passagemath-schemes 10.6.40__cp314-cp314-macosx_13_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-schemes might be problematic. Click here for more details.
- passagemath_schemes/.dylibs/libflint.22.0.dylib +0 -0
- passagemath_schemes/.dylibs/libgmp.10.dylib +0 -0
- passagemath_schemes/.dylibs/libgmpxx.4.dylib +0 -0
- passagemath_schemes/.dylibs/libmpfr.6.dylib +0 -0
- passagemath_schemes/__init__.py +3 -0
- passagemath_schemes-10.6.40.dist-info/METADATA +204 -0
- passagemath_schemes-10.6.40.dist-info/METADATA.bak +205 -0
- passagemath_schemes-10.6.40.dist-info/RECORD +314 -0
- passagemath_schemes-10.6.40.dist-info/WHEEL +6 -0
- passagemath_schemes-10.6.40.dist-info/top_level.txt +3 -0
- sage/all__sagemath_schemes.py +23 -0
- sage/databases/all__sagemath_schemes.py +7 -0
- sage/databases/cremona.py +1723 -0
- sage/dynamics/all__sagemath_schemes.py +2 -0
- sage/dynamics/arithmetic_dynamics/affine_ds.py +1083 -0
- sage/dynamics/arithmetic_dynamics/all.py +14 -0
- sage/dynamics/arithmetic_dynamics/berkovich_ds.py +1101 -0
- sage/dynamics/arithmetic_dynamics/dynamical_semigroup.py +1543 -0
- sage/dynamics/arithmetic_dynamics/endPN_automorphism_group.py +2426 -0
- sage/dynamics/arithmetic_dynamics/endPN_minimal_model.py +1169 -0
- sage/dynamics/arithmetic_dynamics/generic_ds.py +663 -0
- sage/dynamics/arithmetic_dynamics/product_projective_ds.py +339 -0
- sage/dynamics/arithmetic_dynamics/projective_ds.py +9558 -0
- sage/dynamics/arithmetic_dynamics/projective_ds_helper.cpython-314-darwin.so +0 -0
- sage/dynamics/arithmetic_dynamics/projective_ds_helper.pyx +301 -0
- sage/dynamics/arithmetic_dynamics/wehlerK3.py +2576 -0
- sage/lfunctions/all.py +18 -0
- sage/lfunctions/dokchitser.py +745 -0
- sage/lfunctions/pari.py +818 -0
- sage/lfunctions/zero_sums.cpython-314-darwin.so +0 -0
- sage/lfunctions/zero_sums.pyx +1847 -0
- sage/modular/abvar/abvar.py +5135 -0
- sage/modular/abvar/abvar_ambient_jacobian.py +413 -0
- sage/modular/abvar/abvar_newform.py +244 -0
- sage/modular/abvar/all.py +8 -0
- sage/modular/abvar/constructor.py +186 -0
- sage/modular/abvar/cuspidal_subgroup.py +371 -0
- sage/modular/abvar/finite_subgroup.py +896 -0
- sage/modular/abvar/homology.py +720 -0
- sage/modular/abvar/homspace.py +998 -0
- sage/modular/abvar/lseries.py +415 -0
- sage/modular/abvar/morphism.py +935 -0
- sage/modular/abvar/torsion_point.py +274 -0
- sage/modular/abvar/torsion_subgroup.py +740 -0
- sage/modular/all.py +43 -0
- sage/modular/arithgroup/all.py +20 -0
- sage/modular/arithgroup/arithgroup_element.cpython-314-darwin.so +0 -0
- sage/modular/arithgroup/arithgroup_element.pyx +474 -0
- sage/modular/arithgroup/arithgroup_generic.py +1402 -0
- sage/modular/arithgroup/arithgroup_perm.py +2692 -0
- sage/modular/arithgroup/congroup.cpython-314-darwin.so +0 -0
- sage/modular/arithgroup/congroup.pyx +334 -0
- sage/modular/arithgroup/congroup_gamma.py +363 -0
- sage/modular/arithgroup/congroup_gamma0.py +692 -0
- sage/modular/arithgroup/congroup_gamma1.py +653 -0
- sage/modular/arithgroup/congroup_gammaH.py +1469 -0
- sage/modular/arithgroup/congroup_generic.py +628 -0
- sage/modular/arithgroup/congroup_sl2z.py +267 -0
- sage/modular/arithgroup/farey_symbol.cpython-314-darwin.so +0 -0
- sage/modular/arithgroup/farey_symbol.pyx +1066 -0
- sage/modular/arithgroup/tests.py +418 -0
- sage/modular/btquotients/all.py +4 -0
- sage/modular/btquotients/btquotient.py +3753 -0
- sage/modular/btquotients/pautomorphicform.py +2570 -0
- sage/modular/buzzard.py +100 -0
- sage/modular/congroup.py +29 -0
- sage/modular/congroup_element.py +13 -0
- sage/modular/cusps.py +1109 -0
- sage/modular/cusps_nf.py +1270 -0
- sage/modular/dims.py +569 -0
- sage/modular/dirichlet.py +3310 -0
- sage/modular/drinfeld_modform/all.py +2 -0
- sage/modular/drinfeld_modform/element.py +446 -0
- sage/modular/drinfeld_modform/ring.py +773 -0
- sage/modular/drinfeld_modform/tutorial.py +236 -0
- sage/modular/etaproducts.py +1065 -0
- sage/modular/hecke/algebra.py +746 -0
- sage/modular/hecke/all.py +20 -0
- sage/modular/hecke/ambient_module.py +1019 -0
- sage/modular/hecke/degenmap.py +119 -0
- sage/modular/hecke/element.py +325 -0
- sage/modular/hecke/hecke_operator.py +780 -0
- sage/modular/hecke/homspace.py +206 -0
- sage/modular/hecke/module.py +1767 -0
- sage/modular/hecke/morphism.py +174 -0
- sage/modular/hecke/submodule.py +989 -0
- sage/modular/hypergeometric_misc.cpython-314-darwin.so +0 -0
- sage/modular/hypergeometric_misc.pxd +4 -0
- sage/modular/hypergeometric_misc.pyx +166 -0
- sage/modular/hypergeometric_motive.py +2017 -0
- sage/modular/local_comp/all.py +2 -0
- sage/modular/local_comp/liftings.py +292 -0
- sage/modular/local_comp/local_comp.py +1071 -0
- sage/modular/local_comp/smoothchar.py +1825 -0
- sage/modular/local_comp/type_space.py +748 -0
- sage/modular/modform/all.py +30 -0
- sage/modular/modform/ambient.py +815 -0
- sage/modular/modform/ambient_R.py +177 -0
- sage/modular/modform/ambient_eps.py +306 -0
- sage/modular/modform/ambient_g0.py +124 -0
- sage/modular/modform/ambient_g1.py +204 -0
- sage/modular/modform/constructor.py +545 -0
- sage/modular/modform/cuspidal_submodule.py +708 -0
- sage/modular/modform/defaults.py +14 -0
- sage/modular/modform/eis_series.py +505 -0
- sage/modular/modform/eisenstein_submodule.py +663 -0
- sage/modular/modform/element.py +4131 -0
- sage/modular/modform/find_generators.py +59 -0
- sage/modular/modform/half_integral.py +154 -0
- sage/modular/modform/hecke_operator_on_qexp.py +247 -0
- sage/modular/modform/j_invariant.py +47 -0
- sage/modular/modform/l_series_gross_zagier.py +133 -0
- sage/modular/modform/l_series_gross_zagier_coeffs.cpython-314-darwin.so +0 -0
- sage/modular/modform/l_series_gross_zagier_coeffs.pyx +177 -0
- sage/modular/modform/notes.py +45 -0
- sage/modular/modform/numerical.py +514 -0
- sage/modular/modform/periods.py +14 -0
- sage/modular/modform/ring.py +1257 -0
- sage/modular/modform/space.py +1860 -0
- sage/modular/modform/submodule.py +118 -0
- sage/modular/modform/tests.py +64 -0
- sage/modular/modform/theta.py +110 -0
- sage/modular/modform/vm_basis.py +381 -0
- sage/modular/modform/weight1.py +220 -0
- sage/modular/modform_hecketriangle/abstract_ring.py +1932 -0
- sage/modular/modform_hecketriangle/abstract_space.py +2528 -0
- sage/modular/modform_hecketriangle/all.py +30 -0
- sage/modular/modform_hecketriangle/analytic_type.py +590 -0
- sage/modular/modform_hecketriangle/constructor.py +416 -0
- sage/modular/modform_hecketriangle/element.py +351 -0
- sage/modular/modform_hecketriangle/functors.py +752 -0
- sage/modular/modform_hecketriangle/graded_ring.py +541 -0
- sage/modular/modform_hecketriangle/graded_ring_element.py +2225 -0
- sage/modular/modform_hecketriangle/hecke_triangle_group_element.py +3352 -0
- sage/modular/modform_hecketriangle/hecke_triangle_groups.py +1432 -0
- sage/modular/modform_hecketriangle/readme.py +1214 -0
- sage/modular/modform_hecketriangle/series_constructor.py +580 -0
- sage/modular/modform_hecketriangle/space.py +1037 -0
- sage/modular/modform_hecketriangle/subspace.py +423 -0
- sage/modular/modsym/all.py +17 -0
- sage/modular/modsym/ambient.py +3846 -0
- sage/modular/modsym/boundary.py +1420 -0
- sage/modular/modsym/element.py +336 -0
- sage/modular/modsym/g1list.py +178 -0
- sage/modular/modsym/ghlist.py +182 -0
- sage/modular/modsym/hecke_operator.py +73 -0
- sage/modular/modsym/manin_symbol.cpython-314-darwin.so +0 -0
- sage/modular/modsym/manin_symbol.pxd +5 -0
- sage/modular/modsym/manin_symbol.pyx +497 -0
- sage/modular/modsym/manin_symbol_list.py +1295 -0
- sage/modular/modsym/modsym.py +400 -0
- sage/modular/modsym/modular_symbols.py +384 -0
- sage/modular/modsym/p1list.cpython-314-darwin.so +0 -0
- sage/modular/modsym/p1list.pxd +29 -0
- sage/modular/modsym/p1list.pyx +1372 -0
- sage/modular/modsym/p1list_nf.py +1241 -0
- sage/modular/modsym/relation_matrix.py +591 -0
- sage/modular/modsym/relation_matrix_pyx.cpython-314-darwin.so +0 -0
- sage/modular/modsym/relation_matrix_pyx.pyx +108 -0
- sage/modular/modsym/space.py +2468 -0
- sage/modular/modsym/subspace.py +455 -0
- sage/modular/modsym/tests.py +375 -0
- sage/modular/multiple_zeta.py +2632 -0
- sage/modular/multiple_zeta_F_algebra.py +786 -0
- sage/modular/overconvergent/all.py +6 -0
- sage/modular/overconvergent/genus0.py +1878 -0
- sage/modular/overconvergent/hecke_series.py +1187 -0
- sage/modular/overconvergent/weightspace.py +778 -0
- sage/modular/pollack_stevens/all.py +4 -0
- sage/modular/pollack_stevens/distributions.py +874 -0
- sage/modular/pollack_stevens/fund_domain.py +1572 -0
- sage/modular/pollack_stevens/manin_map.py +859 -0
- sage/modular/pollack_stevens/modsym.py +1593 -0
- sage/modular/pollack_stevens/padic_lseries.py +417 -0
- sage/modular/pollack_stevens/sigma0.py +534 -0
- sage/modular/pollack_stevens/space.py +1076 -0
- sage/modular/quasimodform/all.py +3 -0
- sage/modular/quasimodform/element.py +845 -0
- sage/modular/quasimodform/ring.py +828 -0
- sage/modular/quatalg/all.py +3 -0
- sage/modular/quatalg/brandt.py +1642 -0
- sage/modular/ssmod/all.py +8 -0
- sage/modular/ssmod/ssmod.py +827 -0
- sage/rings/all__sagemath_schemes.py +1 -0
- sage/rings/polynomial/all__sagemath_schemes.py +1 -0
- sage/rings/polynomial/binary_form_reduce.py +585 -0
- sage/schemes/all.py +41 -0
- sage/schemes/berkovich/all.py +6 -0
- sage/schemes/berkovich/berkovich_cp_element.py +2582 -0
- sage/schemes/berkovich/berkovich_space.py +748 -0
- sage/schemes/curves/affine_curve.py +2928 -0
- sage/schemes/curves/all.py +33 -0
- sage/schemes/curves/closed_point.py +434 -0
- sage/schemes/curves/constructor.py +381 -0
- sage/schemes/curves/curve.py +542 -0
- sage/schemes/curves/plane_curve_arrangement.py +1283 -0
- sage/schemes/curves/point.py +463 -0
- sage/schemes/curves/projective_curve.py +3026 -0
- sage/schemes/curves/zariski_vankampen.py +1932 -0
- sage/schemes/cyclic_covers/all.py +2 -0
- sage/schemes/cyclic_covers/charpoly_frobenius.py +320 -0
- sage/schemes/cyclic_covers/constructor.py +137 -0
- sage/schemes/cyclic_covers/cycliccover_finite_field.py +1309 -0
- sage/schemes/cyclic_covers/cycliccover_generic.py +310 -0
- sage/schemes/elliptic_curves/BSD.py +1036 -0
- sage/schemes/elliptic_curves/Qcurves.py +592 -0
- sage/schemes/elliptic_curves/addition_formulas_ring.py +94 -0
- sage/schemes/elliptic_curves/all.py +49 -0
- sage/schemes/elliptic_curves/cardinality.py +609 -0
- sage/schemes/elliptic_curves/cm.py +1102 -0
- sage/schemes/elliptic_curves/constructor.py +1552 -0
- sage/schemes/elliptic_curves/ec_database.py +175 -0
- sage/schemes/elliptic_curves/ell_curve_isogeny.py +3972 -0
- sage/schemes/elliptic_curves/ell_egros.py +459 -0
- sage/schemes/elliptic_curves/ell_field.py +2836 -0
- sage/schemes/elliptic_curves/ell_finite_field.py +3359 -0
- sage/schemes/elliptic_curves/ell_generic.py +3760 -0
- sage/schemes/elliptic_curves/ell_local_data.py +1207 -0
- sage/schemes/elliptic_curves/ell_modular_symbols.py +775 -0
- sage/schemes/elliptic_curves/ell_number_field.py +4220 -0
- sage/schemes/elliptic_curves/ell_padic_field.py +107 -0
- sage/schemes/elliptic_curves/ell_point.py +4787 -0
- sage/schemes/elliptic_curves/ell_rational_field.py +7368 -0
- sage/schemes/elliptic_curves/ell_tate_curve.py +671 -0
