passagemath-schemes 10.6.40__cp314-cp314-macosx_13_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-schemes might be problematic. Click here for more details.
- passagemath_schemes/.dylibs/libflint.22.0.dylib +0 -0
- passagemath_schemes/.dylibs/libgmp.10.dylib +0 -0
- passagemath_schemes/.dylibs/libgmpxx.4.dylib +0 -0
- passagemath_schemes/.dylibs/libmpfr.6.dylib +0 -0
- passagemath_schemes/__init__.py +3 -0
- passagemath_schemes-10.6.40.dist-info/METADATA +204 -0
- passagemath_schemes-10.6.40.dist-info/METADATA.bak +205 -0
- passagemath_schemes-10.6.40.dist-info/RECORD +314 -0
- passagemath_schemes-10.6.40.dist-info/WHEEL +6 -0
- passagemath_schemes-10.6.40.dist-info/top_level.txt +3 -0
- sage/all__sagemath_schemes.py +23 -0
- sage/databases/all__sagemath_schemes.py +7 -0
- sage/databases/cremona.py +1723 -0
- sage/dynamics/all__sagemath_schemes.py +2 -0
- sage/dynamics/arithmetic_dynamics/affine_ds.py +1083 -0
- sage/dynamics/arithmetic_dynamics/all.py +14 -0
- sage/dynamics/arithmetic_dynamics/berkovich_ds.py +1101 -0
- sage/dynamics/arithmetic_dynamics/dynamical_semigroup.py +1543 -0
- sage/dynamics/arithmetic_dynamics/endPN_automorphism_group.py +2426 -0
- sage/dynamics/arithmetic_dynamics/endPN_minimal_model.py +1169 -0
- sage/dynamics/arithmetic_dynamics/generic_ds.py +663 -0
- sage/dynamics/arithmetic_dynamics/product_projective_ds.py +339 -0
- sage/dynamics/arithmetic_dynamics/projective_ds.py +9558 -0
- sage/dynamics/arithmetic_dynamics/projective_ds_helper.cpython-314-darwin.so +0 -0
- sage/dynamics/arithmetic_dynamics/projective_ds_helper.pyx +301 -0
- sage/dynamics/arithmetic_dynamics/wehlerK3.py +2576 -0
- sage/lfunctions/all.py +18 -0
- sage/lfunctions/dokchitser.py +745 -0
- sage/lfunctions/pari.py +818 -0
- sage/lfunctions/zero_sums.cpython-314-darwin.so +0 -0
- sage/lfunctions/zero_sums.pyx +1847 -0
- sage/modular/abvar/abvar.py +5135 -0
- sage/modular/abvar/abvar_ambient_jacobian.py +413 -0
- sage/modular/abvar/abvar_newform.py +244 -0
- sage/modular/abvar/all.py +8 -0
- sage/modular/abvar/constructor.py +186 -0
- sage/modular/abvar/cuspidal_subgroup.py +371 -0
- sage/modular/abvar/finite_subgroup.py +896 -0
- sage/modular/abvar/homology.py +720 -0
- sage/modular/abvar/homspace.py +998 -0
- sage/modular/abvar/lseries.py +415 -0
- sage/modular/abvar/morphism.py +935 -0
- sage/modular/abvar/torsion_point.py +274 -0
- sage/modular/abvar/torsion_subgroup.py +740 -0
- sage/modular/all.py +43 -0
- sage/modular/arithgroup/all.py +20 -0
- sage/modular/arithgroup/arithgroup_element.cpython-314-darwin.so +0 -0
- sage/modular/arithgroup/arithgroup_element.pyx +474 -0
- sage/modular/arithgroup/arithgroup_generic.py +1402 -0
- sage/modular/arithgroup/arithgroup_perm.py +2692 -0
- sage/modular/arithgroup/congroup.cpython-314-darwin.so +0 -0
- sage/modular/arithgroup/congroup.pyx +334 -0
- sage/modular/arithgroup/congroup_gamma.py +363 -0
- sage/modular/arithgroup/congroup_gamma0.py +692 -0
- sage/modular/arithgroup/congroup_gamma1.py +653 -0
- sage/modular/arithgroup/congroup_gammaH.py +1469 -0
- sage/modular/arithgroup/congroup_generic.py +628 -0
- sage/modular/arithgroup/congroup_sl2z.py +267 -0
- sage/modular/arithgroup/farey_symbol.cpython-314-darwin.so +0 -0
- sage/modular/arithgroup/farey_symbol.pyx +1066 -0
- sage/modular/arithgroup/tests.py +418 -0
- sage/modular/btquotients/all.py +4 -0
- sage/modular/btquotients/btquotient.py +3753 -0
- sage/modular/btquotients/pautomorphicform.py +2570 -0
- sage/modular/buzzard.py +100 -0
- sage/modular/congroup.py +29 -0
- sage/modular/congroup_element.py +13 -0
- sage/modular/cusps.py +1109 -0
- sage/modular/cusps_nf.py +1270 -0
- sage/modular/dims.py +569 -0
- sage/modular/dirichlet.py +3310 -0
- sage/modular/drinfeld_modform/all.py +2 -0
- sage/modular/drinfeld_modform/element.py +446 -0
- sage/modular/drinfeld_modform/ring.py +773 -0
- sage/modular/drinfeld_modform/tutorial.py +236 -0
- sage/modular/etaproducts.py +1065 -0
- sage/modular/hecke/algebra.py +746 -0
- sage/modular/hecke/all.py +20 -0
- sage/modular/hecke/ambient_module.py +1019 -0
- sage/modular/hecke/degenmap.py +119 -0
- sage/modular/hecke/element.py +325 -0
- sage/modular/hecke/hecke_operator.py +780 -0
- sage/modular/hecke/homspace.py +206 -0
- sage/modular/hecke/module.py +1767 -0
- sage/modular/hecke/morphism.py +174 -0
- sage/modular/hecke/submodule.py +989 -0
- sage/modular/hypergeometric_misc.cpython-314-darwin.so +0 -0
- sage/modular/hypergeometric_misc.pxd +4 -0
- sage/modular/hypergeometric_misc.pyx +166 -0
- sage/modular/hypergeometric_motive.py +2017 -0
- sage/modular/local_comp/all.py +2 -0
- sage/modular/local_comp/liftings.py +292 -0
- sage/modular/local_comp/local_comp.py +1071 -0
- sage/modular/local_comp/smoothchar.py +1825 -0
- sage/modular/local_comp/type_space.py +748 -0
- sage/modular/modform/all.py +30 -0
- sage/modular/modform/ambient.py +815 -0
- sage/modular/modform/ambient_R.py +177 -0
- sage/modular/modform/ambient_eps.py +306 -0
- sage/modular/modform/ambient_g0.py +124 -0
- sage/modular/modform/ambient_g1.py +204 -0
- sage/modular/modform/constructor.py +545 -0
- sage/modular/modform/cuspidal_submodule.py +708 -0
- sage/modular/modform/defaults.py +14 -0
- sage/modular/modform/eis_series.py +505 -0
- sage/modular/modform/eisenstein_submodule.py +663 -0
- sage/modular/modform/element.py +4131 -0
- sage/modular/modform/find_generators.py +59 -0
- sage/modular/modform/half_integral.py +154 -0
- sage/modular/modform/hecke_operator_on_qexp.py +247 -0
- sage/modular/modform/j_invariant.py +47 -0
- sage/modular/modform/l_series_gross_zagier.py +133 -0
- sage/modular/modform/l_series_gross_zagier_coeffs.cpython-314-darwin.so +0 -0
- sage/modular/modform/l_series_gross_zagier_coeffs.pyx +177 -0
- sage/modular/modform/notes.py +45 -0
- sage/modular/modform/numerical.py +514 -0
- sage/modular/modform/periods.py +14 -0
- sage/modular/modform/ring.py +1257 -0
- sage/modular/modform/space.py +1860 -0
- sage/modular/modform/submodule.py +118 -0
- sage/modular/modform/tests.py +64 -0
- sage/modular/modform/theta.py +110 -0
- sage/modular/modform/vm_basis.py +381 -0
- sage/modular/modform/weight1.py +220 -0
- sage/modular/modform_hecketriangle/abstract_ring.py +1932 -0
- sage/modular/modform_hecketriangle/abstract_space.py +2528 -0
- sage/modular/modform_hecketriangle/all.py +30 -0
- sage/modular/modform_hecketriangle/analytic_type.py +590 -0
- sage/modular/modform_hecketriangle/constructor.py +416 -0
- sage/modular/modform_hecketriangle/element.py +351 -0
- sage/modular/modform_hecketriangle/functors.py +752 -0
- sage/modular/modform_hecketriangle/graded_ring.py +541 -0
- sage/modular/modform_hecketriangle/graded_ring_element.py +2225 -0
- sage/modular/modform_hecketriangle/hecke_triangle_group_element.py +3352 -0
- sage/modular/modform_hecketriangle/hecke_triangle_groups.py +1432 -0
