passagemath-schemes 10.6.40__cp314-cp314-macosx_13_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of passagemath-schemes might be problematic. Click here for more details.

Files changed (314) hide show
  1. passagemath_schemes/.dylibs/libflint.22.0.dylib +0 -0
  2. passagemath_schemes/.dylibs/libgmp.10.dylib +0 -0
  3. passagemath_schemes/.dylibs/libgmpxx.4.dylib +0 -0
  4. passagemath_schemes/.dylibs/libmpfr.6.dylib +0 -0
  5. passagemath_schemes/__init__.py +3 -0
  6. passagemath_schemes-10.6.40.dist-info/METADATA +204 -0
  7. passagemath_schemes-10.6.40.dist-info/METADATA.bak +205 -0
  8. passagemath_schemes-10.6.40.dist-info/RECORD +314 -0
  9. passagemath_schemes-10.6.40.dist-info/WHEEL +6 -0
  10. passagemath_schemes-10.6.40.dist-info/top_level.txt +3 -0
  11. sage/all__sagemath_schemes.py +23 -0
  12. sage/databases/all__sagemath_schemes.py +7 -0
  13. sage/databases/cremona.py +1723 -0
  14. sage/dynamics/all__sagemath_schemes.py +2 -0
  15. sage/dynamics/arithmetic_dynamics/affine_ds.py +1083 -0
  16. sage/dynamics/arithmetic_dynamics/all.py +14 -0
  17. sage/dynamics/arithmetic_dynamics/berkovich_ds.py +1101 -0
  18. sage/dynamics/arithmetic_dynamics/dynamical_semigroup.py +1543 -0
  19. sage/dynamics/arithmetic_dynamics/endPN_automorphism_group.py +2426 -0
  20. sage/dynamics/arithmetic_dynamics/endPN_minimal_model.py +1169 -0
  21. sage/dynamics/arithmetic_dynamics/generic_ds.py +663 -0
  22. sage/dynamics/arithmetic_dynamics/product_projective_ds.py +339 -0
  23. sage/dynamics/arithmetic_dynamics/projective_ds.py +9558 -0
  24. sage/dynamics/arithmetic_dynamics/projective_ds_helper.cpython-314-darwin.so +0 -0
  25. sage/dynamics/arithmetic_dynamics/projective_ds_helper.pyx +301 -0
  26. sage/dynamics/arithmetic_dynamics/wehlerK3.py +2576 -0
  27. sage/lfunctions/all.py +18 -0
  28. sage/lfunctions/dokchitser.py +745 -0
  29. sage/lfunctions/pari.py +818 -0
  30. sage/lfunctions/zero_sums.cpython-314-darwin.so +0 -0
  31. sage/lfunctions/zero_sums.pyx +1847 -0
  32. sage/modular/abvar/abvar.py +5135 -0
  33. sage/modular/abvar/abvar_ambient_jacobian.py +413 -0
  34. sage/modular/abvar/abvar_newform.py +244 -0
  35. sage/modular/abvar/all.py +8 -0
  36. sage/modular/abvar/constructor.py +186 -0
  37. sage/modular/abvar/cuspidal_subgroup.py +371 -0
  38. sage/modular/abvar/finite_subgroup.py +896 -0
  39. sage/modular/abvar/homology.py +720 -0
  40. sage/modular/abvar/homspace.py +998 -0
  41. sage/modular/abvar/lseries.py +415 -0
  42. sage/modular/abvar/morphism.py +935 -0
  43. sage/modular/abvar/torsion_point.py +274 -0
  44. sage/modular/abvar/torsion_subgroup.py +740 -0
  45. sage/modular/all.py +43 -0
  46. sage/modular/arithgroup/all.py +20 -0
  47. sage/modular/arithgroup/arithgroup_element.cpython-314-darwin.so +0 -0
  48. sage/modular/arithgroup/arithgroup_element.pyx +474 -0
  49. sage/modular/arithgroup/arithgroup_generic.py +1402 -0
  50. sage/modular/arithgroup/arithgroup_perm.py +2692 -0
  51. sage/modular/arithgroup/congroup.cpython-314-darwin.so +0 -0
  52. sage/modular/arithgroup/congroup.pyx +334 -0
  53. sage/modular/arithgroup/congroup_gamma.py +363 -0
  54. sage/modular/arithgroup/congroup_gamma0.py +692 -0
  55. sage/modular/arithgroup/congroup_gamma1.py +653 -0
  56. sage/modular/arithgroup/congroup_gammaH.py +1469 -0
  57. sage/modular/arithgroup/congroup_generic.py +628 -0
  58. sage/modular/arithgroup/congroup_sl2z.py +267 -0
  59. sage/modular/arithgroup/farey_symbol.cpython-314-darwin.so +0 -0
  60. sage/modular/arithgroup/farey_symbol.pyx +1066 -0
  61. sage/modular/arithgroup/tests.py +418 -0
  62. sage/modular/btquotients/all.py +4 -0
  63. sage/modular/btquotients/btquotient.py +3753 -0
  64. sage/modular/btquotients/pautomorphicform.py +2570 -0
  65. sage/modular/buzzard.py +100 -0
  66. sage/modular/congroup.py +29 -0
  67. sage/modular/congroup_element.py +13 -0
  68. sage/modular/cusps.py +1109 -0
  69. sage/modular/cusps_nf.py +1270 -0
  70. sage/modular/dims.py +569 -0
  71. sage/modular/dirichlet.py +3310 -0
  72. sage/modular/drinfeld_modform/all.py +2 -0
  73. sage/modular/drinfeld_modform/element.py +446 -0
  74. sage/modular/drinfeld_modform/ring.py +773 -0
  75. sage/modular/drinfeld_modform/tutorial.py +236 -0
  76. sage/modular/etaproducts.py +1065 -0
  77. sage/modular/hecke/algebra.py +746 -0
  78. sage/modular/hecke/all.py +20 -0
  79. sage/modular/hecke/ambient_module.py +1019 -0
  80. sage/modular/hecke/degenmap.py +119 -0
  81. sage/modular/hecke/element.py +325 -0
  82. sage/modular/hecke/hecke_operator.py +780 -0
  83. sage/modular/hecke/homspace.py +206 -0
  84. sage/modular/hecke/module.py +1767 -0
  85. sage/modular/hecke/morphism.py +174 -0
  86. sage/modular/hecke/submodule.py +989 -0
  87. sage/modular/hypergeometric_misc.cpython-314-darwin.so +0 -0
  88. sage/modular/hypergeometric_misc.pxd +4 -0
  89. sage/modular/hypergeometric_misc.pyx +166 -0
  90. sage/modular/hypergeometric_motive.py +2017 -0
  91. sage/modular/local_comp/all.py +2 -0
  92. sage/modular/local_comp/liftings.py +292 -0
  93. sage/modular/local_comp/local_comp.py +1071 -0
  94. sage/modular/local_comp/smoothchar.py +1825 -0
  95. sage/modular/local_comp/type_space.py +748 -0
  96. sage/modular/modform/all.py +30 -0
  97. sage/modular/modform/ambient.py +815 -0
  98. sage/modular/modform/ambient_R.py +177 -0
  99. sage/modular/modform/ambient_eps.py +306 -0
  100. sage/modular/modform/ambient_g0.py +124 -0
  101. sage/modular/modform/ambient_g1.py +204 -0
  102. sage/modular/modform/constructor.py +545 -0
  103. sage/modular/modform/cuspidal_submodule.py +708 -0
  104. sage/modular/modform/defaults.py +14 -0
  105. sage/modular/modform/eis_series.py +505 -0
  106. sage/modular/modform/eisenstein_submodule.py +663 -0
  107. sage/modular/modform/element.py +4131 -0
  108. sage/modular/modform/find_generators.py +59 -0
  109. sage/modular/modform/half_integral.py +154 -0
  110. sage/modular/modform/hecke_operator_on_qexp.py +247 -0
  111. sage/modular/modform/j_invariant.py +47 -0
  112. sage/modular/modform/l_series_gross_zagier.py +133 -0