- sage/schemes/elliptic_curves/ell_torsion.py +436 -0
- sage/schemes/elliptic_curves/ell_wp.py +352 -0
- sage/schemes/elliptic_curves/formal_group.py +760 -0
- sage/schemes/elliptic_curves/gal_reps.py +1459 -0
- sage/schemes/elliptic_curves/gal_reps_number_field.py +1669 -0
- sage/schemes/elliptic_curves/gp_simon.py +152 -0
- sage/schemes/elliptic_curves/heegner.py +7335 -0
- sage/schemes/elliptic_curves/height.py +2109 -0
- sage/schemes/elliptic_curves/hom.py +1406 -0
- sage/schemes/elliptic_curves/hom_composite.py +934 -0
- sage/schemes/elliptic_curves/hom_frobenius.py +522 -0
- sage/schemes/elliptic_curves/hom_scalar.py +531 -0
- sage/schemes/elliptic_curves/hom_sum.py +682 -0
- sage/schemes/elliptic_curves/hom_velusqrt.py +1290 -0
- sage/schemes/elliptic_curves/homset.py +271 -0
- sage/schemes/elliptic_curves/isogeny_class.py +1521 -0
- sage/schemes/elliptic_curves/isogeny_small_degree.py +2797 -0
- sage/schemes/elliptic_curves/jacobian.py +237 -0
- sage/schemes/elliptic_curves/kodaira_symbol.py +344 -0
- sage/schemes/elliptic_curves/kraus.py +1014 -0
- sage/schemes/elliptic_curves/lseries_ell.py +943 -0
- sage/schemes/elliptic_curves/mod5family.py +105 -0
- sage/schemes/elliptic_curves/mod_poly.py +197 -0
- sage/schemes/elliptic_curves/mod_sym_num.cpython-314-darwin.so +0 -0
- sage/schemes/elliptic_curves/mod_sym_num.pyx +3796 -0
- sage/schemes/elliptic_curves/modular_parametrization.py +305 -0
- sage/schemes/elliptic_curves/padic_lseries.py +1793 -0
- sage/schemes/elliptic_curves/padics.py +1816 -0
- sage/schemes/elliptic_curves/period_lattice.py +2234 -0
- sage/schemes/elliptic_curves/period_lattice_region.cpython-314-darwin.so +0 -0
- sage/schemes/elliptic_curves/period_lattice_region.pyx +722 -0
- sage/schemes/elliptic_curves/saturation.py +715 -0
- sage/schemes/elliptic_curves/sha_tate.py +1158 -0
- sage/schemes/elliptic_curves/weierstrass_morphism.py +1117 -0
- sage/schemes/elliptic_curves/weierstrass_transform.py +200 -0
- sage/schemes/hyperelliptic_curves/all.py +6 -0
- sage/schemes/hyperelliptic_curves/constructor.py +291 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_finite_field.py +1914 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_g2.py +192 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_generic.py +954 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_padic_field.py +1332 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_rational_field.py +84 -0
- sage/schemes/hyperelliptic_curves/invariants.py +410 -0
- sage/schemes/hyperelliptic_curves/jacobian_endomorphism_utils.py +315 -0
- sage/schemes/hyperelliptic_curves/jacobian_g2.py +32 -0
- sage/schemes/hyperelliptic_curves/jacobian_generic.py +419 -0
- sage/schemes/hyperelliptic_curves/jacobian_homset.py +186 -0
- sage/schemes/hyperelliptic_curves/jacobian_morphism.py +875 -0
- sage/schemes/hyperelliptic_curves/kummer_surface.py +99 -0
- sage/schemes/hyperelliptic_curves/mestre.py +302 -0
- sage/schemes/hyperelliptic_curves/monsky_washnitzer.py +3871 -0
- sage/schemes/jacobians/abstract_jacobian.py +277 -0
- sage/schemes/jacobians/all.py +2 -0
- sage/schemes/overview.py +161 -0
- sage/schemes/plane_conics/all.py +22 -0
- sage/schemes/plane_conics/con_field.py +1296 -0
- sage/schemes/plane_conics/con_finite_field.py +158 -0
- sage/schemes/plane_conics/con_number_field.py +456 -0
- sage/schemes/plane_conics/con_rational_field.py +406 -0
- sage/schemes/plane_conics/con_rational_function_field.py +580 -0
- sage/schemes/plane_conics/constructor.py +249 -0
- sage/schemes/plane_quartics/all.py +2 -0
- sage/schemes/plane_quartics/quartic_constructor.py +71 -0
- sage/schemes/plane_quartics/quartic_generic.py +73 -0
- sage/schemes/riemann_surfaces/all.py +1 -0
- sage/schemes/riemann_surfaces/riemann_surface.py +4117 -0
- sage_wheels/share/cremona/cremona_mini.db +0 -0
- sage_wheels/share/ellcurves/rank0 +30427 -0
- sage_wheels/share/ellcurves/rank1 +31871 -0
- sage_wheels/share/ellcurves/rank10 +6 -0
- sage_wheels/share/ellcurves/rank11 +6 -0
- sage_wheels/share/ellcurves/rank12 +1 -0
- sage_wheels/share/ellcurves/rank14 +1 -0
- sage_wheels/share/ellcurves/rank15 +1 -0
- sage_wheels/share/ellcurves/rank17 +1 -0
- sage_wheels/share/ellcurves/rank19 +1 -0
- sage_wheels/share/ellcurves/rank2 +2388 -0
- sage_wheels/share/ellcurves/rank20 +1 -0
- sage_wheels/share/ellcurves/rank21 +1 -0
- sage_wheels/share/ellcurves/rank22 +1 -0
- sage_wheels/share/ellcurves/rank23 +1 -0
- sage_wheels/share/ellcurves/rank24 +1 -0
- sage_wheels/share/ellcurves/rank28 +1 -0
- sage_wheels/share/ellcurves/rank3 +836 -0
- sage_wheels/share/ellcurves/rank4 +10 -0
- sage_wheels/share/ellcurves/rank5 +5 -0
- sage_wheels/share/ellcurves/rank6 +5 -0
- sage_wheels/share/ellcurves/rank7 +5 -0
- sage_wheels/share/ellcurves/rank8 +6 -0
- sage_wheels/share/ellcurves/rank9 +7 -0
|
@@ -0,0 +1,1669 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-schemes
|
|
2
|
+
# sage.doctest: needs sage.rings.number_field
|
|
3
|
+
r"""
|
|
4
|
+
Galois representations for elliptic curves over number fields
|
|
5
|
+
|
|
6
|
+
This file contains the code to compute for which primes the Galois
|
|
7
|
+
representation attached to an elliptic curve (over an arbitrary number field)
|
|
8
|
+
is surjective. The functions in this file are called by the ``is_surjective``
|
|
9
|
+
and ``non_surjective`` methods of an elliptic curve over a number field.
|
|
10
|
+
|
|
11
|
+
EXAMPLES::
|
|
12
|
+
|
|
13
|
+
sage: x = polygen(ZZ, 'x')
|
|
14
|
+
sage: K = NumberField(x**2 - 29, 'a'); a = K.gen()
|
|
15
|
+
sage: E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
|
|
16
|
+
sage: rho = E.galois_representation()
|
|
17
|
+
sage: rho.is_surjective(29) # Cyclotomic character not surjective.
|
|
18
|
+
False
|
|
19
|
+
sage: rho.is_surjective(31) # See Section 5.10 of [Ser1972].
|
|
20
|
+
True
|
|
21
|
+
sage: rho.non_surjective() # long time (4s on sage.math, 2014)
|
|
22
|
+
[3, 5, 29]
|
|
23
|
+
|
|
24
|
+
sage: E = EllipticCurve_from_j(1728).change_ring(K) # CM
|
|
25
|
+
sage: E.galois_representation().non_surjective() # long time (2s on sage.math, 2014)
|
|
26
|
+
[0]
|
|
27
|
+
|
|
28
|
+
AUTHORS:
|
|
29
|
+
|
|
30
|
+
- Eric Larson (2012-05-28): initial version.
|
|
31
|
+
- Eric Larson (2014-08-13): added isogeny_bound function.
|
|
32
|
+
- John Cremona (2016, 2017): various efficiency improvements to _semistable_reducible_primes
|
|
33
|
+
- John Cremona (2017): implementation of Billerey's algorithm to find all reducible primes
|
|
34
|
+
|
|
35
|
+
REFERENCES:
|
|
36
|
+
|
|
37
|
+
- [Ser1972]_
|
|
38
|
+
- [Sut2012]_
|
|
39
|
+
"""
|
|
40
|
+
# ****************************************************************************
|
|
41
|
+
# Copyright (C) 2012 Eric Larson <elarson3@gmail.com>
|
|
42
|
+
#
|
|
43
|
+
# Distributed under the terms of the GNU General Public License (GPL)
|
|
44
|
+
# as published by the Free Software Foundation; either version 2 of
|
|
45
|
+
# the License, or (at your option) any later version.
|
|
46
|
+
# https://www.gnu.org/licenses/
|
|
47
|
+
# ****************************************************************************
|
|
48
|
+
|
|
49
|
+
from sage.arith.misc import legendre_symbol, primes
|
|
50
|
+
from sage.misc.functional import cyclotomic_polynomial
|
|
51
|
+
from sage.misc.lazy_import import lazy_import
|
|
52
|
+
from sage.modules.free_module import VectorSpace
|
|
53
|
+
from sage.rings.finite_rings.finite_field_constructor import GF
|
|
54
|
+
from sage.rings.infinity import Infinity
|
|
55
|
+
from sage.rings.integer import Integer
|
|
56
|
+
from sage.rings.integer_ring import ZZ
|
|
57
|
+
from sage.rings.rational_field import QQ
|
|
58
|
+
from sage.sets.set import Set
|
|
59
|
+
from sage.structure.sage_object import SageObject
|
|
60
|
+
|
|
61
|
+
lazy_import('sage.rings.number_field.number_field', 'NumberField')
|
|
62
|
+
|
|
63
|
+
|
|
64
|
+
class GaloisRepresentation(SageObject):
|
|
65
|
+
r"""
|
|
66
|
+
The compatible family of Galois representation
|
|
67
|
+
attached to an elliptic curve over a number field.
|
|
68
|
+
|
|
69
|
+
Given an elliptic curve `E` over a number field `K`
|
|
70
|
+
and a rational prime number `p`, the `p^n`-torsion
|
|
71
|
+
`E[p^n]` points of `E` is a representation of the
|
|
72
|
+
absolute Galois group `G_K` of `K`. As `n` varies
|
|
73
|
+
we obtain the Tate module `T_p E` which is
|
|
74
|
+
a representation of `G_K` on a free `\ZZ_p`-module
|
|
75
|
+
of rank `2`. As `p` varies the representations
|
|
76
|
+
are compatible.
|
|
77
|
+
|
|
78
|
+
EXAMPLES::
|
|
79
|
+
|
|
80
|
+
sage: x = polygen(ZZ, 'x')
|
|
81
|
+
sage: K = NumberField(x**2 + 1, 'a')
|
|
82
|
+
sage: E = EllipticCurve('11a1').change_ring(K)
|
|
83
|
+
sage: rho = E.galois_representation()
|
|
84
|
+
sage: rho
|
|
85
|
+
Compatible family of Galois representations associated to the Elliptic Curve
|
|
86
|
+
defined by y^2 + y = x^3 + (-1)*x^2 + (-10)*x + (-20)
|
|
87
|
+
over Number Field in a with defining polynomial x^2 + 1
|
|
88
|
+
"""
|
|
89
|
+
|
|
90
|
+
def __init__(self, E):
|
|
91
|
+
r"""
|
|
92
|
+
See ``GaloisRepresentation`` for documentation.
|
|
93
|
+
|
|
94
|
+
EXAMPLES::
|
|
95
|
+
|
|
96
|
+
sage: x = polygen(ZZ, 'x')
|
|
97
|
+
sage: K = NumberField(x**2 + 1, 'a')
|
|
98
|
+
sage: E = EllipticCurve('11a1').change_ring(K)
|
|
99
|
+
sage: rho = E.galois_representation()
|
|
100
|
+
sage: rho
|
|
101
|
+
Compatible family of Galois representations associated to the Elliptic Curve
|
|
102
|
+
defined by y^2 + y = x^3 + (-1)*x^2 + (-10)*x + (-20)
|
|
103
|
+
over Number Field in a with defining polynomial x^2 + 1
|
|
104
|
+
sage: loads(rho.dumps()) == rho
|
|
105
|
+
True
|
|
106
|
+
"""
|
|
107
|
+
self.E = E
|
|
108
|
+
|
|
109
|
+
def __repr__(self):
|
|
110
|
+
r"""
|
|
111
|
+
Return a string representation of the class.
|
|
112
|
+
|
|
113
|
+
EXAMPLES::
|
|
114
|
+
|
|
115
|
+
sage: x = polygen(ZZ, 'x')
|
|
116
|
+
sage: K = NumberField(x**2 + 1, 'a')
|
|
117
|
+
sage: E = EllipticCurve('11a1').change_ring(K)
|
|
118
|
+
sage: rho = E.galois_representation()
|
|
119
|
+
sage: rho
|
|
120
|
+
Compatible family of Galois representations associated to the Elliptic Curve
|
|
121
|
+
defined by y^2 + y = x^3 + (-1)*x^2 + (-10)*x + (-20)
|
|
122
|
+
over Number Field in a with defining polynomial x^2 + 1
|
|
123
|
+
|
|
124
|
+
sage: K.<a> = NumberField(x^2-x+1)
|
|
125
|
+
sage: E = EllipticCurve([0,0,0,a,0])
|
|
126
|
+
sage: E.galois_representation()
|
|
127
|
+
Compatible family of Galois representations associated to the
|
|
128
|
+
CM Elliptic Curve defined by y^2 = x^3 + a*x
|
|
129
|
+
over Number Field in a with defining polynomial x^2 - x + 1
|
|
130
|
+
"""
|
|
131
|
+
if self.E.has_cm():
|
|
132
|
+
return "Compatible family of Galois representations associated to the CM " + repr(self.E)
|
|
133
|
+
else:
|
|
134
|
+
return "Compatible family of Galois representations associated to the " + repr(self.E)
|
|
135
|
+
|
|
136
|
+
def __eq__(self, other):
|
|
137
|
+
r"""
|
|
138
|
+
Compare two Galois representations.
|
|
139
|
+
|
|
140
|
+
We define two compatible families of representations attached
|
|
141
|
+
to elliptic curves to be equal if the curves are isomorphic.