- sage/modular/modform_hecketriangle/readme.py +1214 -0
- sage/modular/modform_hecketriangle/series_constructor.py +580 -0
- sage/modular/modform_hecketriangle/space.py +1037 -0
- sage/modular/modform_hecketriangle/subspace.py +423 -0
- sage/modular/modsym/all.py +17 -0
- sage/modular/modsym/ambient.py +3846 -0
- sage/modular/modsym/boundary.py +1420 -0
- sage/modular/modsym/element.py +336 -0
- sage/modular/modsym/g1list.py +178 -0
- sage/modular/modsym/ghlist.py +182 -0
- sage/modular/modsym/hecke_operator.py +73 -0
- sage/modular/modsym/manin_symbol.cpython-314-darwin.so +0 -0
- sage/modular/modsym/manin_symbol.pxd +5 -0
- sage/modular/modsym/manin_symbol.pyx +497 -0
- sage/modular/modsym/manin_symbol_list.py +1295 -0
- sage/modular/modsym/modsym.py +400 -0
- sage/modular/modsym/modular_symbols.py +384 -0
- sage/modular/modsym/p1list.cpython-314-darwin.so +0 -0
- sage/modular/modsym/p1list.pxd +29 -0
- sage/modular/modsym/p1list.pyx +1372 -0
- sage/modular/modsym/p1list_nf.py +1241 -0
- sage/modular/modsym/relation_matrix.py +591 -0
- sage/modular/modsym/relation_matrix_pyx.cpython-314-darwin.so +0 -0
- sage/modular/modsym/relation_matrix_pyx.pyx +108 -0
- sage/modular/modsym/space.py +2468 -0
- sage/modular/modsym/subspace.py +455 -0
- sage/modular/modsym/tests.py +375 -0
- sage/modular/multiple_zeta.py +2632 -0
- sage/modular/multiple_zeta_F_algebra.py +786 -0
- sage/modular/overconvergent/all.py +6 -0
- sage/modular/overconvergent/genus0.py +1878 -0
- sage/modular/overconvergent/hecke_series.py +1187 -0
- sage/modular/overconvergent/weightspace.py +778 -0
- sage/modular/pollack_stevens/all.py +4 -0
- sage/modular/pollack_stevens/distributions.py +874 -0
- sage/modular/pollack_stevens/fund_domain.py +1572 -0
- sage/modular/pollack_stevens/manin_map.py +859 -0
- sage/modular/pollack_stevens/modsym.py +1593 -0
- sage/modular/pollack_stevens/padic_lseries.py +417 -0
- sage/modular/pollack_stevens/sigma0.py +534 -0
- sage/modular/pollack_stevens/space.py +1076 -0
- sage/modular/quasimodform/all.py +3 -0
- sage/modular/quasimodform/element.py +845 -0
- sage/modular/quasimodform/ring.py +828 -0
- sage/modular/quatalg/all.py +3 -0
- sage/modular/quatalg/brandt.py +1642 -0
- sage/modular/ssmod/all.py +8 -0
- sage/modular/ssmod/ssmod.py +827 -0
- sage/rings/all__sagemath_schemes.py +1 -0
- sage/rings/polynomial/all__sagemath_schemes.py +1 -0
- sage/rings/polynomial/binary_form_reduce.py +585 -0
- sage/schemes/all.py +41 -0
- sage/schemes/berkovich/all.py +6 -0
- sage/schemes/berkovich/berkovich_cp_element.py +2582 -0
- sage/schemes/berkovich/berkovich_space.py +748 -0
- sage/schemes/curves/affine_curve.py +2928 -0
- sage/schemes/curves/all.py +33 -0
- sage/schemes/curves/closed_point.py +434 -0
- sage/schemes/curves/constructor.py +381 -0
- sage/schemes/curves/curve.py +542 -0
- sage/schemes/curves/plane_curve_arrangement.py +1283 -0
- sage/schemes/curves/point.py +463 -0
- sage/schemes/curves/projective_curve.py +3026 -0
- sage/schemes/curves/zariski_vankampen.py +1932 -0
- sage/schemes/cyclic_covers/all.py +2 -0
- sage/schemes/cyclic_covers/charpoly_frobenius.py +320 -0
- sage/schemes/cyclic_covers/constructor.py +137 -0
- sage/schemes/cyclic_covers/cycliccover_finite_field.py +1309 -0
- sage/schemes/cyclic_covers/cycliccover_generic.py +310 -0
- sage/schemes/elliptic_curves/BSD.py +1036 -0
- sage/schemes/elliptic_curves/Qcurves.py +592 -0
- sage/schemes/elliptic_curves/addition_formulas_ring.py +94 -0
- sage/schemes/elliptic_curves/all.py +49 -0
- sage/schemes/elliptic_curves/cardinality.py +609 -0
- sage/schemes/elliptic_curves/cm.py +1102 -0
- sage/schemes/elliptic_curves/constructor.py +1552 -0
- sage/schemes/elliptic_curves/ec_database.py +175 -0
- sage/schemes/elliptic_curves/ell_curve_isogeny.py +3972 -0
- sage/schemes/elliptic_curves/ell_egros.py +459 -0
- sage/schemes/elliptic_curves/ell_field.py +2836 -0
- sage/schemes/elliptic_curves/ell_finite_field.py +3359 -0
- sage/schemes/elliptic_curves/ell_generic.py +3760 -0
- sage/schemes/elliptic_curves/ell_local_data.py +1207 -0
- sage/schemes/elliptic_curves/ell_modular_symbols.py +775 -0
- sage/schemes/elliptic_curves/ell_number_field.py +4220 -0
- sage/schemes/elliptic_curves/ell_padic_field.py +107 -0
- sage/schemes/elliptic_curves/ell_point.py +4787 -0
- sage/schemes/elliptic_curves/ell_rational_field.py +7368 -0
- sage/schemes/elliptic_curves/ell_tate_curve.py +671 -0
- sage/schemes/elliptic_curves/ell_torsion.py +436 -0
- sage/schemes/elliptic_curves/ell_wp.py +352 -0
- sage/schemes/elliptic_curves/formal_group.py +760 -0
- sage/schemes/elliptic_curves/gal_reps.py +1459 -0
- sage/schemes/elliptic_curves/gal_reps_number_field.py +1669 -0
- sage/schemes/elliptic_curves/gp_simon.py +152 -0
- sage/schemes/elliptic_curves/heegner.py +7335 -0
- sage/schemes/elliptic_curves/height.py +2109 -0
- sage/schemes/elliptic_curves/hom.py +1406 -0
- sage/schemes/elliptic_curves/hom_composite.py +934 -0
- sage/schemes/elliptic_curves/hom_frobenius.py +522 -0
- sage/schemes/elliptic_curves/hom_scalar.py +531 -0
- sage/schemes/elliptic_curves/hom_sum.py +682 -0
- sage/schemes/elliptic_curves/hom_velusqrt.py +1290 -0
- sage/schemes/elliptic_curves/homset.py +271 -0
- sage/schemes/elliptic_curves/isogeny_class.py +1521 -0
- sage/schemes/elliptic_curves/isogeny_small_degree.py +2797 -0
- sage/schemes/elliptic_curves/jacobian.py +237 -0
- sage/schemes/elliptic_curves/kodaira_symbol.py +344 -0
- sage/schemes/elliptic_curves/kraus.py +1014 -0
- sage/schemes/elliptic_curves/lseries_ell.py +943 -0
- sage/schemes/elliptic_curves/mod5family.py +105 -0
- sage/schemes/elliptic_curves/mod_poly.py +197 -0
- sage/schemes/elliptic_curves/mod_sym_num.cpython-314-darwin.so +0 -0
- sage/schemes/elliptic_curves/mod_sym_num.pyx +3796 -0
- sage/schemes/elliptic_curves/modular_parametrization.py +305 -0
- sage/schemes/elliptic_curves/padic_lseries.py +1793 -0
- sage/schemes/elliptic_curves/padics.py +1816 -0
- sage/schemes/elliptic_curves/period_lattice.py +2234 -0
- sage/schemes/elliptic_curves/period_lattice_region.cpython-314-darwin.so +0 -0
- sage/schemes/elliptic_curves/period_lattice_region.pyx +722 -0
- sage/schemes/elliptic_curves/saturation.py +715 -0
- sage/schemes/elliptic_curves/sha_tate.py +1158 -0
- sage/schemes/elliptic_curves/weierstrass_morphism.py +1117 -0
- sage/schemes/elliptic_curves/weierstrass_transform.py +200 -0
- sage/schemes/hyperelliptic_curves/all.py +6 -0
- sage/schemes/hyperelliptic_curves/constructor.py +291 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_finite_field.py +1914 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_g2.py +192 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_generic.py +954 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_padic_field.py +1332 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_rational_field.py +84 -0