  113. sage/modular/modform/l_series_gross_zagier_coeffs.cpython-314-darwin.so +0 -0
  114. sage/modular/modform/l_series_gross_zagier_coeffs.pyx +177 -0
  115. sage/modular/modform/notes.py +45 -0
  116. sage/modular/modform/numerical.py +514 -0
  117. sage/modular/modform/periods.py +14 -0
  118. sage/modular/modform/ring.py +1257 -0
  119. sage/modular/modform/space.py +1860 -0
  120. sage/modular/modform/submodule.py +118 -0
  121. sage/modular/modform/tests.py +64 -0
  122. sage/modular/modform/theta.py +110 -0
  123. sage/modular/modform/vm_basis.py +381 -0
  124. sage/modular/modform/weight1.py +220 -0
  125. sage/modular/modform_hecketriangle/abstract_ring.py +1932 -0
  126. sage/modular/modform_hecketriangle/abstract_space.py +2528 -0
  127. sage/modular/modform_hecketriangle/all.py +30 -0
  128. sage/modular/modform_hecketriangle/analytic_type.py +590 -0
  129. sage/modular/modform_hecketriangle/constructor.py +416 -0
  130. sage/modular/modform_hecketriangle/element.py +351 -0
  131. sage/modular/modform_hecketriangle/functors.py +752 -0
  132. sage/modular/modform_hecketriangle/graded_ring.py +541 -0
  133. sage/modular/modform_hecketriangle/graded_ring_element.py +2225 -0
  134. sage/modular/modform_hecketriangle/hecke_triangle_group_element.py +3352 -0
  135. sage/modular/modform_hecketriangle/hecke_triangle_groups.py +1432 -0
  136. sage/modular/modform_hecketriangle/readme.py +1214 -0
  137. sage/modular/modform_hecketriangle/series_constructor.py +580 -0
  138. sage/modular/modform_hecketriangle/space.py +1037 -0
  139. sage/modular/modform_hecketriangle/subspace.py +423 -0
  140. sage/modular/modsym/all.py +17 -0
  141. sage/modular/modsym/ambient.py +3846 -0
  142. sage/modular/modsym/boundary.py +1420 -0
  143. sage/modular/modsym/element.py +336 -0
  144. sage/modular/modsym/g1list.py +178 -0
  145. sage/modular/modsym/ghlist.py +182 -0
  146. sage/modular/modsym/hecke_operator.py +73 -0
  147. sage/modular/modsym/manin_symbol.cpython-314-darwin.so +0 -0
  148. sage/modular/modsym/manin_symbol.pxd +5 -0
  149. sage/modular/modsym/manin_symbol.pyx +497 -0
  150. sage/modular/modsym/manin_symbol_list.py +1295 -0
  151. sage/modular/modsym/modsym.py +400 -0
  152. sage/modular/modsym/modular_symbols.py +384 -0
  153. sage/modular/modsym/p1list.cpython-314-darwin.so +0 -0
  154. sage/modular/modsym/p1list.pxd +29 -0
  155. sage/modular/modsym/p1list.pyx +1372 -0
  156. sage/modular/modsym/p1list_nf.py +1241 -0
  157. sage/modular/modsym/relation_matrix.py +591 -0
  158. sage/modular/modsym/relation_matrix_pyx.cpython-314-darwin.so +0 -0
  159. sage/modular/modsym/relation_matrix_pyx.pyx +108 -0
  160. sage/modular/modsym/space.py +2468 -0
  161. sage/modular/modsym/subspace.py +455 -0
  162. sage/modular/modsym/tests.py +375 -0
  163. sage/modular/multiple_zeta.py +2632 -0
  164. sage/modular/multiple_zeta_F_algebra.py +786 -0
  165. sage/modular/overconvergent/all.py +6 -0
  166. sage/modular/overconvergent/genus0.py +1878 -0
  167. sage/modular/overconvergent/hecke_series.py +1187 -0
  168. sage/modular/overconvergent/weightspace.py +778 -0
  169. sage/modular/pollack_stevens/all.py +4 -0
  170. sage/modular/pollack_stevens/distributions.py +874 -0
  171. sage/modular/pollack_stevens/fund_domain.py +1572 -0
  172. sage/modular/pollack_stevens/manin_map.py +859 -0
  173. sage/modular/pollack_stevens/modsym.py +1593 -0
  174. sage/modular/pollack_stevens/padic_lseries.py +417 -0
  175. sage/modular/pollack_stevens/sigma0.py +534 -0
  176. sage/modular/pollack_stevens/space.py +1076 -0
  177. sage/modular/quasimodform/all.py +3 -0
  178. sage/modular/quasimodform/element.py +845 -0
  179. sage/modular/quasimodform/ring.py +828 -0
  180. sage/modular/quatalg/all.py +3 -0
  181. sage/modular/quatalg/brandt.py +1642 -0
  182. sage/modular/ssmod/all.py +8 -0
  183. sage/modular/ssmod/ssmod.py +827 -0
  184. sage/rings/all__sagemath_schemes.py +1 -0
  185. sage/rings/polynomial/all__sagemath_schemes.py +1 -0
  186. sage/rings/polynomial/binary_form_reduce.py +585 -0
  187. sage/schemes/all.py +41 -0
  188. sage/schemes/berkovich/all.py +6 -0
  189. sage/schemes/berkovich/berkovich_cp_element.py +2582 -0
  190. sage/schemes/berkovich/berkovich_space.py +748 -0
  191. sage/schemes/curves/affine_curve.py +2928 -0
  192. sage/schemes/curves/all.py +33 -0
  193. sage/schemes/curves/closed_point.py +434 -0
  194. sage/schemes/curves/constructor.py +381 -0
  195. sage/schemes/curves/curve.py +542 -0
  196. sage/schemes/curves/plane_curve_arrangement.py +1283 -0
  197. sage/schemes/curves/point.py +463 -0
  198. sage/schemes/curves/projective_curve.py +3026 -0
  199. sage/schemes/curves/zariski_vankampen.py +1932 -0
  200. sage/schemes/cyclic_covers/all.py +2 -0
  201. sage/schemes/cyclic_covers/charpoly_frobenius.py +320 -0
  202. sage/schemes/cyclic_covers/constructor.py +137 -0
  203. sage/schemes/cyclic_covers/cycliccover_finite_field.py +1309 -0
  204. sage/schemes/cyclic_covers/cycliccover_generic.py +310 -0
  205. sage/schemes/elliptic_curves/BSD.py +1036 -0
  206. sage/schemes/elliptic_curves/Qcurves.py +592 -0
  207. sage/schemes/elliptic_curves/addition_formulas_ring.py +94 -0
  208. sage/schemes/elliptic_curves/all.py +49 -0
  209. sage/schemes/elliptic_curves/cardinality.py +609 -0
  210. sage/schemes/elliptic_curves/cm.py +1102 -0
  211. sage/schemes/elliptic_curves/constructor.py +1552 -0
  212. sage/schemes/elliptic_curves/ec_database.py +175 -0
  213. sage/schemes/elliptic_curves/ell_curve_isogeny.py +3972 -0
  214. sage/schemes/elliptic_curves/ell_egros.py +459 -0
  215. sage/schemes/elliptic_curves/ell_field.py +2836 -0
  216. sage/schemes/elliptic_curves/ell_finite_field.py +3359 -0
  217. sage/schemes/elliptic_curves/ell_generic.py +3760 -0
  218. sage/schemes/elliptic_curves/ell_local_data.py +1207 -0
  219. sage/schemes/elliptic_curves/ell_modular_symbols.py +775 -0
  220. sage/schemes/elliptic_curves/ell_number_field.py +4220 -0
  221. sage/schemes/elliptic_curves/ell_padic_field.py +107 -0
  222. sage/schemes/elliptic_curves/ell_point.py +4787 -0