|
|
142
|
+
|
|
143
|
+
EXAMPLES::
|
|
144
|
+
|
|
145
|
+
sage: x = polygen(ZZ, 'x')
|
|
146
|
+
sage: K = NumberField(x**2 + 1, 'a'); a = K.gen()
|
|
147
|
+
sage: rho1 = EllipticCurve_from_j(1 + a).galois_representation()
|
|
148
|
+
sage: rho2 = EllipticCurve_from_j(2 + a).galois_representation()
|
|
149
|
+
sage: rho1 == rho1
|
|
150
|
+
True
|
|
151
|
+
sage: rho1 == rho2
|
|
152
|
+
False
|
|
153
|
+
sage: rho1 == 42
|
|
154
|
+
False
|
|
155
|
+
"""
|
|
156
|
+
if type(self) is not type(other):
|
|
157
|
+
return False
|
|
158
|
+
return self.E.is_isomorphic(other.E)
|
|
159
|
+
|
|
160
|
+
def elliptic_curve(self):
|
|
161
|
+
r"""
|
|
162
|
+
Return the elliptic curve associated to this representation.
|
|
163
|
+
|
|
164
|
+
EXAMPLES::
|
|
165
|
+
|
|
166
|
+
sage: x = polygen(ZZ, 'x')
|
|
167
|
+
sage: K = NumberField(x**2 + 1, 'a'); a = K.gen()
|
|
168
|
+
sage: E = EllipticCurve_from_j(a)
|
|
169
|
+
sage: rho = E.galois_representation()
|
|
170
|
+
sage: rho.elliptic_curve() == E
|
|
171
|
+
True
|
|
172
|
+
"""
|
|
173
|
+
return self.E
|
|
174
|
+
|
|
175
|
+
def non_surjective(self, A=100):
|
|
176
|
+
r"""
|
|
177
|
+
Return a list of primes `p` including all primes for which the mod-`p`
|
|
178
|
+
representation might not be surjective.
|
|
179
|
+
|
|
180
|
+
INPUT:
|
|
181
|
+
|
|
182
|
+
- ``A`` -- integer; a bound on the number of traces of Frobenius to use
|
|
183
|
+
while trying to prove surjectivity
|
|
184
|
+
|
|
185
|
+
OUTPUT:
|
|
186
|
+
|
|
187
|
+
A list of primes where mod-`p` representation is very likely not
|
|
188
|
+
surjective. At any prime not in this list, the representation is
|
|
189
|
+
definitely surjective. If `E` has CM, the list ``[0]`` is returned.
|
|
190
|
+
|
|
191
|
+
EXAMPLES::
|
|
192
|
+
|
|
193
|
+
sage: x = polygen(ZZ, 'x')
|
|
194
|
+
sage: K = NumberField(x**2 - 29, 'a'); a = K.gen()
|
|
195
|
+
sage: E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
|
|
196
|
+
sage: rho = E.galois_representation()
|
|
197
|
+
sage: rho.non_surjective() # See Section 5.10 of [Ser1972]. # long time
|
|
198
|
+
[3, 5, 29]
|
|
199
|
+
sage: K = NumberField(x**2 + 3, 'a'); a = K.gen()
|
|
200
|
+
sage: E = EllipticCurve([0, -1, 1, -10, -20]).change_ring(K) # X_0(11)
|
|
201
|
+
sage: rho = E.galois_representation()
|
|
202
|
+
sage: rho.non_surjective() # long time (4s on sage.math, 2014)
|
|
203
|
+
[3, 5]
|
|
204
|
+
sage: K = NumberField(x**2 + 1, 'a'); a = K.gen()
|
|
205
|
+
sage: E = EllipticCurve_from_j(1728).change_ring(K) # CM
|
|
206
|
+
sage: rho = E.galois_representation()
|
|
207
|
+
sage: rho.non_surjective()
|
|
208
|
+
[0]
|
|
209
|
+
sage: K = NumberField(x**2 - 5, 'a'); a = K.gen()
|
|
210
|
+
sage: E = EllipticCurve_from_j(146329141248*a - 327201914880) # CM
|
|
211
|
+
sage: rho = E.galois_representation()
|
|
212
|
+
sage: rho.non_surjective() # long time (3s on sage.math, 2014)
|
|
213
|
+
[0]
|
|
214
|
+
|
|
215
|
+
TESTS:
|
|
216
|
+
|
|
217
|
+
An example which failed until fixed at :issue:`19229`::
|
|
218
|
+
|
|
219
|
+
sage: K.<a> = NumberField(x^2-x+1)
|
|
220
|
+
sage: E = EllipticCurve([a+1,1,1,0,0])
|
|
221
|
+
sage: rho = E.galois_representation()
|
|
222
|
+
sage: rho.non_surjective()
|
|
223
|
+
[2, 3]
|
|
224
|
+
"""
|
|
225
|
+
if self.E.has_cm():
|
|
226
|
+
return [0]
|
|
227
|
+
return _non_surjective(self.E, A)
|
|
228
|
+
|
|
229
|
+
def is_surjective(self, p, A=100):
|
|
230
|
+
r"""
|
|
231
|
+
Return ``True`` if the mod-p representation is (provably)
|
|
232
|
+
surjective onto `Aut(E[p]) = GL_2(\GF{p})`. Return
|
|
233
|
+
``False`` if it is (probably) not.
|
|
234
|
+
|
|
235
|
+
INPUT:
|
|
236
|
+
|
|
237
|
+
- ``p`` -- prime number
|
|
238
|
+
|
|
239
|
+
- ``A`` -- integer; a bound on the number of traces of Frobenius to use
|
|
240
|
+
while trying to prove surjectivity
|
|
241
|
+
|
|
242
|
+
EXAMPLES::
|
|
243
|
+
|
|
244
|
+
sage: x = polygen(ZZ, 'x')
|
|
245
|
+
sage: K = NumberField(x**2 - 29, 'a'); a = K.gen()
|
|
246
|
+
sage: E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
|
|
247
|
+
sage: rho = E.galois_representation()
|
|
248
|
+
sage: rho.is_surjective(29) # Cyclotomic character not surjective.
|
|
249
|
+
False
|
|
250
|
+
sage: rho.is_surjective(7) # See Section 5.10 of [Ser1972].
|
|
251
|
+
True
|
|
252
|
+
|
|
253
|
+
If `E` is defined over `\QQ`, then the exceptional primes for `E_{/K}`
|
|
254
|
+
are the same as the exceptional primes for `E`, except for those primes
|
|
255
|
+
that are ramified in `K/\QQ` or are less than `[K:\QQ]`::
|
|
256
|
+
|
|
257
|
+
sage: K = NumberField(x**2 + 11, 'a')
|
|
258
|
+
sage: E = EllipticCurve([2, 14])
|
|
259
|
+
sage: rhoQQ = E.galois_representation()
|
|
260
|
+
sage: rhoK = E.change_ring(K).galois_representation()
|
|
261
|
+
sage: rhoQQ.is_surjective(2) == rhoK.is_surjective(2)
|
|
262
|
+
False
|
|
263
|
+
sage: rhoQQ.is_surjective(3) == rhoK.is_surjective(3)
|
|
264
|
+
True
|
|
265
|
+
sage: rhoQQ.is_surjective(5) == rhoK.is_surjective(5)
|
|
266
|
+
True
|
|
267
|
+
|
|
268
|
+
For CM curves, the mod-p representation is never surjective::
|
|
269
|
+
|
|
270
|
+
sage: K.<a> = NumberField(x^2 - x + 1)
|
|
271
|
+
sage: E = EllipticCurve([0,0,0,0,a])
|
|
272
|
+
sage: E.has_cm()
|
|
273
|
+
True
|
|
274
|
+
sage: rho = E.galois_representation()
|
|
275
|
+
sage: any(rho.is_surjective(p) for p in [2,3,5,7])
|
|
276
|
+
False
|
|
277
|
+
"""
|
|
278
|
+
if self.E.has_cm():
|
|
279
|
+
return False
|
|
280
|
+
return not _exceptionals(self.E, [p], A)
|
|
281
|
+
|
|
282
|
+
def isogeny_bound(self, A=100):
|
|
283
|
+
r"""
|
|
284
|
+
Return a list of primes `p` including all primes for which
|
|
285
|
+
the image of the mod-`p` representation is contained in a
|
|
286
|
+
Borel.
|
|
287
|
+
|
|
288
|
+
.. NOTE::
|
|
289
|
+
|
|
290
|
+
For the actual list of primes `p` at which the
|
|
291
|
+
representation is reducible see :meth:`reducible_primes()`.
|
|
292
|
+
|
|
293
|
+
INPUT:
|
|
294
|
+
|
|
295
|
+
- ``A`` -- integer; a bound on the number of traces of Frobenius to
|
|
296
|
+
use while trying to prove the mod-`p` representation is not contained
|
|
297
|
+
in a Borel
|
|
298
|
+
|
|
299
|
+
OUTPUT:
|
|
300
|
+
|
|
301
|
+
A list of primes which contains (but may not be equal to) all `p` for
|
|
302
|
+
which the image of the mod-`p` representation is contained in a Borel
|
|
303
|
+
subgroup. At any prime not in this list, the image is definitely not
|
|
304
|
+
contained in a Borel. If E has `CM` defined over `K`, the list ``[0]``
|
|
305
|
+
is returned.
|
|
306
|
+
|
|
307
|
+
EXAMPLES::
|
|
308
|
+
|
|
309
|
+
sage: x = polygen(ZZ, 'x')
|
|
310
|
+
sage: K = NumberField(x**2 - 29, 'a'); a = K.gen()
|
|
311
|
+
sage: E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
|
|
312
|
+
sage: rho = E.galois_representation()
|
|
313
|
+
sage: rho.isogeny_bound() # See Section 5.10 of [Ser1972]. # long time
|
|
314
|
+
[3, 5]
|
|
315
|
+
sage: K = NumberField(x**2 + 1, 'a')
|
|
316
|
+
sage: E = EllipticCurve_from_j(K(1728)) # CM over K
|
|
317
|
+
sage: E.galois_representation().isogeny_bound()
|
|
318
|
+
[0]
|
|
319
|
+
sage: E = EllipticCurve_from_j(K(0)) # CM NOT over K
|
|
320
|
+
sage: E.galois_representation().isogeny_bound() # long time
|
|
321
|
+
[2, 3]
|
|
322
|
+
sage: E = EllipticCurve_from_j(K(2268945/128)) # c.f. [Sut2012]
|
|
323
|
+
sage: rho = E.galois_representation()
|
|
324
|
+
sage: rho.isogeny_bound() # No 7-isogeny, but... # long time
|
|
325
|
+
[7]
|
|
326
|
+
|
|
327
|
+
For curves with rational CM, there are infinitely many primes
|
|
328
|
+
`p` for which the mod-`p` representation is reducible, and [0]
|
|
329
|
+
is returned::
|
|
330
|
+
|
|
331
|
+
sage: K.<a> = NumberField(x^2 - x + 1)
|
|
332
|
+
sage: E = EllipticCurve([0,0,0,0,a])
|
|
333
|
+
sage: E.has_rational_cm()
|
|
334
|
+
True
|
|
335
|
+
sage: rho = E.galois_representation()
|
|
336
|
+
sage: rho.isogeny_bound()
|
|
337
|
+
[0]
|
|
338
|
+
|
|
339
|
+
An example (an elliptic curve with everywhere good reduction
|
|
340
|
+
over an imaginary quadratic field with quite large
|
|
341
|
+
discriminant), which failed until fixed at :issue:`21776`::
|
|
342
|
+
|
|
343
|
+
sage: K.<a> = NumberField(x^2 - x + 112941801)
|
|
344
|
+
sage: E = EllipticCurve([a+1,a-1,a,-23163076*a + 266044005933275,57560769602038*a - 836483958630700313803])
|
|
345
|
+
sage: E.conductor().norm()
|
|
346
|
+
1
|
|
347
|
+
sage: GR = E.galois_representation()
|
|
348
|
+
sage: GR.isogeny_bound()
|
|
349
|
+
[]
|
|
350
|
+
"""
|
|
351
|
+
if self.E.has_rational_cm():
|
|
352
|
+
return [0]
|
|
353
|
+
|
|
354
|
+
E = _over_numberfield(self.E)
|
|
355
|
+
K = E.base_field()
|
|
356
|
+
|
|
357
|
+
char = lambda P: P.smallest_integer() # cheaper than constructing the residue field
|
|
358
|
+
|
|
359
|
+
# semistable reducible primes (we are now not in the CM case)
|
|
360
|
+
bad_primes = _semistable_reducible_primes(E)
|
|
361
|
+
|
|
362
|
+
# primes of additive reduction
|
|
363
|
+
bad_primesK = (K.ideal(E.c4()) + K.ideal(E.discriminant())).prime_factors()
|
|
364
|
+
bad_primes += [char(P) for P in bad_primesK]
|
|
365
|
+
|
|
366
|
+
# ramified primes
|
|
367
|
+
bad_primes += K.absolute_discriminant().prime_factors()
|
|
368
|
+
|
|
369
|
+
# remove repeats:
|
|
370
|
+
bad_primes = list(Set(bad_primes))
|
|
371
|
+
|
|
372
|
+
return Frobenius_filter(E, bad_primes, A)
|
|
373
|
+
|
|
374
|
+
def reducible_primes(self):
|
|
375
|
+
r"""
|
|
376
|
+
Return a list of primes `p` for which the mod-`p`
|
|
377
|
+
representation is reducible, or [0] for CM curves.
|
|
378
|
+
|
|
379
|
+
OUTPUT:
|
|
380
|
+
|
|
381
|
+
A list of those primes `p` for which the mod-`p` representation is
|
|
382
|
+
contained in a Borel subgroup, i.e. is reducible. If E has CM
|
|
383
|
+
*defined over K*, the list ``[0]`` is returned (in this case the
|
|
384
|
+
representation is reducible for infinitely many primes).
