath_schemes-10.6.40.dist-info/METADATA.bak +205 -0
- passagemath_schemes-10.6.40.dist-info/RECORD +314 -0
- passagemath_schemes-10.6.40.dist-info/WHEEL +6 -0
- passagemath_schemes-10.6.40.dist-info/top_level.txt +3 -0
- sage/all__sagemath_schemes.py +23 -0
- sage/databases/all__sagemath_schemes.py +7 -0
- sage/databases/cremona.py +1723 -0
- sage/dynamics/all__sagemath_schemes.py +2 -0
- sage/dynamics/arithmetic_dynamics/affine_ds.py +1083 -0
- sage/dynamics/arithmetic_dynamics/all.py +14 -0
- sage/dynamics/arithmetic_dynamics/berkovich_ds.py +1101 -0
- sage/dynamics/arithmetic_dynamics/dynamical_semigroup.py +1543 -0
- sage/dynamics/arithmetic_dynamics/endPN_automorphism_group.py +2426 -0
- sage/dynamics/arithmetic_dynamics/endPN_minimal_model.py +1169 -0
- sage/dynamics/arithmetic_dynamics/generic_ds.py +663 -0
- sage/dynamics/arithmetic_dynamics/product_projective_ds.py +339 -0
- sage/dynamics/arithmetic_dynamics/projective_ds.py +9558 -0
- sage/dynamics/arithmetic_dynamics/projective_ds_helper.cpython-314-darwin.so +0 -0
- sage/dynamics/arithmetic_dynamics/projective_ds_helper.pyx +301 -0
- sage/dynamics/arithmetic_dynamics/wehlerK3.py +2576 -0
- sage/lfunctions/all.py +18 -0
- sage/lfunctions/dokchitser.py +745 -0
- sage/lfunctions/pari.py +818 -0
- sage/lfunctions/zero_sums.cpython-314-darwin.so +0 -0
- sage/lfunctions/zero_sums.pyx +1847 -0
- sage/modular/abvar/abvar.py +5135 -0
- sage/modular/abvar/abvar_ambient_jacobian.py +413 -0
- sage/modular/abvar/abvar_newform.py +244 -0
- sage/modular/abvar/all.py +8 -0
- sage/modular/abvar/constructor.py +186 -0
- sage/modular/abvar/cuspidal_subgroup.py +371 -0
- sage/modular/abvar/finite_subgroup.py +896 -0
- sage/modular/abvar/homology.py +720 -0
- sage/modular/abvar/homspace.py +998 -0
- sage/modular/abvar/lseries.py +415 -0
- sage/modular/abvar/morphism.py +935 -0
- sage/modular/abvar/torsion_point.py +274 -0
- sage/modular/abvar/torsion_subgroup.py +740 -0
- sage/modular/all.py +43 -0
- sage/modular/arithgroup/all.py +20 -0
- sage/modular/arithgroup/arithgroup_element.cpython-314-darwin.so +0 -0
- sage/modular/arithgroup/arithgroup_element.pyx +474 -0
- sage/modular/arithgroup/arithgroup_generic.py +1402 -0
- sage/modular/arithgroup/arithgroup_perm.py +2692 -0
- sage/modular/arithgroup/congroup.cpython-314-darwin.so +0 -0
- sage/modular/arithgroup/congroup.pyx +334 -0
- sage/modular/arithgroup/congroup_gamma.py +363 -0
- sage/modular/arithgroup/congroup_gamma0.py +692 -0
- sage/modular/arithgroup/congroup_gamma1.py +653 -0
- sage/modular/arithgroup/congroup_gammaH.py +1469 -0
- sage/modular/arithgroup/congroup_generic.py +628 -0
- sage/modular/arithgroup/congroup_sl2z.py +267 -0
- sage/modular/arithgroup/farey_symbol.cpython-314-darwin.so +0 -0
- sage/modular/arithgroup/farey_symbol.pyx +1066 -0
- sage/modular/arithgroup/tests.py +418 -0
- sage/modular/btquotients/all.py +4 -0
- sage/modular/btquotients/btquotient.py +3753 -0
- sage/modular/btquotients/pautomorphicform.py +2570 -0
- sage/modular/buzzard.py +100 -0
- sage/modular/congroup.py +29 -0
- sage/modular/congroup_element.py +13 -0
- sage/modular/cusps.py +1109 -0
- sage/modular/cusps_nf.py +1270 -0
- sage/modular/dims.py +569 -0
- sage/modular/dirichlet.py +3310 -0
- sage/modular/drinfeld_modform/all.py +2 -0
- sage/modular/drinfeld_modform/element.py +446 -0
- sage/modular/drinfeld_modform/ring.py +773 -0
- sage/modular/drinfeld_modform/tutorial.py +236 -0
- sage/modular/etaproducts.py +1065 -0
- sage/modular/hecke/algebra.py +746 -0
- sage/modular/hecke/all.py +20 -0
- sage/modular/hecke/ambient_module.py +1019 -0
- sage/modular/hecke/degenmap.py +119 -0
- sage/modular/hecke/element.py +325 -0
- sage/modular/hecke/hecke_operator.py +780 -0
- sage/modular/hecke/homspace.py +206 -0
- sage/modular/hecke/module.py +1767 -0
- sage/modular/hecke/morphism.py +174 -0
- sage/modular/hecke/submodule.py +989 -0
- sage/modular/hypergeometric_misc.cpython-314-darwin.so +0 -0
- sage/modular/hypergeometric_misc.pxd +4 -0
- sage/modular/hypergeometric_misc.pyx +166 -0
- sage/modular/hypergeometric_motive.py +2017 -0
- sage/modular/local_comp/all.py +2 -0
- sage/modular/local_comp/liftings.py +292 -0
- sage/modular/local_comp/local_comp.py +1071 -0
- sage/modular/local_comp/smoothchar.py +1825 -0
- sage/modular/local_comp/type_space.py +748 -0
- sage/modular/modform/all.py +30 -0
- sage/modular/modform/ambient.py +815 -0
- sage/modular/modform/ambient_R.py +177 -0
- sage/modular/modform/ambient_eps.py +306 -0
- sage/modular/modform/ambient_g0.py +124 -0
- sage/modular/modform/ambient_g1.py +204 -0
- sage/modular/modform/constructor.py +545 -0
- sage/modular/modform/cuspidal_submodule.py +708 -0
- sage/modular/modform/defaults.py +14 -0
- sage/modular/modform/eis_series.py +505 -0
- sage/modular/modform/eisenstein_submodule.py +663 -0
- sage/modular/modform/element.py +4131 -0
- sage/modular/modform/find_generators.py +59 -0
- sage/modular/modform/half_integral.py +154 -0
- sage/modular/modform/hecke_operator_on_qexp.py +247 -0
- sage/modular/modform/j_invariant.py +47 -0
- sage/modular/modform/l_series_gross_zagier.py +133 -0
- sage/modular/modform/l_series_gross_zagier_coeffs.cpython-314-darwin.so +0 -0
- sage/modular/modform/l_series_gross_zagier_coeffs.pyx +177 -0
- sage/modular/modform/notes.py +45 -0
- sage/modular/modform/numerical.py +514 -0
- sage/modular/modform/periods.py +14 -0
- sage/modular/modform/ring.py +1257 -0
- sage/modular/modform/space.py +1860 -0
- sage/modular/modform/submodule.py +118 -0
- sage/modular/modform/tests.py +64 -0
- sage/modular/modform/theta.py +110 -0
- sage/modular/modform/vm_basis.py +381 -0
- sage/modular/modform/weight1.py +220 -0
- sage/modular/modform_hecketriangle/abstract_ring.py +1932 -0
- sage/modular/modform_hecketriangle/abstract_space.py +2528 -0
- sage/modular/modform_hecketriangle/all.py +30 -0
- sage/modular/modform_hecketriangle/analytic_type.py +590 -0
- sage/modular/modform_hecketriangle/constructor.py +416 -0
- sage/modular/modform_hecketriangle/element.py +351 -0
