passagemath-schemes 10.6.40__cp314-cp314-macosx_13_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-schemes might be problematic. Click here for more details.
- passagemath_schemes/.dylibs/libflint.22.0.dylib +0 -0
- passagemath_schemes/.dylibs/libgmp.10.dylib +0 -0
- passagemath_schemes/.dylibs/libgmpxx.4.dylib +0 -0
- passagemath_schemes/.dylibs/libmpfr.6.dylib +0 -0
- passagemath_schemes/__init__.py +3 -0
- passagemath_schemes-10.6.40.dist-info/METADATA +204 -0
- passagemath_schemes-10.6.40.dist-info/METADATA.bak +205 -0
- passagemath_schemes-10.6.40.dist-info/RECORD +314 -0
- passagemath_schemes-10.6.40.dist-info/WHEEL +6 -0
- passagemath_schemes-10.6.40.dist-info/top_level.txt +3 -0
- sage/all__sagemath_schemes.py +23 -0
- sage/databases/all__sagemath_schemes.py +7 -0
- sage/databases/cremona.py +1723 -0
- sage/dynamics/all__sagemath_schemes.py +2 -0
- sage/dynamics/arithmetic_dynamics/affine_ds.py +1083 -0
- sage/dynamics/arithmetic_dynamics/all.py +14 -0
- sage/dynamics/arithmetic_dynamics/berkovich_ds.py +1101 -0
- sage/dynamics/arithmetic_dynamics/dynamical_semigroup.py +1543 -0
- sage/dynamics/arithmetic_dynamics/endPN_automorphism_group.py +2426 -0
- sage/dynamics/arithmetic_dynamics/endPN_minimal_model.py +1169 -0
- sage/dynamics/arithmetic_dynamics/generic_ds.py +663 -0
- sage/dynamics/arithmetic_dynamics/product_projective_ds.py +339 -0
- sage/dynamics/arithmetic_dynamics/projective_ds.py +9558 -0
- sage/dynamics/arithmetic_dynamics/projective_ds_helper.cpython-314-darwin.so +0 -0
- sage/dynamics/arithmetic_dynamics/projective_ds_helper.pyx +301 -0
- sage/dynamics/arithmetic_dynamics/wehlerK3.py +2576 -0
- sage/lfunctions/all.py +18 -0
- sage/lfunctions/dokchitser.py +745 -0
- sage/lfunctions/pari.py +818 -0
- sage/lfunctions/zero_sums.cpython-314-darwin.so +0 -0
- sage/lfunctions/zero_sums.pyx +1847 -0
- sage/modular/abvar/abvar.py +5135 -0
- sage/modular/abvar/abvar_ambient_jacobian.py +413 -0
- sage/modular/abvar/abvar_newform.py +244 -0
- sage/modular/abvar/all.py +8 -0
- sage/modular/abvar/constructor.py +186 -0
- sage/modular/abvar/cuspidal_subgroup.py +371 -0
- sage/modular/abvar/finite_subgroup.py +896 -0
- sage/modular/abvar/homology.py +720 -0
- sage/modular/abvar/homspace.py +998 -0
- sage/modular/abvar/lseries.py +415 -0
- sage/modular/abvar/morphism.py +935 -0
- sage/modular/abvar/torsion_point.py +274 -0
- sage/modular/abvar/torsion_subgroup.py +740 -0
- sage/modular/all.py +43 -0
- sage/modular/arithgroup/all.py +20 -0
- sage/modular/arithgroup/arithgroup_element.cpython-314-darwin.so +0 -0
- sage/modular/arithgroup/arithgroup_element.pyx +474 -0
- sage/modular/arithgroup/arithgroup_generic.py +1402 -0
- sage/modular/arithgroup/arithgroup_perm.py +2692 -0
- sage/modular/arithgroup/congroup.cpython-314-darwin.so +0 -0
- sage/modular/arithgroup/congroup.pyx +334 -0
- sage/modular/arithgroup/congroup_gamma.py +363 -0
- sage/modular/arithgroup/congroup_gamma0.py +692 -0
- sage/modular/arithgroup/congroup_gamma1.py +653 -0
- sage/modular/arithgroup/congroup_gammaH.py +1469 -0
- sage/modular/arithgroup/congroup_generic.py +628 -0
- sage/modular/arithgroup/congroup_sl2z.py +267 -0
- sage/modular/arithgroup/farey_symbol.cpython-314-darwin.so +0 -0
- sage/modular/arithgroup/farey_symbol.pyx +1066 -0
- sage/modular/arithgroup/tests.py +418 -0
- sage/modular/btquotients/all.py +4 -0
- sage/modular/btquotients/btquotient.py +3753 -0
- sage/modular/btquotients/pautomorphicform.py +2570 -0
- sage/modular/buzzard.py +100 -0
- sage/modular/congroup.py +29 -0
- sage/modular/congroup_element.py +13 -0
- sage/modular/cusps.py +1109 -0
- sage/modular/cusps_nf.py +1270 -0
- sage/modular/dims.py +569 -0
- sage/modular/dirichlet.py +3310 -0
- sage/modular/drinfeld_modform/all.py +2 -0
- sage/modular/drinfeld_modform/element.py +446 -0
- sage/modular/drinfeld_modform/ring.py +773 -0
- sage/modular/drinfeld_modform/tutorial.py +236 -0
- sage/modular/etaproducts.py +1065 -0
- sage/modular/hecke/algebra.py +746 -0
- sage/modular/hecke/all.py +20 -0
- sage/modular/hecke/ambient_module.py +1019 -0
- sage/modular/hecke/degenmap.py +119 -0
- sage/modular/hecke/element.py +325 -0
- sage/modular/hecke/hecke_operator.py +780 -0
- sage/modular/hecke/homspace.py +206 -0
- sage/modular/hecke/module.py +1767 -0
- sage/modular/hecke/morphism.py +174 -0
- sage/modular/hecke/submodule.py +989 -0
- sage/modular/hypergeometric_misc.cpython-314-darwin.so +0 -0
- sage/modular/hypergeometric_misc.pxd +4 -0
- sage/modular/hypergeometric_misc.pyx +166 -0
- sage/modular/hypergeometric_motive.py +2017 -0
- sage/modular/local_comp/all.py +2 -0
- sage/modular/local_comp/liftings.py +292 -0
- sage/modular/local_comp/local_comp.py +1071 -0
- sage/modular/local_comp/smoothchar.py +1825 -0
- sage/modular/local_comp/type_space.py +748 -0
- sage/modular/modform/all.py +30 -0
- sage/modular/modform/ambient.py +815 -0
- sage/modular/modform/ambient_R.py +177 -0
- sage/modular/modform/ambient_eps.py +306 -0
- sage/modular/modform/ambient_g0.py +124 -0
- sage/modular/modform/ambient_g1.py +204 -0
- sage/modular/modform/constructor.py +545 -0
- sage/modular/modform/cuspidal_submodule.py +708 -0
- sage/modular/modform/defaults.py +14 -0
- sage/modular/modform/eis_series.py +505 -0
- sage/modular/modform/eisenstein_submodule.py +663 -0
- sage/modular/modform/element.py +4131 -0
- sage/modular/modform/find_generators.py +59 -0
- sage/modular/modform/half_integral.py +154 -0
- sage/modular/modform/hecke_operator_on_qexp.py +247 -0
- sage/modular/modform/j_invariant.py +47 -0