- sage/schemes/hyperelliptic_curves/invariants.py +410 -0
- sage/schemes/hyperelliptic_curves/jacobian_endomorphism_utils.py +315 -0
- sage/schemes/hyperelliptic_curves/jacobian_g2.py +32 -0
- sage/schemes/hyperelliptic_curves/jacobian_generic.py +419 -0
- sage/schemes/hyperelliptic_curves/jacobian_homset.py +186 -0
- sage/schemes/hyperelliptic_curves/jacobian_morphism.py +875 -0
- sage/schemes/hyperelliptic_curves/kummer_surface.py +99 -0
- sage/schemes/hyperelliptic_curves/mestre.py +302 -0
- sage/schemes/hyperelliptic_curves/monsky_washnitzer.py +3871 -0
- sage/schemes/jacobians/abstract_jacobian.py +277 -0
- sage/schemes/jacobians/all.py +2 -0
- sage/schemes/overview.py +161 -0
- sage/schemes/plane_conics/all.py +22 -0
- sage/schemes/plane_conics/con_field.py +1296 -0
- sage/schemes/plane_conics/con_finite_field.py +158 -0
- sage/schemes/plane_conics/con_number_field.py +456 -0
- sage/schemes/plane_conics/con_rational_field.py +406 -0
- sage/schemes/plane_conics/con_rational_function_field.py +580 -0
- sage/schemes/plane_conics/constructor.py +249 -0
- sage/schemes/plane_quartics/all.py +2 -0
- sage/schemes/plane_quartics/quartic_constructor.py +71 -0
- sage/schemes/plane_quartics/quartic_generic.py +73 -0
- sage/schemes/riemann_surfaces/all.py +1 -0
- sage/schemes/riemann_surfaces/riemann_surface.py +4117 -0
- sage_wheels/share/cremona/cremona_mini.db +0 -0
- sage_wheels/share/ellcurves/rank0 +30427 -0
- sage_wheels/share/ellcurves/rank1 +31871 -0
- sage_wheels/share/ellcurves/rank10 +6 -0
- sage_wheels/share/ellcurves/rank11 +6 -0
- sage_wheels/share/ellcurves/rank12 +1 -0
- sage_wheels/share/ellcurves/rank14 +1 -0
- sage_wheels/share/ellcurves/rank15 +1 -0
- sage_wheels/share/ellcurves/rank17 +1 -0
- sage_wheels/share/ellcurves/rank19 +1 -0
- sage_wheels/share/ellcurves/rank2 +2388 -0
- sage_wheels/share/ellcurves/rank20 +1 -0
- sage_wheels/share/ellcurves/rank21 +1 -0
- sage_wheels/share/ellcurves/rank22 +1 -0
- sage_wheels/share/ellcurves/rank23 +1 -0
- sage_wheels/share/ellcurves/rank24 +1 -0
- sage_wheels/share/ellcurves/rank28 +1 -0
- sage_wheels/share/ellcurves/rank3 +836 -0
- sage_wheels/share/ellcurves/rank4 +10 -0
- sage_wheels/share/ellcurves/rank5 +5 -0
- sage_wheels/share/ellcurves/rank6 +5 -0
- sage_wheels/share/ellcurves/rank7 +5 -0
- sage_wheels/share/ellcurves/rank8 +6 -0
- sage_wheels/share/ellcurves/rank9 +7 -0
|
@@ -0,0 +1,896 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-schemes
|
|
2
|
+
# sage.doctest: needs sage.libs.pari
|
|
3
|
+
r"""
|
|
4
|
+
Finite subgroups of modular abelian varieties
|
|
5
|
+
|
|
6
|
+
Sage can compute with fairly general finite subgroups of modular
|
|
7
|
+
abelian varieties. Elements of finite order are represented by
|
|
8
|
+
equivalence classes of elements in `H_1(A,\QQ)`
|
|
9
|
+
modulo `H_1(A,\ZZ)`. A finite subgroup can be
|
|
10
|
+
defined by giving generators and via various other constructions.
|
|
11
|
+
Given a finite subgroup, one can compute generators, as well as the
|
|
12
|
+
structure as an abstract group. Arithmetic on subgroups is also
|
|
13
|
+
supported, including adding two subgroups together, checking
|
|
14
|
+
inclusion, etc.
|
|
15
|
+
|
|
16
|
+
TODO: Intersection, action of Hecke operators.
|
|
17
|
+
|
|
18
|
+
AUTHORS:
|
|
19
|
+
|
|
20
|
+
- William Stein (2007-03)
|
|
21
|
+
|
|
22
|
+
EXAMPLES::
|
|
23
|
+
|
|
24
|
+
sage: J = J0(33)
|
|
25
|
+
sage: C = J.cuspidal_subgroup()
|
|
26
|
+
sage: C
|
|
27
|
+
Finite subgroup with invariants [10, 10] over QQ of Abelian variety J0(33) of dimension 3
|
|
28
|
+
sage: C.order()
|
|
29
|
+
100
|
|
30
|
+
sage: C.gens()
|
|
31
|
+
([(1/10, 0, 1/10, 1/10, 1/10, 3/10)], [(0, 1/5, 1/10, 0, 1/10, 9/10)], [(0, 0, 1/2, 0, 1/2, 1/2)])
|
|
32
|
+
sage: C.0 + C.1
|
|
33
|
+
[(1/10, 1/5, 1/5, 1/10, 1/5, 6/5)]
|
|
34
|
+
sage: 10*(C.0 + C.1)
|
|
35
|
+
[(0, 0, 0, 0, 0, 0)]
|
|
36
|
+
sage: G = C.subgroup([C.0 + C.1]); G
|
|
37
|
+
Finite subgroup with invariants [10] over QQbar of Abelian variety J0(33) of dimension 3
|
|
38
|
+
sage: G.gens()
|
|
39
|
+
([(1/10, 1/5, 1/5, 1/10, 1/5, 1/5)],)
|
|
40
|
+
sage: G.order()
|
|
41
|
+
10
|
|
42
|
+
sage: G <= C
|
|
43
|
+
True
|
|
44
|
+
sage: G >= C
|
|
45
|
+
False
|
|
46
|
+
|
|
47
|
+
We make a table of the order of the cuspidal subgroup for the first
|
|
48
|
+
few levels::
|
|
49
|
+
|
|
50
|
+
sage: for N in range(11,40):
|
|
51
|
+
....: print("{} {}".format(N, J0(N).cuspidal_subgroup().order()))
|
|
52
|
+
11 5
|
|
53
|
+
12 1
|
|
54
|
+
13 1
|
|
55
|
+
14 6
|
|
56
|
+
15 8
|
|
57
|
+
16 1
|
|
58
|
+
17 4
|
|
59
|
+
18 1
|
|
60
|
+
19 3
|
|
61
|
+
20 6
|
|
62
|
+
21 8
|
|
63
|
+
22 25
|
|
64
|
+
23 11
|
|
65
|
+
24 8
|
|
66
|
+
25 1
|
|
67
|
+
26 21
|
|
68
|
+
27 9
|
|
69
|
+
28 36
|
|
70
|
+
29 7
|
|
71
|
+
30 192
|
|
72
|
+
31 5
|
|
73
|
+
32 8
|
|
74
|
+
33 100
|
|
75
|
+
34 48
|
|
76
|
+
35 48
|
|
77
|
+
36 12
|
|
78
|
+
37 3
|
|
79
|
+
38 135
|
|
80
|
+
39 56
|
|
81
|
+
|
|
82
|
+
TESTS::
|
|
83
|
+
|
|
84
|
+
sage: G = J0(11).finite_subgroup([[1/3,0], [0,1/5]]); G
|
|
85
|
+
Finite subgroup with invariants [15] over QQbar of Abelian variety J0(11) of dimension 1
|
|
86
|
+
sage: loads(dumps(G)) == G
|
|
87
|
+
True
|
|
88
|
+
sage: loads(dumps(G.0)) == G.0
|
|
89
|
+
True
|
|
90
|
+
"""
|
|
91
|
+
|
|
92
|
+
# ****************************************************************************
|
|
93
|
+
# Copyright (C) 2007 William Stein <wstein@gmail.com>
|
|
94
|
+
#
|
|
95
|
+
# This program is free software: you can redistribute it and/or modify
|
|
96
|
+
# it under the terms of the GNU General Public License as published by
|
|
97
|
+
# the Free Software Foundation, either version 2 of the License, or
|
|
98
|
+
# (at your option) any later version.
|
|
99
|
+
# https://www.gnu.org/licenses/
|
|
100
|
+
# ****************************************************************************
|
|
101
|
+
|
|
102
|
+
import sage.rings.abc
|
|
103
|
+
|
|
104
|
+
from sage.misc.lazy_import import lazy_import
|
|
105
|
+
from sage.modular.abvar.torsion_point import TorsionPoint
|
|
106
|
+
from sage.modules.module import Module
|
|
107
|
+
from sage.modules.free_module import FreeModule_generic
|
|
108
|
+
from sage.structure.gens_py import abelian_iterator
|
|
109
|
+
from sage.structure.sequence import Sequence
|
|
110
|
+
from sage.structure.richcmp import richcmp_method, richcmp
|
|
111
|
+
from sage.rings.integer import Integer
|
|
112
|
+
from sage.rings.integer_ring import ZZ
|
|
113
|
+
from sage.rings.rational_field import QQ
|
|
114
|
+
from sage.arith.functions import lcm
|
|
115
|
+
from sage.misc.misc_c import prod
|
|
116
|
+
from sage.structure.element import coercion_model
|
|
117
|
+
|
|
118
|
+
|
|
119
|
+
@richcmp_method
|
|
120
|
+
class FiniteSubgroup(Module):
|
|
121
|
+
r"""
|
|
122
|
+
A finite subgroup of a modular abelian variety.