- sage/modular/modform_hecketriangle/functors.py +752 -0
- sage/modular/modform_hecketriangle/graded_ring.py +541 -0
- sage/modular/modform_hecketriangle/graded_ring_element.py +2225 -0
- sage/modular/modform_hecketriangle/hecke_triangle_group_element.py +3352 -0
- sage/modular/modform_hecketriangle/hecke_triangle_groups.py +1432 -0
- sage/modular/modform_hecketriangle/readme.py +1214 -0
- sage/modular/modform_hecketriangle/series_constructor.py +580 -0
- sage/modular/modform_hecketriangle/space.py +1037 -0
- sage/modular/modform_hecketriangle/subspace.py +423 -0
- sage/modular/modsym/all.py +17 -0
- sage/modular/modsym/ambient.py +3846 -0
- sage/modular/modsym/boundary.py +1420 -0
- sage/modular/modsym/element.py +336 -0
- sage/modular/modsym/g1list.py +178 -0
- sage/modular/modsym/ghlist.py +182 -0
- sage/modular/modsym/hecke_operator.py +73 -0
- sage/modular/modsym/manin_symbol.cpython-314-darwin.so +0 -0
- sage/modular/modsym/manin_symbol.pxd +5 -0
- sage/modular/modsym/manin_symbol.pyx +497 -0
- sage/modular/modsym/manin_symbol_list.py +1295 -0
- sage/modular/modsym/modsym.py +400 -0
- sage/modular/modsym/modular_symbols.py +384 -0
- sage/modular/modsym/p1list.cpython-314-darwin.so +0 -0
- sage/modular/modsym/p1list.pxd +29 -0
- sage/modular/modsym/p1list.pyx +1372 -0
- sage/modular/modsym/p1list_nf.py +1241 -0
- sage/modular/modsym/relation_matrix.py +591 -0
- sage/modular/modsym/relation_matrix_pyx.cpython-314-darwin.so +0 -0
- sage/modular/modsym/relation_matrix_pyx.pyx +108 -0
- sage/modular/modsym/space.py +2468 -0
- sage/modular/modsym/subspace.py +455 -0
- sage/modular/modsym/tests.py +375 -0
- sage/modular/multiple_zeta.py +2632 -0
- sage/modular/multiple_zeta_F_algebra.py +786 -0
- sage/modular/overconvergent/all.py +6 -0
- sage/modular/overconvergent/genus0.py +1878 -0
- sage/modular/overconvergent/hecke_series.py +1187 -0
- sage/modular/overconvergent/weightspace.py +778 -0
- sage/modular/pollack_stevens/all.py +4 -0
- sage/modular/pollack_stevens/distributions.py +874 -0
- sage/modular/pollack_stevens/fund_domain.py +1572 -0
- sage/modular/pollack_stevens/manin_map.py +859 -0
- sage/modular/pollack_stevens/modsym.py +1593 -0
- sage/modular/pollack_stevens/padic_lseries.py +417 -0
- sage/modular/pollack_stevens/sigma0.py +534 -0
- sage/modular/pollack_stevens/space.py +1076 -0
- sage/modular/quasimodform/all.py +3 -0
- sage/modular/quasimodform/element.py +845 -0
- sage/modular/quasimodform/ring.py +828 -0
- sage/modular/quatalg/all.py +3 -0
- sage/modular/quatalg/brandt.py +1642 -0
- sage/modular/ssmod/all.py +8 -0
- sage/modular/ssmod/ssmod.py +827 -0
- sage/rings/all__sagemath_schemes.py +1 -0
- sage/rings/polynomial/all__sagemath_schemes.py +1 -0
- sage/rings/polynomial/binary_form_reduce.py +585 -0
- sage/schemes/all.py +41 -0
- sage/schemes/berkovich/all.py +6 -0
- sage/schemes/berkovich/berkovich_cp_element.py +2582 -0
- sage/schemes/berkovich/berkovich_space.py +748 -0
- sage/schemes/curves/affine_curve.py +2928 -0
- sage/schemes/curves/all.py +33 -0
- sage/schemes/curves/closed_point.py +434 -0
- sage/schemes/curves/constructor.py +381 -0
- sage/schemes/curves/curve.py +542 -0
- sage/schemes/curves/plane_curve_arrangement.py +1283 -0
- sage/schemes/curves/point.py +463 -0
- sage/schemes/curves/projective_curve.py +3026 -0
- sage/schemes/curves/zariski_vankampen.py +1932 -0
- sage/schemes/cyclic_covers/all.py +2 -0
- sage/schemes/cyclic_covers/charpoly_frobenius.py +320 -0
- sage/schemes/cyclic_covers/constructor.py +137 -0
- sage/schemes/cyclic_covers/cycliccover_finite_field.py +1309 -0
- sage/schemes/cyclic_covers/cycliccover_generic.py +310 -0
- sage/schemes/elliptic_curves/BSD.py +1036 -0
- sage/schemes/elliptic_curves/Qcurves.py +592 -0
- sage/schemes/elliptic_curves/addition_formulas_ring.py +94 -0
- sage/schemes/elliptic_curves/all.py +49 -0
- sage/schemes/elliptic_curves/cardinality.py +609 -0
- sage/schemes/elliptic_curves/cm.py +1102 -0
- sage/schemes/elliptic_curves/constructor.py +1552 -0
- sage/schemes/elliptic_curves/ec_database.py +175 -0
- sage/schemes/elliptic_curves/ell_curve_isogeny.py +3972 -0
- sage/schemes/elliptic_curves/ell_egros.py +459 -0
- sage/schemes/elliptic_curves/ell_field.py +2836 -0
- sage/schemes/elliptic_curves/ell_finite_field.py +3359 -0
- sage/schemes/elliptic_curves/ell_generic.py +3760 -0
- sage/schemes/elliptic_curves/ell_local_data.py +1207 -0
- sage/schemes/elliptic_curves/ell_modular_symbols.py +775 -0
- sage/schemes/elliptic_curves/ell_number_field.py +4220 -0
- sage/schemes/elliptic_curves/ell_padic_field.py +107 -0
- sage/schemes/elliptic_curves/ell_point.py +4787 -0
- sage/schemes/elliptic_curves/ell_rational_field.py +7368 -0
- sage/schemes/elliptic_curves/ell_tate_curve.py +671 -0
- sage/schemes/elliptic_curves/ell_torsion.py +436 -0
- sage/schemes/elliptic_curves/ell_wp.py +352 -0
- sage/schemes/elliptic_curves/formal_group.py +760 -0
- sage/schemes/elliptic_curves/gal_reps.py +1459 -0
- sage/schemes/elliptic_curves/gal_reps_number_field.py +1669 -0
- sage/schemes/elliptic_curves/gp_simon.py +152 -0
- sage/schemes/elliptic_curves/heegner.py +7335 -0
- sage/schemes/elliptic_curves/height.py +2109 -0
- sage/schemes/elliptic_curves/hom.py +1406 -0
- sage/schemes/elliptic_curves/hom_composite.py +934 -0
- sage/schemes/elliptic_curves/hom_frobenius.py +522 -0
- sage/schemes/elliptic_curves/hom_scalar.py +531 -0
- sage/schemes/elliptic_curves/hom_sum.py +682 -0
- sage/schemes/elliptic_curves/hom_velusqrt.py +1290 -0
- sage/schemes/elliptic_curves/homset.py +271 -0
- sage/schemes/elliptic_curves/isogeny_class.py +1521 -0
- sage/schemes/elliptic_curves/isogeny_small_degree.py +2797 -0
- sage/schemes/elliptic_curves/jacobian.py +237 -0
- sage/schemes/elliptic_curves/kodaira_symbol.py +344 -0
- sage/schemes/elliptic_curves/kraus.py +1014 -0
- sage/schemes/elliptic_curves/lseries_ell.py +943 -0
- sage/schemes/elliptic_curves/mod5family.py +105 -0
- sage/schemes/elliptic_curves/mod_poly.py +197 -0
- sage/schemes/elliptic_curves/mod_sym_num.cpython-314-darwin.so +0 -0