- sage/modular/modform/l_series_gross_zagier.py +133 -0
- sage/modular/modform/l_series_gross_zagier_coeffs.cpython-314-darwin.so +0 -0
- sage/modular/modform/l_series_gross_zagier_coeffs.pyx +177 -0
- sage/modular/modform/notes.py +45 -0
- sage/modular/modform/numerical.py +514 -0
- sage/modular/modform/periods.py +14 -0
- sage/modular/modform/ring.py +1257 -0
- sage/modular/modform/space.py +1860 -0
- sage/modular/modform/submodule.py +118 -0
- sage/modular/modform/tests.py +64 -0
- sage/modular/modform/theta.py +110 -0
- sage/modular/modform/vm_basis.py +381 -0
- sage/modular/modform/weight1.py +220 -0
- sage/modular/modform_hecketriangle/abstract_ring.py +1932 -0
- sage/modular/modform_hecketriangle/abstract_space.py +2528 -0
- sage/modular/modform_hecketriangle/all.py +30 -0
- sage/modular/modform_hecketriangle/analytic_type.py +590 -0
- sage/modular/modform_hecketriangle/constructor.py +416 -0
- sage/modular/modform_hecketriangle/element.py +351 -0
- sage/modular/modform_hecketriangle/functors.py +752 -0
- sage/modular/modform_hecketriangle/graded_ring.py +541 -0
- sage/modular/modform_hecketriangle/graded_ring_element.py +2225 -0
- sage/modular/modform_hecketriangle/hecke_triangle_group_element.py +3352 -0
- sage/modular/modform_hecketriangle/hecke_triangle_groups.py +1432 -0
- sage/modular/modform_hecketriangle/readme.py +1214 -0
- sage/modular/modform_hecketriangle/series_constructor.py +580 -0
- sage/modular/modform_hecketriangle/space.py +1037 -0
- sage/modular/modform_hecketriangle/subspace.py +423 -0
- sage/modular/modsym/all.py +17 -0
- sage/modular/modsym/ambient.py +3846 -0
- sage/modular/modsym/boundary.py +1420 -0
- sage/modular/modsym/element.py +336 -0
- sage/modular/modsym/g1list.py +178 -0
- sage/modular/modsym/ghlist.py +182 -0
- sage/modular/modsym/hecke_operator.py +73 -0
- sage/modular/modsym/manin_symbol.cpython-314-darwin.so +0 -0
- sage/modular/modsym/manin_symbol.pxd +5 -0
- sage/modular/modsym/manin_symbol.pyx +497 -0
- sage/modular/modsym/manin_symbol_list.py +1295 -0
- sage/modular/modsym/modsym.py +400 -0
- sage/modular/modsym/modular_symbols.py +384 -0
- sage/modular/modsym/p1list.cpython-314-darwin.so +0 -0
- sage/modular/modsym/p1list.pxd +29 -0
- sage/modular/modsym/p1list.pyx +1372 -0
- sage/modular/modsym/p1list_nf.py +1241 -0
- sage/modular/modsym/relation_matrix.py +591 -0
- sage/modular/modsym/relation_matrix_pyx.cpython-314-darwin.so +0 -0
- sage/modular/modsym/relation_matrix_pyx.pyx +108 -0
- sage/modular/modsym/space.py +2468 -0
- sage/modular/modsym/subspace.py +455 -0
- sage/modular/modsym/tests.py +375 -0
- sage/modular/multiple_zeta.py +2632 -0
- sage/modular/multiple_zeta_F_algebra.py +786 -0
- sage/modular/overconvergent/all.py +6 -0
- sage/modular/overconvergent/genus0.py +1878 -0
- sage/modular/overconvergent/hecke_series.py +1187 -0
- sage/modular/overconvergent/weightspace.py +778 -0
- sage/modular/pollack_stevens/all.py +4 -0
- sage/modular/pollack_stevens/distributions.py +874 -0
- sage/modular/pollack_stevens/fund_domain.py +1572 -0
- sage/modular/pollack_stevens/manin_map.py +859 -0
- sage/modular/pollack_stevens/modsym.py +1593 -0
- sage/modular/pollack_stevens/padic_lseries.py +417 -0
- sage/modular/pollack_stevens/sigma0.py +534 -0
- sage/modular/pollack_stevens/space.py +1076 -0
- sage/modular/quasimodform/all.py +3 -0
- sage/modular/quasimodform/element.py +845 -0
- sage/modular/quasimodform/ring.py +828 -0
- sage/modular/quatalg/all.py +3 -0
- sage/modular/quatalg/brandt.py +1642 -0
- sage/modular/ssmod/all.py +8 -0
- sage/modular/ssmod/ssmod.py +827 -0
- sage/rings/all__sagemath_schemes.py +1 -0
- sage/rings/polynomial/all__sagemath_schemes.py +1 -0
- sage/rings/polynomial/binary_form_reduce.py +585 -0
- sage/schemes/all.py +41 -0
- sage/schemes/berkovich/all.py +6 -0
- sage/schemes/berkovich/berkovich_cp_element.py +2582 -0
- sage/schemes/berkovich/berkovich_space.py +748 -0
- sage/schemes/curves/affine_curve.py +2928 -0
- sage/schemes/curves/all.py +33 -0
- sage/schemes/curves/closed_point.py +434 -0
- sage/schemes/curves/constructor.py +381 -0
- sage/schemes/curves/curve.py +542 -0
- sage/schemes/curves/plane_curve_arrangement.py +1283 -0
- sage/schemes/curves/point.py +463 -0
- sage/schemes/curves/projective_curve.py +3026 -0
- sage/schemes/curves/zariski_vankampen.py +1932 -0
- sage/schemes/cyclic_covers/all.py +2 -0
- sage/schemes/cyclic_covers/charpoly_frobenius.py +320 -0
- sage/schemes/cyclic_covers/constructor.py +137 -0
- sage/schemes/cyclic_covers/cycliccover_finite_field.py +1309 -0
- sage/schemes/cyclic_covers/cycliccover_generic.py +310 -0
- sage/schemes/elliptic_curves/BSD.py +1036 -0
- sage/schemes/elliptic_curves/Qcurves.py +592 -0
- sage/schemes/elliptic_curves/addition_formulas_ring.py +94 -0
- sage/schemes/elliptic_curves/all.py +49 -0
- sage/schemes/elliptic_curves/cardinality.py +609 -0
- sage/schemes/elliptic_curves/cm.py +1102 -0
- sage/schemes/elliptic_curves/constructor.py +1552 -0
- sage/schemes/elliptic_curves/ec_database.py +175 -0
- sage/schemes/elliptic_curves/ell_curve_isogeny.py +3972 -0
- sage/schemes/elliptic_curves/ell_egros.py +459 -0
- sage/schemes/elliptic_curves/ell_field.py +2836 -0
- sage/schemes/elliptic_curves/ell_finite_field.py +3359 -0
- sage/schemes/elliptic_curves/ell_generic.py +3760 -0
- sage/schemes/elliptic_curves/ell_local_data.py +1207 -0
- sage/schemes/elliptic_curves/ell_modular_symbols.py +775 -0
- sage/schemes/elliptic_curves/ell_number_field.py +4220 -0
- sage/schemes/elliptic_curves/ell_padic_field.py +107 -0
- sage/schemes/elliptic_curves/ell_point.py +4787 -0