  223. sage/schemes/elliptic_curves/ell_rational_field.py +7368 -0
  224. sage/schemes/elliptic_curves/ell_tate_curve.py +671 -0
  225. sage/schemes/elliptic_curves/ell_torsion.py +436 -0
  226. sage/schemes/elliptic_curves/ell_wp.py +352 -0
  227. sage/schemes/elliptic_curves/formal_group.py +760 -0
  228. sage/schemes/elliptic_curves/gal_reps.py +1459 -0
  229. sage/schemes/elliptic_curves/gal_reps_number_field.py +1669 -0
  230. sage/schemes/elliptic_curves/gp_simon.py +152 -0
  231. sage/schemes/elliptic_curves/heegner.py +7335 -0
  232. sage/schemes/elliptic_curves/height.py +2109 -0
  233. sage/schemes/elliptic_curves/hom.py +1406 -0
  234. sage/schemes/elliptic_curves/hom_composite.py +934 -0
  235. sage/schemes/elliptic_curves/hom_frobenius.py +522 -0
  236. sage/schemes/elliptic_curves/hom_scalar.py +531 -0
  237. sage/schemes/elliptic_curves/hom_sum.py +682 -0
  238. sage/schemes/elliptic_curves/hom_velusqrt.py +1290 -0
  239. sage/schemes/elliptic_curves/homset.py +271 -0
  240. sage/schemes/elliptic_curves/isogeny_class.py +1521 -0
  241. sage/schemes/elliptic_curves/isogeny_small_degree.py +2797 -0
  242. sage/schemes/elliptic_curves/jacobian.py +237 -0
  243. sage/schemes/elliptic_curves/kodaira_symbol.py +344 -0
  244. sage/schemes/elliptic_curves/kraus.py +1014 -0
  245. sage/schemes/elliptic_curves/lseries_ell.py +943 -0
  246. sage/schemes/elliptic_curves/mod5family.py +105 -0
  247. sage/schemes/elliptic_curves/mod_poly.py +197 -0
  248. sage/schemes/elliptic_curves/mod_sym_num.cpython-314-darwin.so +0 -0
  249. sage/schemes/elliptic_curves/mod_sym_num.pyx +3796 -0
  250. sage/schemes/elliptic_curves/modular_parametrization.py +305 -0
  251. sage/schemes/elliptic_curves/padic_lseries.py +1793 -0
  252. sage/schemes/elliptic_curves/padics.py +1816 -0
  253. sage/schemes/elliptic_curves/period_lattice.py +2234 -0
  254. sage/schemes/elliptic_curves/period_lattice_region.cpython-314-darwin.so +0 -0
  255. sage/schemes/elliptic_curves/period_lattice_region.pyx +722 -0
  256. sage/schemes/elliptic_curves/saturation.py +715 -0
  257. sage/schemes/elliptic_curves/sha_tate.py +1158 -0
  258. sage/schemes/elliptic_curves/weierstrass_morphism.py +1117 -0
  259. sage/schemes/elliptic_curves/weierstrass_transform.py +200 -0
  260. sage/schemes/hyperelliptic_curves/all.py +6 -0
  261. sage/schemes/hyperelliptic_curves/constructor.py +291 -0
  262. sage/schemes/hyperelliptic_curves/hyperelliptic_finite_field.py +1914 -0
  263. sage/schemes/hyperelliptic_curves/hyperelliptic_g2.py +192 -0
  264. sage/schemes/hyperelliptic_curves/hyperelliptic_generic.py +954 -0
  265. sage/schemes/hyperelliptic_curves/hyperelliptic_padic_field.py +1332 -0
  266. sage/schemes/hyperelliptic_curves/hyperelliptic_rational_field.py +84 -0
  267. sage/schemes/hyperelliptic_curves/invariants.py +410 -0
  268. sage/schemes/hyperelliptic_curves/jacobian_endomorphism_utils.py +315 -0
  269. sage/schemes/hyperelliptic_curves/jacobian_g2.py +32 -0
  270. sage/schemes/hyperelliptic_curves/jacobian_generic.py +419 -0
  271. sage/schemes/hyperelliptic_curves/jacobian_homset.py +186 -0
  272. sage/schemes/hyperelliptic_curves/jacobian_morphism.py +875 -0
  273. sage/schemes/hyperelliptic_curves/kummer_surface.py +99 -0
  274. sage/schemes/hyperelliptic_curves/mestre.py +302 -0
  275. sage/schemes/hyperelliptic_curves/monsky_washnitzer.py +3871 -0
  276. sage/schemes/jacobians/abstract_jacobian.py +277 -0
  277. sage/schemes/jacobians/all.py +2 -0
  278. sage/schemes/overview.py +161 -0
  279. sage/schemes/plane_conics/all.py +22 -0
  280. sage/schemes/plane_conics/con_field.py +1296 -0
  281. sage/schemes/plane_conics/con_finite_field.py +158 -0
  282. sage/schemes/plane_conics/con_number_field.py +456 -0
  283. sage/schemes/plane_conics/con_rational_field.py +406 -0
  284. sage/schemes/plane_conics/con_rational_function_field.py +580 -0
  285. sage/schemes/plane_conics/constructor.py +249 -0
  286. sage/schemes/plane_quartics/all.py +2 -0
  287. sage/schemes/plane_quartics/quartic_constructor.py +71 -0
  288. sage/schemes/plane_quartics/quartic_generic.py +73 -0
  289. sage/schemes/riemann_surfaces/all.py +1 -0
  290. sage/schemes/riemann_surfaces/riemann_surface.py +4117 -0
  291. sage_wheels/share/cremona/cremona_mini.db +0 -0
  292. sage_wheels/share/ellcurves/rank0 +30427 -0
  293. sage_wheels/share/ellcurves/rank1 +31871 -0
  294. sage_wheels/share/ellcurves/rank10 +6 -0
  295. sage_wheels/share/ellcurves/rank11 +6 -0
  296. sage_wheels/share/ellcurves/rank12 +1 -0
  297. sage_wheels/share/ellcurves/rank14 +1 -0
  298. sage_wheels/share/ellcurves/rank15 +1 -0
  299. sage_wheels/share/ellcurves/rank17 +1 -0
  300. sage_wheels/share/ellcurves/rank19 +1 -0
  301. sage_wheels/share/ellcurves/rank2 +2388 -0
  302. sage_wheels/share/ellcurves/rank20 +1 -0
  303. sage_wheels/share/ellcurves/rank21 +1 -0
  304. sage_wheels/share/ellcurves/rank22 +1 -0
  305. sage_wheels/share/ellcurves/rank23 +1 -0
  306. sage_wheels/share/ellcurves/rank24 +1 -0
  307. sage_wheels/share/ellcurves/rank28 +1 -0
  308. sage_wheels/share/ellcurves/rank3 +836 -0
  309. sage_wheels/share/ellcurves/rank4 +10 -0
  310. sage_wheels/share/ellcurves/rank5 +5 -0
  311. sage_wheels/share/ellcurves/rank6 +5 -0
  312. sage_wheels/share/ellcurves/rank7 +5 -0
  313. sage_wheels/share/ellcurves/rank8 +6 -0
  314. sage_wheels/share/ellcurves/rank9 +7 -0
@@ -0,0 +1,836 @@
1
+ 5077 a 1 [0,0,1,-7,6] 3 1
2
+ 11197 a 1 [1,-1,1,-6,0] 3 1
3
+ 11642 a 1 [1,-1,0,-16,28] 3 1
4
+ 12279 a 1 [0,-1,1,-10,12] 3 1
5
+ 13766 a 1 [1,0,1,-23,42] 3 1
6
+ 16811 a 1 [0,0,1,-1,6] 3 1
7
+ 18097 b 1 [1,1,1,-10,6] 3 1
8
+ 18562 c 1 [1,0,1,-20,30] 3 1
9
+ 18745 a 1 [0,1,1,-146,636] 3 1
10
+ 20888 a 1 [0,0,0,-52,100] 3 1
11
+ 21443 a 1 [1,1,1,-5,6] 3 1
12
+ 21858 a 1 [1,1,0,-32,60] 3 1
13
+ 22481 a 1 [1,-1,1,6,2] 3 1
14
+ 22696 a 1 [0,1,0,-105,379] 3 1
15
+ 24301 a 1 [1,0,0,-44,109] 3 1
16
+ 24546 a 1 [1,1,0,-39,81] 3 1
17
+ 24646 b 1 [1,0,1,-13,12] 3 1
18
+ 25071 a 1 [0,-1,1,-24,-16] 3 1
19
+ 25383 a 1 [0,-1,1,-32,80] 3 1
20
+ 25451 a 1 [1,1,1,-54,136] 3 1
21
+ 25751 a 1 [1,0,0,-39,94] 3 1
22