- sage/schemes/elliptic_curves/mod_sym_num.pyx +3796 -0
- sage/schemes/elliptic_curves/modular_parametrization.py +305 -0
- sage/schemes/elliptic_curves/padic_lseries.py +1793 -0
- sage/schemes/elliptic_curves/padics.py +1816 -0
- sage/schemes/elliptic_curves/period_lattice.py +2234 -0
- sage/schemes/elliptic_curves/period_lattice_region.cpython-314-darwin.so +0 -0
- sage/schemes/elliptic_curves/period_lattice_region.pyx +722 -0
- sage/schemes/elliptic_curves/saturation.py +715 -0
- sage/schemes/elliptic_curves/sha_tate.py +1158 -0
- sage/schemes/elliptic_curves/weierstrass_morphism.py +1117 -0
- sage/schemes/elliptic_curves/weierstrass_transform.py +200 -0
- sage/schemes/hyperelliptic_curves/all.py +6 -0
- sage/schemes/hyperelliptic_curves/constructor.py +291 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_finite_field.py +1914 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_g2.py +192 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_generic.py +954 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_padic_field.py +1332 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_rational_field.py +84 -0
- sage/schemes/hyperelliptic_curves/invariants.py +410 -0
- sage/schemes/hyperelliptic_curves/jacobian_endomorphism_utils.py +315 -0
- sage/schemes/hyperelliptic_curves/jacobian_g2.py +32 -0
- sage/schemes/hyperelliptic_curves/jacobian_generic.py +419 -0
- sage/schemes/hyperelliptic_curves/jacobian_homset.py +186 -0
- sage/schemes/hyperelliptic_curves/jacobian_morphism.py +875 -0
- sage/schemes/hyperelliptic_curves/kummer_surface.py +99 -0
- sage/schemes/hyperelliptic_curves/mestre.py +302 -0
- sage/schemes/hyperelliptic_curves/monsky_washnitzer.py +3871 -0
- sage/schemes/jacobians/abstract_jacobian.py +277 -0
- sage/schemes/jacobians/all.py +2 -0
- sage/schemes/overview.py +161 -0
- sage/schemes/plane_conics/all.py +22 -0
- sage/schemes/plane_conics/con_field.py +1296 -0
- sage/schemes/plane_conics/con_finite_field.py +158 -0
- sage/schemes/plane_conics/con_number_field.py +456 -0
- sage/schemes/plane_conics/con_rational_field.py +406 -0
- sage/schemes/plane_conics/con_rational_function_field.py +580 -0
- sage/schemes/plane_conics/constructor.py +249 -0
- sage/schemes/plane_quartics/all.py +2 -0
- sage/schemes/plane_quartics/quartic_constructor.py +71 -0
- sage/schemes/plane_quartics/quartic_generic.py +73 -0
- sage/schemes/riemann_surfaces/all.py +1 -0
- sage/schemes/riemann_surfaces/riemann_surface.py +4117 -0
- sage_wheels/share/cremona/cremona_mini.db +0 -0
- sage_wheels/share/ellcurves/rank0 +30427 -0
- sage_wheels/share/ellcurves/rank1 +31871 -0
- sage_wheels/share/ellcurves/rank10 +6 -0
- sage_wheels/share/ellcurves/rank11 +6 -0
- sage_wheels/share/ellcurves/rank12 +1 -0
- sage_wheels/share/ellcurves/rank14 +1 -0
- sage_wheels/share/ellcurves/rank15 +1 -0
- sage_wheels/share/ellcurves/rank17 +1 -0
- sage_wheels/share/ellcurves/rank19 +1 -0
- sage_wheels/share/ellcurves/rank2 +2388 -0
- sage_wheels/share/ellcurves/rank20 +1 -0
- sage_wheels/share/ellcurves/rank21 +1 -0
- sage_wheels/share/ellcurves/rank22 +1 -0
- sage_wheels/share/ellcurves/rank23 +1 -0
- sage_wheels/share/ellcurves/rank24 +1 -0
- sage_wheels/share/ellcurves/rank28 +1 -0
- sage_wheels/share/ellcurves/rank3 +836 -0
- sage_wheels/share/ellcurves/rank4 +10 -0
- sage_wheels/share/ellcurves/rank5 +5 -0
- sage_wheels/share/ellcurves/rank6 +5 -0
- sage_wheels/share/ellcurves/rank7 +5 -0
- sage_wheels/share/ellcurves/rank8 +6 -0
- sage_wheels/share/ellcurves/rank9 +7 -0
|
@@ -0,0 +1,748 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-schemes
|
|
2
|
+
# sage.doctest: needs sage.libs.pari
|
|
3
|
+
r"""
|
|
4
|
+
Type spaces of newforms
|
|
5
|
+
|
|
6
|
+
Let `f` be a new modular eigenform of level `\Gamma_1(N)`, and `p` a prime
|
|
7
|
+
dividing `N`, with `N = Mp^r` (`M` coprime to `p`). Suppose the power of `p`
|
|
8
|
+
dividing the conductor of the character of `f` is `p^c` (so `c \le r`).
|
|
9
|
+
|
|
10
|
+
Then there is an integer `u`, which is `\operatorname{min}([r/2], r-c)`, such
|
|
11
|
+
that any twist of `f` by a character mod `p^u` also has level `N`. The *type
|
|
12
|
+
space* of `f` is the span of the modular eigensymbols corresponding to all of
|
|
13
|
+
these twists, which lie in a space of modular symbols for a suitable `\Gamma_H`
|
|
14
|
+
subgroup. This space is the key to computing the isomorphism class of the local
|
|
15
|
+
component of the newform at `p`.
|
|
16
|
+
"""
|
|
17
|
+
|
|
18
|
+
import operator
|
|
19
|
+
|
|
20
|
+
from sage.arith.misc import crt
|
|
21
|
+
from sage.matrix.constructor import matrix
|
|
22
|
+
from sage.misc.cachefunc import cached_method, cached_function
|
|
23
|
+
from sage.modular.arithgroup.all import GammaH
|
|
24
|
+
from sage.modular.modform.constructor import ModularForms
|
|
25
|
+
from sage.modular.modform.element import Newform
|
|
26
|
+
from sage.modular.modsym.modsym import ModularSymbols
|
|
27
|
+
from sage.rings.fast_arith import prime_range
|
|
28
|
+
from sage.rings.finite_rings.integer_mod_ring import Zmod
|
|
29
|
+
from sage.rings.integer_ring import ZZ
|
|
30
|
+
from sage.rings.rational_field import QQ
|
|
31
|
+
from sage.structure.sage_object import SageObject
|
|
32
|
+
|
|
33
|
+
from .liftings import lift_gen_to_gamma1, lift_ramified
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
@cached_function
|
|
37
|
+
def example_type_space(example_no=0):
|
|
38
|
+
r"""
|
|
39
|
+
Quickly return an example of a type space. Used mainly to speed up
|
|
40
|
+
doctesting.
|
|
41
|
+
|
|
42
|
+
EXAMPLES::
|
|
43
|
+
|
|
44
|
+
sage: from sage.modular.local_comp.type_space import example_type_space
|
|
45
|
+
sage: example_type_space() # takes a while but caches stuff (21s on sage.math, 2012)
|
|
46
|
+
6-dimensional type space at prime 7 of form q + ... + O(q^6)
|
|
47
|
+
|
|
48
|
+
The above test takes a long time, but it precomputes and caches
|
|
49
|
+
various things such that subsequent doctests can be very quick.
|
|
50
|
+
So we don't want to mark it ``# long time``.