- sage/schemes/elliptic_curves/ell_rational_field.py +7368 -0
- sage/schemes/elliptic_curves/ell_tate_curve.py +671 -0
- sage/schemes/elliptic_curves/ell_torsion.py +436 -0
- sage/schemes/elliptic_curves/ell_wp.py +352 -0
- sage/schemes/elliptic_curves/formal_group.py +760 -0
- sage/schemes/elliptic_curves/gal_reps.py +1459 -0
- sage/schemes/elliptic_curves/gal_reps_number_field.py +1669 -0
- sage/schemes/elliptic_curves/gp_simon.py +152 -0
- sage/schemes/elliptic_curves/heegner.py +7335 -0
- sage/schemes/elliptic_curves/height.py +2109 -0
- sage/schemes/elliptic_curves/hom.py +1406 -0
- sage/schemes/elliptic_curves/hom_composite.py +934 -0
- sage/schemes/elliptic_curves/hom_frobenius.py +522 -0
- sage/schemes/elliptic_curves/hom_scalar.py +531 -0
- sage/schemes/elliptic_curves/hom_sum.py +682 -0
- sage/schemes/elliptic_curves/hom_velusqrt.py +1290 -0
- sage/schemes/elliptic_curves/homset.py +271 -0
- sage/schemes/elliptic_curves/isogeny_class.py +1521 -0
- sage/schemes/elliptic_curves/isogeny_small_degree.py +2797 -0
- sage/schemes/elliptic_curves/jacobian.py +237 -0
- sage/schemes/elliptic_curves/kodaira_symbol.py +344 -0
- sage/schemes/elliptic_curves/kraus.py +1014 -0
- sage/schemes/elliptic_curves/lseries_ell.py +943 -0
- sage/schemes/elliptic_curves/mod5family.py +105 -0
- sage/schemes/elliptic_curves/mod_poly.py +197 -0
- sage/schemes/elliptic_curves/mod_sym_num.cpython-314-darwin.so +0 -0
- sage/schemes/elliptic_curves/mod_sym_num.pyx +3796 -0
- sage/schemes/elliptic_curves/modular_parametrization.py +305 -0
- sage/schemes/elliptic_curves/padic_lseries.py +1793 -0
- sage/schemes/elliptic_curves/padics.py +1816 -0
- sage/schemes/elliptic_curves/period_lattice.py +2234 -0
- sage/schemes/elliptic_curves/period_lattice_region.cpython-314-darwin.so +0 -0
- sage/schemes/elliptic_curves/period_lattice_region.pyx +722 -0
- sage/schemes/elliptic_curves/saturation.py +715 -0
- sage/schemes/elliptic_curves/sha_tate.py +1158 -0
- sage/schemes/elliptic_curves/weierstrass_morphism.py +1117 -0
- sage/schemes/elliptic_curves/weierstrass_transform.py +200 -0
- sage/schemes/hyperelliptic_curves/all.py +6 -0
- sage/schemes/hyperelliptic_curves/constructor.py +291 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_finite_field.py +1914 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_g2.py +192 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_generic.py +954 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_padic_field.py +1332 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_rational_field.py +84 -0
- sage/schemes/hyperelliptic_curves/invariants.py +410 -0
- sage/schemes/hyperelliptic_curves/jacobian_endomorphism_utils.py +315 -0
- sage/schemes/hyperelliptic_curves/jacobian_g2.py +32 -0
- sage/schemes/hyperelliptic_curves/jacobian_generic.py +419 -0
- sage/schemes/hyperelliptic_curves/jacobian_homset.py +186 -0
- sage/schemes/hyperelliptic_curves/jacobian_morphism.py +875 -0
- sage/schemes/hyperelliptic_curves/kummer_surface.py +99 -0
- sage/schemes/hyperelliptic_curves/mestre.py +302 -0
- sage/schemes/hyperelliptic_curves/monsky_washnitzer.py +3871 -0
- sage/schemes/jacobians/abstract_jacobian.py +277 -0
- sage/schemes/jacobians/all.py +2 -0
- sage/schemes/overview.py +161 -0
- sage/schemes/plane_conics/all.py +22 -0
- sage/schemes/plane_conics/con_field.py +1296 -0
- sage/schemes/plane_conics/con_finite_field.py +158 -0
- sage/schemes/plane_conics/con_number_field.py +456 -0
- sage/schemes/plane_conics/con_rational_field.py +406 -0
- sage/schemes/plane_conics/con_rational_function_field.py +580 -0
- sage/schemes/plane_conics/constructor.py +249 -0
- sage/schemes/plane_quartics/all.py +2 -0
- sage/schemes/plane_quartics/quartic_constructor.py +71 -0
- sage/schemes/plane_quartics/quartic_generic.py +73 -0
- sage/schemes/riemann_surfaces/all.py +1 -0
- sage/schemes/riemann_surfaces/riemann_surface.py +4117 -0
- sage_wheels/share/cremona/cremona_mini.db +0 -0
- sage_wheels/share/ellcurves/rank0 +30427 -0
- sage_wheels/share/ellcurves/rank1 +31871 -0
- sage_wheels/share/ellcurves/rank10 +6 -0
- sage_wheels/share/ellcurves/rank11 +6 -0
- sage_wheels/share/ellcurves/rank12 +1 -0
- sage_wheels/share/ellcurves/rank14 +1 -0
- sage_wheels/share/ellcurves/rank15 +1 -0
- sage_wheels/share/ellcurves/rank17 +1 -0
- sage_wheels/share/ellcurves/rank19 +1 -0
- sage_wheels/share/ellcurves/rank2 +2388 -0
- sage_wheels/share/ellcurves/rank20 +1 -0
- sage_wheels/share/ellcurves/rank21 +1 -0
- sage_wheels/share/ellcurves/rank22 +1 -0
- sage_wheels/share/ellcurves/rank23 +1 -0
- sage_wheels/share/ellcurves/rank24 +1 -0
- sage_wheels/share/ellcurves/rank28 +1 -0
- sage_wheels/share/ellcurves/rank3 +836 -0
- sage_wheels/share/ellcurves/rank4 +10 -0
- sage_wheels/share/ellcurves/rank5 +5 -0
- sage_wheels/share/ellcurves/rank6 +5 -0
- sage_wheels/share/ellcurves/rank7 +5 -0
- sage_wheels/share/ellcurves/rank8 +6 -0
- sage_wheels/share/ellcurves/rank9 +7 -0
|
@@ -0,0 +1,720 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-schemes
|
|
2
|
+
# sage.doctest: needs sage.libs.flint sage.libs.pari
|
|
3
|
+
r"""
|
|
4
|
+
Homology of modular abelian varieties
|
|
5
|
+
|
|
6
|
+
Sage can compute with homology groups associated to modular abelian
|
|
7
|
+
varieties with coefficients in any commutative ring. Supported
|
|
8
|
+
operations include computing matrices and characteristic
|
|
9
|
+
polynomials of Hecke operators, rank, and rational decomposition as
|
|
10
|
+
a direct sum of factors (obtained by cutting out kernels of Hecke
|
|
11
|
+
operators).