|
|
385
|
+
|
|
386
|
+
EXAMPLES::
|
|
387
|
+
|
|
388
|
+
sage: x = polygen(ZZ, 'x')
|
|
389
|
+
sage: K = NumberField(x**2 - 29, 'a'); a = K.gen()
|
|
390
|
+
sage: E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
|
|
391
|
+
sage: rho = E.galois_representation()
|
|
392
|
+
sage: rho.reducible_primes() # See Section 5.10 of [Ser1972]. # long time
|
|
393
|
+
[3, 5]
|
|
394
|
+
|
|
395
|
+
sage: K = NumberField(x**2 + 1, 'a')
|
|
396
|
+
sage: E = EllipticCurve_from_j(K(1728)) # CM over K
|
|
397
|
+
sage: E.galois_representation().reducible_primes()
|
|
398
|
+
[0]
|
|
399
|
+
sage: E = EllipticCurve_from_j(K(0)) # CM but NOT over K
|
|
400
|
+
sage: E.galois_representation().reducible_primes() # long time
|
|
401
|
+
[2, 3]
|
|
402
|
+
sage: E = EllipticCurve_from_j(K(2268945/128)) # c.f. [Sut2012]
|
|
403
|
+
sage: rho = E.galois_representation()
|
|
404
|
+
sage: rho.isogeny_bound() # No 7-isogeny, but... # long time
|
|
405
|
+
[7]
|
|
406
|
+
sage: rho.reducible_primes() # long time
|
|
407
|
+
[]
|
|
408
|
+
|
|
409
|
+
For curves with rational CM, there are infinitely many primes
|
|
410
|
+
`p` for which the mod-`p` representation is reducible, and [0]
|
|
411
|
+
is returned::
|
|
412
|
+
|
|
413
|
+
sage: K.<a> = NumberField(x^2 - x + 1)
|
|
414
|
+
sage: E = EllipticCurve([0,0,0,0,a])
|
|
415
|
+
sage: E.has_rational_cm()
|
|
416
|
+
True
|
|
417
|
+
sage: rho = E.galois_representation()
|
|
418
|
+
sage: rho.reducible_primes()
|
|
419
|
+
[0]
|
|
420
|
+
"""
|
|
421
|
+
if self.E.has_rational_cm():
|
|
422
|
+
return [0]
|
|
423
|
+
|
|
424
|
+
return [l for l in self.isogeny_bound() if self.E.isogenies_prime_degree(l)]
|
|
425
|
+
|
|
426
|
+
|
|
427
|
+
def _non_surjective(E, patience=100):
|
|
428
|
+
r"""
|
|
429
|
+
Return a list of primes `p` including all primes for which the mod-`p`
|
|
430
|
+
representation might not be surjective.
|
|
431
|
+
|
|
432
|
+
INPUT:
|
|
433
|
+
|
|
434
|
+
- ``E`` -- :class:`EllipticCurve` (over a number field)
|
|
435
|
+
|
|
436
|
+
- ``A`` -- integer; a bound on the number of traces of Frobenius to use
|
|
437
|
+
while trying to prove surjectivity
|
|
438
|
+
|
|
439
|
+
OUTPUT:
|
|
440
|
+
|
|
441
|
+
A list of primes where mod-`p` representation is very likely not
|
|
442
|
+
surjective. At any prime not in this list, the representation is
|
|
443
|
+
definitely surjective. If E has CM, a :exc:`ValueError` is raised.
|
|
444
|
+
|
|
445
|
+
EXAMPLES::
|
|
446
|
+
|
|
447
|
+
sage: x = polygen(ZZ, 'x')
|
|
448
|
+
sage: K = NumberField(x**2 - 29, 'a'); a = K.gen()
|
|
449
|
+
sage: E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
|
|
450
|
+
sage: sage.schemes.elliptic_curves.gal_reps_number_field._non_surjective(E) # See Section 5.10 of [Ser1972]. # long time
|
|
451
|
+
[3, 5, 29]
|
|
452
|
+
sage: E = EllipticCurve_from_j(1728).change_ring(K) # CM
|
|
453
|
+
sage: sage.schemes.elliptic_curves.gal_reps_number_field._non_surjective(E)
|
|
454
|
+
Traceback (most recent call last):
|
|
455
|
+
...
|
|
456
|
+
ValueError: The curve E should not have CM.
|
|
457
|
+
"""
|
|
458
|
+
if E.has_cm():
|
|
459
|
+
raise ValueError("The curve E should not have CM.")
|
|
460
|
+
|
|
461
|
+
E = _over_numberfield(E)
|
|
462
|
+
K = E.base_field()
|
|
463
|
+
|
|
464
|
+
exceptional_primes = [2, 3, 5, 7, 11, 13, 17, 19]
|
|
465
|
+
# The possible primes l unramified in K/QQ for which the image of the mod l
|
|
466
|
+
# Galois representation could be contained in an exceptional subgroup.
|
|
467
|
+
|
|
468
|
+
# Find the places of additive reduction.
|
|
469
|
+
SA = []
|
|
470
|
+
for P, n in E.conductor().factor():
|
|
471
|
+
if n > 1:
|
|
472
|
+
SA.append(P)
|
|
473
|
+
# TODO: All we really require is a list of primes that include all
|
|
474
|
+
# primes at which E has additive reduction. Perhaps we can speed
|
|
475
|
+
# up things by doing something less time-consuming here that produces
|
|
476
|
+
# a list with some extra terms? (Of course, the longer this list is,
|
|
477
|
+
# the slower the rest of the computation is, so it is not clear that
|
|
478
|
+
# this would help...)
|
|
479
|
+
|
|
480
|
+
char = lambda P: P.smallest_integer() # cheaper than constructing the residue field
|
|
481
|
+
|
|
482
|
+
bad_primes = exceptional_primes
|
|
483
|
+
bad_primes += [char(P) for P in SA]
|
|
484
|
+
bad_primes += K.discriminant().prime_factors()
|
|
485
|
+
bad_primes += _semistable_reducible_primes(E)
|
|
486
|
+
bad_primes += _possible_normalizers(E, SA)
|
|
487
|
+
|
|
488
|
+
bad_primes = list(Set(bad_primes))
|
|
489
|
+
|
|
490
|
+
return _exceptionals(E, bad_primes, patience)
|
|
491
|
+
|
|
492
|
+
|
|
493
|
+
def Frobenius_filter(E, L, patience=100):
|
|
494
|
+
r"""
|
|
495
|
+
Determine which primes in L might have an image contained in a
|
|
496
|
+
Borel subgroup, by checking of traces of Frobenius.
|
|
497
|
+
|
|
498
|
+
.. NOTE::
|
|
499
|
+
|
|
500
|
+
This function will sometimes return primes for which the image
|
|
501
|
+
is not contained in a Borel subgroup. This issue cannot always
|
|
502
|
+
be fixed by increasing patience as it may be a result of a
|
|
503
|
+
failure of a local-global principle for isogenies.
|
|
504
|
+
|
|
505
|
+
INPUT:
|
|
506
|
+
|
|
507
|
+
- ``E`` -- :class:`EllipticCurve` over a number field
|
|
508
|
+
|
|
509
|
+
- ``L`` -- list of prime numbers
|
|
510
|
+
|
|
511
|
+
- ``patience`` -- positive integer (default: 100) bounding the number of
|
|
512
|
+
traces of Frobenius to use while trying to prove irreducibility
|
|
513
|
+
|
|
514
|
+
OUTPUT:
|
|
515
|
+
|
|
516
|
+
The list of all primes `\ell` in L for which the mod `\ell` image might be
|
|
517
|
+
contained in a Borel subgroup of `GL_2(\mathbf{F}_{\ell})`.
|
|
518
|
+
|
|
519
|
+
EXAMPLES::
|
|
520
|
+
|
|
521
|
+
sage: E = EllipticCurve('11a1') # has a 5-isogeny
|
|
522
|
+
sage: sage.schemes.elliptic_curves.gal_reps_number_field.Frobenius_filter(E,primes(40)) # long time
|
|
523
|
+
[5]
|
|
524
|
+
|
|
525
|
+
Example to show that the output may contain primes where the
|
|
526
|
+
representation is in fact reducible. Over `\QQ` the following is
|
|
527
|
+
essentially the unique such example by [Sut2012]_::
|
|
528
|
+
|
|
529
|
+
sage: E = EllipticCurve_from_j(2268945/128)
|
|
530
|
+
sage: sage.schemes.elliptic_curves.gal_reps_number_field.Frobenius_filter(E, [7, 11]) # long time
|
|
531
|
+
[7]
|
|
532
|
+
|
|
533
|
+
This curve does possess a 7-isogeny modulo every prime of good
|
|
534
|
+
reduction, but has no rational 7-isogeny::
|
|
535
|
+
|
|
536
|
+
sage: E.isogenies_prime_degree(7)
|
|
537
|
+
[]
|
|
538
|
+
|
|
539
|
+
A number field example::
|
|
540
|
+
|
|
541
|
+
sage: K.<i> = QuadraticField(-1)
|
|
542
|
+
sage: E = EllipticCurve([1+i, -i, i, -399-240*i, 2627+2869*i])
|
|
543
|
+
sage: sage.schemes.elliptic_curves.gal_reps_number_field.Frobenius_filter(E, primes(20)) # long time
|
|
544
|
+
[2, 3]
|
|
545
|
+
|
|
546
|
+
Here the curve really does possess isogenies of degrees 2 and 3::
|
|
547
|
+
|
|
548
|
+
sage: [len(E.isogenies_prime_degree(l)) for l in [2,3]]
|
|
549
|
+
[1, 1]
|
|
550
|
+
"""
|
|
551
|
+
E = _over_numberfield(E).global_integral_model()
|
|
552
|
+
K = E.base_field()
|
|
553
|
+
|
|
554
|
+
L = list(set(L)) # Remove duplicates from L and makes a copy for output
|
|
555
|
+
L.sort()
|
|
556
|
+
|
|
557
|
+
include_2 = False
|
|
558
|
+
if 2 in L: # c.f. Section 5.3(a) of [Ser1972].
|
|
559
|
+
L.remove(2)
|
|
560
|
+
include_2 = not E.division_polynomial(2).is_irreducible()
|
|
561
|
+
|
|
562
|
+
K_is_Q = (K == QQ)
|
|
563
|
+
from sage.arith.misc import primes
|
|
564
|
+
from sage.rings.infinity import infinity
|
|
565
|
+
|
|
566
|
+
def primes_iter():
|
|
567
|
+
for p in primes(start=2, stop=infinity):
|
|
568
|
+
if K_is_Q:
|
|
569
|
+
if E.has_good_reduction(p):
|
|
570
|
+
yield ZZ.ideal(p)
|
|
571
|
+
else:
|
|
572
|
+
for P in K.primes_above(p):
|
|
573
|
+
if E.has_good_reduction(P):
|
|
574
|
+
yield P
|
|
575
|
+
numP = 0
|
|
576
|
+
for P in primes_iter():
|
|
577
|
+
if not L or numP == patience: # stop if no primes are left, or patience is exhausted
|
|
578
|
+
break
|
|
579
|
+
|
|
580
|
+
numP += 1
|
|
581
|
+
|
|
582
|
+
# Discard any l for which the Frobenius polynomial at P is
|
|
583
|
+
# irreducible modulo l
|
|
584
|
+
|
|
585
|
+
disc = E.reduction(P).frobenius_polynomial().discriminant()
|
|
586
|
+
|
|
587
|
+
L = [l for l in L if legendre_symbol(disc,l) != -1]
|
|
588
|
+
|
|
589
|
+
#print("After using {} primes P, {} primes l remain".format(numP,len(L)))
|
|
590
|
+
|
|
591
|
+
if include_2:
|
|
592
|
+
L = [2] + L
|
|
593
|
+
return L
|
|
594
|
+
|
|
595
|
+
|
|
596
|
+
def _exceptionals(E, L, patience=1000):
|
|
597
|
+
r"""
|
|
598
|
+
Determine which primes in L are exceptional for E.
|
|
599
|
+
|
|
600
|
+
This is done using Proposition 19 of Section 2.8 of Serre's
|
|
601
|
+
*Propriétés Galoisiennes des Points d'Ordre Fini des Courbes Elliptiques*
|
|
602
|
+
[Ser1972]_.
|
|
603
|
+
|
|
604
|
+
INPUT:
|
|
605
|
+
|
|
606
|
+
- ``E`` -- :class:`EllipticCurve` over a number field
|
|
607
|
+
|
|
608
|
+
- ``L`` -- list of prime numbers
|
|
609
|
+
|
|
610
|
+
- ``patience`` -- integer; a bound on the number of traces of Frobenius to
|
|
611
|
+
use while trying to prove surjectivity
|
|
612
|
+
|
|
613
|
+
OUTPUT:
|
|
614
|
+
|
|
615
|
+
The list of all primes l in L for which the mod l image might fail to be
|
|
616
|
+
surjective.
|
|
617
|
+
|
|
618
|
+
EXAMPLES::
|
|
619
|
+
|
|
620
|
+
sage: x = polygen(ZZ, 'x')
|
|
621
|
+
sage: K = NumberField(x**2 - 29, 'a'); a = K.gen()
|
|
622
|
+
sage: E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
|
|
623
|
+
sage: sage.schemes.elliptic_curves.gal_reps_number_field._exceptionals(E, [29, 31])
|
|
624
|
+
[29]
|
|
625
|
+
|
|
626
|
+
For CM curves an error is raised::
|
|
627
|
+
|
|
628
|
+
sage: E = EllipticCurve_from_j(1728).change_ring(K) # CM
|
|
629
|
+
sage: sage.schemes.elliptic_curves.gal_reps_number_field._exceptionals(E,[2,3,5])
|
|
630
|
+
Traceback (most recent call last):
|
|
631
|
+
...
|
|
632
|
+
ValueError: The curve E should not have CM.
|
|
633
|
+
"""
|
|
634
|
+
if E.has_cm():
|
|
635
|
+
raise ValueError("The curve E should not have CM.")
|
|
636
|
+
|
|
637
|
+
E = _over_numberfield(E)
|
|
638
|
+
K = E.base_field()
|
|
639
|
+
|
|
640
|
+
output = []
|
|
641
|
+
|
|
642
|
+
L = list(set(L)) # Remove duplicates from L.
|
|
643
|
+
|
|
644
|
+
for l in L:
|
|
645
|
+
if l == 2: # c.f. Section 5.3(a) of [Ser1972].
|
|
646
|
+
if (E.j_invariant() - 1728).is_square():
|
|
647
|
+
output.append(2)
|
|
648
|
+
elif not E.division_polynomial(2).is_irreducible():
|
|
649
|
+
output.append(2)
|
|
650
|
+
|
|
651
|
+
elif l == 3: # c.f. Section 5.3(b) of [Ser1972].