|
|
51
|
+
"""
|
|
52
|
+
from sage.modular.modform.constructor import Newform as Newform_constructor
|
|
53
|
+
if example_no == 0:
|
|
54
|
+
# a fairly generic example
|
|
55
|
+
return TypeSpace(Newform_constructor('98b', names='a'), 7)
|
|
56
|
+
elif example_no == 1:
|
|
57
|
+
# a non-minimal example
|
|
58
|
+
return TypeSpace(Newform_constructor('98a', names='a'), 7)
|
|
59
|
+
elif example_no == 2:
|
|
60
|
+
# a smaller example with QQ coefficients
|
|
61
|
+
return TypeSpace(Newform_constructor('50a'), 5)
|
|
62
|
+
elif example_no == 3:
|
|
63
|
+
# a ramified (odd p-power level) case
|
|
64
|
+
return TypeSpace(Newform_constructor('27a'), 3)
|
|
65
|
+
|
|
66
|
+
|
|
67
|
+
def find_in_space(f, A, base_extend=False):
|
|
68
|
+
r"""
|
|
69
|
+
Given a Newform object `f`, and a space `A` of modular symbols of the same
|
|
70
|
+
weight and level, find the subspace of `A` which corresponds to the Hecke
|
|
71
|
+
eigenvalues of `f`.
|
|
72
|
+
|
|
73
|
+
If ``base_extend = True``, this will return a 2-dimensional space generated
|
|
74
|
+
by the plus and minus eigensymbols of `f`. If ``base_extend = False`` it
|
|
75
|
+
will return a larger space spanned by the eigensymbols of `f` and its
|
|
76
|
+
Galois conjugates.
|
|
77
|
+
|
|
78
|
+
(NB: "Galois conjugates" needs to be interpreted carefully -- see the last
|
|
79
|
+
example below.)
|
|
80
|
+
|
|
81
|
+
`A` should be an ambient space (because non-ambient spaces don't implement
|
|
82
|
+
``base_extend``).
|
|
83
|
+
|
|
84
|
+
EXAMPLES::
|
|
85
|
+
|
|
86
|
+
sage: from sage.modular.local_comp.type_space import find_in_space
|
|
87
|
+
|
|
88
|
+
Easy case (`f` has rational coefficients)::
|
|
89
|
+
|
|
90
|
+
sage: f = Newform('99a'); f
|
|
91
|
+
q - q^2 - q^4 - 4*q^5 + O(q^6)
|
|
92
|
+
sage: A = ModularSymbols(GammaH(99, [13]))
|
|
93
|
+
sage: find_in_space(f, A)
|
|
94
|
+
Modular Symbols subspace of dimension 2 of Modular Symbols space of dimension 25 for Congruence Subgroup Gamma_H(99) with H generated by [13] of weight 2 with sign 0 over Rational Field
|
|
95
|
+
|
|
96
|
+
Harder case::
|
|
97
|
+
|
|
98
|
+
sage: f = Newforms(23, names='a')[0]
|
|
99
|
+
sage: A = ModularSymbols(Gamma1(23))
|
|
100
|
+
sage: find_in_space(f, A, base_extend=True)
|
|
101
|
+
Modular Symbols subspace of dimension 2 of Modular Symbols space of dimension 45 for Gamma_1(23) of weight 2 with sign 0 over Number Field in a0 with defining polynomial x^2 + x - 1
|
|
102
|
+
sage: find_in_space(f, A, base_extend=False)
|
|
103
|
+
Modular Symbols subspace of dimension 4 of Modular Symbols space of dimension 45 for Gamma_1(23) of weight 2 with sign 0 over Rational Field
|
|
104
|
+
|
|
105
|
+
An example with character, indicating the rather subtle behaviour of
|
|
106
|
+
``base_extend``::
|
|
107
|
+
|
|
108
|
+
sage: chi = DirichletGroup(5).0
|
|
109
|
+
sage: f = Newforms(chi, 7, names='c')[0]; f # long time (4s on sage.math, 2012)
|
|
110
|
+
q + c0*q^2 + (zeta4*c0 - 5*zeta4 + 5)*q^3 + ((-5*zeta4 - 5)*c0 + 24*zeta4)*q^4 + ((10*zeta4 - 5)*c0 - 40*zeta4 - 55)*q^5 + O(q^6)
|
|
111
|
+
sage: find_in_space(f, ModularSymbols(Gamma1(5), 7), base_extend=True) # long time
|
|
112
|
+
Modular Symbols subspace of dimension 2 of Modular Symbols space of dimension 12 for Gamma_1(5) of weight 7 with sign 0 over Number Field in c0 with defining polynomial x^2 + (5*zeta4 + 5)*x - 88*zeta4 over its base field
|
|
113
|
+
sage: find_in_space(f, ModularSymbols(Gamma1(5), 7), base_extend=False) # long time (27s on sage.math, 2012)
|
|
114
|
+
Modular Symbols subspace of dimension 4 of Modular Symbols space of dimension 12 for Gamma_1(5) of weight 7 with sign 0 over Cyclotomic Field of order 4 and degree 2
|
|
115
|
+
|
|
116
|
+
Note that the base ring in the second example is `\QQ(\zeta_4)` (the base
|
|
117
|
+
ring of the character of `f`), *not* `\QQ`.
|
|
118
|
+
"""
|
|
119
|
+
if not A.weight() == f.weight():
|
|
120
|
+
raise ValueError( "Weight of space does not match weight of form" )
|
|
121
|
+
if not A.level() == f.level():
|
|
122
|
+
raise ValueError( "Level of space does not match level of form" )
|
|
123
|
+
|
|
124
|
+
if base_extend:
|
|
125
|
+
D = A.base_extend(f.hecke_eigenvalue_field())
|
|
126
|
+
else:
|
|
127
|
+
M = f.modular_symbols(sign=1)
|
|
128
|
+
D = A.base_extend(M.base_ring())
|
|
129
|
+
|
|
130
|
+
expected_dimension = 2 if base_extend else 2*M.dimension()
|
|
131
|
+
|
|
132
|
+
for p in prime_range(1 + A.sturm_bound()):
|
|
133
|
+
h = D.hecke_operator(p)
|
|
134
|
+
if base_extend:
|
|
135
|
+
hh = h - f[p]
|
|
136
|
+
else:
|
|
137
|
+
f = M.hecke_polynomial(p)
|
|
138
|
+
hh = f(h)
|
|
139
|
+
DD = hh.kernel()
|
|
140
|
+
if DD.dimension() < D.dimension():
|
|
141
|
+
D = DD
|
|
142
|
+
|
|
143
|
+
if D.dimension() <= expected_dimension:
|
|
144
|
+
break
|
|
145
|
+
|
|
146
|
+
if D.dimension() != expected_dimension:
|
|
147
|
+
raise ArithmeticError( "Error in find_in_space: "
|
|
148
|
+
+ "got dimension %s (should be %s)" % (D.dimension(), expected_dimension) )
|
|
149
|
+
|
|
150
|
+
return D
|
|
151
|
+
|
|
152
|
+
|
|
153
|
+
class TypeSpace(SageObject):
|
|
154
|
+
r"""
|
|
155
|
+
The modular symbol type space associated to a newform, at a prime dividing
|
|
156
|
+
the level.
|
|
157
|
+
"""
|
|
158
|
+
#################################################
|
|
159
|
+
# Basic initialisation and data-access functions
|
|
160
|
+
#################################################
|
|
161
|
+
|
|
162
|
+
def __init__(self, f, p, base_extend=True):
|
|
163
|
+
r"""
|
|
164
|
+
EXAMPLES::
|
|
165
|
+
|
|
166
|
+
sage: from sage.modular.local_comp.type_space import example_type_space
|
|
167
|
+
sage: example_type_space() # indirect doctest
|
|
168
|
+
6-dimensional type space at prime 7 of form q + ... + O(q^6)
|
|
169
|
+
"""
|
|
170
|
+
self._p = p
|
|
171
|
+
self._f = f
|
|
172
|
+
if f.level() % p:
|
|
173
|
+
raise ValueError( "p must divide level" )
|
|
174
|
+
|
|
175
|
+
amb = ModularSymbols(self.group(), f.weight())
|
|
176
|
+
self.e_space = find_in_space(f, amb, base_extend=base_extend).sign_submodule(1)
|
|
177
|
+
R = self.e_space.base_ring()
|
|
178
|
+
mat = amb._action_on_modular_symbols([p**self.u(), 1, 0, p**self.u()])
|
|
179
|
+
V = amb.free_module().base_extend(R)
|
|
180
|
+
bvecs = []
|
|
181
|
+
for v in self.e_space.free_module().basis():
|
|
182
|
+
bvecs += mat.maxspin(v)
|
|
183
|
+
T = V.submodule(bvecs)
|
|
184
|
+
self._unipmat = mat.change_ring(R).restrict(T).transpose() / ZZ(p ** (self.u() * (f.weight() - 2)))
|
|
185
|
+
self.t_space = amb.base_extend(R).submodule(T, check=False)
|
|
186
|
+
|
|
187
|
+
def _repr_(self):
|
|
188
|
+
r"""
|
|
189
|
+
String representation of ``self``.