|
|
12
|
+
|
|
13
|
+
AUTHORS:
|
|
14
|
+
|
|
15
|
+
- William Stein (2007-03)
|
|
16
|
+
|
|
17
|
+
EXAMPLES::
|
|
18
|
+
|
|
19
|
+
sage: J = J0(43)
|
|
20
|
+
sage: H = J.integral_homology()
|
|
21
|
+
sage: H
|
|
22
|
+
Integral Homology of Abelian variety J0(43) of dimension 3
|
|
23
|
+
sage: H.hecke_matrix(19)
|
|
24
|
+
[ 0 0 -2 0 2 0]
|
|
25
|
+
[ 2 -4 -2 0 2 0]
|
|
26
|
+
[ 0 0 -2 -2 0 0]
|
|
27
|
+
[ 2 0 -2 -4 2 -2]
|
|
28
|
+
[ 0 2 0 -2 -2 0]
|
|
29
|
+
[ 0 2 0 -2 0 0]
|
|
30
|
+
sage: H.base_ring()
|
|
31
|
+
Integer Ring
|
|
32
|
+
sage: d = H.decomposition(); d
|
|
33
|
+
[Submodule of rank 2 of Integral Homology of Abelian variety J0(43) of dimension 3,
|
|
34
|
+
Submodule of rank 4 of Integral Homology of Abelian variety J0(43) of dimension 3]
|
|
35
|
+
sage: a = d[0]
|
|
36
|
+
sage: a.hecke_matrix(5)
|
|
37
|
+
[-4 0]
|
|
38
|
+
[ 0 -4]
|
|
39
|
+
sage: a.T(7)
|
|
40
|
+
Hecke operator T_7 on
|
|
41
|
+
Submodule of rank 2 of Integral Homology of Abelian variety J0(43) of dimension 3
|
|
42
|
+
"""
|
|
43
|
+
|
|
44
|
+
# ****************************************************************************
|
|
45
|
+
# Copyright (C) 2007 William Stein <wstein@gmail.com>
|
|
46
|
+
#
|
|
47
|
+
# This program is free software: you can redistribute it and/or modify
|
|
48
|
+
# it under the terms of the GNU General Public License as published by
|
|
49
|
+
# the Free Software Foundation, either version 2 of the License, or
|
|
50
|
+
# (at your option) any later version.
|
|
51
|
+
# https://www.gnu.org/licenses/
|
|
52
|
+
# ****************************************************************************
|
|
53
|
+
|
|
54
|
+
from sage.categories.commutative_rings import CommutativeRings
|
|
55
|
+
from sage.modular.hecke.module import HeckeModule_free_module
|
|
56
|
+
from sage.rings.integer import Integer
|
|
57
|
+
from sage.rings.integer_ring import ZZ
|
|
58
|
+
from sage.rings.rational_field import QQ
|
|
59
|
+
from sage.structure.richcmp import richcmp_method, richcmp, richcmp_not_equal
|
|
60
|
+
|
|
61
|
+
# TODO: we will probably also need homology that is *not* a Hecke module.
|
|
62
|
+
|
|
63
|
+
|
|
64
|
+
@richcmp_method
|
|
65
|
+
class Homology(HeckeModule_free_module):
|
|
66
|
+
"""
|
|
67
|
+
A homology group of an abelian variety, equipped with a Hecke
|
|
68
|
+
action.
|
|
69
|
+
"""
|
|
70
|
+
def hecke_polynomial(self, n, var='x'):
|
|
71
|
+
r"""
|
|
72
|
+
Return the `n`-th Hecke polynomial in the given variable.
|
|
73
|
+
|
|
74
|
+
INPUT:
|
|
75
|
+
|
|
76
|
+
- ``n`` -- positive integer
|
|
77
|
+
|
|
78
|
+
- ``var`` -- string (default: ``'x'``); the variable name
|
|
79
|
+
|
|
80
|
+
OUTPUT: a polynomial over `\ZZ` in the given variable
|
|
81
|
+
|
|
82
|
+
EXAMPLES::
|
|
83
|
+
|
|
84
|
+
sage: H = J0(43).integral_homology(); H
|
|
85
|
+
Integral Homology of Abelian variety J0(43) of dimension 3
|
|
86
|
+
sage: f = H.hecke_polynomial(3); f
|
|
87
|
+
x^6 + 4*x^5 - 16*x^3 - 12*x^2 + 16*x + 16
|
|
88
|
+
sage: parent(f)
|
|
89
|
+
Univariate Polynomial Ring in x over Integer Ring
|
|
90
|
+
sage: H.hecke_polynomial(3,'w')
|
|
91
|
+
w^6 + 4*w^5 - 16*w^3 - 12*w^2 + 16*w + 16
|
|
92
|
+
"""
|
|
93
|
+
return self.hecke_matrix(n).charpoly(var)
|
|
94
|
+
|
|
95
|
+
|
|
96
|
+
class Homology_abvar(Homology):
|
|
97
|
+
"""
|
|
98
|
+
The homology of a modular abelian variety.
|
|
99
|
+
"""
|
|
100
|
+
def __init__(self, abvar, base):
|
|
101
|
+
"""
|
|
102
|
+
This is an abstract base class, so it is called implicitly in the
|
|
103
|
+
following examples.
|
|
104
|
+
|
|
105
|
+
EXAMPLES::
|
|
106
|
+
|
|
107
|
+
sage: H = J0(43).integral_homology()
|
|
108
|
+
sage: type(H)
|
|
109
|
+
<class 'sage.modular.abvar.homology.IntegralHomology_with_category'>
|
|
110
|
+
|
|
111
|
+
TESTS::
|
|
112
|
+
|
|
113
|
+
sage: H = J0(43).integral_homology()
|
|
114
|
+
sage: loads(dumps(H)) == H
|
|
115
|
+
True
|
|
116
|
+
"""
|
|
117
|
+
if base not in CommutativeRings():
|
|
118
|
+
raise TypeError("base ring must be a commutative ring")
|
|
119
|
+
HeckeModule_free_module.__init__(
|
|
120
|
+
self, base, abvar.level(), weight=2)
|
|
121
|
+
self.__abvar = abvar
|
|
122
|
+
|
|
123
|
+
def __richcmp__(self, other, op):
|
|
124
|
+
r"""
|
|
125
|
+
Compare ``self`` to ``other``.
|
|
126
|
+
|
|
127
|
+
EXAMPLES::
|
|
128
|
+
|
|
129
|
+
sage: J0(37).integral_homology() == J0(41).integral_homology()
|
|
130
|
+
False
|
|
131
|
+
sage: J0(37).integral_homology() == J0(37).rational_homology()
|
|
132
|
+
False
|
|
133
|
+
sage: J0(37).integral_homology() == loads(dumps(J0(37).integral_homology()))
|
|
134
|
+
True
|
|
135
|
+
"""
|
|
136
|
+
if not isinstance(other, Homology_abvar):
|
|
137
|
+
return NotImplemented
|
|
138
|
+
else:
|
|
139
|
+
return richcmp((self.abelian_variety(), self.base_ring()),
|
|
140
|
+
(other.abelian_variety(), other.base_ring()), op)
|
|
141
|
+
|
|
142
|
+
def _repr_(self):
|
|
143
|
+
"""
|
|
144
|
+
Return string representation of ``self``. This must be defined in the
|
|
145
|
+
derived class.