+ 26171 a 1 [0,0,1,-49,132] 3 1
23
+ 26198 a 1 [1,-1,0,-16,16] 3 1
24
+ 26284 a 1 [0,1,0,-9,16] 3 1
25
+ 26743 a 1 [1,0,0,6,-5] 3 1
26
+ 27262 c 1 [1,-1,1,-237,1365] 3 1
27
+ 27382 a 1 [1,0,1,-10,0] 3 1
28
+ 27448 d 1 [0,0,0,-79,274] 3 1
29
+ 27584 bd 1 [0,0,0,-4,64] 3 1
30
+ 27746 a 1 [1,0,1,-12,26] 3 1
31
+ 27747 c 1 [0,0,1,-327,2286] 3 1
32
+ 27773 a 1 [1,-1,1,-21,42] 3 1
33
+ 27808 a 1 [0,0,0,-364,2656] 3 1
34
+ 28042 b 1 [1,-1,0,-19,49] 3 1
35
+ 28498 a 1 [1,-1,0,-13,25] 3 1
36
+ 28571 a 1 [0,-1,1,-4,10] 3 1
37
+ 29157 b 1 [0,1,1,-240,1190] 3 1
38
+ 30064 c 1 [0,1,0,-152,676] 3 1
39
+ 30148 b 1 [0,0,0,-37,85] 3 1
40
+ 30376 a 1 [0,1,0,-25,-21] 3 1
41
+ 30446 a 1 [1,1,0,-39,-59] 3 1
42
+ 30487 a 1 [0,0,1,-28,-15] 3 1
43
+ 30767 d 1 [0,0,1,-31,60] 3 1
44
+ 30815 a 1 [0,1,1,-16,26] 3 1
45
+ 31478 b 1 [1,0,1,-5,12] 3 1
46
+ 31737 a 1 [0,-1,1,-34,90] 3 1
47
+ 31814 a 1 [1,0,1,2,12] 3 1
48
+ 32192 e 1 [0,0,0,-52,160] 3 1
49
+ 32244 c 1 [0,-1,0,-30,81] 3 1
50
+ 32276 b 1 [0,1,0,-17,16] 3 1
51
+ 32336 b 1 [0,1,0,-32,4] 3 1
52
+ 33424 o 1 [0,-1,0,-312,2224] 3 1
53
+ 33428 a 1 [0,1,0,-45,79] 3 1
54
+ 33509 a 1 [0,1,1,-22,32] 3 1
55
+ 33609 a 1 [1,1,1,-232,1262] 3 1
56
+ 33709 a 1 [1,-1,1,-48,-42] 3 1
57
+ 33914 a 1 [1,0,1,-28,282] 3 1
58
+ 34415 a 1 [1,0,0,9,100] 3 1
59
+ 34862 a 1 [1,-1,1,-57,345] 3 1
60
+ 35003 a 1 [0,1,1,18,-18] 3 1
61
+ 35083 c 1 [0,1,1,-4,8] 3 1
62
+ 35234 a 1 [1,1,0,-181,749] 3 1
63
+ 35243 b 1 [1,0,0,-22,21] 3 1
64
+ 35882 b 1 [1,-1,0,-64,244] 3 1
65
+ 36094 c 1 [1,-1,1,-162,1185] 3 1
66
+ 36739 a 1 [1,1,1,-14,-24] 3 1
67
+ 37229 a 1 [1,0,0,-9,4] 3 1
68
+ 37544 c 1 [0,1,0,-177,1171] 3 1
69
+ 38439 b 1 [0,0,1,-57,76] 3 1
70
+ 38600 m 1 [0,0,0,-175,850] 3 1
71
+ 38601 a 1 [0,0,1,3,16] 3 1
72
+ 39023 a 1 [1,-1,1,-6,12] 3 1
73
+ 39077 c 1 [0,1,1,-90,300] 3 1
74
+ 39289 a 1 [0,1,1,-257,1500] 3 1
75
+ 39883 a 1 [0,1,1,-14,18] 3 1
76
+ 40331 c 1 [0,-1,1,8,-8] 3 1
77
+ 40929 a 1 [0,-1,1,-42,110] 3 1
78
+ 41001 a 1 [0,-1,1,-134,644] 3 1
79
+ 41107 a 1 [0,1,1,-82,182] 3 1
80
+ 41406 b 1 [1,1,0,-69,189] 3 1
81
+ 41775 k 1 [0,-1,1,-58,168] 3 1
82
+ 41785 a 1 [0,1,1,-286,1766] 3 1
83
+ 41933 a 1 [1,0,0,-95,346] 3 1
84
+ 42093 a 1 [0,0,1,-21,22] 3 1
85
+ 42153 a 1 [0,-1,1,-6,20] 3 1
86
+ 42190 a 1 [1,0,1,-19,42] 3 1
87
+ 42264 a 1 [0,0,0,-252,1620] 3 1
88
+ 42384 a 1 [0,-1,0,-80,336] 3 1
89
+ 42526 b 1 [1,0,1,-78,272] 3 1
90
+ 42528 c 1 [0,-1,0,-65,81] 3 1
91
+ 42584 c 1 [0,1,0,-44,112] 3 1
92
+ 43556 b 1 [0,1,0,-14,1] 3 1
93
+ 43669 a 1 [0,0,1,-19,30] 3 1
94
+ 43730 e 1 [1,-1,0,-184,940] 3 1
95
+ 43976 f 1 [0,0,0,-31,34] 3 1
96
+ 44012 b 1 [0,-1,0,-65,226] 3 1
97
+ 44233 a 1 [1,1,1,-137,600] 3 1
98
+ 44409 b 1 [1,1,1,-45,96] 3 1
99
+ 44755 a 1 [0,1,1,9,0] 3 1
100
+ 44755 b 1 [0,1,1,-410,3306] 3 1
101
+ 44794 c 1 [1,0,0,-155,721] 3 1
102
+ 44860 b 1 [0,0,0,-28,73] 3 1
103
+ 44869 b 1 [1,1,1,-222,-410] 3 1
104
+ 45123 h 1 [0,-1,1,-30,2] 3 1
105
+ 45352 a 1 [0,1,0,-137,571] 3 1
106
+ 45985 a 1 [0,1,1,-76,230] 3 1
107
+ 46024 a 1 [0,1,0,-65,259] 3 1
108
+ 46222 a 1 [1,-1,0,-61,193] 3 1
109
+ 46307 a 1 [1,0,0,-9,-2] 3 1
110
+ 46462 d 1 [1,0,1,-53,132] 3 1
111
+ 46672 g 1 [0,0,0,-67,130] 3 1
112
+ 46896 d 1 [0,-1,0,-72,144] 3 1
113
+ 47087 a 1 [1,-1,1,-31,72] 3 1
114
+ 47440 a 1 [0,1,0,-576,5140] 3 1
115
+ 47453 a 1 [0,0,1,-19,42] 3 1
116
+ 47696 h 1 [0,1,0,-472,3684] 3 1
117
+ 47976 d 1 [0,-1,0,-52,196] 3 1
118
+ 48272 b 1 [0,0,0,-19,226] 3 1
119
+ 48434 c 1 [1,0,1,-227,1374] 3 1
120
+ 48444 a 1 [0,-1,0,-170,921] 3 1
121
+ 48734 b 1 [1,0,1,45,110] 3 1
122
+ 48734 b 2 [1,0,1,-1135,14742] 3 1
123
+ 48746 a 1 [1,0,0,-15,121] 3 1
124
+ 48856 a 1 [0,1,0,-1465,21099] 3 1
125
+ 49183 a 1 [1,0,0,-1611,24754] 3 1
126
+ 49259 a 1 [1,-1,1,159,-450] 3 1
127
+ 49411 a 1 [0,1,1,-9,12] 3 1
128
+ 49626 a 1 [1,-1,0,-9,49] 3 1
129
+ 49648 d 1 [0,0,0,-2011,34714] 3 1
130
+ 49831 a 1 [1,0,0,-79,264] 3 1
131
+ 50029 c 1 [0,1,1,-30,60] 3 1
132
+ 50121 a 1 [0,0,1,-147,706] 3 1
133
+ 50360 a 1 [0,0,0,-28,148] 3 1
134
+ 50382 f 1 [1,-1,0,-51,161] 3 1
135
+ 50744 c 1 [0,1,0,-20,64] 3 1
136
+ 50862 a 1 [1,1,0,-172,820] 3 1
137
+ 51034 a 1 [1,-1,0,-91,-167] 3 1
138
+ 51052 a 1 [0,1,0,-169,792] 3 1
139
+ 51065 c 1 [0,1,1,-56,156] 3 1
140
+ 51094 a 1 [1,-1,0,-1169,15709] 3 1
141
+ 51317 a 1 [1,-1,1,-9,204] 3 1
142
+ 51536 b 1 [0,1,0,-72,196] 3 1
143
+ 51822 d 1 [1,-1,0,-279,1849] 3 1
144
+ 51962 a 1 [1,-1,0,-31,73] 3 1
145
+ 52013 a 1 [1,-1,1,-33,90] 3 1
146
+ 52158 a 1 [1,1,0,-7,25] 3 1
147
+ 52277 b 1 [0,1,1,-15,15] 3 1
148
+ 52396 b 1 [0,-1,0,-532,4904] 3 1
149
+ 53022 b 1 [1,1,0,-17,-15] 3 1
150
+ 53083 a 1 [0,1,1,-20,30] 3 1
151
+ 53122 a 1 [1,-1,0,47,-35] 3 1
152
+ 53237 b 1 [0,1,1,-10,-10] 3 1
153
+ 53238 e 1 [1,1,0,-22,40] 3 1
154
+ 53461 b 1 [0,-1,1,-16,28] 3 1
155
+ 53486 d 1 [1,-1,0,-344,2544] 3 1
156
+ 53916 a 1 [0,-1,0,-45,126] 3 1
157
+ 53926 e 1 [1,0,0,-92,784] 3 1
158
+ 53957 b 1 [0,1,1,-50,120] 3 1
159
+ 54489 b 1 [1,1,1,-205,56] 3 1
160
+ 54512 b 1 [0,0,0,-91,346] 3 1
161
+ 55064 b 1 [0,1,0,-19,30] 3 1
162
+ 55783 e 1 [1,1,1,-475,3786] 3 1
163
+ 55846 a 1 [1,-1,0,-154,784] 3 1
164
+ 55935 g 1 [0,0,1,-273,2178] 3 1
165
+ 56052 g 1 [0,0,0,-72,225] 3 1
166
+ 56441 b 1 [1,1,1,-55,-144] 3 1
167
+ 56982 a 1 [1,1,0,-11,81] 3 1
168
+ 56982 b 1 [1,1,0,-382,2740] 3 1
169
+ 58397 c 1 [1,0,0,-35,76] 3 1
170
+ 58739 a 1 [0,0,1,-104,382] 3 1
171
+ 58774 b 1 [1,-1,0,2,16] 3 1
172
+ 58939 a 1 [0,1,1,9,9] 3 1
173
+ 59111 a 1 [0,-1,1,0,42] 3 1
174
+ 59450 i 1 [1,0,1,-131,558] 3 2
175
+ 59450 i 2 [1,0,1,-231,-442] 3 2
176
+ 59614 a 1 [1,0,1,-28,42] 3 1
177
+ 59704 d 1 [0,-1,0,-4,68] 3 1
178
+ 59936 b 1 [0,1,0,-145,639] 3 1
179
+ 60055 b 1 [0,-1,1,-30,3306] 3 1
180
+ 60128 a 1 [0,1,0,-2,16] 3 1
181
+ 60215 b 1 [0,1,1,20,134] 3 1
182
+ 60296 a 1 [0,-1,0,-24,-35] 3 1
183
+ 60803 a 1 [0,1,1,-65,195] 3 1
184
+ 60892 b 1 [0,0,0,-1039,12886] 3 1
185
+ 61025 b 1 [0,0,1,-175,-594] 3 1
186
+ 61075 a 1 [0,0,1,-475,3906] 3 1
187
+ 61229 a 1 [0,0,1,53,1536] 3 1
188
+ 61376 c 1 [0,1,0,-145,399] 3 2
189
+ 61376 c 2 [0,1,0,415,3199] 3 2
190
+ 61504 cg 1 [0,0,0,-124,496] 3 1
191
+ 61598 c 1 [1,0,1,35,-120] 3 1
192
+ 61651 a 1 [1,0,0,-12,19] 3 1