|
|
190
|
+
|
|
191
|
+
EXAMPLES::
|
|
192
|
+
|
|
193
|
+
sage: from sage.modular.local_comp.type_space import example_type_space
|
|
194
|
+
sage: example_type_space()._repr_()
|
|
195
|
+
'6-dimensional type space at prime 7 of form q + ... + O(q^6)'
|
|
196
|
+
"""
|
|
197
|
+
return "%s-dimensional type space at prime %s of form %s" % (self.t_space.rank(), self.prime(), self.form())
|
|
198
|
+
|
|
199
|
+
def prime(self):
|
|
200
|
+
r"""
|
|
201
|
+
Return the prime `p`.
|
|
202
|
+
|
|
203
|
+
EXAMPLES::
|
|
204
|
+
|
|
205
|
+
sage: from sage.modular.local_comp.type_space import example_type_space
|
|
206
|
+
sage: example_type_space().prime()
|
|
207
|
+
7
|
|
208
|
+
"""
|
|
209
|
+
return self._p
|
|
210
|
+
|
|
211
|
+
def form(self):
|
|
212
|
+
r"""
|
|
213
|
+
The newform of which this is the type space.
|
|
214
|
+
|
|
215
|
+
EXAMPLES::
|
|
216
|
+
|
|
217
|
+
sage: from sage.modular.local_comp.type_space import example_type_space
|
|
218
|
+
sage: example_type_space().form()
|
|
219
|
+
q + ... + O(q^6)
|
|
220
|
+
"""
|
|
221
|
+
return self._f
|
|
222
|
+
|
|
223
|
+
def conductor(self):
|
|
224
|
+
r"""
|
|
225
|
+
Exponent of `p` dividing the level of the form.
|
|
226
|
+
|
|
227
|
+
EXAMPLES::
|
|
228
|
+
|
|
229
|
+
sage: from sage.modular.local_comp.type_space import example_type_space
|
|
230
|
+
sage: example_type_space().conductor()
|
|
231
|
+
2
|
|
232
|
+
"""
|
|
233
|
+
return self.form().level().valuation(self.prime())
|
|
234
|
+
|
|
235
|
+
def character_conductor(self):
|
|
236
|
+
r"""
|
|
237
|
+
Exponent of `p` dividing the conductor of the character of the form.
|
|
238
|
+
|
|
239
|
+
EXAMPLES::
|
|
240
|
+
|
|
241
|
+
sage: from sage.modular.local_comp.type_space import example_type_space
|
|
242
|
+
sage: example_type_space().character_conductor()
|
|
243
|
+
0
|
|
244
|
+
"""
|
|
245
|
+
return ZZ(self.form().character().conductor()).valuation(self.prime())
|
|
246
|
+
|
|
247
|
+
def u(self):
|
|
248
|
+
r"""
|
|
249
|
+
Largest integer `u` such that level of `f_\chi` = level of `f` for all
|
|
250
|
+
Dirichlet characters `\chi` modulo `p^u`.
|
|
251
|
+
|
|
252
|
+
EXAMPLES::
|
|
253
|
+
|
|
254
|
+
sage: from sage.modular.local_comp.type_space import example_type_space
|
|
255
|
+
sage: example_type_space().u()
|
|
256
|
+
1
|
|
257
|
+
sage: from sage.modular.local_comp.type_space import TypeSpace
|
|
258
|
+
sage: f = Newforms(Gamma1(5), 5, names='a')[0]
|
|
259
|
+
sage: TypeSpace(f, 5).u()
|
|
260
|
+
0
|
|
261
|
+
"""
|
|
262
|
+
return min(self.conductor() - self.character_conductor(), self.conductor() // 2)
|
|
263
|
+
|
|
264
|
+
def free_module(self):
|
|
265
|
+
r"""
|
|
266
|
+
Return the underlying vector space of this type space.
|
|
267
|
+
|
|
268
|
+
EXAMPLES::
|
|
269
|
+
|
|
270
|
+
sage: from sage.modular.local_comp.type_space import example_type_space
|
|
271
|
+
sage: example_type_space().free_module()
|
|
272
|
+
Vector space of dimension 6 over Number Field in a1 with defining polynomial ...
|
|
273
|
+
"""
|
|
274
|
+
return self.t_space.nonembedded_free_module()
|
|
275
|
+
|
|
276
|
+
def eigensymbol_subspace(self):
|
|
277
|
+
r"""
|
|
278
|
+
Return the subspace of ``self`` corresponding to the plus eigensymbols of
|
|
279
|
+
`f` and its Galois conjugates (as a subspace of the vector space
|
|
280
|
+
returned by :meth:`~free_module`).
|
|
281
|
+
|
|
282
|
+
EXAMPLES::
|
|
283
|
+
|
|
284
|
+
sage: from sage.modular.local_comp.type_space import example_type_space
|
|
285
|
+
sage: T = example_type_space(); T.eigensymbol_subspace()
|
|
286
|
+
Vector space of degree 6 and dimension 1 over Number Field in a1 with defining polynomial ...
|
|
287
|
+
Basis matrix:
|
|
288
|
+
[...]
|
|
289
|
+
sage: T.eigensymbol_subspace().is_submodule(T.free_module())
|
|
290
|
+
True
|
|
291
|
+
"""
|
|
292
|
+
V = self.t_space.free_module()
|
|
293
|
+
vecs = [V.coordinate_vector(x) for x in self.e_space.free_module().basis()]
|
|
294
|
+
return vecs[0].parent().submodule(vecs)
|
|
295
|
+
|
|
296
|
+
def tame_level(self):
|
|
297
|
+
r"""
|
|
298
|
+
The level away from `p`.
|
|
299
|
+
|
|
300
|
+
EXAMPLES::
|
|
301
|
+
|
|
302
|
+
sage: from sage.modular.local_comp.type_space import example_type_space
|
|
303
|
+
sage: example_type_space().tame_level()
|
|
304
|
+
2
|
|
305
|
+
"""
|
|
306
|
+
return self.form().level() // self.prime() ** self.conductor()
|
|
307
|
+
|
|
308
|
+
def group(self):
|
|
309
|
+
r"""
|
|
310
|
+
Return a `\Gamma_H` group which is the level of all of the relevant
|
|
311
|
+
twists of `f`.
|
|
312
|
+
|
|
313
|
+
EXAMPLES::
|
|
314
|
+
|
|
315
|
+
sage: from sage.modular.local_comp.type_space import example_type_space
|
|
316
|
+
sage: example_type_space().group()
|
|
317
|
+
Congruence Subgroup Gamma_H(98) with H generated by [15, 29, 43]
|
|
318
|
+
"""
|
|
319
|
+
# Implementation here is not the most efficient but this is heavily not
|
|
320
|
+
# time-critical, and getting it wrong can lead to subtle bugs.
|
|
321
|
+
p = self.prime()
|
|
322
|
+
r = self.conductor()
|
|
323
|
+
d = max(self.character_conductor(), r // 2)
|
|
324
|
+
n = self.tame_level()
|
|
325
|
+
chi = self.form().character()
|
|
326
|
+
tame_H = [i for i in chi.kernel() if (i % p**r) == 1]
|
|
327
|
+
wild_H = [crt(x, 1, p**r, n) for x in range(p**r) if x % (p**d) == 1]
|
|
328
|
+
return GammaH(n * p**r, tame_H + wild_H)
|
|
329
|
+
|
|
330
|
+
##########################################################################
|
|
331
|
+
# Testing minimality:
|
|
332
|
+
# is this form a twist of a form of strictly smaller level?
|
|
333
|
+
##########################################################################
|
|
334
|
+
|
|
335
|
+
@cached_method
|
|
336
|
+
def is_minimal(self) -> bool:
|
|
337
|
+
r"""
|
|
338
|
+
Return ``True`` if there exists a newform `g` of level strictly smaller
|
|
339
|
+
than `N`, and a Dirichlet character `\chi` of `p`-power conductor, such
|
|
340
|
+
that `f = g \otimes \chi` where `f` is the form of which this is the
|
|
341
|
+
type space. To find such a form, use :meth:`~minimal_twist`.