|
|
146
|
+
|
|
147
|
+
EXAMPLES::
|
|
148
|
+
|
|
149
|
+
sage: H = J0(43).integral_homology()
|
|
150
|
+
sage: from sage.modular.abvar.homology import Homology_abvar
|
|
151
|
+
sage: Homology_abvar._repr_(H)
|
|
152
|
+
Traceback (most recent call last):
|
|
153
|
+
...
|
|
154
|
+
NotImplementedError: please override this in the derived class
|
|
155
|
+
"""
|
|
156
|
+
raise NotImplementedError("please override this in the derived class")
|
|
157
|
+
|
|
158
|
+
def gens(self):
|
|
159
|
+
"""
|
|
160
|
+
Return generators of ``self``.
|
|
161
|
+
|
|
162
|
+
This is not yet implemented!
|
|
163
|
+
|
|
164
|
+
EXAMPLES::
|
|
165
|
+
|
|
166
|
+
sage: H = J0(37).homology()
|
|
167
|
+
sage: H.gens() # this will change
|
|
168
|
+
Traceback (most recent call last):
|
|
169
|
+
...
|
|
170
|
+
NotImplementedError: homology classes not yet implemented
|
|
171
|
+
"""
|
|
172
|
+
raise NotImplementedError("homology classes not yet implemented")
|
|
173
|
+
|
|
174
|
+
def gen(self, n):
|
|
175
|
+
"""
|
|
176
|
+
Return `n`-th generator of ``self``.
|
|
177
|
+
|
|
178
|
+
This is not yet implemented!
|
|
179
|
+
|
|
180
|
+
EXAMPLES::
|
|
181
|
+
|
|
182
|
+
sage: H = J0(37).homology()
|
|
183
|
+
sage: H.gen(0) # this will change
|
|
184
|
+
Traceback (most recent call last):
|
|
185
|
+
...
|
|
186
|
+
NotImplementedError: homology classes not yet implemented
|
|
187
|
+
"""
|
|
188
|
+
raise NotImplementedError("homology classes not yet implemented")
|
|
189
|
+
|
|
190
|
+
def abelian_variety(self):
|
|
191
|
+
"""
|
|
192
|
+
Return the abelian variety that this is the homology of.
|
|
193
|
+
|
|
194
|
+
EXAMPLES::
|
|
195
|
+
|
|
196
|
+
sage: H = J0(48).homology()
|
|
197
|
+
sage: H.abelian_variety()
|
|
198
|
+
Abelian variety J0(48) of dimension 3
|
|
199
|
+
"""
|
|
200
|
+
return self.__abvar
|
|
201
|
+
|
|
202
|
+
def ambient_hecke_module(self):
|
|
203
|
+
"""
|
|
204
|
+
Return the ambient Hecke module that this homology is contained
|
|
205
|
+
in.
|
|
206
|
+
|
|
207
|
+
EXAMPLES::
|
|
208
|
+
|
|
209
|
+
sage: H = J0(48).homology(); H
|
|
210
|
+
Integral Homology of Abelian variety J0(48) of dimension 3
|
|
211
|
+
sage: H.ambient_hecke_module()
|
|
212
|
+
Integral Homology of Abelian variety J0(48) of dimension 3
|
|
213
|
+
"""
|
|
214
|
+
return self
|
|
215
|
+
|
|
216
|
+
def free_module(self):
|
|
217
|
+
"""
|
|
218
|
+
Return the underlying free module of this homology group.
|
|
219
|
+
|
|
220
|
+
EXAMPLES::
|
|
221
|
+
|
|
222
|
+
sage: H = J0(48).homology()
|
|
223
|
+
sage: H.free_module()
|
|
224
|
+
Ambient free module of rank 6 over the principal ideal domain Integer Ring
|
|
225
|
+
"""
|
|
226
|
+
try:
|
|
227
|
+
return self.__free_module
|
|
228
|
+
except AttributeError:
|
|
229
|
+
M = self.base_ring()**self.rank()
|
|
230
|
+
self.__free_module = M
|
|
231
|
+
return M
|
|
232
|
+
|
|
233
|
+
def hecke_bound(self):
|
|
234
|
+
r"""
|
|
235
|
+
Return bound on the number of Hecke operators needed to generate
|
|
236
|
+
the Hecke algebra as a `\ZZ`-module acting on this
|
|
237
|
+
space.
|
|
238
|
+
|
|
239
|
+
EXAMPLES::
|
|
240
|
+
|
|
241
|
+
sage: J0(48).homology().hecke_bound()
|
|
242
|
+
16
|
|
243
|
+
sage: J1(15).homology().hecke_bound()
|
|
244
|
+
32
|
|
245
|
+
"""
|
|
246
|
+
return self.__abvar.modular_symbols(sign=1).hecke_bound()
|
|
247
|
+
|
|
248
|
+
def hecke_matrix(self, n):
|
|
249
|
+
"""
|
|
250
|
+
Return the matrix of the `n`-th Hecke operator acting on this
|
|
251
|
+
homology group.
|
|
252
|
+
|
|
253
|
+
INPUT:
|
|
254
|
+
|
|
255
|
+
- ``n`` -- positive integer
|
|
256
|
+
|
|
257
|
+
OUTPUT: a matrix over the coefficient ring of this homology group
|
|
258
|
+
|
|
259
|
+
EXAMPLES::
|
|
260
|
+
|
|
261
|
+
sage: H = J0(23).integral_homology()
|
|
262
|
+
sage: H.hecke_matrix(3)
|
|
263
|
+
[-1 -2 2 0]
|
|
264
|
+
[ 0 -3 2 -2]
|
|
265
|
+
[ 2 -4 3 -2]
|
|
266
|
+
[ 2 -2 0 1]
|
|
267
|
+
|
|
268
|
+
The matrix is over the coefficient ring::
|
|
269
|
+
|
|
270
|
+
sage: J = J0(23)
|
|
271
|
+
sage: J.homology(QQ[I]).hecke_matrix(3).parent()
|
|
272
|
+
Full MatrixSpace of 4 by 4 dense matrices over
|
|
273
|
+
Number Field in I with defining polynomial x^2 + 1 with I = 1*I
|
|
274
|
+
"""
|
|
275
|
+
raise NotImplementedError
|
|
276
|
+
|
|
277
|
+
def rank(self):
|
|
278
|
+
"""
|
|
279
|
+
Return the rank as a module or vector space of this homology
|
|
280
|
+
group.
|
|
281
|
+
|
|
282
|
+
EXAMPLES::
|
|
283
|
+
|
|
284
|
+
sage: H = J0(5077).homology(); H
|
|
285
|
+
Integral Homology of Abelian variety J0(5077) of dimension 422
|
|
286
|
+
sage: H.rank()
|
|
287
|
+
844
|
|
288
|
+
"""
|
|
289
|
+
return self.__abvar.dimension() * 2
|
|
290
|
+
|
|
291
|
+
def submodule(self, U, check=True):
|
|
292
|
+
r"""
|
|
293
|
+
Return the submodule of this homology group given by `U`,
|
|
294
|
+
which should be a submodule of the free module associated to this
|
|
295
|
+
homology group.