|
|
123
|
+
|
|
124
|
+
INPUT:
|
|
125
|
+
|
|
126
|
+
- ``abvar`` -- a modular abelian variety
|
|
127
|
+
|
|
128
|
+
- ``field_of_definition`` -- a field over which this group is defined
|
|
129
|
+
|
|
130
|
+
EXAMPLES:
|
|
131
|
+
|
|
132
|
+
This is an abstract base class, so there are no instances of
|
|
133
|
+
this class itself::
|
|
134
|
+
|
|
135
|
+
sage: A = J0(37)
|
|
136
|
+
sage: G = A.torsion_subgroup(3); G
|
|
137
|
+
Finite subgroup with invariants [3, 3, 3, 3] over QQ of Abelian variety J0(37) of dimension 2
|
|
138
|
+
sage: type(G)
|
|
139
|
+
<class 'sage.modular.abvar.finite_subgroup.FiniteSubgroup_lattice_with_category'>
|
|
140
|
+
sage: from sage.modular.abvar.finite_subgroup import FiniteSubgroup
|
|
141
|
+
sage: isinstance(G, FiniteSubgroup)
|
|
142
|
+
True
|
|
143
|
+
"""
|
|
144
|
+
|
|
145
|
+
Element = TorsionPoint
|
|
146
|
+
|
|
147
|
+
def __init__(self, abvar, field_of_definition=QQ):
|
|
148
|
+
"""
|
|
149
|
+
Initialize ``self``.
|
|
150
|
+
|
|
151
|
+
TESTS::
|
|
152
|
+
|
|
153
|
+
sage: A = J0(11)
|
|
154
|
+
sage: G = A.torsion_subgroup(2)
|
|
155
|
+
sage: TestSuite(G).run() # long time
|
|
156
|
+
"""
|
|
157
|
+
from sage.categories.category import Category
|
|
158
|
+
from sage.categories.fields import Fields
|
|
159
|
+
from sage.categories.finite_enumerated_sets import FiniteEnumeratedSets
|
|
160
|
+
from sage.categories.modules import Modules
|
|
161
|
+
from .abvar import ModularAbelianVariety_abstract
|
|
162
|
+
if field_of_definition not in Fields():
|
|
163
|
+
raise TypeError("field_of_definition must be a field")
|
|
164
|
+
if not isinstance(abvar, ModularAbelianVariety_abstract):
|
|
165
|
+
raise TypeError("abvar must be a modular abelian variety")
|
|
166
|
+
category = Category.join((Modules(ZZ), FiniteEnumeratedSets()))
|
|
167
|
+
Module.__init__(self, ZZ, category=category)
|
|
168
|
+
self.__abvar = abvar
|
|
169
|
+
self.__field_of_definition = field_of_definition
|
|
170
|
+
|
|
171
|
+
################################################################
|
|
172
|
+
# DERIVED CLASS MUST OVERRIDE THE lattice METHOD
|
|
173
|
+
################################################################
|
|
174
|
+
def lattice(self):
|
|
175
|
+
"""
|
|
176
|
+
Return the lattice corresponding to this subgroup in the rational
|
|
177
|
+
homology of the modular Jacobian product. The elements of the
|
|
178
|
+
subgroup are represented by vectors in the ambient vector space
|
|
179
|
+
(the rational homology), and this returns the lattice they span.
|
|
180
|
+
EXAMPLES::
|
|
181
|
+
|
|
182
|
+
sage: J = J0(33); C = J[0].cuspidal_subgroup(); C
|
|
183
|
+
Finite subgroup with invariants [5] over QQ of
|
|
184
|
+
Simple abelian subvariety 11a(1,33) of dimension 1 of J0(33)
|
|
185
|
+
sage: C.lattice()
|
|
186
|
+
Free module of degree 6 and rank 2 over Integer Ring
|
|
187
|
+
Echelon basis matrix:
|
|
188
|
+
[ 1/5 13/5 -2 -4/5 2 -1/5]
|
|
189
|
+
[ 0 3 -2 -1 2 0]
|
|
190
|
+
"""
|
|
191
|
+
raise NotImplementedError
|
|
192
|
+
|
|
193
|
+
def _relative_basis_matrix(self):
|
|
194
|
+
"""
|
|
195
|
+
Return matrix of this finite subgroup, but relative to the homology
|
|
196
|
+
of the parent abelian variety.
|
|
197
|
+
|
|
198
|
+
EXAMPLES::
|
|
199
|
+
|
|
200
|
+
sage: A = J0(43)[1]; A
|
|
201
|
+
Simple abelian subvariety 43b(1,43) of dimension 2 of J0(43)
|
|
202
|
+
sage: C = A.cuspidal_subgroup(); C
|
|
203
|
+
Finite subgroup with invariants [7] over QQ of
|
|
204
|
+
Simple abelian subvariety 43b(1,43) of dimension 2 of J0(43)
|
|
205
|
+
sage: C._relative_basis_matrix()
|
|
206
|
+
[ 1 0 0 0]
|
|
207
|
+
[ 0 1/7 6/7 5/7]
|
|
208
|
+
[ 0 0 1 0]
|
|
209
|
+
[ 0 0 0 1]
|
|
210
|
+
"""
|
|
211
|
+
try:
|
|
212
|
+
return self.__relative_basis_matrix
|
|
213
|
+
except AttributeError:
|
|
214
|
+
M = self.__abvar.lattice().coordinate_module(self.lattice()).basis_matrix()
|
|
215
|
+
self.__relative_basis_matrix = M
|
|
216
|
+
return M
|
|
217
|
+
|
|
218
|
+
# General functionality
|
|
219
|
+
def __richcmp__(self, other, op):
|
|
220
|
+
"""
|
|
221
|
+
Compare ``self`` to ``other``.
|
|
222
|
+
|
|
223
|
+
If ``other`` is not a :class:`FiniteSubgroup`, then
|
|
224
|
+
``NotImplemented`` is returned. If ``other`` is a
|
|
225
|
+
:class:`FiniteSubgroup` and the ambient abelian varieties are
|
|
226
|
+
not equal, then the ambient abelian varieties are compared.
|
|
227
|
+
If ``other`` is a :class:`FiniteSubgroup` and the ambient
|
|
228
|
+
abelian varieties are equal, then the subgroups are compared
|
|
229
|
+
via their corresponding lattices.
|
|
230
|
+
|
|
231
|
+
EXAMPLES:
|
|
232
|
+
|
|
233
|
+
We first compare two subgroups of `J_0(37)`::
|
|
234
|
+
|
|
235
|
+
sage: A = J0(37)
|
|
236
|
+
sage: G = A.torsion_subgroup(3); G.order()
|
|
237
|
+
81
|
|
238
|
+
sage: H = A.cuspidal_subgroup(); H.order()
|
|
239
|
+
3
|
|
240
|
+
sage: H < G
|
|
241
|
+
True
|
|
242
|
+
sage: H.is_subgroup(G)
|
|
243
|
+
True
|
|
244
|
+
|
|
245
|
+
The ambient varieties are compared::
|
|
246
|
+
|
|
247
|
+
sage: A[0].cuspidal_subgroup() > J0(11).cuspidal_subgroup()
|
|
248
|
+
True
|
|
249
|
+
|
|
250
|
+
Comparing subgroups sitting in different abelian varieties::
|
|
251
|
+
|
|
252
|
+
sage: A[0].cuspidal_subgroup() < A[1].cuspidal_subgroup()
|
|
253
|
+
True
|
|
254
|
+
"""
|
|
255
|
+
if not isinstance(other, FiniteSubgroup):
|
|
256
|
+
return NotImplemented
|
|
257
|
+
A = self.abelian_variety()
|
|
258
|
+
B = other.abelian_variety()
|
|
259
|
+
if not A.in_same_ambient_variety(B):
|
|
260
|
+
return richcmp(A.ambient_variety(), B.ambient_variety(), op)
|
|
261
|
+
L = A.lattice() + B.lattice()
|
|
262
|
+
lx = other.lattice() + L
|
|
263
|
+
rx = self.lattice() + L
|
|
264
|
+
# order gets reversed in passing to lattices.
|
|
265
|
+
return lx._echelon_matrix_richcmp(rx, op)
|
|
266
|
+
|
|
267
|
+
def is_subgroup(self, other) -> bool:
|
|
268
|
+
"""
|
|
269
|
+
Return ``True`` exactly if ``self`` is a subgroup of ``other``,
|
|
270
|
+
and both are defined as subgroups of the same ambient abelian variety.