|
|
342
|
+
|
|
343
|
+
The result is cached.
|
|
344
|
+
|
|
345
|
+
EXAMPLES::
|
|
346
|
+
|
|
347
|
+
sage: from sage.modular.local_comp.type_space import example_type_space
|
|
348
|
+
sage: example_type_space().is_minimal()
|
|
349
|
+
True
|
|
350
|
+
sage: example_type_space(1).is_minimal()
|
|
351
|
+
False
|
|
352
|
+
"""
|
|
353
|
+
return self.t_space.is_submodule(self.t_space.ambient().new_submodule())
|
|
354
|
+
|
|
355
|
+
def minimal_twist(self):
|
|
356
|
+
r"""
|
|
357
|
+
Return a newform (not necessarily unique) which is a twist of the
|
|
358
|
+
original form `f` by a Dirichlet character of `p`-power conductor, and
|
|
359
|
+
which has minimal level among such twists of `f`.
|
|
360
|
+
|
|
361
|
+
An error will be raised if `f` is already minimal.
|
|
362
|
+
|
|
363
|
+
EXAMPLES::
|
|
364
|
+
|
|
365
|
+
sage: from sage.modular.local_comp.type_space import TypeSpace, example_type_space
|
|
366
|
+
sage: T = example_type_space(1)
|
|
367
|
+
sage: T.form().q_expansion(12)
|
|
368
|
+
q - q^2 + 2*q^3 + q^4 - 2*q^6 - q^8 + q^9 + O(q^12)
|
|
369
|
+
sage: g = T.minimal_twist()
|
|
370
|
+
sage: g.q_expansion(12)
|
|
371
|
+
q - q^2 - 2*q^3 + q^4 + 2*q^6 + q^7 - q^8 + q^9 + O(q^12)
|
|
372
|
+
sage: g.level()
|
|
373
|
+
14
|
|
374
|
+
sage: TypeSpace(g, 7).is_minimal()
|
|
375
|
+
True
|
|
376
|
+
|
|
377
|
+
Test that :issue:`13158` is fixed::
|
|
378
|
+
|
|
379
|
+
sage: f = Newforms(256,names='a')[0]
|
|
380
|
+
sage: T = TypeSpace(f,2) # long time
|
|
381
|
+
sage: g = T.minimal_twist() # long time
|
|
382
|
+
sage: g[0:3] # long time
|
|
383
|
+
[0, 1, 0]
|
|
384
|
+
sage: str(g[3]) in ('a', '-a', '-1/2*a', '1/2*a') # long time
|
|
385
|
+
True
|
|
386
|
+
sage: g[4:] # long time
|
|
387
|
+
[]
|
|
388
|
+
sage: g.level() # long time
|
|
389
|
+
64
|
|
390
|
+
"""
|
|
391
|
+
if self.is_minimal():
|
|
392
|
+
raise ValueError( "Form is already minimal" )
|
|
393
|
+
|
|
394
|
+
NN = self.form().level()
|
|
395
|
+
V = self.t_space
|
|
396
|
+
A = V.ambient()
|
|
397
|
+
|
|
398
|
+
while not V.is_submodule(A.new_submodule()):
|
|
399
|
+
NN = NN / self.prime()
|
|
400
|
+
D1 = A.degeneracy_map(NN, 1)
|
|
401
|
+
Dp = A.degeneracy_map(NN, self.prime())
|
|
402
|
+
A = D1.codomain()
|
|
403
|
+
vecs = [D1(v).element() for v in V.basis()] + [Dp(v).element() for v in V.basis()]
|
|
404
|
+
VV = A.free_module().submodule(vecs)
|
|
405
|
+
V = A.submodule(VV, check=False)
|
|
406
|
+
|
|
407
|
+
D = V.decomposition()[0]
|
|
408
|
+
# if len(D.star_eigenvalues()) == 2:
|
|
409
|
+
# D = D.sign_submodule(1)
|
|
410
|
+
D1 = D.modular_symbols_of_sign(1)
|
|
411
|
+
M = ModularForms(D1.group(), D1.weight(), D1.base_ring())
|
|
412
|
+
return Newform(M, D1, names='a')
|
|
413
|
+
|
|
414
|
+
#####################################
|
|
415
|
+
# The group action on the type space.
|
|
416
|
+
#####################################
|
|
417
|
+
|
|
418
|
+
def _rho_s(self, g):
|
|
419
|
+
r"""
|
|
420
|
+
Calculate the action of ``g`` on the type space, where ``g`` has determinant `1`.
|
|
421
|
+
For internal use; this gets called by :meth:`~rho`.
|
|
422
|
+
|
|
423
|
+
EXAMPLES::
|
|
424
|
+
|
|
425
|
+
sage: from sage.modular.local_comp.type_space import example_type_space
|
|
426
|
+
sage: T = example_type_space(2)
|
|
427
|
+
sage: TT = T._rho_s([1,1,0,1]); TT
|
|
428
|
+
[ 0 0 1 0]
|
|
429
|
+
[ 1 0 -1 1]
|
|
430
|
+
[ 0 0 -2 1]
|
|
431
|
+
[ 0 -1 -2 1]
|
|
432
|
+
sage: TT**5 == 1
|
|
433
|
+
True
|
|
434
|
+
sage: TS = T._rho_s([0,-1,1,0]); TS
|
|
435
|
+
[ 0 0 1 0]
|
|
436
|
+
[ 0 0 1 -1]
|
|
437
|
+
[ 1 0 0 0]
|
|
438
|
+
[ 1 -1 0 0]
|
|
439
|
+
sage: TS**2 == 1
|
|
440
|
+
True
|
|
441
|
+
sage: example_type_space(3)._rho_s([1,1,0,1])
|
|
442
|
+
[-1 -1]
|
|
443
|
+
[ 1 0]
|
|
444
|
+
"""
|
|
445
|
+
if self.conductor() % 2 == 1:
|
|
446
|
+
return self._rho_ramified(g)
|
|
447
|
+
|
|
448
|
+
else:
|
|
449
|
+
return self._rho_unramified(g)
|
|
450
|
+
|
|
451
|
+
@cached_method
|
|
452
|
+
def _second_gen_unramified(self):
|
|
453
|
+
r"""
|
|
454
|
+
Calculate the action of the matrix [0, -1; 1, 0] on the type space,
|
|
455
|
+
in the unramified (even level) case.
|
|
456
|
+
|
|
457
|
+
EXAMPLES::
|
|
458
|
+
|
|
459
|
+
sage: from sage.modular.local_comp.type_space import example_type_space
|
|
460
|
+
sage: T = example_type_space(2)
|
|
461
|
+
sage: TS = T._second_gen_unramified(); TS
|
|
462
|
+
[ 0 0 1 0]
|
|
463
|
+
[ 0 0 1 -1]
|
|
464
|
+
[ 1 0 0 0]
|
|
465
|
+
[ 1 -1 0 0]
|
|
466
|
+
sage: TS**2 == 1
|
|
467
|
+
True
|
|
468
|
+
"""
|
|
469
|
+
f = self.prime() ** self.u()
|
|
470
|
+
g2 = lift_gen_to_gamma1(f, self.tame_level())
|
|
471
|
+
|
|
472
|
+
g3 = [f * g2[0], g2[1], f**2 * g2[2], f*g2[3]]
|
|
473
|
+
A = self.t_space.ambient()
|
|
474
|
+
mm = A._action_on_modular_symbols(g3).restrict(self.t_space.free_module()).transpose()
|
|
475
|
+
return mm / ZZ(f**(self.form().weight() - 2))
|
|
476
|
+
|
|
477
|
+
def _rho_unramified(self, g):
|
|
478
|
+
r"""
|
|
479
|
+
Calculate the action of ``g`` on the type space, in the unramified (even
|
|
480
|
+
level) case.