|
|
296
|
+
|
|
297
|
+
INPUT:
|
|
298
|
+
|
|
299
|
+
- ``U`` -- submodule of ambient free module (or
|
|
300
|
+
something that defines one)
|
|
301
|
+
|
|
302
|
+
- ``check`` -- currently ignored
|
|
303
|
+
|
|
304
|
+
|
|
305
|
+
.. NOTE::
|
|
306
|
+
|
|
307
|
+
We do *not* check that U is invariant under all Hecke
|
|
308
|
+
operators.
|
|
309
|
+
|
|
310
|
+
EXAMPLES::
|
|
311
|
+
|
|
312
|
+
sage: H = J0(23).homology(); H
|
|
313
|
+
Integral Homology of Abelian variety J0(23) of dimension 2
|
|
314
|
+
sage: F = H.free_module()
|
|
315
|
+
sage: U = F.span([[1,2,3,4]])
|
|
316
|
+
sage: M = H.submodule(U); M
|
|
317
|
+
Submodule of rank 1 of Integral Homology of Abelian variety J0(23) of dimension 2
|
|
318
|
+
|
|
319
|
+
Note that the submodule command doesn't actually check that the
|
|
320
|
+
object defined is a homology group or is invariant under the Hecke
|
|
321
|
+
operators. For example, the fairly random `M` that we just
|
|
322
|
+
defined is not invariant under the Hecke operators, so it is not a
|
|
323
|
+
Hecke submodule - it is only a `\ZZ`-submodule.
|
|
324
|
+
|
|
325
|
+
::
|
|
326
|
+
|
|
327
|
+
sage: M.hecke_matrix(3)
|
|
328
|
+
Traceback (most recent call last):
|
|
329
|
+
...
|
|
330
|
+
ArithmeticError: subspace is not invariant under matrix
|
|
331
|
+
"""
|
|
332
|
+
return Homology_submodule(self, U)
|
|
333
|
+
|
|
334
|
+
|
|
335
|
+
class IntegralHomology(Homology_abvar):
|
|
336
|
+
r"""
|
|
337
|
+
The integral homology `H_1(A,\ZZ)` of a modular
|
|
338
|
+
abelian variety.
|
|
339
|
+
"""
|
|
340
|
+
def __init__(self, abvar):
|
|
341
|
+
"""
|
|
342
|
+
Create the integral homology of a modular abelian variety.
|
|
343
|
+
|
|
344
|
+
INPUT:
|
|
345
|
+
|
|
346
|
+
- ``abvar`` -- a modular abelian variety
|
|
347
|
+
|
|
348
|
+
EXAMPLES::
|
|
349
|
+
|
|
350
|
+
sage: H = J0(23).integral_homology(); H
|
|
351
|
+
Integral Homology of Abelian variety J0(23) of dimension 2
|
|
352
|
+
sage: type(H)
|
|
353
|
+
<class 'sage.modular.abvar.homology.IntegralHomology_with_category'>
|
|
354
|
+
|
|
355
|
+
TESTS::
|
|
356
|
+
|
|
357
|
+
sage: loads(dumps(H)) == H
|
|
358
|
+
True
|
|
359
|
+
"""
|
|
360
|
+
Homology_abvar.__init__(self, abvar, ZZ)
|
|
361
|
+
|
|
362
|
+
def _repr_(self):
|
|
363
|
+
"""
|
|
364
|
+
String representation of the integral homology.
|
|
365
|
+
|
|
366
|
+
EXAMPLES::
|
|
367
|
+
|
|
368
|
+
sage: J0(23).integral_homology()._repr_()
|
|
369
|
+
'Integral Homology of Abelian variety J0(23) of dimension 2'
|
|
370
|
+
"""
|
|
371
|
+
return "Integral Homology of %s" % self.abelian_variety()
|
|
372
|
+
|
|
373
|
+
def hecke_matrix(self, n):
|
|
374
|
+
"""
|
|
375
|
+
Return the matrix of the `n`-th Hecke operator acting on this
|
|
376
|
+
homology group.
|
|
377
|
+
|
|
378
|
+
EXAMPLES::
|
|
379
|
+
|
|
380
|
+
sage: J0(48).integral_homology().hecke_bound()
|
|
381
|
+
16
|
|
382
|
+
sage: t = J1(13).integral_homology().hecke_matrix(3); t
|
|
383
|
+
[-2 2 2 -2]
|
|
384
|
+
[-2 0 2 0]
|
|
385
|
+
[ 0 0 0 -2]
|
|
386
|
+
[ 0 0 2 -2]
|
|
387
|
+
sage: t.base_ring()
|
|
388
|
+
Integer Ring
|
|
389
|
+
"""
|
|
390
|
+
n = Integer(n)
|
|
391
|
+
return self.abelian_variety()._integral_hecke_matrix(n)
|
|
392
|
+
|
|
393
|
+
def hecke_polynomial(self, n, var='x'):
|
|
394
|
+
"""
|
|
395
|
+
Return the `n`-th Hecke polynomial on this integral homology group.
|
|
396
|
+
|
|
397
|
+
EXAMPLES::
|
|
398
|
+
|
|
399
|
+
sage: f = J0(43).integral_homology().hecke_polynomial(2)
|
|
400
|
+
sage: f.base_ring()
|
|
401
|
+
Integer Ring
|
|
402
|
+
sage: factor(f)
|
|
403
|
+
(x + 2)^2 * (x^2 - 2)^2
|
|
404
|
+
"""
|
|
405
|
+
n = Integer(n)
|
|
406
|
+
M = self.abelian_variety().modular_symbols(sign=1)
|
|
407
|
+
return (M.hecke_polynomial(n, var)**2).change_ring(ZZ)
|
|
408
|
+
|
|
409
|
+
|
|
410
|
+
class RationalHomology(Homology_abvar):
|
|
411
|
+
r"""
|
|
412
|
+
The rational homology `H_1(A,\QQ)` of a modular
|
|
413
|
+
abelian variety.
|
|
414
|
+
"""
|
|
415
|
+
def __init__(self, abvar):
|
|
416
|
+
"""
|
|
417
|
+
Create the rational homology of a modular abelian variety.
|
|
418
|
+
|
|
419
|
+
INPUT:
|
|
420
|
+
|
|
421
|
+
- ``abvar`` -- a modular abelian variety
|
|
422
|
+
|
|
423
|
+
EXAMPLES::
|
|
424
|
+
|
|
425
|
+
sage: H = J0(23).rational_homology(); H
|
|
426
|
+
Rational Homology of Abelian variety J0(23) of dimension 2
|
|
427
|
+
|
|
428
|
+
TESTS::
|
|
429
|
+
|
|
430
|
+
sage: loads(dumps(H)) == H
|
|
431
|
+
True
|
|
432
|
+
"""
|
|
433
|
+
Homology_abvar.__init__(self, abvar, QQ)
|
|
434
|
+
|
|
435
|
+
def _repr_(self):
|
|
436
|
+
"""
|
|
437
|
+
Return string representation of the rational homology.
|
|
438
|
+
|
|
439
|
+
EXAMPLES::
|
|
440
|
+
|
|
441
|
+
sage: J0(23).rational_homology()._repr_()
|
|
442
|
+
'Rational Homology of Abelian variety J0(23) of dimension 2'
|
|
443
|
+
"""
|
|
444
|
+
return "Rational Homology of %s" % self.abelian_variety()
|
|
445
|
+
|
|
446
|
+
def hecke_matrix(self, n):
|
|
447
|
+
"""
|
|
448
|
+
Return the matrix of the `n`-th Hecke operator acting on this
|
|
449
|
+
homology group.