|
|
652
|
+
if K(-3).is_square():
|
|
653
|
+
output.append(3)
|
|
654
|
+
elif not (K['x'].gen()**3 - E.j_invariant()).is_irreducible():
|
|
655
|
+
output.append(3)
|
|
656
|
+
elif not E.division_polynomial(3).is_irreducible():
|
|
657
|
+
output.append(3)
|
|
658
|
+
|
|
659
|
+
elif (K.discriminant() % l) == 0:
|
|
660
|
+
if not K['x'](cyclotomic_polynomial(l)).is_irreducible():
|
|
661
|
+
# I.E. if the action on lth roots of unity is not surjective
|
|
662
|
+
# (We want this since as a Galois module, \wedge^2 E[l]
|
|
663
|
+
# is isomorphic to the lth roots of unity.)
|
|
664
|
+
output.append(l)
|
|
665
|
+
|
|
666
|
+
for l in output:
|
|
667
|
+
L.remove(l)
|
|
668
|
+
if 2 in L:
|
|
669
|
+
L.remove(2)
|
|
670
|
+
if 3 in L:
|
|
671
|
+
L.remove(3)
|
|
672
|
+
|
|
673
|
+
# If the image is not surjective, then it is contained in one of the
|
|
674
|
+
# maximal subgroups. So, we start by creating a dictionary between primes
|
|
675
|
+
# l in L and possible maximal subgroups in which the mod l image could
|
|
676
|
+
# be contained. This information is stored as a triple whose elements
|
|
677
|
+
# are True/False according to whether the mod l image could be contained
|
|
678
|
+
# in:
|
|
679
|
+
# 0. A Borel or normalizer of split Cartan subgroup.
|
|
680
|
+
# 1. A nonsplit Cartan subgroup or its normalizer.
|
|
681
|
+
# 2. An exceptional subgroup of GL_2.
|
|
682
|
+
|
|
683
|
+
D = {}
|
|
684
|
+
for l in L:
|
|
685
|
+
D[l] = [True, True, True]
|
|
686
|
+
|
|
687
|
+
for P in deg_one_primes_iter(K):
|
|
688
|
+
try:
|
|
689
|
+
trace = E.change_ring(P.residue_field()).trace_of_frobenius()
|
|
690
|
+
except ArithmeticError: # Bad reduction at P.
|
|
691
|
+
continue
|
|
692
|
+
|
|
693
|
+
patience -= 1
|
|
694
|
+
|
|
695
|
+
determinant = P.norm()
|
|
696
|
+
discriminant = trace**2 - 4 * determinant
|
|
697
|
+
|
|
698
|
+
unexc = [] # Primes we discover are unexceptional go here.
|
|
699
|
+
|
|
700
|
+
for l in D:
|
|
701
|
+
tr = GF(l)(trace)
|
|
702
|
+
det = GF(l)(determinant)
|
|
703
|
+
disc = GF(l)(discriminant)
|
|
704
|
+
|
|
705
|
+
if tr == 0:
|
|
706
|
+
# I.E. if Frob_P could be contained in the normalizer of
|
|
707
|
+
# a Cartan subgroup, but not in the Cartan subgroup.
|
|
708
|
+
continue
|
|
709
|
+
|
|
710
|
+
if disc == 0:
|
|
711
|
+
# I.E. If the matrix might be non-diagonalizable over F_{p^2}.
|
|
712
|
+
continue
|
|
713
|
+
|
|
714
|
+
if legendre_symbol(disc, l) == 1:
|
|
715
|
+
# If the matrix is diagonalizable over F_p, it can't be
|
|
716
|
+
# contained in a non-split Cartan subgroup. Since we've
|
|
717
|
+
# gotten rid of the case where it is contained in the
|
|
718
|
+
# of a nonsplit Cartan subgroup but not the Cartan subgroup,
|
|
719
|
+
D[l][1] = False
|
|
720
|
+
else:
|
|
721
|
+
# If the matrix is not diagonalizable over F_p, it can't
|
|
722
|
+
# be contained Borel subgroup.
|
|
723
|
+
D[l][0] = False
|
|
724
|
+
|
|
725
|
+
if det != 0: # c.f. [Ser1972], Section 2.8, Prop. 19
|
|
726
|
+
u = trace**2 / det
|
|
727
|
+
if u not in (1, 2, 4) and u**2 - 3 * u + 1 != 0:
|
|
728
|
+
D[l][2] = False
|
|
729
|
+
|
|
730
|
+
if D[l] == [False, False, False]:
|
|
731
|
+
unexc.append(l)
|
|
732
|
+
|
|
733
|
+
for l in unexc:
|
|
734
|
+
D.pop(l)
|
|
735
|
+
unexc = []
|
|
736
|
+
|
|
737
|
+
if (not D) or (patience == 0):
|
|
738
|
+
break
|
|
739
|
+
|
|
740
|
+
output.extend(D)
|
|
741
|
+
output.sort()
|
|
742
|
+
return output
|
|
743
|
+
|
|
744
|
+
|
|
745
|
+
def _over_numberfield(E):
|
|
746
|
+
r"""
|
|
747
|
+
Return `E`, defined over an absolute ``NumberField``.
|
|
748
|
+
|
|
749
|
+
This is necessary since if `E` is defined over `\QQ`, then we
|
|
750
|
+
cannot use Sage commands available for number fields, and if the
|
|
751
|
+
base field is relative then other problems result.
|
|
752
|
+
|
|
753
|
+
INPUT:
|
|
754
|
+
|
|
755
|
+
- ``E`` -- :class:`EllipticCurve` over a number field
|
|
756
|
+
|
|
757
|
+
OUTPUT:
|
|
758
|
+
|
|
759
|
+
- If `E` is defined over an absolute number field, returns `E`.
|
|
760
|
+
|
|
761
|
+
- If `E` is defined over a relative number field, returns `E` defined over the absolute base field.
|
|
762
|
+
|
|
763
|
+
- If `E` is defined over `\QQ`, returns `E` defined over the number field `\QQ`.
|
|
764
|
+
|
|
765
|
+
EXAMPLES::
|
|
766
|
+
|
|
767
|
+
sage: E = EllipticCurve([1, 2])
|
|
768
|
+
sage: sage.schemes.elliptic_curves.gal_reps_number_field._over_numberfield(E)
|
|
769
|
+
Elliptic Curve defined by y^2 = x^3 + x + 2 over Number Field in a with defining polynomial x
|
|
770
|
+
"""
|
|
771
|
+
K = E.base_field()
|
|
772
|
+
|
|
773
|
+
if K == QQ:
|
|
774
|
+
from sage.rings.polynomial.polynomial_ring import polygen
|
|
775
|
+
K = NumberField(polygen(QQ), 'a')
|
|
776
|
+
else:
|
|
777
|
+
K = K.absolute_field('a')
|
|
778
|
+
return E.change_ring(K)
|
|
779
|
+
|
|
780
|
+
|
|
781
|
+
def deg_one_primes_iter(K, principal_only=False):
|
|
782
|
+
r"""
|
|
783
|
+
Return an iterator over degree 1 primes of ``K``.
|
|
784
|
+
|
|
785
|
+
INPUT:
|
|
786
|
+
|
|
787
|
+
- ``K`` -- a number field
|
|
788
|
+
- ``principal_only`` -- boolean; if ``True``, only yield principal primes
|
|
789
|
+
|
|
790
|
+
OUTPUT:
|
|
791
|
+
|
|
792
|
+
An iterator over degree 1 primes of `K` up to the given norm,
|
|
793
|
+
optionally yielding only principal primes.
|
|
794
|
+
|
|
795
|
+
EXAMPLES::
|
|
796
|
+
|
|
797
|
+
sage: K.<a> = QuadraticField(-5)
|
|
798
|
+
sage: from sage.schemes.elliptic_curves.gal_reps_number_field import deg_one_primes_iter
|
|
799
|
+
sage: it = deg_one_primes_iter(K)
|
|
800
|
+
sage: [next(it) for _ in range(6)]
|
|
801
|
+
[Fractional ideal (2, a + 1),
|
|
802
|
+
Fractional ideal (3, a + 1),
|
|
803
|
+
Fractional ideal (3, a + 2),
|
|
804
|
+
Fractional ideal (-a),
|
|
805
|
+
Fractional ideal (7, a + 3),
|
|
806
|
+
Fractional ideal (7, a + 4)]
|
|
807
|
+
sage: it = deg_one_primes_iter(K, True)
|
|
808
|
+
sage: [next(it) for _ in range(6)]
|
|
809
|
+
[Fractional ideal (-a),
|
|
810
|
+
Fractional ideal (2*a - 3),
|
|
811
|
+
Fractional ideal (-2*a - 3),
|
|
812
|
+
Fractional ideal (a + 6),
|
|
813
|
+
Fractional ideal (a - 6),
|
|
814
|
+
Fractional ideal (3*a - 4)]
|
|
815
|
+
"""
|
|
816
|
+
# imaginary quadratic fields have no principal primes of norm < disc / 4
|
|
817
|
+
start = K.discriminant().abs() // 4 if principal_only and K.signature() == (0,1) else 2
|
|
818
|
+
|
|
819
|
+
K_is_Q = (K == QQ)
|
|
820
|
+
|
|
821
|
+
for p in primes(start=start, stop=Infinity):
|
|
822
|
+
if K_is_Q:
|
|
823
|
+
yield ZZ.ideal(p)
|
|
824
|
+
else:
|
|
825
|
+
for P in K.primes_above(p, degree=1):
|
|
826
|
+
if not principal_only or P.is_principal():
|
|
827
|
+
yield P
|
|
828
|
+
|
|
829
|
+
|
|
830
|
+
def _semistable_reducible_primes(E, verbose=False):
|
|
831
|
+
r"""Find a list containing all semistable primes l unramified in K/QQ
|
|
832
|
+
for which the Galois image for E could be reducible.
|
|
833
|
+
|
|
834
|
+
INPUT:
|
|
835
|
+
|
|
836
|
+
- ``E`` -- :class:`EllipticCurve` over a number field
|
|
837
|
+
|
|
838
|
+
OUTPUT:
|
|
839
|
+
|
|
840
|
+
A list of primes, which contains all primes `l` unramified in
|
|
841
|
+
`K/\mathbb{QQ}`, such that `E` is semistable at all primes lying
|
|
842
|
+
over `l`, and the Galois image at `l` is reducible. If `E` has CM
|
|
843
|
+
defined over its ground field, a :exc:`ValueError` is raised.
|
|
844
|
+
|
|
845
|
+
EXAMPLES::
|
|
846
|
+
|
|
847
|
+
sage: E = EllipticCurve([0, -1, 1, -10, -20]) # X_0(11)
|
|
848
|
+
sage: 5 in sage.schemes.elliptic_curves.gal_reps_number_field._semistable_reducible_primes(E)
|
|
849
|
+
True
|
|
850
|
+
|
|
851
|
+
This example, over a quintic field with Galois group `S_5`, took a
|
|
852
|
+
very long time before :issue:`22343`::
|
|
853
|
+
|
|
854
|
+
sage: x = polygen(ZZ, 'x')
|
|
855
|
+
sage: K.<a> = NumberField(x^5 - 6*x^3 + 8*x - 1)
|
|
856
|
+
sage: E = EllipticCurve(K, [a^3 - 2*a, a^4 - 2*a^3 - 4*a^2 + 6*a + 1,
|
|
857
|
+
....: a + 1, -a^3 + a + 1, -a])
|
|
858
|
+
sage: from sage.schemes.elliptic_curves.gal_reps_number_field import _semistable_reducible_primes
|
|
859
|
+
sage: _semistable_reducible_primes(E)
|
|
860
|
+
[2, 5, 53, 1117]
|
|
861
|
+
"""
|
|
862
|
+
if verbose:
|
|
863
|
+
print("In _semistable_reducible_primes with E={}".format(E.ainvs()))
|
|
864
|
+
K = E.base_field()
|
|
865
|
+
d = K.degree()
|
|
866
|
+
|
|
867
|
+
deg_one_primes = deg_one_primes_iter(K, principal_only=True)
|
|
868
|
+
|
|
869
|
+
bad_primes = set() # This will store the output.
|
|
870
|
+
|
|
871
|
+
# We find two primes (of distinct residue characteristics) which are
|
|
872
|
+
# of degree 1, unramified in K/Q, and at which E has good reduction.
|
|
873
|
+
# Each of these primes will give us a nontrivial divisibility constraint
|
|
874
|
+
# on the exceptional primes l. For both of these primes P, we precompute
|
|
875
|
+
# a generator and the characteristic polynomial of Frob_P^12.
|
|
876
|
+
|
|
877
|
+
precomp = []
|
|
878
|
+
last_p = 0 # The residue characteristic of the most recent prime.
|
|
879
|
+
|
|
880
|
+
while len(precomp) < 2:
|
|
881
|
+
P = next(deg_one_primes)
|
|
882
|
+
p = P.norm()
|
|
883
|
+
if p != last_p and (d == 1 or P.ramification_index() == 1) and E.has_good_reduction(P):
|
|
884
|
+
precomp.append(P)
|
|
885
|
+
last_p = p
|
|
886
|
+
|
|
887
|
+
Px, Py = precomp
|
|
888
|
+
x, y = (PP.gens_reduced()[0] for PP in precomp)
|
|
889
|
+
EmodPx = E.reduction(Px) if d > 1 else E.reduction(x)
|
|
890
|
+
EmodPy = E.reduction(Py) if d > 1 else E.reduction(y)
|
|
891
|
+
fxpol = EmodPx.frobenius_polynomial()
|
|
892
|
+
fypol = EmodPy.frobenius_polynomial()
|
|
893
|
+
fx12pol = fxpol.adams_operator_on_roots(12) # roots are 12th powers of those of fxpol
|
|
894
|
+
fy12pol = fypol.adams_operator_on_roots(12)
|
|
895
|
+
px = x.norm() if d > 1 else x
|
|
896
|
+
py = y.norm() if d > 1 else x
|
|
897
|
+
Zx = fxpol.parent()
|
|
898
|
+
xpol = x.charpoly() if d > 1 else Zx([-x,1])
|
|
899
|
+
ypol = y.charpoly() if d > 1 else Zx([-y,1])
|
|
900
|
+
|
|
901
|
+
if verbose:
|
|
902
|
+
print("Finished precomp, x={} (p={}), y={} (p={})".format(x,px,y,py))
|
|
903
|
+
|
|
904
|
+
for w in range(1 + d // 2):
|
|
905
|
+
if verbose:
|
|
906
|
+
print("w = {}".format(w))
|
|
907
|
+
gx = xpol.symmetric_power(w).adams_operator_on_roots(12).resultant(fx12pol)
|
|
908
|
+
gy = ypol.symmetric_power(w).adams_operator_on_roots(12).resultant(fy12pol)
|
|
909
|
+
if verbose:
|
|
910
|
+
print("computed gx and gy")
|
|
911
|
+
|
|
912
|
+
gxn = Integer(gx.absolute_norm()) if d > 1 else gx
|
|
913
|
+
gyn = Integer(gy.absolute_norm()) if d > 1 else gy
|
|
914
|
+
gxyn = gxn.gcd(gyn)
|
|
915
|
+
if gxyn:
|
|
916
|
+
xprimes = gxyn.prime_factors()
|
|
917
|
+
if verbose:
|
|
918
|
+
print("adding prime factors {} of {} to {}".format(xprimes, gxyn, sorted(bad_primes)))
|
|
919
|
+
bad_primes.update(xprimes)
|
|
920
|
+
if verbose:
|
|
921
|
+
print("...done, bad_primes now {}".format(sorted(bad_primes)))
|
|
922
|
+
continue
|
|
923
|
+
else:
|
|
924
|
+
if verbose:
|
|
925
|
+
print("gx and gy both 0!")