|
|
271
|
+
|
|
272
|
+
EXAMPLES::
|
|
273
|
+
|
|
274
|
+
sage: C = J0(22).cuspidal_subgroup()
|
|
275
|
+
sage: H = C.subgroup([C.0])
|
|
276
|
+
sage: K = C.subgroup([C.1])
|
|
277
|
+
sage: H.is_subgroup(K)
|
|
278
|
+
False
|
|
279
|
+
sage: K.is_subgroup(H)
|
|
280
|
+
False
|
|
281
|
+
sage: K.is_subgroup(C)
|
|
282
|
+
True
|
|
283
|
+
sage: H.is_subgroup(C)
|
|
284
|
+
True
|
|
285
|
+
"""
|
|
286
|
+
# We use that self is contained in other, whether other is
|
|
287
|
+
# either a finite group or an abelian variety, if and only
|
|
288
|
+
# if self doesn't shrink when intersected with other.
|
|
289
|
+
try:
|
|
290
|
+
return self.intersection(other).order() == self.order()
|
|
291
|
+
except TypeError:
|
|
292
|
+
return False
|
|
293
|
+
|
|
294
|
+
def __add__(self, other):
|
|
295
|
+
"""
|
|
296
|
+
Return the sum of two subgroups.
|
|
297
|
+
|
|
298
|
+
EXAMPLES::
|
|
299
|
+
|
|
300
|
+
sage: C = J0(22).cuspidal_subgroup()
|
|
301
|
+
sage: C.gens()
|
|
302
|
+
([(1/5, 1/5, 4/5, 0)], [(0, 0, 0, 1/5)])
|
|
303
|
+
sage: A = C.subgroup([C.0]); B = C.subgroup([C.1])
|
|
304
|
+
sage: A + B == C
|
|
305
|
+
True
|
|
306
|
+
|
|
307
|
+
An example where the parent abelian varieties are different::
|
|
308
|
+
|
|
309
|
+
sage: A = J0(48); A[0].cuspidal_subgroup() + A[1].cuspidal_subgroup()
|
|
310
|
+
Finite subgroup with invariants [2, 4, 4] over QQ of
|
|
311
|
+
Abelian subvariety of dimension 2 of J0(48)
|
|
312
|
+
"""
|
|
313
|
+
if not isinstance(other, FiniteSubgroup):
|
|
314
|
+
raise TypeError("only addition of two finite subgroups is defined")
|
|
315
|
+
A = self.abelian_variety()
|
|
316
|
+
B = other.abelian_variety()
|
|
317
|
+
if not A.in_same_ambient_variety(B):
|
|
318
|
+
raise ValueError("self and other must be in the same ambient Jacobian")
|
|
319
|
+
K = coercion_model.common_parent(self.field_of_definition(), other.field_of_definition())
|
|
320
|
+
lattice = self.lattice() + other.lattice()
|
|
321
|
+
if A != B:
|
|
322
|
+
C = A + B
|
|
323
|
+
lattice += C.lattice()
|
|
324
|
+
return FiniteSubgroup_lattice(C, lattice, field_of_definition=K)
|
|
325
|
+
else:
|
|
326
|
+
return FiniteSubgroup_lattice(self.abelian_variety(), lattice, field_of_definition=K)
|
|
327
|
+
|
|
328
|
+
def exponent(self):
|
|
329
|
+
"""
|
|
330
|
+
Return the exponent of this finite abelian group.
|
|
331
|
+
|
|
332
|
+
OUTPUT: integer
|
|
333
|
+
|
|
334
|
+
EXAMPLES::
|
|
335
|
+
|
|
336
|
+
sage: t = J0(33).hecke_operator(7)
|
|
337
|
+
sage: G = t.kernel()[0]; G
|
|
338
|
+
Finite subgroup with invariants [2, 2, 2, 2, 4, 4] over QQ of
|
|
339
|
+
Abelian variety J0(33) of dimension 3
|
|
340
|
+
sage: G.exponent()
|
|
341
|
+
4
|
|
342
|
+
"""
|
|
343
|
+
try:
|
|
344
|
+
return self.__exponent
|
|
345
|
+
except AttributeError:
|
|
346
|
+
e = lcm(self.invariants())
|
|
347
|
+
self.__exponent = e
|
|
348
|
+
return e
|
|
349
|
+
|
|
350
|
+
def intersection(self, other):
|
|
351
|
+
"""
|
|
352
|
+
Return the intersection of the finite subgroups ``self`` and ``other``.
|
|
353
|
+
|
|
354
|
+
INPUT:
|
|
355
|
+
|
|
356
|
+
- ``other`` -- a finite group
|
|
357
|
+
|
|
358
|
+
OUTPUT: a finite group
|
|
359
|
+
|
|
360
|
+
EXAMPLES::
|
|
361
|
+
|
|
362
|
+
sage: E11a0, E11a1, B = J0(33)
|
|
363
|
+
sage: G = E11a0.torsion_subgroup(6); H = E11a0.torsion_subgroup(9)
|
|
364
|
+
sage: G.intersection(H)
|
|
365
|
+
Finite subgroup with invariants [3, 3] over QQ of
|
|
366
|
+
Simple abelian subvariety 11a(1,33) of dimension 1 of J0(33)
|
|
367
|
+
sage: W = E11a1.torsion_subgroup(15)
|
|
368
|
+
sage: G.intersection(W)
|
|
369
|
+
Finite subgroup with invariants [] over QQ of
|
|
370
|
+
Simple abelian subvariety 11a(1,33) of dimension 1 of J0(33)
|
|
371
|
+
sage: E11a0.intersection(E11a1)[0]
|
|
372
|
+
Finite subgroup with invariants [5] over QQ of
|
|
373
|
+
Simple abelian subvariety 11a(1,33) of dimension 1 of J0(33)
|
|
374
|
+
|
|
375
|
+
We intersect subgroups of different abelian varieties.
|
|
376
|
+
|
|
377
|
+
::
|
|
378
|
+
|
|
379
|
+
sage: E11a0, E11a1, B = J0(33)
|
|
380
|
+
sage: G = E11a0.torsion_subgroup(5); H = E11a1.torsion_subgroup(5)
|
|
381
|
+
sage: G.intersection(H)
|
|
382
|
+
Finite subgroup with invariants [5] over QQ of
|
|
383
|
+
Simple abelian subvariety 11a(1,33) of dimension 1 of J0(33)
|
|
384
|
+
sage: E11a0.intersection(E11a1)[0]
|
|
385
|
+
Finite subgroup with invariants [5] over QQ of
|
|
386
|
+
Simple abelian subvariety 11a(1,33) of dimension 1 of J0(33)
|
|
387
|
+
|
|
388
|
+
We intersect abelian varieties with subgroups::
|
|
389
|
+
|
|
390
|
+
sage: t = J0(33).hecke_operator(7)
|
|
391
|
+
sage: G = t.kernel()[0]; G
|
|
392
|
+
Finite subgroup with invariants [2, 2, 2, 2, 4, 4] over QQ of
|
|
393
|
+
Abelian variety J0(33) of dimension 3
|
|
394
|
+
sage: A = J0(33).old_subvariety()
|
|
395
|
+
sage: A.intersection(G)
|
|
396
|
+
Finite subgroup with invariants [2, 2, 2, 2] over QQ of
|
|
397
|
+
Abelian subvariety of dimension 2 of J0(33)
|
|
398
|
+
sage: A.hecke_operator(7).kernel()[0]
|
|
399
|
+
Finite subgroup with invariants [2, 2, 2, 2] over QQ of
|
|
400
|
+
Abelian subvariety of dimension 2 of J0(33)
|
|
401
|
+
sage: B = J0(33).new_subvariety()
|
|
402
|
+
sage: B.intersection(G)
|
|
403
|
+
Finite subgroup with invariants [4, 4] over QQ of
|
|
404
|
+
Abelian subvariety of dimension 1 of J0(33)
|
|
405
|
+
sage: B.hecke_operator(7).kernel()[0]
|
|
406
|
+
Finite subgroup with invariants [4, 4] over QQ of
|
|
407
|
+
Abelian subvariety of dimension 1 of J0(33)
|
|
408
|
+
sage: A.intersection(B)[0]
|
|
409
|
+
Finite subgroup with invariants [3, 3] over QQ of
|
|
410
|
+
Abelian subvariety of dimension 2 of J0(33)
|
|
411
|
+
"""
|
|
412
|
+
from .abvar import ModularAbelianVariety_abstract
|
|
413
|
+
A = self.abelian_variety()
|
|
414
|
+
if isinstance(other, ModularAbelianVariety_abstract):
|
|
415
|
+
amb = other
|
|
416
|
+
B = other
|
|
417
|
+
M = B.lattice().scale(Integer(1)/self.exponent())
|
|
418
|
+
K = coercion_model.common_parent(self.field_of_definition(), other.base_field())
|
|
419
|
+
else:
|
|
420
|
+
amb = A
|
|
421
|
+
if not isinstance(other, FiniteSubgroup):
|
|
422
|
+
raise TypeError("only intersection with a finite subgroup or "
|
|
423
|
+
"modular abelian variety is defined")
|
|
424
|
+
B = other.abelian_variety()
|
|
425
|
+
if A.ambient_variety() != B.ambient_variety():
|
|
426
|
+
raise TypeError("finite subgroups must be in the same ambient product Jacobian")
|
|
427
|
+
M = other.lattice()
|
|
428
|
+
K = coercion_model.common_parent(self.field_of_definition(), other.field_of_definition())
|
|
429
|
+
|
|
430
|
+
L = self.lattice()
|
|
431
|
+
if A != B:
|
|
432
|
+
# TODO: This might be way slower than what we could do if
|
|
433
|
+
# we think more carefully.
|
|
434
|
+
C = A + B
|
|
435
|
+
L = L + C.lattice()
|
|
436
|
+
M = M + C.lattice()
|
|
437
|
+
W = L.intersection(M).intersection(amb.vector_space())
|
|
438
|
+
return FiniteSubgroup_lattice(amb, W, field_of_definition=K)
|
|
439
|
+
|
|
440
|
+
def __mul__(self, right):
|
|
441
|
+
"""
|
|
442
|
+
Multiply this subgroup by the rational number ``right``.
|
|
443
|
+
|
|
444
|
+
If ``right`` is an integer the result is a subgroup of ``self``. If
|
|
445
|
+
``right`` is a rational number `n/m`, then this group is first
|
|
446
|
+
divided by `m` then multiplied by `n`.
|
|
447
|
+
|
|
448
|
+
INPUT:
|
|
449
|
+
|
|
450
|
+
- ``right`` -- a rational number
|
|
451
|
+
|
|
452
|
+
OUTPUT: a subgroup
|
|
453
|
+
|
|
454
|
+
EXAMPLES::
|
|
455
|
+
|
|
456
|
+
sage: J = J0(37)
|
|
457
|
+
sage: H = J.cuspidal_subgroup(); H.order()
|
|
458
|
+
3
|
|
459
|
+
sage: G = H * 3; G.order()
|
|
460
|
+
1
|
|
461
|
+
sage: G = H * (1/2); G.order()
|
|
462
|
+
48
|
|
463
|
+
sage: J.torsion_subgroup(2) + H == G
|
|
464
|
+
True
|
|
465
|
+
sage: G = H*(3/2); G.order()
|
|
466
|
+
16
|
|
467
|
+
sage: J = J0(42)
|
|
468
|
+
sage: G = J.cuspidal_subgroup(); factor(G.order())
|
|
469
|
+
2^8 * 3^2
|
|
470
|
+
sage: (G * 3).order()
|
|
471
|
+
256
|
|
472
|
+
sage: (G * 0).order()
|
|
473
|
+
1
|
|
474
|
+
sage: (G * (1/5)).order()
|
|
475
|
+
22500000000
|
|
476
|
+
"""
|
|
477
|
+
lattice = self.lattice().scale(right)
|
|
478
|
+
return FiniteSubgroup_lattice(self.abelian_variety(), lattice,
|
|
479
|
+
field_of_definition=self.field_of_definition())
|
|
480
|
+
|
|
481
|
+
def __rmul__(self, left):
|
|
482
|
+
"""
|
|
483
|
+
Multiply this finite subgroup on the left by an integer.
|
|
484
|
+
|
|
485
|
+
EXAMPLES::
|
|
486
|
+
|
|
487
|
+
sage: J = J0(42)
|
|
488
|
+
sage: G = J.cuspidal_subgroup(); factor(G.order())
|
|
489
|
+
2^8 * 3^2
|
|
490
|
+
sage: H = G.__rmul__(2)
|
|
491
|
+
sage: H.order().factor()
|
|
492
|
+
2^4 * 3^2
|
|
493
|
+
sage: 2*G
|
|
494
|
+
Finite subgroup with invariants [6, 24] over QQ of Abelian variety J0(42) of dimension 5
|
|
495
|
+
"""
|
|
496
|
+
return self * left
|
|
497
|
+
|
|
498
|
+
def abelian_variety(self):
|
|
499
|
+
"""
|
|
500
|
+
Return the abelian variety that this is a finite subgroup of.
|
|
501
|
+
|
|
502
|
+
EXAMPLES::
|
|
503
|
+
|
|
504
|
+
sage: J = J0(42)
|
|
505
|
+
sage: G = J.rational_torsion_subgroup(); G
|
|
506
|
+
Torsion subgroup of Abelian variety J0(42) of dimension 5
|
|
507
|
+
sage: G.abelian_variety()
|
|
508
|
+
Abelian variety J0(42) of dimension 5
|
|
509
|
+
"""
|
|
510
|
+
return self.__abvar
|
|
511
|
+
|
|
512
|
+
def field_of_definition(self):
|
|
513
|
+
"""
|
|
514
|
+
Return the field over which this finite modular abelian variety
|
|
515
|
+
subgroup is defined. This is a field over which this subgroup is
|
|
516
|
+
defined.
|
|
517
|
+
|
|
518
|
+
EXAMPLES::
|
|
519
|
+
|
|
520
|
+
sage: J = J0(42)
|
|
521
|
+
sage: G = J.rational_torsion_subgroup(); G
|
|
522
|
+
Torsion subgroup of Abelian variety J0(42) of dimension 5
|
|
523
|
+
sage: G.field_of_definition()
|
|
524
|
+
Rational Field
|
|
525
|
+
"""
|
|
526
|
+
return self.__field_of_definition
|
|
527
|
+
|
|
528
|
+
def _repr_(self):
|
|
529
|
+
"""
|
|
530
|
+
Return string representation of this finite subgroup.
|
|
531
|
+
|
|
532
|
+
EXAMPLES::
|
|
533
|
+
|
|
534
|
+
sage: J = J0(42)
|
|
535
|
+
sage: G = J.torsion_subgroup(3); G._repr_()
|
|
536
|
+
'Finite subgroup with invariants [3, 3, 3, 3, 3, 3, 3, 3, 3, 3] over QQ of Abelian variety J0(42) of dimension 5'
|
|
537
|
+
"""
|
|
538
|
+
K = self.__field_of_definition
|
|
539
|
+
if isinstance(K, sage.rings.abc.AlgebraicField):
|
|
540
|
+
field = "QQbar"
|
|
541
|
+
elif K == QQ:
|
|
542
|
+
field = "QQ"
|
|
543
|
+
else:
|
|
544
|
+
field = str(K)
|
|
545
|
+
return "Finite subgroup %sover %s of %s" % (self._invariants_repr(), field, self.__abvar)
|
|
546
|
+
|
|
547
|
+
def _invariants_repr(self):
|
|
548
|
+
"""
|
|
549
|
+
The string representation of the 'invariants' part of this group.
|
|
550
|
+
|
|
551
|
+
We make this a separate function so it is possible to create finite
|
|
552
|
+
subgroups that don't print their invariants, since printing them
|
|
553
|
+
could be expensive.
|
|
554
|
+
|
|
555
|
+
EXAMPLES::
|
|
556
|
+
|
|
557
|
+
sage: J0(42).cuspidal_subgroup()._invariants_repr()
|
|
558
|
+
'with invariants [2, 2, 12, 48] '
|
|
559
|
+
"""
|
|
560
|
+
return 'with invariants %s ' % (self.invariants(), )
|
|
561
|
+
|
|
562
|
+
def order(self):
|
|
563
|
+
"""
|
|
564
|
+
Return the order (number of elements) of this finite subgroup.