193
+ 61672 b 1 [0,1,0,-92,304] 3 1
194
+ 61805 c 1 [1,0,0,-71,226] 3 1
195
+ 61826 a 1 [1,1,0,-161,709] 3 1
196
+ 61839 b 1 [1,-1,1,-17,20] 3 1
197
+ 61886 d 1 [1,1,0,-1591,27029] 3 1
198
+ 61995 a 1 [0,-1,1,-26,32] 3 1
199
+ 62078 c 1 [1,-1,1,-69,189] 3 1
200
+ 62168 c 1 [0,1,0,-172,816] 3 1
201
+ 62246 b 1 [1,0,0,-372,2704] 3 1
202
+ 62282 a 1 [1,0,1,-30,-28] 3 1
203
+ 62319 c 1 [1,0,0,-187,-166] 3 1
204
+ 62546 a 1 [1,1,0,-71,229] 3 1
205
+ 62576 b 1 [0,-1,0,-104,-272] 3 1
206
+ 62592 c 1 [0,-1,0,-57,9] 3 1
207
+ 62823 b 1 [0,-1,1,-22,42] 3 1
208
+ 63002 h 1 [1,-1,0,-394,3124] 3 1
209
+ 63213 b 1 [0,1,1,-90,20] 3 1
210
+ 63298 c 1 [1,-1,1,-129,657] 3 1
211
+ 63422 h 1 [1,-1,1,-279,1839] 3 1
212
+ 63437 a 1 [1,-1,1,-93,30] 3 1
213
+ 63447 a 1 [1,1,1,-2,20] 3 1
214
+ 63472 g 1 [0,1,0,56,372] 3 1
215
+ 63574 d 1 [1,-1,0,-91,361] 3 1
216
+ 63789 c 1 [1,1,1,-1934,40592] 3 1
217
+ 63936 o 1 [0,0,0,-84,416] 3 1
218
+ 64018 h 1 [1,0,0,-362,1444] 3 1
219
+ 64432 d 1 [0,1,0,-24,100] 3 1
220
+ 64522 c 1 [1,0,0,55,1561] 3 1
221
+ 64672 h 1 [0,1,0,-102,364] 3 1
222
+ 64763 a 1 [0,0,1,-1,12] 3 1
223
+ 64776 a 1 [0,-1,0,-97,421] 3 1
224
+ 65122 e 1 [1,-1,1,-339,2547] 3 1
225
+ 65283 c 1 [1,0,0,-370,2711] 3 1
226
+ 65424 a 1 [0,-1,0,-120,576] 3 1
227
+ 65428 d 1 [0,0,0,-16,1] 3 1
228
+ 65481 c 1 [1,1,1,-234,1230] 3 2
229
+ 65481 c 2 [1,1,1,111,4956] 3 2
230
+ 65509 a 1 [0,-1,1,-347,2607] 3 1
231
+ 65515 a 1 [1,0,0,-220,1275] 3 1
232
+ 65563 a 1 [0,1,1,-85,275] 3 1
233
+ 65710 b 1 [1,-1,0,-40,100] 3 1
234
+ 66170 b 1 [1,-1,0,-100,436] 3 1
235
+ 66387 a 1 [1,1,1,-112,410] 3 1
236
+ 66531 a 1 [1,1,1,-604,5462] 3 1
237
+ 66848 j 1 [0,0,0,-13,4] 3 1
238
+ 66993 d 1 [0,1,1,-202,1042] 3 1
239
+ 67037 b 1 [1,0,0,-65,196] 3 1
240
+ 67042 a 1 [1,0,0,6,100] 3 1
241
+ 67064 a 1 [0,-1,0,-3004,64388] 3 1
242
+ 67119 a 1 [0,1,1,-510,4430] 3 1
243
+ 67194 e 1 [1,-1,0,-81,81] 3 1
244
+ 67244 a 1 [0,-1,0,-669,6889] 3 1
245
+ 67302 f 1 [1,-1,0,-261,1381] 3 1
246
+ 67418 a 1 [1,1,0,-124,464] 3 1
247
+ 67484 b 1 [0,0,0,-1,25] 3 1
248
+ 67520 z 1 [0,0,0,-532,5344] 3 1
249
+ 67926 b 1 [1,1,0,-59,141] 3 1
250
+ 68309 a 1 [0,0,1,-11,6] 3 1
251
+ 68499 j 1 [0,0,1,-459,3800] 3 1
252
+ 68594 b 1 [1,0,1,-13,72] 3 1
253
+ 68672 c 1 [0,0,0,-988,12016] 3 1
254
+ 68751 d 1 [1,-1,1,-104,-196] 3 1
255
+ 68773 a 1 [0,-1,1,-296,2058] 3 1
256
+ 68802 d 1 [1,0,1,-173,812] 3 1
257
+ 68811 b 1 [0,1,1,-102,380] 3 1
258
+ 68890 d 1 [1,0,1,22,156] 3 1
259
+ 68890 d 2 [1,0,1,-1638,25388] 3 1
260
+ 69158 c 1 [1,0,0,-582,5476] 3 1
261
+ 69232 a 1 [0,0,0,29,130] 3 1
262
+ 69309 c 1 [0,0,1,-57,-54] 3 1
263
+ 69321 a 1 [0,-1,1,-182,992] 3 1
264
+ 69359 a 1 [0,0,1,-377,2816] 3 1
265
+ 69402 e 1 [1,1,0,-71,201] 3 1
266
+ 69477 a 1 [1,1,1,-7,20] 3 1
267
+ 69668 b 1 [0,1,0,-30,49] 3 1
268
+ 69850 m 1 [1,-1,0,-142,616] 3 1
269
+ 69966 t 1 [1,-1,0,-324,-896] 3 2
270
+ 69966 t 2 [1,-1,0,-2664,52924] 3 2
271
+ 70022 b 1 [1,-1,0,-517,-2603] 3 1
272
+ 70363 a 1 [0,0,1,-1459,21450] 3 1
273
+ 70397 b 1 [0,-1,1,-3418,78052] 3 1
274
+ 70436 b 1 [0,1,0,-22,-39] 3 1
275
+ 70449 a 1 [0,-1,1,82,1472] 3 1
276
+ 70449 b 1 [0,-1,1,-40,132] 3 1
277
+ 70535 a 1 [1,-1,1,-18,6] 3 1
278
+ 70802 b 1 [1,1,0,-21,25] 3 1
279
+ 71145 a 1 [0,0,1,-2793,56848] 3 1
280
+ 71215 a 1 [1,1,1,10,30] 3 1
281
+ 71234 a 1 [1,0,1,-301,1980] 3 1
282
+ 71288 i 1 [0,0,0,-2119,34186] 3 1
283
+ 71374 d 1 [1,1,0,-57,145] 3 1
284
+ 71642 b 1 [1,-1,0,-58,-140] 3 1
285
+ 71688 a 1 [0,-1,0,-65,261] 3 1
286
+ 72091 a 1 [0,1,1,-2,12] 3 1
287
+ 72098 a 1 [1,1,0,-329,2209] 3 1
288
+ 72266 a 1 [1,-1,0,-13,1] 3 1
289
+ 72379 a 1 [0,1,1,-6,12] 3 1
290
+ 72382 a 1 [1,1,0,-64,176] 3 1
291
+ 72410 a 1 [1,-1,0,-130,676] 3 1
292
+ 72471 b 1 [0,-1,1,-212,1070] 3 1
293
+ 72578 a 1 [1,-1,0,-286,1936] 3 1
294
+ 72683 a 1 [1,1,1,19,42] 3 1
295
+ 72701 a 1 [1,1,1,-2,12] 3 1
296
+ 72751 b 1 [0,1,1,-420,3180] 3 1
297
+ 73132 a 1 [0,1,0,-421,3111] 3 1
298
+ 73136 b 1 [0,1,0,-112,564] 3 1
299
+ 73334 a 1 [1,0,1,-18,32] 3 1
300
+ 73397 c 1 [0,1,1,-24,36] 3 1
301
+ 73401 a 1 [0,-1,1,-4,24] 3 1
302
+ 73434 b 1 [1,1,0,-19,1] 3 1
303
+ 73931 a 1 [0,-1,1,-2042,36222] 3 1
304
+ 74015 a 1 [0,-1,1,84,72] 3 1
305
+ 74174 a 1 [1,0,1,-83,282] 3 1
306
+ 74179 b 1 [0,0,1,-97,276] 3 1
307
+ 74216 a 1 [0,0,0,-76,244] 3 1
308
+ 74350 c 1 [1,0,1,-51,98] 3 1
309
+ 74434 a 1 [1,1,0,8,20] 3 1
310
+ 74451 a 1 [0,-1,1,-92,362] 3 1
311
+ 74560 p 1 [0,0,0,-508,4432] 3 1
312
+ 74639 b 1 [1,1,1,-121,462] 3 1
313
+ 74864 b 1 [0,1,0,-400,2964] 3 1
314
+ 74921 g 1 [0,-1,1,-604,-596] 3 1
315
+ 74999 a 1 [0,-1,1,15,72] 3 1
316
+ 75159 h 1 [1,-1,1,-149,474] 3 1
317
+ 75692 a 1 [0,0,0,8,25] 3 1
318
+ 75729 a 1 [0,-1,1,-270,1802] 3 1
319
+ 75765 c 1 [0,-1,1,-66,236] 3 1
320
+ 75772 a 1 [0,0,0,-14872,698020] 3 1
321
+ 75781 a 1 [0,0,1,-13,12] 3 1
322
+ 76074 b 1 [1,0,1,-163,602] 3 1
323
+ 76119 a 1 [0,-1,1,-50,152] 3 1
324
+ 76136 c 1 [0,-1,0,-44,100] 3 1
325
+ 76338 h 1 [1,-1,0,-51,233] 3 1
326
+ 76358 e 1 [1,-1,1,-159,519] 3 1
327
+ 76599 a 1 [1,-1,1,-104,434] 3 1
328
+ 76626 e 1 [1,-1,0,-429,3509] 3 1
329
+ 76644 c 1 [0,0,0,-192,1105] 3 1
330
+ 76784 h 1 [0,-1,0,64,64] 3 1
331
+ 76784 i 1 [0,0,0,-1579,24154] 3 1
332
+ 76962 e 1 [1,0,1,-628,6062] 3 1
333
+ 77063 a 1 [0,0,1,-104,-175] 3 1
334
+ 77336 d 1 [0,1,0,-140,784] 3 1
335
+ 77346 a 1 [1,-1,0,-276,1836] 3 1
336
+ 77346 d 1 [1,-1,0,99,1093] 3 1
337
+ 77496 f 1 [0,1,0,-660,6624] 3 1
338
+ 77555 d 1 [1,1,1,-100,342] 3 1
339
+ 77709 a 1 [1,1,1,-20,-34] 3 1
340
+ 77725 c 1 [1,0,0,-838,9417] 3 1
341
+ 77790 a 1 [1,1,0,-18,72] 3 1
342
+ 78185 b 1 [1,0,0,-1,30] 3 1
343
+ 78242 a 1 [1,-1,0,-3016,64516] 3 1
344
+ 78287 b 1 [1,1,1,-74,210] 3 1
345
+ 78344 a 1 [0,1,0,-12,49] 3 1
346
+ 78361 a 1 [1,-1,1,-27,90] 3 1
347
+ 78830 a 1 [1,0,1,-274,1716] 3 1
348
+ 78923 b 1 [0,0,1,-676,7140] 3 1
349
+ 79077 f 1 [0,1,1,-214,436] 3 1
350
+ 79110 c 1 [1,-1,0,-135,625] 3 1
351
+ 79198 d 1 [1,0,1,-60,110] 3 1
352
+ 79317 b 1 [0,0,1,-129,1120] 3 1
353
+ 79555 a 1 [1,0,0,-361,2610] 3 1
354
+ 79675 b 1 [1,0,0,12,67] 3 1
355
+ 79934 b 1 [1,1,0,-59,169] 3 1
356
+ 80212 b 1 [0,-1,0,-30,121] 3 1
357
+ 80222 a 1 [1,-1,0,-16,-12] 3 1