|
|
450
|
+
|
|
451
|
+
EXAMPLES::
|
|
452
|
+
|
|
453
|
+
sage: t = J1(13).homology(QQ).hecke_matrix(3); t
|
|
454
|
+
[-2 2 2 -2]
|
|
455
|
+
[-2 0 2 0]
|
|
456
|
+
[ 0 0 0 -2]
|
|
457
|
+
[ 0 0 2 -2]
|
|
458
|
+
sage: t.base_ring()
|
|
459
|
+
Rational Field
|
|
460
|
+
sage: t = J1(13).homology(GF(3)).hecke_matrix(3); t
|
|
461
|
+
[1 2 2 1]
|
|
462
|
+
[1 0 2 0]
|
|
463
|
+
[0 0 0 1]
|
|
464
|
+
[0 0 2 1]
|
|
465
|
+
sage: t.base_ring()
|
|
466
|
+
Finite Field of size 3
|
|
467
|
+
"""
|
|
468
|
+
n = Integer(n)
|
|
469
|
+
return self.abelian_variety()._rational_hecke_matrix(n)
|
|
470
|
+
|
|
471
|
+
def hecke_polynomial(self, n, var='x'):
|
|
472
|
+
"""
|
|
473
|
+
Return the `n`-th Hecke polynomial on this rational homology group.
|
|
474
|
+
|
|
475
|
+
EXAMPLES::
|
|
476
|
+
|
|
477
|
+
sage: f = J0(43).rational_homology().hecke_polynomial(2)
|
|
478
|
+
sage: f.base_ring()
|
|
479
|
+
Rational Field
|
|
480
|
+
sage: factor(f)
|
|
481
|
+
(x + 2) * (x^2 - 2)
|
|
482
|
+
"""
|
|
483
|
+
f = self.hecke_operator(n).matrix().characteristic_polynomial(var)
|
|
484
|
+
_, poly = f.is_square(True)
|
|
485
|
+
return poly
|
|
486
|
+
|
|
487
|
+
|
|
488
|
+
class Homology_over_base(Homology_abvar):
|
|
489
|
+
r"""
|
|
490
|
+
The homology over a modular abelian variety over an arbitrary base
|
|
491
|
+
commutative ring (not `\ZZ` or `\QQ`).
|
|
492
|
+
"""
|
|
493
|
+
def __init__(self, abvar, base_ring):
|
|
494
|
+
r"""
|
|
495
|
+
Called when creating homology with coefficients not
|
|
496
|
+
`\ZZ` or `\QQ`.
|
|
497
|
+
|
|
498
|
+
INPUT:
|
|
499
|
+
|
|
500
|
+
- ``abvar`` -- a modular abelian variety
|
|
501
|
+
|
|
502
|
+
- ``base_ring`` -- a commutative ring
|
|
503
|
+
|
|
504
|
+
EXAMPLES::
|
|
505
|
+
|
|
506
|
+
sage: H = J0(23).homology(GF(5)); H
|
|
507
|
+
Homology with coefficients in Finite Field of size 5 of Abelian variety J0(23) of dimension 2
|
|
508
|
+
sage: type(H)
|
|
509
|
+
<class 'sage.modular.abvar.homology.Homology_over_base_with_category'>
|
|
510
|
+
|
|
511
|
+
TESTS::
|
|
512
|
+
|
|
513
|
+
sage: loads(dumps(H)) == H
|
|
514
|
+
True
|
|
515
|
+
"""
|
|
516
|
+
Homology_abvar.__init__(self, abvar, base_ring)
|
|
517
|
+
|
|
518
|
+
def _repr_(self):
|
|
519
|
+
"""
|
|
520
|
+
Return string representation of ``self``.
|
|
521
|
+
|
|
522
|
+
EXAMPLES::
|
|
523
|
+
|
|
524
|
+
sage: H = J0(23).homology(GF(5))
|
|
525
|
+
sage: H._repr_()
|
|
526
|
+
'Homology with coefficients in Finite Field of size 5 of Abelian variety J0(23) of dimension 2'
|
|
527
|
+
"""
|
|
528
|
+
return "Homology with coefficients in %s of %s" % (self.base_ring(), self.abelian_variety())
|
|
529
|
+
|
|
530
|
+
def hecke_matrix(self, n):
|
|
531
|
+
"""
|
|
532
|
+
Return the matrix of the `n`-th Hecke operator acting on this
|
|
533
|
+
homology group.
|
|
534
|
+
|
|
535
|
+
EXAMPLES::
|
|
536
|
+
|
|
537
|
+
sage: t = J1(13).homology(GF(3)).hecke_matrix(3); t
|
|
538
|
+
[1 2 2 1]
|
|
539
|
+
[1 0 2 0]
|
|
540
|
+
[0 0 0 1]
|
|
541
|
+
[0 0 2 1]
|
|
542
|
+
sage: t.base_ring()
|
|
543
|
+
Finite Field of size 3
|
|
544
|
+
"""
|
|
545
|
+
n = Integer(n)
|
|
546
|
+
return self.abelian_variety()._integral_hecke_matrix(n).change_ring(self.base_ring())
|
|
547
|
+
|
|
548
|
+
|
|
549
|
+
class Homology_submodule(Homology):
|
|
550
|
+
"""
|
|
551
|
+
A submodule of the homology of a modular abelian variety.
|
|
552
|
+
"""
|
|
553
|
+
def __init__(self, ambient, submodule):
|
|
554
|
+
"""
|
|
555
|
+
Create a submodule of the homology of a modular abelian variety.
|
|
556
|
+
|
|
557
|
+
INPUT:
|
|
558
|
+
|
|
559
|
+
- ``ambient`` -- the homology of some modular abelian
|
|
560
|
+
variety with ring coefficients
|
|
561
|
+
|
|
562
|
+
- ``submodule`` -- a submodule of the free module
|
|
563
|
+
underlying ambient
|
|
564
|
+
|
|
565
|
+
EXAMPLES::
|
|
566
|
+
|
|
567
|
+
sage: H = J0(37).homology()
|
|
568
|
+
sage: H.submodule([[1,0,0,0]])
|
|
569
|
+
Submodule of rank 1 of Integral Homology of Abelian variety J0(37) of dimension 2
|
|
570
|
+
|
|
571
|
+
TESTS::
|
|
572
|
+
|
|
573
|
+
sage: loads(dumps(H)) == H
|
|
574
|
+
True
|
|
575
|
+
"""
|
|
576
|
+
if not isinstance(ambient, Homology_abvar):
|
|
577
|
+
raise TypeError("ambient must be the homology of a modular abelian variety")
|
|
578
|
+
self.__ambient = ambient
|
|
579
|
+
submodule = ambient.free_module().submodule(submodule)
|
|
580
|
+
self.__submodule = submodule
|
|
581
|
+
HeckeModule_free_module.__init__(
|
|
582
|
+
self, ambient.base_ring(), ambient.level(), weight=2)
|
|
583
|
+
|
|
584
|
+
def _repr_(self):
|
|
585
|
+
"""
|
|
586
|
+
String representation of this submodule of homology.