|
|
926
|
+
|
|
927
|
+
## It is possible that our curve has CM. ##
|
|
928
|
+
|
|
929
|
+
# Our character must be of the form Nm^K_F for an imaginary
|
|
930
|
+
# quadratic subfield F of K (which is the CM field if E has CM).
|
|
931
|
+
|
|
932
|
+
# Note that this can only happen when d is even, w=d/2, and K
|
|
933
|
+
# contains (or the Galois closure of K contains?) the
|
|
934
|
+
# imaginary quadratic field F = Q(sqrt(a)) which is the
|
|
935
|
+
# splitting field of both fx12pol and fy12pol. We compute a
|
|
936
|
+
# and relativise K over F:
|
|
937
|
+
|
|
938
|
+
a = fx12pol.discriminant().squarefree_part()
|
|
939
|
+
|
|
940
|
+
# Construct a field isomorphic to K but a relative extension over QQ(sqrt(a)).
|
|
941
|
+
|
|
942
|
+
# See #19229: the names given here, which are not used, should
|
|
943
|
+
# not be the name of the generator of the base field.
|
|
944
|
+
|
|
945
|
+
rootsa = K(a).sqrt(all=True) # otherwise if a is not a square the
|
|
946
|
+
# returned result is in the symbolic ring!
|
|
947
|
+
try:
|
|
948
|
+
roota = rootsa[0]
|
|
949
|
+
except IndexError:
|
|
950
|
+
raise RuntimeError("error in _semistable_reducible_primes: K={} does not contain sqrt({})".format(K,a))
|
|
951
|
+
K_rel = K.relativize(roota, ['name1','name2'])
|
|
952
|
+
iso = K_rel.structure()[1] # an isomorphism from K to K_rel
|
|
953
|
+
|
|
954
|
+
## We try again to find a nontrivial divisibility condition. ##
|
|
955
|
+
|
|
956
|
+
div = 0
|
|
957
|
+
patience = 5 * K.absolute_degree()
|
|
958
|
+
# Number of Frobenius elements to check before suspecting that E
|
|
959
|
+
# has CM and computing the set of CM j-invariants of K to check.
|
|
960
|
+
# TODO: Is this the best value for this parameter?
|
|
961
|
+
|
|
962
|
+
while div == 0 and patience > 0:
|
|
963
|
+
P = next(deg_one_primes) # a prime of K not K_rel
|
|
964
|
+
while E.has_bad_reduction(P):
|
|
965
|
+
P = next(deg_one_primes)
|
|
966
|
+
|
|
967
|
+
if verbose:
|
|
968
|
+
print("trying P = {}...".format(P))
|
|
969
|
+
EmodP = E.reduction(P)
|
|
970
|
+
fpol = EmodP.frobenius_polynomial()
|
|
971
|
+
if verbose:
|
|
972
|
+
print("...good reduction, frobenius poly = {}".format(fpol))
|
|
973
|
+
x = iso(P.gens_reduced()[0]).relative_norm()
|
|
974
|
+
xpol = x.charpoly().adams_operator_on_roots(12)
|
|
975
|
+
div2 = Integer(xpol.resultant(fpol.adams_operator_on_roots(12)) // x.norm()**12)
|
|
976
|
+
if div2:
|
|
977
|
+
div = div2.isqrt()
|
|
978
|
+
assert div2 == div**2
|
|
979
|
+
if verbose:
|
|
980
|
+
print("...div = {}".format(div))
|
|
981
|
+
else:
|
|
982
|
+
if verbose:
|
|
983
|
+
print("...div = 0, continuing")
|
|
984
|
+
patience -= 1
|
|
985
|
+
|
|
986
|
+
if patience == 0:
|
|
987
|
+
# We suspect that E has CM, so we check:
|
|
988
|
+
if E.has_cm():
|
|
989
|
+
raise ValueError("In _semistable_reducible_primes, the curve E should not have CM.")
|
|
990
|
+
|
|
991
|
+
assert div != 0
|
|
992
|
+
# We found our divisibility constraint.
|
|
993
|
+
|
|
994
|
+
xprimes = div.prime_factors()
|
|
995
|
+
if verbose:
|
|
996
|
+
print("...adding prime factors {} of {} to {}...".format(xprimes,div, sorted(bad_primes)))
|
|
997
|
+
bad_primes.update(xprimes)
|
|
998
|
+
if verbose:
|
|
999
|
+
print("...done, bad_primes now {}".format(sorted(bad_primes)))
|
|
1000
|
+
|
|
1001
|
+
L = sorted(bad_primes)
|
|
1002
|
+
return L
|
|
1003
|
+
|
|
1004
|
+
|
|
1005
|
+
def _possible_normalizers(E, SA):
|
|
1006
|
+
r"""Find a list containing all primes `l` such that the Galois image at `l`
|
|
1007
|
+
is contained in the normalizer of a Cartan subgroup, such that the
|
|
1008
|
+
corresponding quadratic character is ramified only at the given primes.
|
|
1009
|
+
|
|
1010
|
+
INPUT:
|
|
1011
|
+
|
|
1012
|
+
- ``E`` -- :class:`EllipticCurve` over a number field K
|
|
1013
|
+
|
|
1014
|
+
- ``SA`` -- list of primes of K
|
|
1015
|
+
|
|
1016
|
+
OUTPUT:
|
|
1017
|
+
|
|
1018
|
+
- a list of primes, which contains all primes `l` such that the Galois
|
|
1019
|
+
image at `l` is contained in the normalizer of a Cartan subgroup, such
|
|
1020
|
+
that the corresponding quadratic character is ramified only at primes in SA.
|
|
1021
|
+
|
|
1022
|
+
- if `E` has geometric CM that is not defined over its ground field, a
|
|
1023
|
+
:exc:`ValueError` is raised.
|
|
1024
|
+
|
|
1025
|
+
EXAMPLES::
|
|
1026
|
+
|
|
1027
|
+
sage: E = EllipticCurve([0,0,0,-56,4848])
|
|
1028
|
+
sage: 5 in sage.schemes.elliptic_curves.gal_reps_number_field._possible_normalizers(E, [ZZ.ideal(2)])
|
|
1029
|
+
True
|
|
1030
|
+
|
|
1031
|
+
For CM curves, an error is raised::
|
|
1032
|
+
|
|
1033
|
+
sage: K.<i> = QuadraticField(-1)
|
|
1034
|
+
sage: E = EllipticCurve_from_j(1728).change_ring(K) # CM
|
|
1035
|
+
sage: sage.schemes.elliptic_curves.gal_reps_number_field._possible_normalizers(E, [])
|
|
1036
|
+
Traceback (most recent call last):
|
|
1037
|
+
...
|
|
1038
|
+
ValueError: The curve E should not have CM.
|
|
1039
|
+
"""
|
|
1040
|
+
if E.has_cm():
|
|
1041
|
+
raise ValueError("The curve E should not have CM.")
|
|
1042
|
+
|
|
1043
|
+
E = _over_numberfield(E)
|
|
1044
|
+
K = E.base_field()
|
|
1045
|
+
SA = [K.ideal(I.gens()) for I in SA]
|
|
1046
|
+
|
|
1047
|
+
selmer_gens = K.selmer_generators(SA, 2) # Generators of the selmer group.
|
|
1048
|
+
|
|
1049
|
+
if not selmer_gens:
|
|
1050
|
+
return []
|
|
1051
|
+
|
|
1052
|
+
V = VectorSpace(GF(2), len(selmer_gens))
|
|
1053
|
+
# We think of this as the character group of the selmer group.
|
|
1054
|
+
|
|
1055
|
+
traces_list = []
|
|
1056
|
+
W = V.zero_subspace()
|
|
1057
|
+
|
|
1058
|
+
deg_one_primes = deg_one_primes_iter(K)
|
|
1059
|
+
|
|
1060
|
+
while W.dimension() < V.dimension() - 1:
|
|
1061
|
+
P = next(deg_one_primes)
|
|
1062
|
+
|
|
1063
|
+
k = P.residue_field()
|
|
1064
|
+
|
|
1065
|
+
defines_valid_character = True
|
|
1066
|
+
# A prime P defines a quadratic residue character
|
|
1067
|
+
# on the Selmer group. This variable will be set
|
|
1068
|
+
# to zero if any elements of the selmer group are
|
|
1069
|
+
# zero mod P (i.e. the character is ramified).
|
|
1070
|
+
|
|
1071
|
+
splitting_vector = [] # This will be the values of this
|
|
1072
|
+
# character on the generators of the Selmer group.
|
|
1073
|
+
|
|
1074
|
+
for a in selmer_gens:
|
|
1075
|
+
abar = k(a)
|
|
1076
|
+
if abar == 0:
|
|
1077
|
+
# Ramification.
|
|
1078
|
+
defines_valid_character = False
|
|
1079
|
+
break
|
|
1080
|
+
|
|
1081
|
+
if abar.is_square():
|
|
1082
|
+
splitting_vector.append(GF(2)(0))
|
|
1083
|
+
else:
|
|
1084
|
+
splitting_vector.append(GF(2)(1))
|
|
1085
|
+
|
|
1086
|
+
if not defines_valid_character:
|
|
1087
|
+
continue
|
|
1088
|
+
|
|
1089
|
+
if splitting_vector in W:
|
|
1090
|
+
continue
|
|
1091
|
+
|
|
1092
|
+
try:
|
|
1093
|
+
Etilde = E.change_ring(k)
|
|
1094
|
+
except ArithmeticError: # Bad reduction.
|
|
1095
|
+
continue
|
|
1096
|
+
|
|
1097
|
+
tr = Etilde.trace_of_frobenius()
|
|
1098
|
+
|
|
1099
|
+
if tr == 0:
|
|
1100
|
+
continue
|
|
1101
|
+
|
|
1102
|
+
traces_list.append(tr)
|
|
1103
|
+
|
|
1104
|
+
W = W + V.span([splitting_vector])
|
|
1105
|
+
|
|
1106
|
+
bad_primes = set()
|
|
1107
|
+
|
|
1108
|
+
for i in traces_list:
|
|
1109
|
+
for p in i.prime_factors():
|
|
1110
|
+
bad_primes.add(p)
|
|
1111
|
+
|
|
1112
|
+
# We find the unique vector v in V orthogonal to W:
|
|
1113
|
+
v = W.matrix().transpose().kernel().basis()[0]
|
|
1114
|
+
|
|
1115
|
+
# We find the element a of the selmer group corresponding to v:
|
|
1116
|
+
a = 1
|
|
1117
|
+
for i in range(len(selmer_gens)):
|
|
1118
|
+
if v[i] == 1:
|
|
1119
|
+
a *= selmer_gens[i]
|
|
1120
|
+
|
|
1121
|
+
# Since we've already included the above bad primes, we can assume
|
|
1122
|
+
# that the quadratic character corresponding to the exceptional primes
|
|
1123
|
+
# we're looking for is given by mapping into Gal(K[\sqrt{a}]/K).
|
|
1124
|
+
|
|
1125
|
+
patience = 5 * K.degree()
|
|
1126
|
+
# Number of Frobenius elements to check before suspecting that E
|
|
1127
|
+
# has CM and computing the set of CM j-invariants of K to check.
|
|
1128
|
+
# TODO: Is this the best value for this parameter?
|
|
1129
|
+
|
|
1130
|
+
while True:
|
|
1131
|
+
P = next(deg_one_primes)
|
|
1132
|
+
|
|
1133
|
+
k = P.residue_field()
|
|
1134
|
+
|
|
1135
|
+
if not k(a).is_square():
|
|
1136
|
+
try:
|
|
1137
|
+
tr = E.change_ring(k).trace_of_frobenius()
|
|
1138
|
+
except ArithmeticError: # Bad reduction.
|
|
1139
|
+
continue
|
|
1140
|
+
|
|
1141
|
+
if tr == 0:
|
|
1142
|
+
patience -= 1
|
|
1143
|
+
|
|
1144
|
+
else:
|
|
1145
|
+
for p in tr.prime_factors():
|
|
1146
|
+
bad_primes.add(p)
|
|
1147
|
+
|
|
1148
|
+
bad_primes = sorted(bad_primes)
|
|
1149
|
+
return bad_primes
|
|
1150
|
+
|
|
1151
|
+
#
|
|
1152
|
+
# Code for Billerey's algorithm to find reducible primes
|
|
1153
|
+
#
|
|
1154
|
+
# See "Critères d'irréductibilité pour les représentations des courbes
|
|
1155
|
+
# elliptiques", Nicolas Billerey, https://arxiv.org/abs/0908.1084
|
|
1156
|
+
#
|
|
1157
|
+
|
|
1158
|
+
|
|
1159
|
+
def Billerey_P_l(E, l):
|
|
1160
|
+
r"""
|
|
1161
|
+
Return Billerey's `P_l^*` as defined in [Bil2011]_, equation (9).