|
|
481
|
+
|
|
482
|
+
This uses the two standard generators, and a solution of the
|
|
483
|
+
word problem in `\SL_2(\ZZ / p^u \ZZ)`.
|
|
484
|
+
|
|
485
|
+
INPUT:
|
|
486
|
+
|
|
487
|
+
- ``g`` -- 4-tuple of integers (or more generally anything that can be
|
|
488
|
+
converted into an element of the matrix group `\SL_2(\ZZ / p^u
|
|
489
|
+
\ZZ)`).
|
|
490
|
+
|
|
491
|
+
EXAMPLES::
|
|
492
|
+
|
|
493
|
+
sage: from sage.modular.local_comp.type_space import example_type_space
|
|
494
|
+
sage: T = example_type_space(2)
|
|
495
|
+
sage: T._rho_unramified([2,1,1,1])
|
|
496
|
+
[-1 0 0 -1]
|
|
497
|
+
[ 0 -1 1 0]
|
|
498
|
+
[ 1 -1 0 1]
|
|
499
|
+
[ 2 -1 1 1]
|
|
500
|
+
sage: T._rho_unramified([1,-2,1,-1]) == T._rho_unramified([2,1,1,1]) * T._rho_unramified([0,-1,1,0])
|
|
501
|
+
True
|
|
502
|
+
"""
|
|
503
|
+
f = self.prime() ** self.u()
|
|
504
|
+
from sage.groups.matrix_gps.linear import SL
|
|
505
|
+
G = SL(2, Zmod(f))
|
|
506
|
+
gg = G(g)
|
|
507
|
+
s = G([1,1,0,1])
|
|
508
|
+
t = G([0,-1,1,0])
|
|
509
|
+
S = self._unipmat
|
|
510
|
+
T = self._second_gen_unramified()
|
|
511
|
+
|
|
512
|
+
w = gg.word_problem([s,t])
|
|
513
|
+
answer = S**0
|
|
514
|
+
for (x, n) in w:
|
|
515
|
+
if x == s:
|
|
516
|
+
answer = answer * S**n
|
|
517
|
+
elif x == t:
|
|
518
|
+
answer = answer * T**n
|
|
519
|
+
return answer
|
|
520
|
+
|
|
521
|
+
def _rho_ramified(self, g):
|
|
522
|
+
r"""
|
|
523
|
+
Calculate the action of a group element on the type space in the
|
|
524
|
+
ramified (odd conductor) case.
|
|
525
|
+
|
|
526
|
+
For internal use (called by :meth:`~rho`).
|
|
527
|
+
|
|
528
|
+
EXAMPLES::
|
|
529
|
+
|
|
530
|
+
sage: from sage.modular.local_comp.type_space import example_type_space
|
|
531
|
+
sage: T = example_type_space(3)
|
|
532
|
+
sage: T._rho_ramified([1,0,3,1])
|
|
533
|
+
[ 0 1]
|
|
534
|
+
[-1 -1]
|
|
535
|
+
sage: T._rho_ramified([1,3,0,1]) == 1
|
|
536
|
+
True
|
|
537
|
+
"""
|
|
538
|
+
A = self.t_space.ambient()
|
|
539
|
+
g = [ZZ(_) for _ in g]
|
|
540
|
+
p = self.prime()
|
|
541
|
+
assert g[2] % p == 0
|
|
542
|
+
gg = lift_ramified(g, p, self.u(), self.tame_level())
|
|
543
|
+
g3 = [p**self.u() * gg[0], gg[1], p**(2*self.u()) * gg[2], p**self.u() * gg[3]]
|
|
544
|
+
return A._action_on_modular_symbols(g3).restrict(self.t_space.free_module()).transpose() / ZZ(p**(self.u() * (self.form().weight()-2) ) )
|
|
545
|
+
|
|
546
|
+
def _group_gens(self):
|
|
547
|
+
r"""
|
|
548
|
+
Return a set of generators of the group `S(K_0) / S(K_u)` (which is
|
|
549
|
+
either `\SL_2(\ZZ / p^u \ZZ)` if the conductor is even, and a
|
|
550
|
+
quotient of an Iwahori subgroup if the conductor is odd).
|
|
551
|
+
|
|
552
|
+
EXAMPLES::
|
|
553
|
+
|
|
554
|
+
sage: from sage.modular.local_comp.type_space import example_type_space
|
|
555
|
+
sage: example_type_space()._group_gens()
|
|
556
|
+
[[1, 1, 0, 1], [0, -1, 1, 0]]
|
|
557
|
+
sage: example_type_space(3)._group_gens()
|
|
558
|
+
[[1, 1, 0, 1], [1, 0, 3, 1], [2, 0, 0, 5]]
|
|
559
|
+
"""
|
|
560
|
+
if (self.conductor() % 2) == 0:
|
|
561
|
+
return [ [ZZ(1), ZZ(1), ZZ(0), ZZ(1)], [ZZ(0), ZZ(-1), ZZ(1), ZZ(0)] ]
|
|
562
|
+
else:
|
|
563
|
+
p = self.prime()
|
|
564
|
+
if p == 2:
|
|
565
|
+
return [ [ZZ(1), ZZ(1), ZZ(0), ZZ(1)], [ZZ(1), ZZ(0), ZZ(p), ZZ(1)] ]
|
|
566
|
+
else:
|
|
567
|
+
a = Zmod(p**(self.u() + 1))(ZZ(Zmod(p).unit_gens()[0]))
|
|
568
|
+
return [ [ZZ(1), ZZ(1), ZZ(0), ZZ(1)], [ZZ(1), ZZ(0), ZZ(p), ZZ(1)],
|
|
569
|
+
[ZZ(a), 0, 0, ZZ(~a)] ]
|
|
570
|
+
|
|
571
|
+
def _intertwining_basis(self, a):
|
|
572
|
+
r"""
|
|
573
|
+
Return a basis for the set of homomorphisms between
|
|
574
|
+
this representation and the same representation conjugated by
|
|
575
|
+
[a,0; 0,1], where a is a generator of `(Z/p^uZ)^\times`. These are
|
|
576
|
+
the "candidates" for extending the rep to a `\mathrm{GL}_2`-rep.
|
|
577
|
+
|
|
578
|
+
Depending on the example, the hom-space has dimension either `1` or `2`.
|
|
579
|
+
|
|
580
|
+
EXAMPLES::
|
|
581
|
+
|
|
582
|
+
sage: from sage.modular.local_comp.type_space import example_type_space
|
|
583
|
+
sage: example_type_space(2)._intertwining_basis(2)
|
|
584
|
+
[
|
|
585
|
+
[ 1 -1 0 1]
|
|
586
|
+
[ 0 0 1 -1]
|
|
587
|
+
[ 0 1 1 -1]
|
|
588
|
+
[-1 1 2 -2]
|
|
589
|
+
]
|
|
590
|
+
sage: example_type_space(3)._intertwining_basis(2)
|
|
591
|
+
[
|
|
592
|
+
[ 1 0] [0 1]
|
|
593
|
+
[-1 -1], [1 0]
|
|
594
|
+
]
|
|
595
|
+
"""
|
|
596
|
+
if self.conductor() % 2:
|
|
597
|
+
f = self.prime() ** (self.u() + 1)
|
|
598
|
+
else:
|
|
599
|
+
f = self.prime() ** self.u()
|
|
600
|
+
|
|
601
|
+
# f is smallest p-power such that rho is trivial modulo f
|
|
602
|
+
ainv = (~Zmod(f)(a)).lift()
|
|
603
|
+
gens = self._group_gens()
|
|
604
|
+
gensconj = [[x[0], ainv*x[1], a*x[2], x[3]] for x in gens]
|
|
605
|
+
rgens = [self._rho_s(x) for x in gens]
|
|
606
|
+
rgensinv = [operator.inv(_) for _ in rgens]
|
|
607
|
+
rgensconj = [self._rho_s(x) for x in gensconj]
|
|
608
|
+
|
|
609
|
+
rows = []
|
|
610
|
+
MS = rgens[0].parent()
|
|
611
|
+
for m in MS.basis():
|
|
612
|
+
rows.append([])
|
|
613
|
+
for i in range(len(gens)):
|
|
614
|
+
rows[-1] += (m - rgensinv[i] * m * rgensconj[i]).list()
|
|
615
|
+
S = matrix(rows).left_kernel()
|
|
616
|
+
return [MS(u.list()) for u in S.gens()]
|
|
617
|
+
|
|
618
|
+
def _discover_torus_action(self):
|
|
619
|
+
r"""
|
|
620
|
+
Calculate and store the data necessary to extend the action of `S(K_0)`
|
|
621
|
+
to `K_0`.