|
|
587
|
+
|
|
588
|
+
EXAMPLES::
|
|
589
|
+
|
|
590
|
+
sage: H = J0(37).homology()
|
|
591
|
+
sage: G = H.submodule([[1, 2, 3, 4]])
|
|
592
|
+
sage: G._repr_()
|
|
593
|
+
'Submodule of rank 1 of Integral Homology of Abelian variety J0(37) of dimension 2'
|
|
594
|
+
"""
|
|
595
|
+
return "Submodule of rank %s of %s" % (self.rank(), self.__ambient)
|
|
596
|
+
|
|
597
|
+
def __richcmp__(self, other, op):
|
|
598
|
+
r"""
|
|
599
|
+
Compare ``self`` to ``other``.
|
|
600
|
+
|
|
601
|
+
EXAMPLES::
|
|
602
|
+
|
|
603
|
+
sage: J0(37).homology().decomposition() # indirect doctest
|
|
604
|
+
[Submodule of rank 2 of Integral Homology of Abelian variety J0(37) of dimension 2,
|
|
605
|
+
Submodule of rank 2 of Integral Homology of Abelian variety J0(37) of dimension 2]
|
|
606
|
+
"""
|
|
607
|
+
if not isinstance(other, Homology_submodule):
|
|
608
|
+
return NotImplemented
|
|
609
|
+
lx = self.__ambient
|
|
610
|
+
rx = other.__ambient
|
|
611
|
+
if lx != rx:
|
|
612
|
+
return richcmp_not_equal(lx, rx, op)
|
|
613
|
+
return richcmp(self.__submodule, other.__submodule, op)
|
|
614
|
+
|
|
615
|
+
def ambient_hecke_module(self):
|
|
616
|
+
"""
|
|
617
|
+
Return the ambient Hecke module that this homology is contained
|
|
618
|
+
in.
|
|
619
|
+
|
|
620
|
+
EXAMPLES::
|
|
621
|
+
|
|
622
|
+
sage: H = J0(48).homology(); H
|
|
623
|
+
Integral Homology of Abelian variety J0(48) of dimension 3
|
|
624
|
+
sage: d = H.decomposition(); d
|
|
625
|
+
[Submodule of rank 2 of Integral Homology of Abelian variety J0(48) of dimension 3,
|
|
626
|
+
Submodule of rank 4 of Integral Homology of Abelian variety J0(48) of dimension 3]
|
|
627
|
+
sage: d[0].ambient_hecke_module()
|
|
628
|
+
Integral Homology of Abelian variety J0(48) of dimension 3
|
|
629
|
+
"""
|
|
630
|
+
return self.__ambient
|
|
631
|
+
|
|
632
|
+
def free_module(self):
|
|
633
|
+
"""
|
|
634
|
+
Return the underlying free module of the homology group.
|
|
635
|
+
|
|
636
|
+
EXAMPLES::
|
|
637
|
+
|
|
638
|
+
sage: H = J0(48).homology()
|
|
639
|
+
sage: K = H.decomposition()[1]; K
|
|
640
|
+
Submodule of rank 4 of Integral Homology of Abelian variety J0(48) of dimension 3
|
|
641
|
+
sage: K.free_module()
|
|
642
|
+
Free module of degree 6 and rank 4 over Integer Ring
|
|
643
|
+
Echelon basis matrix:
|
|
644
|
+
[ 1 0 0 0 0 0]
|
|
645
|
+
[ 0 1 0 0 1 -1]
|
|
646
|
+
[ 0 0 1 0 -1 1]
|
|
647
|
+
[ 0 0 0 1 0 -1]
|
|
648
|
+
"""
|
|
649
|
+
return self.__submodule
|
|
650
|
+
|
|
651
|
+
def hecke_bound(self):
|
|
652
|
+
"""
|
|
653
|
+
Return a bound on the number of Hecke operators needed to generate
|
|
654
|
+
the Hecke algebra acting on this homology group.
|
|
655
|
+
|
|
656
|
+
EXAMPLES::
|
|
657
|
+
|
|
658
|
+
sage: d = J0(43).homology().decomposition(2); d
|
|
659
|
+
[Submodule of rank 2 of Integral Homology of Abelian variety J0(43) of dimension 3,
|
|
660
|
+
Submodule of rank 4 of Integral Homology of Abelian variety J0(43) of dimension 3]
|
|
661
|
+
|
|
662
|
+
Because the first factor has dimension 2 it corresponds to an
|
|
663
|
+
elliptic curve, so we have a Hecke bound of 1.
|
|
664
|
+
|
|
665
|
+
::
|
|
666
|
+
|
|
667
|
+
sage: d[0].hecke_bound()
|
|
668
|
+
1
|
|
669
|
+
sage: d[1].hecke_bound()
|
|
670
|
+
8
|
|
671
|
+
"""
|
|
672
|
+
if self.rank() <= 2:
|
|
673
|
+
return ZZ(1)
|
|
674
|
+
else:
|
|
675
|
+
return self.__ambient.hecke_bound()
|
|
676
|
+
|
|
677
|
+
def hecke_matrix(self, n):
|
|
678
|
+
"""
|
|
679
|
+
Return the matrix of the `n`-th Hecke operator acting on this
|
|
680
|
+
homology group.
|
|
681
|
+
|
|
682
|
+
EXAMPLES::
|
|
683
|
+
|
|
684
|
+
sage: d = J0(125).homology(GF(17)).decomposition(2); d
|
|
685
|
+
[Submodule of rank 4 of Homology with coefficients in Finite Field of size 17 of Abelian variety J0(125) of dimension 8,
|
|
686
|
+
Submodule of rank 4 of Homology with coefficients in Finite Field of size 17 of Abelian variety J0(125) of dimension 8,
|
|
687
|
+
Submodule of rank 8 of Homology with coefficients in Finite Field of size 17 of Abelian variety J0(125) of dimension 8]
|
|
688
|
+
sage: t = d[0].hecke_matrix(17); t
|
|
689
|
+
[16 15 15 0]
|
|
690
|
+
[ 0 5 0 2]
|
|
691
|
+
[ 2 0 5 15]
|
|
692
|
+
[ 0 15 0 16]
|
|
693
|
+
sage: t.base_ring()
|
|
694
|
+
Finite Field of size 17
|
|
695
|
+
sage: t.fcp()
|
|
696
|
+
(x^2 + 13*x + 16)^2
|
|
697
|
+
"""
|
|
698
|
+
n = Integer(n)
|
|
699
|
+
try:
|
|
700
|
+
return self.__hecke_matrix[n]
|
|
701
|
+
except AttributeError:
|
|
702
|
+
self.__hecke_matrix = {}
|
|
703
|
+
except KeyError:
|
|
704
|
+
pass
|
|
705
|
+
t = self.__ambient.hecke_matrix(n)
|
|
706
|
+
s = t.restrict(self.__submodule)
|
|
707
|
+
self.__hecke_matrix[n] = s
|
|
708
|
+
return s
|
|
709
|
+
|
|
710
|
+
def rank(self):
|
|
711
|
+
"""
|
|
712
|
+
Return the rank of this homology group.
|
|
713
|
+
|
|
714
|
+
EXAMPLES::
|
|
715
|
+
|
|
716
|
+
sage: d = J0(43).homology().decomposition(2)
|
|
717
|
+
sage: [H.rank() for H in d]
|
|
718
|
+
[2, 4]
|
|
719
|
+
"""
|
|
720
|
+
return self.__submodule.rank()
|