|
|
565
|
+
|
|
566
|
+
EXAMPLES::
|
|
567
|
+
|
|
568
|
+
sage: J = J0(42)
|
|
569
|
+
sage: C = J.cuspidal_subgroup()
|
|
570
|
+
sage: C.order()
|
|
571
|
+
2304
|
|
572
|
+
"""
|
|
573
|
+
try:
|
|
574
|
+
return self.__order
|
|
575
|
+
except AttributeError:
|
|
576
|
+
if self.__abvar.dimension() == 0:
|
|
577
|
+
self.__order = ZZ(1)
|
|
578
|
+
return self.__order
|
|
579
|
+
o = prod(self.invariants())
|
|
580
|
+
self.__order = o
|
|
581
|
+
return o
|
|
582
|
+
|
|
583
|
+
def gens(self) -> tuple:
|
|
584
|
+
"""
|
|
585
|
+
Return a tuple of the generators for this finite subgroup.
|
|
586
|
+
|
|
587
|
+
EXAMPLES:
|
|
588
|
+
|
|
589
|
+
We list generators for several cuspidal subgroups::
|
|
590
|
+
|
|
591
|
+
sage: J0(11).cuspidal_subgroup().gens()
|
|
592
|
+
([(0, 1/5)],)
|
|
593
|
+
sage: J0(37).cuspidal_subgroup().gens()
|
|
594
|
+
([(0, 0, 0, 1/3)],)
|
|
595
|
+
sage: J0(43).cuspidal_subgroup().gens()
|
|
596
|
+
([(0, 1/7, 0, 6/7, 0, 5/7)],)
|
|
597
|
+
sage: J1(13).cuspidal_subgroup().gens()
|
|
598
|
+
([(1/19, 0, 9/19, 9/19)], [(0, 1/19, 0, 9/19)])
|
|
599
|
+
sage: J0(22).torsion_subgroup(6).gens()
|
|
600
|
+
([(1/6, 0, 0, 0)], [(0, 1/6, 0, 0)], [(0, 0, 1/6, 0)], [(0, 0, 0, 1/6)])
|
|
601
|
+
"""
|
|
602
|
+
try:
|
|
603
|
+
return self.__gens
|
|
604
|
+
except AttributeError:
|
|
605
|
+
pass
|
|
606
|
+
|
|
607
|
+
B = [self.element_class(self, v) for v in self.lattice().basis() if v.denominator() > 1]
|
|
608
|
+
self.__gens = tuple(B)
|
|
609
|
+
return self.__gens
|
|
610
|
+
|
|
611
|
+
def gen(self, n):
|
|
612
|
+
r"""
|
|
613
|
+
Return `n`-th generator of ``self``.
|
|
614
|
+
|
|
615
|
+
EXAMPLES::
|
|
616
|
+
|
|
617
|
+
sage: J = J0(23)
|
|
618
|
+
sage: C = J.torsion_subgroup(3)
|
|
619
|
+
sage: C.gens()
|
|
620
|
+
([(1/3, 0, 0, 0)], [(0, 1/3, 0, 0)], [(0, 0, 1/3, 0)], [(0, 0, 0, 1/3)])
|
|
621
|
+
sage: C.gen(0)
|
|
622
|
+
[(1/3, 0, 0, 0)]
|
|
623
|
+
sage: C.gen(3)
|
|
624
|
+
[(0, 0, 0, 1/3)]
|
|
625
|
+
sage: C.gen(4)
|
|
626
|
+
Traceback (most recent call last):
|
|
627
|
+
...
|
|
628
|
+
IndexError: tuple index out of range
|
|
629
|
+
|
|
630
|
+
Negative indices wrap around::
|
|
631
|
+
|
|
632
|
+
sage: C.gen(-1)
|
|
633
|
+
[(0, 0, 0, 1/3)]
|
|
634
|
+
"""
|
|
635
|
+
return self.gens()[n]
|
|
636
|
+
|
|
637
|
+
def _element_constructor_(self, x, check=True):
|
|
638
|
+
r"""
|
|
639
|
+
Convert `x` into this finite subgroup.
|
|
640
|
+
|
|
641
|
+
This works when the abelian varieties that contain `x` and
|
|
642
|
+
``self`` are the same, or if `x` is convertible into the
|
|
643
|
+
rational homology (viewed as an abstract `\QQ`-vector space).
|
|
644
|
+
|
|
645
|
+
EXAMPLES: We first construct the `11`-torsion subgroup of
|
|
646
|
+
`J_0(23)`::
|
|
647
|
+
|
|
648
|
+
sage: J = J0(23)
|
|
649
|
+
sage: G = J.torsion_subgroup(11)
|
|
650
|
+
sage: G.invariants()
|
|
651
|
+
[11, 11, 11, 11]
|
|
652
|
+
|
|
653
|
+
We also construct the cuspidal subgroup::
|
|
654
|
+
|
|
655
|
+
sage: C = J.cuspidal_subgroup()
|
|
656
|
+
sage: C.invariants()
|
|
657
|
+
[11]
|
|
658
|
+
|
|
659
|
+
sage: G(G.0) is G.0
|
|
660
|
+
True
|
|
661
|
+
|
|
662
|
+
We convert an element from the cuspidal subgroup into the
|
|
663
|
+
`11`-torsion subgroup::
|
|
664
|
+
|
|
665
|
+
sage: z = G(C.0); z
|
|
666
|
+
[(1/11, 10/11, 0, 8/11)]
|
|
667
|
+
sage: z.parent() == G
|
|
668
|
+
True
|
|
669
|
+
|
|
670
|
+
We convert a list, which defines an element of the underlying
|
|
671
|
+
``full_module`` into `G`, and verify an equality::
|
|
672
|
+
|
|
673
|
+
sage: x = G([1/11, 1/11, 0, -1/11])
|
|
674
|
+
sage: x == G([1/11, 1/11, 0, 10/11])
|
|
675
|
+
True
|
|
676
|
+
|
|
677
|
+
Finally we attempt to convert some elements that shouldn't
|
|
678
|
+
work, since they are not in `G`::
|
|
679
|
+
|
|
680
|
+
sage: G(J.torsion_subgroup(3).0)
|
|
681
|
+
Traceback (most recent call last):
|
|
682
|
+
...
|
|
683
|
+
TypeError: element [1/3, 0, 0, 0] is not in free module
|
|
684
|
+
|
|
685
|
+
sage: G(J0(27).cuspidal_subgroup()(0))
|
|
686
|
+
Traceback (most recent call last):
|
|
687
|
+
...
|
|
688
|
+
ValueError: ambient abelian varieties are different
|
|
689
|
+
"""
|
|
690
|
+
if isinstance(x, TorsionPoint):
|
|
691
|
+
if x.parent().abelian_variety() != self.abelian_variety():
|
|
692
|
+
raise ValueError('ambient abelian varieties are different')
|
|
693
|
+
x = x.element()
|
|
694
|
+
x = self.lattice()(x, check=check)
|
|
695
|
+
return self.element_class(self, x, check=False)
|
|
696
|
+
|
|
697
|
+
def __contains__(self, x):
|
|
698
|
+
"""
|
|
699
|
+
Return ``True`` if ``x`` is contained in this finite subgroup.
|
|
700
|
+
|
|
701
|
+
EXAMPLES:
|
|
702
|
+
|
|
703
|
+
We define two distinct finite subgroups of `J_0(27)`::
|
|
704
|
+
|
|
705
|
+
sage: G1 = J0(27).rational_cusp_subgroup(); G1
|
|
706
|
+
Finite subgroup with invariants [3] over QQ of Abelian variety J0(27) of dimension 1
|
|
707
|
+
sage: G1.0
|
|
708
|
+
[(1/3, 0)]
|
|
709
|
+
sage: G2 = J0(27).cuspidal_subgroup(); G2
|
|
710
|
+
Finite subgroup with invariants [3, 3] over QQ of Abelian variety J0(27) of dimension 1
|
|
711
|
+
sage: G2.gens()
|
|
712
|
+
([(1/3, 0)], [(0, 1/3)])
|
|
713
|
+
|
|
714
|
+
Now we check whether various elements are in `G_1` and `G_2`::
|
|
715
|
+
|
|
716
|
+
sage: G2.0 in G1
|
|
717
|
+
True
|
|
718
|
+
sage: G2.1 in G1
|
|
719
|
+
False
|
|
720
|
+
sage: G1.0 in G1
|
|
721
|
+
True
|
|
722
|
+
sage: G1.0 in G2
|
|
723
|
+
True
|
|
724
|
+
|
|
725
|
+
The integer `0` is in `G_1`::
|
|
726
|
+
|
|
727
|
+
sage: 0 in G1
|
|
728
|
+
True
|
|
729
|
+
|
|
730
|
+
Elements that have a completely different ambient product Jacobian
|
|
731
|
+
are never in `G`::
|
|
732
|
+
|
|
733
|
+
sage: J0(23).cuspidal_subgroup().0 in G1
|
|
734
|
+
False
|
|
735
|
+
sage: J0(23).cuspidal_subgroup()(0) in G1
|
|
736
|
+
False
|
|
737
|
+
"""
|
|
738
|
+
try:
|
|
739
|
+
self(x)
|
|
740
|
+
except (TypeError, ValueError):
|
|
741
|
+
return False
|
|
742
|
+
return True
|
|
743
|
+
|
|
744
|
+
def subgroup(self, gens):
|
|
745
|
+
"""
|
|
746
|
+
Return the subgroup of ``self`` spanned by the given
|
|
747
|
+
generators, which must all be elements of ``self``.