|
|
622
|
+
|
|
623
|
+
EXAMPLES::
|
|
624
|
+
|
|
625
|
+
sage: from sage.modular.local_comp.type_space import example_type_space
|
|
626
|
+
sage: example_type_space(2).rho([2,0,0,1]) # indirect doctest
|
|
627
|
+
[-1 1 0 -1]
|
|
628
|
+
[ 0 0 -1 1]
|
|
629
|
+
[ 0 -1 -1 1]
|
|
630
|
+
[ 1 -1 -2 2]
|
|
631
|
+
"""
|
|
632
|
+
f = self.prime() ** self.u()
|
|
633
|
+
if not (f % 8):
|
|
634
|
+
a = ZZ(5)
|
|
635
|
+
else:
|
|
636
|
+
a = ZZ(Zmod(f).unit_gens()[0])
|
|
637
|
+
|
|
638
|
+
mats = self._intertwining_basis(a)
|
|
639
|
+
V = self.t_space.nonembedded_free_module()
|
|
640
|
+
v = self.eigensymbol_subspace().gen(0)
|
|
641
|
+
w = V.submodule_with_basis([m * v for m in mats]).coordinates(v) # v * self.e_space.diamond_eigenvalue(crt(a, 1, f, self.tame_level())))
|
|
642
|
+
self._a = a
|
|
643
|
+
self._amat = sum([mats[i] * w[i] for i in range(len(mats))])
|
|
644
|
+
|
|
645
|
+
def rho(self, g):
|
|
646
|
+
r"""
|
|
647
|
+
Calculate the action of the group element `g` on the type space.
|
|
648
|
+
|
|
649
|
+
EXAMPLES::
|
|
650
|
+
|
|
651
|
+
sage: from sage.modular.local_comp.type_space import example_type_space
|
|
652
|
+
sage: T = example_type_space(2)
|
|
653
|
+
sage: m = T.rho([2,0,0,1]); m
|
|
654
|
+
[-1 1 0 -1]
|
|
655
|
+
[ 0 0 -1 1]
|
|
656
|
+
[ 0 -1 -1 1]
|
|
657
|
+
[ 1 -1 -2 2]
|
|
658
|
+
sage: v = T.eigensymbol_subspace().basis()[0]
|
|
659
|
+
sage: m * v == v
|
|
660
|
+
True
|
|
661
|
+
|
|
662
|
+
We test that it is a left action::
|
|
663
|
+
|
|
664
|
+
sage: T = example_type_space(0)
|
|
665
|
+
sage: a = [0,5,4,3]; b = [0,2,3,5]; ab = [1,4,2,2]
|
|
666
|
+
sage: T.rho(ab) == T.rho(a) * T.rho(b)
|
|
667
|
+
True
|
|
668
|
+
|
|
669
|
+
An odd level example::
|
|
670
|
+
|
|
671
|
+
sage: from sage.modular.local_comp.type_space import TypeSpace
|
|
672
|
+
sage: T = TypeSpace(Newform('54a'), 3)
|
|
673
|
+
sage: a = [0,1,3,0]; b = [2,1,0,1]; ab = [0,1,6,3]
|
|
674
|
+
sage: T.rho(ab) == T.rho(a) * T.rho(b)
|
|
675
|
+
True
|
|
676
|
+
"""
|
|
677
|
+
if not self.is_minimal():
|
|
678
|
+
raise NotImplementedError("Group action on non-minimal type space not implemented")
|
|
679
|
+
|
|
680
|
+
if self.u() == 0:
|
|
681
|
+
# silly special case: rep is principal series or special, so SL2
|
|
682
|
+
# action on type space is trivial
|
|
683
|
+
raise ValueError("Representation is not supercuspidal")
|
|
684
|
+
|
|
685
|
+
p = self.prime()
|
|
686
|
+
f = p**self.u()
|
|
687
|
+
g = [ZZ(_) for _ in g]
|
|
688
|
+
d = (g[0] * g[3] - g[2] * g[1])
|
|
689
|
+
|
|
690
|
+
# g is in S(K_0) (easy case)
|
|
691
|
+
if d % f == 1:
|
|
692
|
+
return self._rho_s(g)
|
|
693
|
+
|
|
694
|
+
# g is in K_0, but not in S(K_0)
|
|
695
|
+
|
|
696
|
+
if d % p != 0:
|
|
697
|
+
try:
|
|
698
|
+
a = self._a
|
|
699
|
+
except AttributeError:
|
|
700
|
+
self._discover_torus_action()
|
|
701
|
+
a = self._a
|
|
702
|
+
|
|
703
|
+
if not (f % 8):
|
|
704
|
+
if d % 4 == 3:
|
|
705
|
+
return (self.rho([-g[0], g[1], -g[2], g[3]]) *
|
|
706
|
+
self.t_space.star_involution().matrix().transpose())
|
|
707
|
+
|
|
708
|
+
i = 0
|
|
709
|
+
while (d * a**i) % f != 1:
|
|
710
|
+
i += 1
|
|
711
|
+
if i > f:
|
|
712
|
+
raise ArithmeticError
|
|
713
|
+
return self._rho_s([a**i*g[0], g[1], a**i*g[2], g[3]]) * self._amat**(-i)
|
|
714
|
+
|
|
715
|
+
# det(g) is not a unit
|
|
716
|
+
|
|
717
|
+
if (self.conductor() % 2 == 0):
|
|
718
|
+
if all(x.valuation(p) > 0 for x in g):
|
|
719
|
+
eps = self.form().character()(crt(1, p, f, self.tame_level()))
|
|
720
|
+
return ~eps * p**(self.form().weight() - 2) * self.rho([x // p for x in g])
|
|
721
|
+
else:
|
|
722
|
+
raise ArithmeticError( "g(={0}) not in K".format(g) )
|
|
723
|
+
|
|
724
|
+
else:
|
|
725
|
+
m = matrix(ZZ, 2, g)
|
|
726
|
+
s = m.det().valuation(p)
|
|
727
|
+
mm = (matrix(QQ, 2, [0, -1, p, 0])**(-s) * m).change_ring(ZZ)
|
|
728
|
+
return self._unif_ramified()**s * self.rho(mm.list())
|
|
729
|
+
|
|
730
|
+
def _unif_ramified(self):
|
|
731
|
+
r"""
|
|
732
|
+
Return the action of [0,-1,p,0], in the ramified (odd p-power level)
|
|
733
|
+
case.
|
|
734
|
+
|
|
735
|
+
EXAMPLES::
|
|
736
|
+
|
|
737
|
+
sage: from sage.modular.local_comp.type_space import example_type_space
|
|
738
|
+
sage: T = example_type_space(3)
|
|
739
|
+
sage: T._unif_ramified()
|
|
740
|
+
[-1 0]
|
|
741
|
+
[ 0 -1]
|
|
742
|
+
"""
|
|
743
|
+
p = self.prime()
|
|
744
|
+
k = self.form().weight()
|
|
745
|
+
return (self.t_space.atkin_lehner_operator(p).matrix().transpose()
|
|
746
|
+
* p ** ( -(k-2)*self.u() )
|
|
747
|
+
* self.t_space.diamond_bracket_matrix(
|
|
748
|
+
crt(1, p**self.u(), p**self.u(), self.tame_level())).transpose())
|