|
|
1162
|
+
|
|
1163
|
+
INPUT:
|
|
1164
|
+
|
|
1165
|
+
- ``E`` -- an elliptic curve over a number field `K`, given by a
|
|
1166
|
+
global integral model
|
|
1167
|
+
|
|
1168
|
+
- ``l`` -- a rational prime
|
|
1169
|
+
|
|
1170
|
+
EXAMPLES::
|
|
1171
|
+
|
|
1172
|
+
sage: x = polygen(ZZ, 'x')
|
|
1173
|
+
sage: K = NumberField(x**2 - 29, 'a'); a = K.gen()
|
|
1174
|
+
sage: E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
|
|
1175
|
+
sage: from sage.schemes.elliptic_curves.gal_reps_number_field import Billerey_P_l
|
|
1176
|
+
sage: [Billerey_P_l(E,l) for l in primes(10)]
|
|
1177
|
+
[x^2 + 8143*x + 16777216,
|
|
1178
|
+
x^2 + 451358*x + 282429536481,
|
|
1179
|
+
x^4 - 664299076*x^3 + 205155493652343750*x^2 - 39595310449600219726562500*x + 3552713678800500929355621337890625,
|
|
1180
|
+
x^4 - 207302404*x^3 - 377423798538689366394*x^2 - 39715249826471656586987520004*x + 36703368217294125441230211032033660188801]
|
|
1181
|
+
"""
|
|
1182
|
+
K = E.base_field()
|
|
1183
|
+
qq = K.primes_above(l)
|
|
1184
|
+
# if len(qq) == K.degree():
|
|
1185
|
+
# return None
|
|
1186
|
+
from sage.rings.polynomial.polynomial_ring import polygen
|
|
1187
|
+
from operator import mul
|
|
1188
|
+
P = polygen(ZZ)-1
|
|
1189
|
+
for q in qq:
|
|
1190
|
+
e = K(l).valuation(q)
|
|
1191
|
+
P = P.composed_op(E.reduction(q).frobenius_polynomial().adams_operator_on_roots(12*e), mul, monic=True)
|
|
1192
|
+
return P
|
|
1193
|
+
|
|
1194
|
+
|
|
1195
|
+
def Billerey_B_l(E, l, B=0):
|
|
1196
|
+
r"""
|
|
1197
|
+
Return Billerey's `B_l`, adapted from the definition in [Bil2011]_, after (9).
|
|
1198
|
+
|
|
1199
|
+
INPUT:
|
|
1200
|
+
|
|
1201
|
+
- ``E`` -- an elliptic curve over a number field `K`, given by a
|
|
1202
|
+
global integral model
|
|
1203
|
+
|
|
1204
|
+
- ``l`` -- integer; a rational prime
|
|
1205
|
+
|
|
1206
|
+
- ``B`` -- integer; 0 or LCM of previous `B_l` the prime-to-B part of this
|
|
1207
|
+
`B_l` is ignored
|
|
1208
|
+
|
|
1209
|
+
EXAMPLES::
|
|
1210
|
+
|
|
1211
|
+
sage: x = polygen(ZZ, 'x')
|
|
1212
|
+
sage: K = NumberField(x**2 - 29, 'a'); a = K.gen()
|
|
1213
|
+
sage: E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
|
|
1214
|
+
sage: from sage.schemes.elliptic_curves.gal_reps_number_field import Billerey_B_l
|
|
1215
|
+
sage: [Billerey_B_l(E,l) for l in primes(15)]
|
|
1216
|
+
[1123077552537600,
|
|
1217
|
+
227279663773903886745600,
|
|
1218
|
+
0,
|
|
1219
|
+
0,
|
|
1220
|
+
269247154818492941287713746693964214802283882086400,
|
|
1221
|
+
0]
|
|
1222
|
+
"""
|
|
1223
|
+
d = E.base_field().absolute_degree()
|
|
1224
|
+
P = Billerey_P_l(E, l)
|
|
1225
|
+
if P is None:
|
|
1226
|
+
return ZZ.zero()
|
|
1227
|
+
# We compute the factors one at a time since if any is 0 we quit:
|
|
1228
|
+
B_l = ZZ(1)
|
|
1229
|
+
for k in range(1 + d // 2):
|
|
1230
|
+
factor = ZZ(P(l**(12*k)))
|
|
1231
|
+
if factor:
|
|
1232
|
+
B_l *= factor.gcd(B)
|
|
1233
|
+
else:
|
|
1234
|
+
return ZZ(0)
|
|
1235
|
+
return B_l
|
|
1236
|
+
|
|
1237
|
+
|
|
1238
|
+
def Billerey_R_q(E, q, B=0):
|
|
1239
|
+
r"""
|
|
1240
|
+
Return Billerey's `R_q`, adapted from the definition in [Bil2011]_, Theorem 2.8.
|
|
1241
|
+
|
|
1242
|
+
INPUT:
|
|
1243
|
+
|
|
1244
|
+
- ``E`` -- an elliptic curve over a number field `K`, given by a
|
|
1245
|
+
global integral model
|
|
1246
|
+
|
|
1247
|
+
- ``q`` -- a prime ideal of `K`
|
|
1248
|
+
|
|
1249
|
+
- ``B`` -- integer; 0 or LCM of previous `R_q` the prime-to-B part of this
|
|
1250
|
+
`R_q` is ignored
|
|
1251
|
+
|
|
1252
|
+
EXAMPLES::
|
|
1253
|
+
|
|
1254
|
+
sage: x = polygen(ZZ, 'x')
|
|
1255
|
+
sage: K = NumberField(x**2 - 29, 'a'); a = K.gen()
|
|
1256
|
+
sage: E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
|
|
1257
|
+
sage: from sage.schemes.elliptic_curves.gal_reps_number_field import Billerey_R_q
|
|
1258
|
+
sage: [Billerey_R_q(E,K.prime_above(l)) for l in primes(10)]
|
|
1259
|
+
[1123077552537600,
|
|
1260
|
+
227279663773903886745600,
|
|
1261
|
+
51956919562116960000000000000000,
|
|
1262
|
+
252485933820556361829926400000000]
|
|
1263
|
+
"""
|
|
1264
|
+
K = E.base_field()
|
|
1265
|
+
d = K.absolute_degree()
|
|
1266
|
+
h = K.class_number()
|
|
1267
|
+
P = E.reduction(q).frobenius_polynomial().adams_operator_on_roots(12*h)
|
|
1268
|
+
Q = ((q**h).gens_reduced()[0]).absolute_minpoly().adams_operator_on_roots(12)
|
|
1269
|
+
|
|
1270
|
+
# We compute the factors one at a time since if any is 0 we quit:
|
|
1271
|
+
R_q = ZZ(1)
|
|
1272
|
+
for k in range(1 + d // 2):
|
|
1273
|
+
# the following would be in QQ if we did not coerce
|
|
1274
|
+
factor = ZZ(P.resultant(Q.compose_power(k)))
|
|
1275
|
+
if factor:
|
|
1276
|
+
R_q *= factor.gcd(B)
|
|
1277
|
+
else:
|
|
1278
|
+
return ZZ.zero()
|
|
1279
|
+
return R_q
|
|
1280
|
+
|
|
1281
|
+
|
|
1282
|
+
def Billerey_B_bound(E, max_l=200, num_l=8, small_prime_bound=0, debug=False):
|
|
1283
|
+
r"""
|
|
1284
|
+
Compute Billerey's bound `B`.
|
|
1285
|
+
|
|
1286
|
+
We compute `B_l` for `l` up to ``max_l`` (at most) until ``num_l``
|
|
1287
|
+
nonzero values are found (at most). Return the list of primes
|
|
1288
|
+
dividing all `B_l` computed, excluding those dividing 6 or
|
|
1289
|
+
ramified or of bad reduction or less than small_prime_bound. If
|
|
1290
|
+
no nonzero values are found return ``[0]``.
|
|
1291
|
+
|
|
1292
|
+
INPUT:
|
|
1293
|
+
|
|
1294
|
+
- ``E`` -- an elliptic curve over a number field `K`, given by a
|
|
1295
|
+
global integral model
|
|
1296
|
+
|
|
1297
|
+
- ``max_l`` -- integer (default: 200); maximum size of primes l to check
|
|
1298
|
+
|
|
1299
|
+
- ``num_l`` integer (default: 8); maximum number of primes l to check
|
|
1300
|
+
|
|
1301
|
+
- ``small_prime_bound`` -- integer (default: 0); remove primes less
|
|
1302
|
+
than this from the output
|
|
1303
|
+
|
|
1304
|
+
- ``debug`` -- boolean (default: ``False``); if ``True`` prints details
|
|
1305
|
+
|
|
1306
|
+
.. NOTE::
|
|
1307
|
+
|
|
1308
|
+
The purpose of the small_prime_bound is that it is faster to
|
|
1309
|
+
deal with these using the local test; by ignoring them here,
|
|
1310
|
+
we enable the algorithm to terminate sooner when there are no
|
|
1311
|
+
large reducible primes, which is always the case in practice.
|
|
1312
|
+
|
|
1313
|
+
EXAMPLES::
|
|
1314
|
+
|
|
1315
|
+
sage: x = polygen(ZZ, 'x')
|
|
1316
|
+
sage: K = NumberField(x**2 - 29, 'a'); a = K.gen()
|
|
1317
|
+
sage: E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
|
|
1318
|
+
sage: from sage.schemes.elliptic_curves.gal_reps_number_field import Billerey_B_bound
|
|
1319
|
+
sage: Billerey_B_bound(E)
|
|
1320
|
+
[5]
|
|
1321
|
+
|
|
1322
|
+
If we do not use enough primes `l`, extraneous primes will be
|
|
1323
|
+
included which are not reducible primes::
|
|
1324
|
+
|
|
1325
|
+
sage: Billerey_B_bound(E, num_l=6)
|
|
1326
|
+
[5, 7]
|
|
1327
|
+
|
|
1328
|
+
Similarly if we do not use large enough primes `l`::
|
|
1329
|
+
|
|
1330
|
+
sage: Billerey_B_bound(E, max_l=50, num_l=8)
|
|
1331
|
+
[5, 7]
|
|
1332
|
+
sage: Billerey_B_bound(E, max_l=100, num_l=8)
|
|
1333
|
+
[5]
|
|
1334
|
+
|
|
1335
|
+
This curve does have a rational 5-isogeny::
|
|
1336
|
+
|
|
1337
|
+
sage: len(E.isogenies_prime_degree(5))
|
|
1338
|
+
1
|
|
1339
|
+
"""
|
|
1340
|
+
if debug:
|
|
1341
|
+
print("Computing B-bound for {} with max_l={}, num_l={}".format(E.ainvs(),max_l,num_l) + " (ignoring primes under {})".format(small_prime_bound) if small_prime_bound else "")
|
|
1342
|
+
B = ZZ.zero()
|
|
1343
|
+
ells = []
|
|
1344
|
+
K = E.base_field()
|
|
1345
|
+
DK = K.discriminant()
|
|
1346
|
+
ED = E.discriminant().norm()
|
|
1347
|
+
B0 = ZZ(6*DK*ED)
|
|
1348
|
+
|
|
1349
|
+
def remove_primes(B):
|
|
1350
|
+
B1 = B.prime_to_m_part(B0)
|
|
1351
|
+
for p in primes(small_prime_bound):
|
|
1352
|
+
B1 = B1.prime_to_m_part(p)
|
|
1353
|
+
return B1
|
|
1354
|
+
ll = primes(5,max_l) # iterator
|
|
1355
|
+
while B != 1 and len(ells) < num_l:
|
|
1356
|
+
try:
|
|
1357
|
+
l = next(ll)
|
|
1358
|
+
while B0.valuation(l):
|
|
1359
|
+
l = next(ll)
|
|
1360
|
+
except StopIteration:
|
|
1361
|
+
break
|
|
1362
|
+
if debug:
|
|
1363
|
+
print("..trying l={}".format(l))
|
|
1364
|
+
b = Billerey_B_l(E,l,B)
|
|
1365
|
+
if b:
|
|
1366
|
+
if debug:
|
|
1367
|
+
print("..ok, B_l = {}".format(b))
|
|
1368
|
+
if B:
|
|
1369
|
+
B = B.gcd(b)
|
|
1370
|
+
else:
|
|
1371
|
+
B = remove_primes(b)
|
|
1372
|
+
ells.append(l)
|
|
1373
|
+
if debug:
|
|
1374
|
+
print("..so far, B = {} using l in {}".format(B,ells))
|
|
1375
|
+
else:
|
|
1376
|
+
if debug:
|
|
1377
|
+
print("..B_l=0 for l={}".format(l))
|
|
1378
|
+
|
|
1379
|
+
if B:
|
|
1380
|
+
res = [p for p,e in B.factor()]
|
|
1381
|
+
if debug:
|
|
1382
|
+
print("..returning {}".format(res))
|
|
1383
|
+
return res
|
|
1384
|
+
# or we failed to find any nonzero values...
|
|
1385
|
+
if debug:
|
|
1386
|
+
print("..failed to find a bound")
|
|
1387
|
+
return [0]
|
|
1388
|
+
|
|
1389
|
+
|
|
1390
|
+
def Billerey_R_bound(E, max_l=200, num_l=8, small_prime_bound=None, debug=False):
|
|
1391
|
+
r"""
|
|
1392
|
+
Compute Billerey's bound `R`.
|
|
1393
|
+
|
|
1394
|
+
We compute `R_q` for `q` dividing primes `\ell` up to ``max_l``
|
|
1395
|
+
(at most) until ``num_l`` nonzero values are found (at most).
|
|
1396
|
+
Return the list of primes dividing all ``R_q`` computed, excluding
|
|
1397
|
+
those dividing 6 or ramified or of bad reduction or less than
|
|
1398
|
+
small_prime_bound. If no nonzero values are found return ``[0]``.
|
|
1399
|
+
|
|
1400
|
+
INPUT:
|
|
1401
|
+
|
|
1402
|
+
- ``E`` -- an elliptic curve over a number field `K`, given by a
|
|
1403
|
+
global integral model
|
|
1404
|
+
|
|
1405
|
+
- ``max_l`` -- integer (default: 200); maximum size of rational primes
|
|
1406
|
+
l for which the primes q above l are checked
|
|
1407
|
+
|
|
1408
|
+
- ``num_l`` -- integer (default: 8); maximum number of rational primes
|
|
1409
|
+
l for which the primes q above l are checked
|
|
1410
|
+
|
|
1411
|
+
- ``small_prime_bound`` -- integer (default: 0); remove primes less
|
|
1412
|
+
than this from the output
|
|
1413
|
+
|
|
1414
|
+
- ``debug`` -- boolean (default: ``False``); if ``True`` prints details
|
|
1415
|
+
|
|
1416
|
+
.. NOTE::
|
|
1417
|
+
|
|
1418
|
+
The purpose of the ``small_prime_bound`` is that it is faster to
|
|
1419
|
+
deal with these using the local test; by ignoring them here,
|
|
1420
|
+
we enable the algorithm to terminate sooner when there are no
|
|
1421
|
+
large reducible primes, which is always the case in practice.