|
|
748
|
+
|
|
749
|
+
EXAMPLES::
|
|
750
|
+
|
|
751
|
+
sage: J = J0(23)
|
|
752
|
+
sage: G = J.torsion_subgroup(11); G
|
|
753
|
+
Finite subgroup with invariants [11, 11, 11, 11] over QQ of
|
|
754
|
+
Abelian variety J0(23) of dimension 2
|
|
755
|
+
|
|
756
|
+
We create the subgroup of the 11-torsion subgroup of `J_0(23)`
|
|
757
|
+
generated by the first `11`-torsion point::
|
|
758
|
+
|
|
759
|
+
sage: H = G.subgroup([G.0]); H
|
|
760
|
+
Finite subgroup with invariants [11] over QQbar of
|
|
761
|
+
Abelian variety J0(23) of dimension 2
|
|
762
|
+
sage: H.invariants()
|
|
763
|
+
[11]
|
|
764
|
+
|
|
765
|
+
We can also create a subgroup from a list of objects that can
|
|
766
|
+
be converted into the ambient rational homology::
|
|
767
|
+
|
|
768
|
+
sage: H == G.subgroup([[1/11,0,0,0]])
|
|
769
|
+
True
|
|
770
|
+
"""
|
|
771
|
+
from sage.rings.qqbar import QQbar
|
|
772
|
+
|
|
773
|
+
if not isinstance(gens, (tuple, list)):
|
|
774
|
+
raise TypeError("gens must be a list or tuple")
|
|
775
|
+
A = self.abelian_variety()
|
|
776
|
+
lattice = A._ambient_lattice().span([self(g).element() for g in gens])
|
|
777
|
+
return FiniteSubgroup_lattice(self.abelian_variety(), lattice, field_of_definition=QQbar)
|
|
778
|
+
|
|
779
|
+
def invariants(self):
|
|
780
|
+
r"""
|
|
781
|
+
Return elementary invariants of this abelian group, by which we
|
|
782
|
+
mean a nondecreasing (immutable) sequence of integers
|
|
783
|
+
`n_i`, `1 \leq i \leq k`, with `n_i`
|
|
784
|
+
dividing `n_{i+1}`, and such that this group is abstractly
|
|
785
|
+
isomorphic to
|
|
786
|
+
`\ZZ/n_1\ZZ \times\cdots\times \ZZ/n_k\ZZ.`
|
|
787
|
+
|
|
788
|
+
EXAMPLES::
|
|
789
|
+
|
|
790
|
+
sage: J = J0(38)
|
|
791
|
+
sage: C = J.cuspidal_subgroup(); C
|
|
792
|
+
Finite subgroup with invariants [3, 45] over QQ of
|
|
793
|
+
Abelian variety J0(38) of dimension 4
|
|
794
|
+
sage: v = C.invariants(); v
|
|
795
|
+
[3, 45]
|
|
796
|
+
sage: v[0] = 5
|
|
797
|
+
Traceback (most recent call last):
|
|
798
|
+
...
|
|
799
|
+
ValueError: object is immutable; please change a copy instead.
|
|
800
|
+
sage: type(v[0])
|
|
801
|
+
<class 'sage.rings.integer.Integer'>
|
|
802
|
+
|
|
803
|
+
::
|
|
804
|
+
|
|
805
|
+
sage: C * 3
|
|
806
|
+
Finite subgroup with invariants [15] over QQ of
|
|
807
|
+
Abelian variety J0(38) of dimension 4
|
|
808
|
+
|
|
809
|
+
An example involving another cuspidal subgroup::
|
|
810
|
+
|
|
811
|
+
sage: C = J0(22).cuspidal_subgroup(); C
|
|
812
|
+
Finite subgroup with invariants [5, 5] over QQ of
|
|
813
|
+
Abelian variety J0(22) of dimension 2
|
|
814
|
+
sage: C.lattice()
|
|
815
|
+
Free module of degree 4 and rank 4 over Integer Ring
|
|
816
|
+
Echelon basis matrix:
|
|
817
|
+
[1/5 1/5 4/5 0]
|
|
818
|
+
[ 0 1 0 0]
|
|
819
|
+
[ 0 0 1 0]
|
|
820
|
+
[ 0 0 0 1/5]
|
|
821
|
+
sage: C.invariants()
|
|
822
|
+
[5, 5]
|
|
823
|
+
"""
|
|
824
|
+
try:
|
|
825
|
+
return self.__invariants
|
|
826
|
+
except AttributeError:
|
|
827
|
+
pass
|
|
828
|
+
M = self.lattice().coordinate_module(self.abelian_variety().lattice())
|
|
829
|
+
E = M.basis_matrix().change_ring(ZZ).elementary_divisors()
|
|
830
|
+
v = [Integer(x) for x in E if x != 1]
|
|
831
|
+
I = Sequence(v)
|
|
832
|
+
I.sort()
|
|
833
|
+
I.set_immutable()
|
|
834
|
+
self.__invariants = I
|
|
835
|
+
return I
|
|
836
|
+
|
|
837
|
+
__iter__ = abelian_iterator
|
|
838
|
+
|
|
839
|
+
|
|
840
|
+
class FiniteSubgroup_lattice(FiniteSubgroup):
|
|
841
|
+
def __init__(self, abvar, lattice, field_of_definition=None, check=True):
|
|
842
|
+
"""
|
|
843
|
+
A finite subgroup of a modular abelian variety that is defined by a
|
|
844
|
+
given lattice.
|
|
845
|
+
|
|
846
|
+
INPUT:
|
|
847
|
+
|
|
848
|
+
- ``abvar`` -- a modular abelian variety
|
|
849
|
+
|
|
850
|
+
- ``lattice`` -- a lattice that contains the lattice of abvar
|
|
851
|
+
|
|
852
|
+
- ``field_of_definition`` -- the field of definition
|
|
853
|
+
of this finite group scheme
|
|
854
|
+
|
|
855
|
+
- ``check`` -- boolean (default: ``True``); whether or not to
|
|
856
|
+
check that lattice contains the abvar lattice
|
|
857
|
+
|
|
858
|
+
EXAMPLES::
|
|
859
|
+
|
|
860
|
+
sage: J = J0(11)
|
|
861
|
+
sage: G = J.finite_subgroup([[1/3,0], [0,1/5]]); G
|
|
862
|
+
Finite subgroup with invariants [15] over QQbar of
|
|
863
|
+
Abelian variety J0(11) of dimension 1
|
|
864
|
+
"""
|
|
865
|
+
if field_of_definition is None:
|
|
866
|
+
from sage.rings.qqbar import QQbar as field_of_definition
|
|
867
|
+
if check:
|
|
868
|
+
from .abvar import ModularAbelianVariety_abstract
|
|
869
|
+
if not isinstance(lattice, FreeModule_generic) or lattice.base_ring() != ZZ:
|
|
870
|
+
raise TypeError("lattice must be a free module over ZZ")
|
|
871
|
+
if not isinstance(abvar, ModularAbelianVariety_abstract):
|
|
872
|
+
raise TypeError("abvar must be a modular abelian variety")
|
|
873
|
+
if not abvar.lattice().is_submodule(lattice):
|
|
874
|
+
lattice += abvar.lattice()
|
|
875
|
+
if lattice.rank() != abvar.lattice().rank():
|
|
876
|
+
raise ValueError("lattice must contain the lattice of abvar with finite index")
|
|
877
|
+
FiniteSubgroup.__init__(self, abvar, field_of_definition)
|
|
878
|
+
self.__lattice = lattice
|
|
879
|
+
|
|
880
|
+
def lattice(self):
|
|
881
|
+
r"""
|
|
882
|
+
Return lattice that defines this finite subgroup.
|
|
883
|
+
|
|
884
|
+
EXAMPLES::
|
|
885
|
+
|
|
886
|
+
sage: J = J0(11)
|
|
887
|
+
sage: G = J.finite_subgroup([[1/3,0], [0,1/5]]); G
|
|
888
|
+
Finite subgroup with invariants [15] over QQbar of
|
|
889
|
+
Abelian variety J0(11) of dimension 1
|
|
890
|
+
sage: G.lattice()
|
|
891
|
+
Free module of degree 2 and rank 2 over Integer Ring
|
|
892
|
+
Echelon basis matrix:
|
|
893
|
+
[1/3 0]
|
|
894
|
+
[ 0 1/5]
|
|
895
|
+
"""
|
|
896
|
+
return self.__lattice
|