358
+ 80256 a 1 [0,-1,0,-835,9571] 3 2
359
+ 80256 a 2 [0,-1,0,-825,9801] 3 2
360
+ 80351 d 1 [1,-1,1,51,204] 3 1
361
+ 80559 b 1 [1,-1,1,-86,240] 3 1
362
+ 80615 d 1 [0,1,1,-2620,50624] 3 1
363
+ 80674 a 1 [1,1,0,-10697,420565] 3 1
364
+ 80721 b 1 [1,-1,1,-113,618] 3 1
365
+ 80913 a 1 [0,-1,1,-140,512] 3 1
366
+ 80965 a 1 [0,0,1,-13,-12] 3 1
367
+ 81063 c 1 [0,0,1,-111,396] 3 1
368
+ 81162 c 1 [1,-1,0,-96,368] 3 1
369
+ 81234 h 1 [1,-1,0,-198,1080] 3 1
370
+ 81328 c 1 [0,1,0,96,196] 3 2
371
+ 81328 c 2 [0,1,0,-424,1236] 3 2
372
+ 81494 a 1 [1,1,0,-254,-716] 3 1
373
+ 81524 c 1 [0,-1,0,-517,4694] 3 1
374
+ 81939 e 1 [0,-1,1,-280,2172] 3 1
375
+ 82093 a 1 [1,1,1,-45,106] 3 1
376
+ 82146 a 1 [1,1,0,-2169,37989] 3 1
377
+ 82174 c 1 [1,0,0,-1705,26841] 3 1
378
+ 82288 q 1 [0,0,0,-419,6306] 3 1
379
+ 82296 i 1 [0,0,0,-207,1170] 3 1
380
+ 82480 a 1 [0,1,0,-136,660] 3 1
381
+ 82538 a 1 [1,1,0,-18,16] 3 1
382
+ 82539 e 1 [1,-1,1,-11,46] 3 1
383
+ 82547 b 1 [0,0,1,-1267,17346] 3 1
384
+ 82701 f 1 [0,0,1,-1809,29612] 3 1
385
+ 82763 a 1 [0,-1,1,-10,22] 3 1
386
+ 82808 c 1 [0,1,0,28,64] 3 1
387
+ 83016 f 1 [0,0,0,-39,1226] 3 1
388
+ 83105 a 1 [1,0,0,-3031,64086] 3 1
389
+ 83111 c 1 [1,1,1,-42,670] 3 1
390
+ 83262 a 1 [1,1,0,-21,9] 3 1
391
+ 83350 a 1 [1,1,0,-400,2000] 3 1
392
+ 83582 g 1 [1,-1,0,430,1992] 3 1
393
+ 83718 d 1 [1,-1,0,-216,1156] 3 1
394
+ 83798 c 1 [1,-1,1,-972,12495] 3 1
395
+ 83806 a 1 [1,0,1,-52,114] 3 1
396
+ 83876 a 1 [0,1,0,-125,319] 3 1
397
+ 83928 b 1 [0,-1,0,-577,5509] 3 1
398
+ 84176 a 1 [0,0,0,-59,-134] 3 1
399
+ 84341 a 1 [1,1,1,-58,132] 3 1
400
+ 84470 b 1 [1,0,1,-48,506] 3 1
401
+ 84534 a 1 [1,1,0,-301,1885] 3 2
402
+ 84534 a 2 [1,1,0,-421,85] 3 2
403
+ 84650 g 1 [1,-1,0,-67,-59] 3 1
404
+ 84746 a 1 [1,0,0,-1260,17296] 3 1
405
+ 85174 a 1 [1,0,1,-56,6] 3 1
406
+ 85222 a 1 [1,0,1,-40,90] 3 1
407
+ 85295 a 1 [1,0,0,-81,286] 3 1
408
+ 85318 e 1 [1,-1,1,-282,345] 3 1
409
+ 85863 a 1 [0,-1,1,-232,1440] 3 1
410
+ 85970 a 1 [1,0,1,-164,786] 3 1
411
+ 86007 a 1 [1,1,1,-82,242] 3 1
412
+ 86321 a 1 [1,0,0,-36,79] 3 1
413
+ 86487 a 1 [0,-1,1,-198,2774] 3 1
414
+ 86534 e 1 [1,0,1,-110,480] 3 1
415
+ 86611 a 1 [0,0,1,-157,756] 3 1
416
+ 86786 a 1 [1,0,1,-45,152] 3 1
417
+ 86802 i 1 [1,1,0,-1334,19044] 3 1
418
+ 86895 f 1 [0,0,1,-63,344] 3 1
419
+ 86903 b 1 [0,1,1,115,-390] 3 1
420
+ 87116 c 1 [0,1,0,-174,841] 3 1
421
+ 87130 a 1 [1,-1,0,-25,25] 3 1
422
+ 87194 a 1 [1,0,1,-37,84] 3 1
423
+ 87228 c 1 [0,0,0,-57,785] 3 1
424
+ 87289 b 1 [1,1,1,-132,-20] 3 1
425
+ 87336 g 1 [0,0,0,-399,3314] 3 1
426
+ 87398 b 1 [1,0,1,3,20] 3 1
427
+ 87634 a 1 [1,0,1,-4358,110352] 3 1
428
+ 87763 b 1 [1,-1,1,-588,-4872] 3 1
429
+ 87837 a 1 [0,-1,1,-7172,236912] 3 1
430
+ 87855 a 1 [1,1,1,-141,588] 3 1
431
+ 87866 a 1 [1,-1,0,22,4] 3 1
432
+ 87914 e 1 [1,0,0,5,81] 3 1
433
+ 88022 a 1 [1,1,0,-534,4564] 3 1
434
+ 88024 a 1 [0,0,0,14,1] 3 1
435
+ 88208 c 1 [0,1,0,-17448,881332] 3 1
436
+ 88264 h 1 [0,0,0,-199,1546] 3 1
437
+ 88337 a 1 [1,0,0,-15,16] 3 1
438
+ 88362 e 1 [1,-1,0,-108,324] 3 1
439
+ 88460 a 1 [0,1,0,-310,2025] 3 1
440
+ 88492 a 1 [0,1,0,-49,120] 3 1
441
+ 88502 f 1 [1,0,1,-838,9252] 3 2
442
+ 88502 f 2 [1,0,1,-1028,4692] 3 2
443
+ 88582 e 1 [1,1,0,-766,7904] 3 1
444
+ 88705 c 1 [1,-1,1,-597,20946] 3 1
445
+ 88754 a 1 [1,-1,0,-10,11412] 3 1
446
+ 88765 d 1 [1,-1,1,18,6] 3 1
447
+ 88883 a 1 [1,-1,1,0,14] 3 1
448
+ 88975 c 1 [0,-1,1,-3,33] 3 1
449
+ 89098 a 1 [1,1,0,-83,301] 3 1
450
+ 89294 a 1 [1,-1,1,-84,567] 3 1
451
+ 89421 b 1 [1,1,1,-1198,15164] 3 1
452
+ 89428 b 1 [0,1,0,47,240] 3 1
453
+ 89475 a 1 [1,1,1,37,1406] 3 1
454
+ 89574 a 1 [1,1,0,-31,85] 3 1
455
+ 89576 d 1 [0,-1,0,-15,16] 3 1
456
+ 89687 a 1 [1,0,0,-14,13] 3 1
457
+ 89738 b 1 [1,-1,0,-31,61] 3 1
458
+ 89992 a 1 [0,0,0,-31,226] 3 1
459
+ 90297 b 1 [0,0,1,-114,412] 3 1
460
+ 90312 i 1 [0,1,0,-620,6864] 3 1
461
+ 90459 o 1 [0,0,1,-1587,72076] 3 1
462
+ 90568 e 1 [0,1,0,-36,-32] 3 1
463
+ 90644 b 1 [0,0,0,56,1] 3 1
464
+ 90704 c 1 [0,1,0,-77,-281] 3 1
465
+ 90840 a 1 [0,-1,0,-121,445] 3 1
466
+ 90935 a 1 [0,1,1,34,426] 3 1
467
+ 90953 a 1 [1,-1,1,-261,-5418] 3 1
468
+ 91031 c 1 [0,1,1,-9210,271050] 3 1
469
+ 91055 a 1 [0,1,1,-46,110] 3 1
470
+ 91248 s 1 [0,-1,0,-112,256] 3 1
471
+ 91270 c 1 [1,0,1,-173,1428] 3 1
472
+ 91341 d 1 [0,0,1,-129,562] 3 1
473
+ 91388 b 1 [0,1,0,54,793] 3 1
474
+ 91506 a 1 [1,1,0,-481,3865] 3 1
475
+ 91607 a 1 [1,0,0,-19,-30] 3 1
476
+ 91744 d 1 [0,1,0,-1281,17263] 3 1
477
+ 91775 c 1 [0,1,1,-38,84] 3 1
478
+ 91958 a 1 [1,1,0,-69,-179] 3 1
479
+ 91963 a 1 [0,0,1,-11,20] 3 1
480
+ 91985 b 1 [0,0,1,-367,2580] 3 1
481
+ 92096 d 1 [0,-1,0,-41,169] 3 1
482
+ 92144 a 1 [0,1,0,-1056,12916] 3 1
483
+ 92437 a 1 [0,-1,1,-24,-36] 3 1
484
+ 92437 b 1 [0,-1,1,-2158,38530] 3 1
485
+ 92480 bb 1 [0,1,0,-521,4279] 3 2
486
+ 92480 bb 2 [0,1,0,159,15295] 3 2
487
+ 92553 b 1 [1,1,1,-22,-40] 3 1
488
+ 92601 a 1 [0,0,1,33,216] 3 1
489
+ 92651 a 1 [0,-1,1,-14,30] 3 1
490
+ 92869 d 1 [0,-1,1,-574,5440] 3 1
491
+ 93087 a 1 [0,0,1,-18,-15] 3 1
492
+ 93376 c 1 [0,1,0,-129,415] 3 1
493
+ 93508 b 1 [0,0,0,-61,181] 3 1
494
+ 93545 e 1 [0,0,1,-67,132] 3 1
495
+ 93783 a 1 [1,0,0,-6002,180009] 3 1
496
+ 93814 a 1 [1,1,0,-196,980] 3 1
497
+ 93904 a 1 [0,1,0,-104,340] 3 1
498
+ 94064 a 1 [0,0,0,-187,970] 3 1
499
+ 94259 d 1 [0,-1,1,-46262,3848910] 3 1
500
+ 94281 b 1 [0,-1,1,-154,3234] 3 1
501
+ 94659 a 1 [0,-1,1,-63,380] 3 1
502
+ 94715 b 1 [0,0,1,-268,-1527] 3 1
503
+ 94739 a 1 [1,0,1,-4530,116957] 3 1
504
+ 95134 d 1 [1,0,0,-4145,105961] 3 1
505
+ 95227 g 1 [1,1,1,-184,870] 3 1
506
+ 95323 b 1 [1,-1,1,-532,4600] 3 1
507
+ 95887 b 1 [0,1,1,-100,350] 3 1
508
+ 95954 c 1 [1,1,0,-190,932] 3 1
509
+ 96153 a 1 [1,1,1,-172,800] 3 1
510
+ 96163 a 1 [0,-1,1,-274,1666] 3 1
511
+ 96266 d 1 [1,0,0,-145,681] 3 1
512
+ 96376 b 1 [0,0,0,-367,2770] 3 1
513
+ 96466 b 1 [1,0,1,-12,20] 3 1
514
+ 96544 a 1 [0,-1,0,-362,2776] 3 1
515
+ 96873 a 1 [1,1,1,-1422,20040] 3 1
516
+ 96937 a 1 [1,1,1,-170,996] 3 1
517
+ 97111 a 1 [1,-1,1,-541,4982] 3 1
518
+ 97345 d 1 [1,-1,1,-927,10926] 3 1
519
+ 97389 a 1 [0,0,1,-93,342] 3 1
520
+ 97408 a 1 [0,0,0,-52,-80] 3 1