|
|
1422
|
+
|
|
1423
|
+
EXAMPLES::
|
|
1424
|
+
|
|
1425
|
+
sage: x = polygen(ZZ, 'x')
|
|
1426
|
+
sage: K = NumberField(x**2 - 29, 'a'); a = K.gen()
|
|
1427
|
+
sage: E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
|
|
1428
|
+
sage: from sage.schemes.elliptic_curves.gal_reps_number_field import Billerey_R_bound
|
|
1429
|
+
sage: Billerey_R_bound(E)
|
|
1430
|
+
[5]
|
|
1431
|
+
|
|
1432
|
+
We may get no bound at all if we do not use enough primes::
|
|
1433
|
+
|
|
1434
|
+
sage: Billerey_R_bound(E, max_l=2, debug=False)
|
|
1435
|
+
[0]
|
|
1436
|
+
|
|
1437
|
+
Or we may get a bound but not a good one if we do not use enough primes::
|
|
1438
|
+
|
|
1439
|
+
sage: Billerey_R_bound(E, num_l=1, debug=False)
|
|
1440
|
+
[5, 17, 67, 157]
|
|
1441
|
+
|
|
1442
|
+
In this case two primes is enough to restrict the set of possible
|
|
1443
|
+
reducible primes to just `\{5\}`. This curve does have a rational 5-isogeny::
|
|
1444
|
+
|
|
1445
|
+
sage: Billerey_R_bound(E, num_l=2, debug=False)
|
|
1446
|
+
[5]
|
|
1447
|
+
sage: len(E.isogenies_prime_degree(5))
|
|
1448
|
+
1
|
|
1449
|
+
"""
|
|
1450
|
+
if debug:
|
|
1451
|
+
print("Computing R-bound for {} with max_l={}, num_l={}".format(E.ainvs(),max_l,num_l) + " (ignoring primes under {})".format(small_prime_bound) if small_prime_bound else "")
|
|
1452
|
+
B = ZZ.zero()
|
|
1453
|
+
ells = []
|
|
1454
|
+
K = E.base_field()
|
|
1455
|
+
DK = K.discriminant()
|
|
1456
|
+
ED = E.discriminant().norm()
|
|
1457
|
+
B0 = ZZ(6*DK*ED)
|
|
1458
|
+
|
|
1459
|
+
def remove_primes(B):
|
|
1460
|
+
B1 = B.prime_to_m_part(B0)
|
|
1461
|
+
for p in primes(small_prime_bound):
|
|
1462
|
+
B1 = B1.prime_to_m_part(p)
|
|
1463
|
+
return B1
|
|
1464
|
+
ll = primes(5, max_l) # iterator
|
|
1465
|
+
while len(ells) < num_l and B != 1:
|
|
1466
|
+
try:
|
|
1467
|
+
l = next(ll)
|
|
1468
|
+
while B0.valuation(l):
|
|
1469
|
+
l = next(ll)
|
|
1470
|
+
except StopIteration:
|
|
1471
|
+
break
|
|
1472
|
+
q = K.prime_above(l)
|
|
1473
|
+
if debug:
|
|
1474
|
+
print("..trying q={} above l={}".format(q,l))
|
|
1475
|
+
b = Billerey_R_q(E,q,B)
|
|
1476
|
+
if b:
|
|
1477
|
+
if debug:
|
|
1478
|
+
print("..ok, R_q = {}, type={}".format(b,type(b)))
|
|
1479
|
+
if B:
|
|
1480
|
+
B = B.gcd(b)
|
|
1481
|
+
else:
|
|
1482
|
+
B = remove_primes(b)
|
|
1483
|
+
ells.append(l)
|
|
1484
|
+
if debug:
|
|
1485
|
+
print("..so far, B = {} using l in {}".format(B,ells))
|
|
1486
|
+
|
|
1487
|
+
if B:
|
|
1488
|
+
res = B.support()
|
|
1489
|
+
if debug:
|
|
1490
|
+
print("..returning {}".format(res))
|
|
1491
|
+
return res
|
|
1492
|
+
# or we failed to find any nonzero values...
|
|
1493
|
+
if debug:
|
|
1494
|
+
print("..failed to find a bound")
|
|
1495
|
+
return [0]
|
|
1496
|
+
|
|
1497
|
+
|
|
1498
|
+
def reducible_primes_Billerey(E, num_l=None, max_l=None, verbose=False):
|
|
1499
|
+
r"""
|
|
1500
|
+
Return a finite set of primes `\ell` containing all those for which
|
|
1501
|
+
`E` has a `K`-rational ell-isogeny, where `K` is the base field of
|
|
1502
|
+
`E`: i.e., the mod-`\ell` representation is irreducible for all
|
|
1503
|
+
`\ell` outside the set returned.
|
|
1504
|
+
|
|
1505
|
+
INPUT:
|
|
1506
|
+
|
|
1507
|
+
- ``E`` -- an elliptic curve defined over a number field `K`
|
|
1508
|
+
|
|
1509
|
+
- ``max_l`` -- integer or ``None`` (default); the maximum prime
|
|
1510
|
+
`\ell` to use for the B-bound and R-bound. If ``None``, a
|
|
1511
|
+
default value will be used.
|
|
1512
|
+
|
|
1513
|
+
- ``num_l`` -- integer or ``None`` (default); the number of primes
|
|
1514
|
+
`\ell` to use for the B-bound and R-bound. If ``None``, a
|
|
1515
|
+
default value will be used.
|
|
1516
|
+
|
|
1517
|
+
.. NOTE::
|
|
1518
|
+
|
|
1519
|
+
If ``E`` has CM then [0] is returned. In this case use the
|
|
1520
|
+
function
|
|
1521
|
+
sage.schemes.elliptic_curves.isogeny_class.possible_isogeny_degrees
|
|
1522
|
+
|
|
1523
|
+
We first compute Billeray's B_bound using at most ``num_l`` primes
|
|
1524
|
+
of size up to ``max_l``. If that fails we compute Billeray's
|
|
1525
|
+
R_bound using at most ``num_q`` primes of size up to ``max_q``.
|
|
1526
|
+
|
|
1527
|
+
Provided that one of these methods succeeds in producing a finite
|
|
1528
|
+
list of primes we check these using a local condition, and finally
|
|
1529
|
+
test that the primes returned actually are reducible. Otherwise
|
|
1530
|
+
we return ``[0]``.
|
|
1531
|
+
|
|
1532
|
+
EXAMPLES::
|
|
1533
|
+
|
|
1534
|
+
sage: from sage.schemes.elliptic_curves.gal_reps_number_field import reducible_primes_Billerey
|
|
1535
|
+
sage: x = polygen(ZZ, 'x')
|
|
1536
|
+
sage: K = NumberField(x**2 - 29, 'a'); a = K.gen()
|
|
1537
|
+
sage: E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
|
|
1538
|
+
sage: reducible_primes_Billerey(E) # long time
|
|
1539
|
+
[3, 5]
|
|
1540
|
+
sage: K = NumberField(x**2 + 1, 'a')
|
|
1541
|
+
sage: E = EllipticCurve_from_j(K(1728)) # CM over K
|
|
1542
|
+
sage: reducible_primes_Billerey(E) # long time
|
|
1543
|
+
[0]
|
|
1544
|
+
sage: E = EllipticCurve_from_j(K(0)) # CM but NOT over K
|
|
1545
|
+
sage: reducible_primes_Billerey(E) # long time
|
|
1546
|
+
[2, 3]
|
|
1547
|
+
|
|
1548
|
+
An example where a prime is not reducible but passes the test::
|
|
1549
|
+
|
|
1550
|
+
sage: E = EllipticCurve_from_j(K(2268945/128)).global_minimal_model() # c.f. [Sut2012]
|
|
1551
|
+
sage: reducible_primes_Billerey(E) # long time
|
|
1552
|
+
[7]
|
|
1553
|
+
|
|
1554
|
+
TESTS:
|
|
1555
|
+
|
|
1556
|
+
Test that this function works with non-integral models (see :issue:`34174`)::
|
|
1557
|
+
|
|
1558
|
+
sage: K.<a> = QuadraticField(4569)
|
|
1559
|
+
sage: j = 46969655/32768
|
|
1560
|
+
sage: E = EllipticCurve(j=K(j))
|
|
1561
|
+
sage: EK = E.change_ring(K)
|
|
1562
|
+
sage: C = EK.isogeny_class(minimal_models=False) # long time
|
|
1563
|
+
sage: len(C) # long time
|
|
1564
|
+
4
|
|
1565
|
+
"""
|
|
1566
|
+
#verbose=True
|
|
1567
|
+
if verbose:
|
|
1568
|
+
print("E = {}, finding reducible primes using Billerey's algorithm".format(E.ainvs()))
|
|
1569
|
+
|
|
1570
|
+
# Set parameters to default values if not given:
|
|
1571
|
+
if max_l is None:
|
|
1572
|
+
max_l = 200
|
|
1573
|
+
if num_l is None:
|
|
1574
|
+
num_l = 8
|
|
1575
|
+
|
|
1576
|
+
K = E.base_field()
|
|
1577
|
+
DK = K.discriminant()
|
|
1578
|
+
|
|
1579
|
+
# We replace E by an integral model if necessary, since this
|
|
1580
|
+
# function and the helper functions need this:
|
|
1581
|
+
E1 = E.global_integral_model()
|
|
1582
|
+
ED = E1.discriminant().norm()
|
|
1583
|
+
B0 = ZZ(6*DK*ED).prime_divisors()
|
|
1584
|
+
|
|
1585
|
+
# Billeray's algorithm will be faster if we tell it to ignore
|
|
1586
|
+
# small primes; these can be tested using the naive algorithm.
|
|
1587
|
+
|
|
1588
|
+
if verbose:
|
|
1589
|
+
print("First doing naive test of primes up to {}...".format(max_l))
|
|
1590
|
+
|
|
1591
|
+
max_small_prime = 200
|
|
1592
|
+
OK_small_primes = reducible_primes_naive(E1, max_l=max_small_prime, num_P=200, verbose=verbose)
|
|
1593
|
+
if verbose:
|
|
1594
|
+
print("Naive test of primes up to {} returns {}.".format(max_small_prime, OK_small_primes))
|
|
1595
|
+
|
|
1596
|
+
B1 = Billerey_B_bound(E1, max_l, num_l, max_small_prime, verbose)
|
|
1597
|
+
if B1 == [0]:
|
|
1598
|
+
if verbose:
|
|
1599
|
+
print("... B_bound ineffective using max_l={}, moving on to R-bound".format(max_l))
|
|
1600
|
+
|
|
1601
|
+
B1 = Billerey_R_bound(E1,max_l, num_l, max_small_prime, verbose)
|
|
1602
|
+
if B1 == [0]:
|
|
1603
|
+
if verbose:
|
|
1604
|
+
print("... R_bound ineffective using max_l={}",format(max_l))
|
|
1605
|
+
return [0]
|
|
1606
|
+
if verbose:
|
|
1607
|
+
print("... R_bound = {}".format(B1))
|
|
1608
|
+
else:
|
|
1609
|
+
if verbose:
|
|
1610
|
+
print("... B_bound = {}".format(B1))
|
|
1611
|
+
B = sorted(set(B0 + B1 + OK_small_primes))
|
|
1612
|
+
if verbose:
|
|
1613
|
+
print("... combined bound = {}".format(B))
|
|
1614
|
+
|
|
1615
|
+
num_p = 100
|
|
1616
|
+
B = Frobenius_filter(E1, B, num_p)
|
|
1617
|
+
if verbose:
|
|
1618
|
+
print("... after Frobenius filter = {}".format(B))
|
|
1619
|
+
return B
|
|
1620
|
+
|
|
1621
|
+
|
|
1622
|
+
def reducible_primes_naive(E, max_l=None, num_P=None, verbose=False):
|
|
1623
|
+
r"""
|
|
1624
|
+
Return locally reducible primes `\ell` up to ``max_l``.
|
|
1625
|
+
|
|
1626
|
+
The list of primes `\ell` returned consists of all those up to
|
|
1627
|
+
``max_l`` such that `E` mod `P` has an `\ell`-isogeny, where `K`
|
|
1628
|
+
is the base field of `E`, for ``num_P`` primes `P` of `K`. In
|
|
1629
|
+
most cases `E` then has a `K`-rational `\ell`-isogeny, but there
|
|
1630
|
+
are rare exceptions.
|
|
1631
|
+
|
|
1632
|
+
INPUT:
|
|
1633
|
+
|
|
1634
|
+
- ``E`` -- an elliptic curve defined over a number field `K`
|
|
1635
|
+
|
|
1636
|
+
- ``max_l`` -- integer or ``None`` (default); the maximum prime
|
|
1637
|
+
`\ell` to test
|
|
1638
|
+
|
|
1639
|
+
- ``num_P`` -- integer or ``None`` (default); the number of primes
|
|
1640
|
+
`P` of `K` to use in testing each `\ell`
|
|
1641
|
+
|
|
1642
|
+
EXAMPLES::
|
|
1643
|
+
|
|
1644
|
+
sage: from sage.schemes.elliptic_curves.gal_reps_number_field import reducible_primes_naive
|
|
1645
|
+
sage: x = polygen(ZZ, 'x')
|
|
1646
|
+
sage: K.<a> = NumberField(x^4 - 5*x^2 + 3)
|
|
1647
|
+
sage: E = EllipticCurve(K, [a^2 - 2, -a^2 + 3, a^2 - 2, -50*a^2 + 35, 95*a^2 - 67])
|
|
1648
|
+
sage: reducible_primes_naive(E,num_P=10)
|
|
1649
|
+
[2, 5, 53, 173, 197, 241, 293, 317, 409, 557, 601, 653, 677, 769, 773, 797]
|
|
1650
|
+
sage: reducible_primes_naive(E,num_P=15)
|
|
1651
|
+
[2, 5, 197, 557, 653, 769]
|
|
1652
|
+
sage: reducible_primes_naive(E,num_P=20)
|
|
1653
|
+
[2, 5]
|
|
1654
|
+
sage: reducible_primes_naive(E) # long time
|
|
1655
|
+
[2, 5]
|
|
1656
|
+
sage: [phi.degree() for phi in E.isogenies_prime_degree()] # long time
|
|
1657
|
+
[2, 2, 2, 5]
|
|
1658
|
+
"""
|
|
1659
|
+
if max_l is None:
|
|
1660
|
+
max_l = 1000
|
|
1661
|
+
if num_P is None:
|
|
1662
|
+
num_P = 100
|
|
1663
|
+
if verbose:
|
|
1664
|
+
print("E = {}, finding reducible primes up to {} using Frobenius filter with {} primes".format(E.ainvs(), max_l, num_P))
|
|
1665
|
+
|
|
1666
|
+
B = Frobenius_filter(E, primes(max_l), num_P)
|
|
1667
|
+
if verbose:
|
|
1668
|
+
print("... returning {}".format(B))
|
|
1669
|
+
return B
|