521
+ 97423 a 1 [1,0,0,-4,15] 3 1
522
+ 97506 a 1 [1,-1,0,-51,133] 3 1
523
+ 97543 a 1 [1,1,1,-23,30] 3 1
524
+ 97668 f 1 [0,0,0,-117,405] 3 1
525
+ 97782 a 1 [1,1,0,2,484] 3 1
526
+ 97811 a 1 [1,-1,1,-963,11748] 3 1
527
+ 97834 c 1 [1,1,0,-4912,130880] 3 1
528
+ 97877 a 1 [1,-1,1,-54,174] 3 1
529
+ 98081 a 1 [1,-1,1,-129,594] 3 1
530
+ 98231 a 1 [1,-1,1,1080,420] 3 1
531
+ 98597 a 1 [0,1,1,-255,1485] 3 1
532
+ 98730 d 1 [1,-1,0,-240,1556] 3 1
533
+ 98841 c 1 [0,1,1,-114,488] 3 1
534
+ 98891 a 1 [1,-1,1,6,12] 3 1
535
+ 99153 b 1 [1,-1,1,67,-120] 3 1
536
+ 99248 d 1 [0,0,0,8,60] 3 1
537
+ 99326 a 1 [1,-1,1,-174,957] 3 1
538
+ 99378 d 1 [1,-1,0,-153,841] 3 1
539
+ 99572 b 1 [0,1,0,-2606,50353] 3 1
540
+ 99776 q 1 [0,-1,0,-121,569] 3 1
541
+ 99966 a 1 [1,1,0,-186,900] 3 1
542
+ 99968 j 1 [0,0,0,-196,976] 3 1
543
+ 100134 e 1 [1,-1,0,-21,1] 3 1
544
+ 100143 b 1 [1,-1,1,-110,190] 3 1
545
+ 100209 a 1 [0,1,1,-520,4450] 3 1
546
+ 100269 c 1 [0,0,1,-69,240] 3 1
547
+ 100336 a 1 [0,-1,0,-184,1040] 3 1
548
+ 100480 f 1 [0,1,0,-91,309] 3 1
549
+ 100494 a 1 [1,-1,0,-234,1444] 3 1
550
+ 100496 a 1 [0,0,0,-67,610] 3 1
551
+ 100528 l 1 [0,1,0,0,244] 3 1
552
+ 100720 d 1 [0,-1,0,-4741,127241] 3 1
553
+ 100794 a 1 [1,1,0,-6,84] 3 1
554
+ 100794 i 1 [1,0,1,-1343,18902] 3 1
555
+ 100886 a 1 [1,-1,0,-58,184] 3 1
556
+ 100910 a 1 [1,-1,0,-10,100] 3 1
557
+ 100912 t 1 [0,1,0,-560,-2156] 3 2
558
+ 100912 t 2 [0,1,0,-4800,125044] 3 2
559
+ 100915 a 1 [1,1,1,-51,118] 3 1
560
+ 100955 d 1 [0,0,1,-247,1542] 3 1
561
+ 100972 a 1 [0,1,0,-29,127] 3 1
562
+ 100990 a 1 [1,1,0,-138,568] 3 1
563
+ 100990 f 1 [1,-1,1,-948,11031] 3 1
564
+ 101066 e 1 [1,0,0,-322,2244] 3 1
565
+ 101106 b 1 [1,-1,0,-1101,14373] 3 1
566
+ 101144 b 1 [0,1,0,31,67] 3 1
567
+ 101235 c 1 [0,-1,1,-786,8192] 3 1
568
+ 101403 l 1 [0,0,1,-117,506] 3 1
569
+ 101482 a 1 [1,1,0,-16,14] 3 1
570
+ 101507 e 1 [0,1,1,-22,-10] 3 1
571
+ 101536 d 1 [0,1,0,-670,6444] 3 1
572
+ 101540 a 1 [0,-1,0,-261,961] 3 1
573
+ 101559 d 1 [0,1,1,-224,1196] 3 1
574
+ 101646 j 1 [1,-1,1,-1427,19635] 3 1
575
+ 101655 f 1 [0,0,1,-63,218] 3 1
576
+ 101682 h 1 [1,-1,0,-684,7164] 3 1
577
+ 101726 b 1 [1,-1,0,-73,-131] 3 1
578
+ 102104 a 1 [0,1,0,1,22] 3 1
579
+ 102126 a 1 [1,1,0,16,36] 3 1
580
+ 102272 b 1 [0,1,0,-255,289] 3 2
581
+ 102272 b 2 [0,1,0,-3145,66759] 3 2
582
+ 102289 b 1 [0,1,1,-550,4790] 3 1
583
+ 102307 a 1 [0,0,1,-83,-150] 3 1
584
+ 102311 a 1 [0,-1,1,-219,1395] 3 1
585
+ 102385 a 1 [0,1,1,-26,30] 3 1
586
+ 102454 a 1 [1,0,1,-147,674] 3 1
587
+ 102512 a 1 [0,1,0,-2240,40084] 3 1
588
+ 102743 c 1 [1,-1,1,-15,30] 3 1
589
+ 102914 a 1 [1,0,1,-25,72] 3 1
590
+ 102926 c 1 [1,0,0,-157,561] 3 1
591
+ 102948 b 1 [0,-1,0,-17,66] 3 1
592
+ 102969 b 1 [0,0,1,-3864,92497] 3 1
593
+ 103156 e 1 [0,-1,0,-7770,231361] 3 1
594
+ 103370 c 1 [1,-1,0,-79,385] 3 1
595
+ 103525 c 1 [1,0,0,-433,3432] 3 2
596
+ 103525 c 2 [1,0,0,-458,3007] 3 2
597
+ 103779 b 1 [0,0,1,-129,702] 3 1
598
+ 103794 a 1 [1,1,0,-38,36] 3 1
599
+ 103844 b 1 [0,1,0,-122,289] 3 1
600
+ 103865 a 1 [1,0,0,-6050,180625] 3 1
601
+ 104014 a 1 [1,0,1,8,30] 3 1
602
+ 104014 b 1 [1,0,0,-2819,57409] 3 1
603
+ 104019 a 1 [0,1,1,-64,442] 3 1
604
+ 104081 c 1 [0,-1,1,-3074,59136] 3 1
605
+ 104216 b 1 [0,0,0,-964,-1724] 3 1
606
+ 104219 a 1 [1,1,0,-1808,28849] 3 1
607
+ 104384 d 1 [0,1,0,-329,2167] 3 2
608
+ 104384 d 2 [0,1,0,-609,-2369] 3 2
609
+ 104386 b 1 [1,-1,0,-988,12204] 3 1
610
+ 104434 c 1 [1,0,1,-8158,407892] 3 1
611
+ 104484 c 1 [0,1,0,-65,504] 3 1
612
+ 104491 a 1 [1,-1,1,-724,7674] 3 1
613
+ 104646 c 1 [1,1,0,80,256] 3 1
614
+ 104646 d 1 [1,0,1,-218,1352] 3 1
615
+ 104684 a 1 [0,-1,0,43,49] 3 1
616
+ 104734 f 1 [1,-1,1,-4062,98925] 3 1
617
+ 104865 a 1 [0,-1,1,-360,2756] 3 1
618
+ 104890 e 1 [1,-1,0,-8305,293725] 3 1
619
+ 104907 f 1 [0,-1,1,-62,230] 3 1
620
+ 105136 b 1 [0,1,0,-364,2556] 3 1
621
+ 105184 c 1 [0,1,0,-65,79] 3 1
622
+ 105190 a 1 [1,0,1,156,1442] 3 1
623
+ 105314 e 1 [1,0,0,153,6601] 3 1
624
+ 105376 b 1 [0,-1,0,-97,1169] 3 1
625
+ 105536 c 1 [0,1,0,-2209,39231] 3 2
626
+ 105536 c 2 [0,1,0,-2369,33055] 3 2
627
+ 105558 f 1 [1,0,1,-313,1832] 3 2
628
+ 105558 f 2 [1,0,1,497,9932] 3 2
629
+ 105643 b 1 [0,0,1,-41,102] 3 1
630
+ 105883 a 1 [0,1,1,-539,4641] 3 1
631
+ 105915 a 1 [1,1,1,-911,10208] 3 1
632
+ 105965 b 1 [0,1,1,-190,944] 3 1
633
+ 106037 b 1 [0,1,1,-98,342] 3 1
634
+ 106110 c 1 [1,-1,0,-60,116] 3 1
635
+ 106164 e 1 [0,0,0,-84,281] 3 1
636
+ 106244 a 1 [0,-1,0,-44,184] 3 1
637
+ 106276 b 1 [0,-1,0,-54,169] 3 1
638
+ 106309 a 1 [0,0,1,-19,-28] 3 1
639
+ 106361 a 1 [1,1,1,-47,132] 3 1
640
+ 106449 b 1 [1,1,1,-21,72] 3 1
641
+ 106497 b 1 [1,-1,1,-29,72] 3 1
642
+ 106509 a 1 [0,-1,1,168,-340] 3 1
643
+ 106749 b 1 [0,0,1,-27,156] 3 1
644
+ 106757 a 1 [0,1,1,-680,-7038] 3 1
645
+ 106894 h 1 [1,0,0,-6400,197376] 3 1
646
+ 107080 c 1 [0,0,0,-247,1114] 3 1
647
+ 107199 f 1 [1,-1,1,-2516,37442] 3 1
648
+ 107349 b 1 [1,1,1,-90,96] 3 1
649
+ 107350 i 1 [1,-1,0,-592,5716] 3 1
650
+ 107521 b 1 [1,0,0,-122,589] 3 1
651
+ 107732 b 1 [0,-1,0,-212,1096] 3 1
652
+ 107776 k 1 [0,1,0,-219,1177] 3 1
653
+ 107776 l 1 [0,1,0,-15,-11] 3 1
654
+ 107854 a 1 [1,0,1,-81,-220] 3 1
655
+ 108071 b 1 [0,1,1,-54,-102] 3 1
656
+ 108258 h 1 [1,1,1,-302,875] 3 1
657
+ 108302 a 1 [1,-1,0,-88,340] 3 1
658
+ 108320 b 1 [0,-1,0,-1,401] 3 1
659
+ 108341 a 1 [0,0,1,-31,12] 3 1
660
+ 108343 a 1 [1,0,0,-5,16] 3 1
661
+ 108546 e 1 [1,1,1,-335,2261] 3 1
662
+ 108694 b 1 [1,0,1,-618,5852] 3 1
663
+ 108701 a 1 [0,1,1,-30,138] 3 1
664
+ 108708 b 1 [0,-1,0,3,54] 3 1
665
+ 108737 b 1 [0,-1,1,11,64] 3 1
666
+ 108762 b 1 [1,1,0,34,36] 3 1
667
+ 108779 b 1 [0,0,1,-3146,67911] 3 1
668
+ 108813 d 1 [0,-1,1,1518,1190] 3 1
669
+ 108914 a 1 [1,-1,0,-2446,48016] 3 1
670
+ 108977 b 1 [1,-1,1,-27,0] 3 1
671
+ 109024 a 1 [0,-1,0,10,16] 3 1
672
+ 109115 c 1 [0,-1,1,-41,117] 3 1
673
+ 109172 b 1 [0,-1,0,-37,134] 3 1
674
+ 109304 a 1 [0,1,0,-81,403] 3 1
675
+ 109330 k 1 [1,0,1,-4948,133506] 3 2
676
+ 109330 k 2 [1,0,1,-5528,100098] 3 2
677
+ 109366 a 1 [1,-1,1,-597,5805] 3 1
678
+ 109439 a 1 [1,0,0,-12,1] 3 1
679
+ 109470 g 1 [1,1,0,-767,7569] 3 2
680
+ 109470 g 2 [1,1,0,-2017,-25181] 3 2
681
+ 109495 d 1 [1,-1,1,-4842,130866] 3 1
682
+ 109528 a 1 [0,0,0,-196,1060] 3 1
683
+ 109542 e 1 [1,0,1,-103,182] 3 1
684
+ 109600 c 1 [0,1,0,-33,10063] 3 1
685
+ 109600 i 1 [0,1,0,-1073,13183] 3 1
686
+ 109612 b 1 [0,1,0,-65,184] 3 1
687
+ 109687 b 1 [1,0,0,930,35161] 3 1
688
+ 109840 h 1 [0,1,0,-296,1780] 3 1
689
+ 109926 b 1 [1,-1,0,-483,4229] 3 1
690
+ 109968 r 1 [0,-1,0,24,432] 3 1
691
+ 109975 a 1 [0,1,1,-118,434] 3 1
692
+ 110085 a 1 [0,-1,1,-16,72] 3 1
693
+ 110095 a 1 [0,0,1,-43,114] 3 1
694
+ 110104 a 1 [0,0,0,-316,2164] 3 1
695
+ 110118 c 1 [1,0,1,-53,272] 3 1
696
+ 110120 d 1 [0,0,0,-487,3466] 3 1
697
+ 110121 c 1 [0,-1,1,-10521,391610] 3 1
698
+ 110162 h 1 [1,-1,0,-1438,-9644] 3 1
699
+ 110210 a 1 [1,-1,0,755,-2075] 3 1
700
+ 110228 a 1 [0,1,0,-116,676] 3 1
701
+ 110318 b 1 [1,0,1,32,42] 3 1
702
+ 110343 c 1 [1,0,0,-45,1296] 3 1
703
+ 110383 e 1 [0,-1,1,-2730,55812] 3 1
704
+ 110482 a 1 [1,-1,0,-25,109] 3 1
705
+ 110499 a 1 [0,1,1,-112,592] 3 1
706
+ 110517 a 1 [0,-1,1,-110,272] 3 1
707
+ 110528 a 1 [0,-1,0,-49,305] 3 1
708
+ 110528 u 1 [0,0,0,-11452,472720] 3 1
709
+ 110606 a 1 [1,0,1,-122,444] 3 1
710
+ 110666 c 1 [1,0,0,-109,465] 3 1
711
+ 110725 c 1 [0,-1,1,-108,-132] 3 1
712
+ 110976 h 1 [0,-1,0,-79,583] 3 2
713
+ 110976 h 2 [0,-1,0,-1609,25369] 3 2
714
+ 110988 b 1 [0,0,0,-336,4196] 3 1
715
+ 111201 a 1 [1,1,1,-10,26] 3 1
716
+ 111226 b 1 [1,0,1,-232,1266] 3 1
717
+ 111272 b 1 [0,1,0,-705,6979] 3 1
718
+ 111433 c 1 [1,0,0,-182,931] 3 1
719
+ 111472 b 1 [0,1,0,-120,484] 3 1
720
+ 111488 f 1 [0,-1,0,-2137,41129] 3 1
721
+ 111566 a 1 [1,-1,0,-1783,-851] 3 1
722
+ 111708 c 1 [0,0,0,-2109,37181] 3 1
723
+ 111715 a 1 [1,0,0,-110,397] 3 1
724
+ 111879 b 1 [0,0,1,-27,46] 3 1
725
+ 111879 d 1 [0,0,1,-1326,-16880] 3 1
726
+ 111941 a 1 [0,1,1,-16,14] 3 1
727
+ 111941 d 1 [0,0,1,-15809,677310] 3 1
728
+ 111989 a 1 [0,1,1,-12,0] 3 1
729
+ 112028 e 1 [0,1,0,-42,49] 3 1
730
+ 112405 a 1 [1,-1,1,-24543,1486032] 3 1
731
+ 112576 d 1 [0,1,0,-41,151] 3 1
732
+ 112607 a 1 [0,1,1,166,546] 3 1
733
+ 112654 c 1 [1,1,0,-149,289] 3 1
734
+ 112771 a 1 [1,-1,1,-33,78] 3 1
735
+ 112776 d 1 [0,-1,0,-412,3364] 3 1
736
+ 112966 a 1 [1,0,1,-484,4050] 3 1
737
+ 113032 d 1 [0,1,0,-52,96] 3 1
738
+ 113072 b 1 [0,0,0,-659,6514] 3 1
739
+ 113106 b 1 [1,1,0,-129,441] 3 1
740
+ 113114 a 1 [1,0,1,-285,1820] 3 1
741
+ 113131 a 1 [0,0,1,-29,62] 3 1
742
+ 113386 h 1 [1,-1,0,-3586,83656] 3 1
743
+ 113592 a 1 [0,1,0,-345,1899] 3 1
744
+ 113594 f 1 [1,0,0,-1270,13476] 3 2
745
+ 113594 f 2 [1,0,0,2890,84196] 3 2
746
+ 113631 e 1 [0,-1,1,-72,272] 3 1
747
+ 113632 f 1 [0,-1,0,911,78593] 3 1
748
+ 113706 i 1 [1,-1,1,-902,12565] 3 1
749
+ 113749 a 1 [0,-1,1,-12,0] 3 1
750
+ 113839 e 1 [0,0,1,-11911,500346] 3 1
751
+ 113946 b 1 [1,1,0,-42,0] 3 2
752
+ 113946 b 2 [1,1,0,168,210] 3 2
753
+ 114235 d 1 [0,0,1,-313,1668] 3 1
754
+ 114236 a 1 [0,0,0,-71,190] 3 1
755
+ 114336 n 1 [0,0,0,-444,2176] 3 1
756
+ 114368 e 1 [0,1,0,-593,5359] 3 1
757
+ 114399 c 1 [0,0,1,-129,522] 3 1
758
+ 114433 a 1 [0,-1,1,22,30] 3 1
759
+ 114477 b 1 [1,1,1,-67,1022] 3 1
760
+ 114501 a 1 [1,1,1,-60,156] 3 1
761
+ 114537 c 1 [0,-1,1,-62,212] 3 1
762
+ 114560 s 1 [0,1,0,-41,295] 3 1
763
+ 114801 a 1 [0,-1,1,-426,3548] 3 1
764
+ 114829 a 1 [0,-1,1,213,-1233] 3 1
765
+ 114865 a 1 [0,0,1,-23,-22] 3 1
766
+ 114928 h 1 [0,1,0,-1336,18516] 3 1
767
+ 114950 d 1 [1,0,1,-476,1098] 3 2
768
+ 114950 d 2 [1,0,1,-5976,177098] 3 2
769
+ 115021 a 1 [1,0,0,-52,141] 3 1
770
+ 115082 a 1 [1,-1,0,-208,1180] 3 1
771
+ 115134 b 1 [1,1,0,-26,120] 3 1
772
+ 115184 d 1 [0,-1,0,48,16] 3 1
773
+ 115370 f 1 [1,0,0,-166,996] 3 1
774
+ 115461 c 1 [0,0,1,-174,765] 3 1
775
+ 115497 d 1 [0,0,1,294,-1224] 3 1
776
+ 115497 g 1 [1,-1,1,40,420] 3 1
777
+ 115640 m 1 [0,0,0,-343,2842] 3 1
778
+ 115702 b 1 [1,0,1,-192,-550] 3 2
779
+ 115702 b 2 [1,0,1,638,-3870] 3 2
780
+ 115729 b 1 [0,1,1,3,72] 3 1
781
+ 115736 a 1 [0,0,0,-292,580] 3 1
782
+ 115774 b 1 [1,0,1,-38,72] 3 1
783
+ 115775 d 1 [1,0,0,-1188,15367] 3 2
784
+ 115775 d 2 [1,0,0,-2563,-27258] 3 2
785
+ 115908 b 1 [0,-1,0,10,201] 3 1
786
+ 115958 a 1 [1,-1,0,-139,-251] 3 1
787
+ 116053 c 1 [0,0,1,-76,-228] 3 1
788
+ 116098 c 1 [1,0,1,-63,-190] 3 1
789
+ 116121 b 1 [0,1,1,-80,350] 3 1
790
+ 116197 b 1 [0,-1,1,-30,72] 3 1
791
+ 116206 d 1 [1,-1,1,-534,4389] 3 1
792
+ 116210 a 1 [1,0,1,-673,6756] 3 1
793
+ 116217 b 1 [0,0,1,-9,30] 3 1
794
+ 116217 d 1 [0,0,1,2106,-11348] 3 1
795
+ 116332 b 1 [0,-1,0,-101,-98] 3 1
796
+ 116406 d 1 [1,-1,0,-276,1888] 3 1
797
+ 116529 d 1 [0,-1,1,-602,6602] 3 1
798
+ 116628 a 1 [0,-1,0,-309,2193] 3 1
799
+ 116697 a 1 [0,-1,1,-2219,40976] 3 1
800
+ 116794 b 1 [1,0,0,-254,1348] 3 1
801
+ 116973 d 1 [0,0,1,-111,72] 3 1
802
+ 116984 f 1 [0,0,0,-559,4786] 3 1
803
+ 117051 a 1 [0,-1,1,-1545,23897] 3 1
804
+ 117158 a 1 [1,-1,0,-25,49] 3 1
805
+ 117242 a 1 [1,-1,0,-1141,-13439] 3 1
806
+ 117438 i 1 [1,1,0,-804,18756] 3 1
807
+ 117516 a 1 [0,-1,0,-1062,13689] 3 1
808
+ 117616 b 1 [0,1,0,-776,8068] 3 1
809
+ 117648 bh 1 [0,0,0,-2307,42050] 3 2
810
+ 117648 bh 2 [0,0,0,-147,117650] 3 2
811
+ 117818 b 1 [1,0,0,-144,640] 3 1
812
+ 117848 a 1 [0,1,0,-9,91] 3 1
813
+ 118023 b 1 [0,1,1,-82,100] 3 1
814
+ 118158 e 1 [1,1,1,-332,4205] 3 1
815
+ 118197 b 1 [1,-1,1,-842,9690] 3 1
816
+ 118336 bj 1 [0,-1,0,-57,121] 3 1
817
+ 118439 a 1 [1,-1,1,-7,70] 3 1
818
+ 118502 a 1 [1,0,1,-15,50] 3 1
819
+ 118547 b 1 [1,0,0,-2444,34645] 3 1
820
+ 118622 b 1 [1,-1,0,-1426,18196] 3 1
821
+ 118728 f 1 [0,0,0,-3684,86276] 3 1
822
+ 118761 b 1 [0,-1,1,-70,252] 3 1
823
+ 118764 f 1 [0,0,0,-144,729] 3 1
824
+ 118848 w 1 [0,-1,0,-449,3873] 3 1
825
+ 118866 k 1 [1,1,1,-435,1521] 3 1
826
+ 119252 d 1 [0,1,0,-1629,22060] 3 1
827
+ 119416 d 1 [0,-1,0,-3052,193316] 3 1
828
+ 119481 a 1 [0,1,1,-270,1640] 3 1
829
+ 119555 b 1 [1,1,1,-26,24] 3 1
830
+ 119689 b 1 [1,1,1,-27,40] 3 1
831
+ 119740 b 1 [0,0,0,-148,697] 3 1
832
+ 119744 i 1 [0,1,0,-7489,246975] 3 1
833
+ 119744 j 1 [0,1,0,95,159] 3 1
834
+ 119822 a 1 [1,0,1,-144,650] 3 1
835
+ 119859 b 1 [0,1,1,-212,1202] 3 1
836
+ 119888 a 1 [0,0,0,-8699,252426] 3 1