passagemath-schemes 10.6.40__cp314-cp314-macosx_13_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-schemes might be problematic. Click here for more details.
- passagemath_schemes/.dylibs/libflint.22.0.dylib +0 -0
- passagemath_schemes/.dylibs/libgmp.10.dylib +0 -0
- passagemath_schemes/.dylibs/libgmpxx.4.dylib +0 -0
- passagemath_schemes/.dylibs/libmpfr.6.dylib +0 -0
- passagemath_schemes/__init__.py +3 -0
- passagemath_schemes-10.6.40.dist-info/METADATA +204 -0
- passagemath_schemes-10.6.40.dist-info/METADATA.bak +205 -0
- passagemath_schemes-10.6.40.dist-info/RECORD +314 -0
- passagemath_schemes-10.6.40.dist-info/WHEEL +6 -0
- passagemath_schemes-10.6.40.dist-info/top_level.txt +3 -0
- sage/all__sagemath_schemes.py +23 -0
- sage/databases/all__sagemath_schemes.py +7 -0
- sage/databases/cremona.py +1723 -0
- sage/dynamics/all__sagemath_schemes.py +2 -0
- sage/dynamics/arithmetic_dynamics/affine_ds.py +1083 -0
- sage/dynamics/arithmetic_dynamics/all.py +14 -0
- sage/dynamics/arithmetic_dynamics/berkovich_ds.py +1101 -0
- sage/dynamics/arithmetic_dynamics/dynamical_semigroup.py +1543 -0
- sage/dynamics/arithmetic_dynamics/endPN_automorphism_group.py +2426 -0
- sage/dynamics/arithmetic_dynamics/endPN_minimal_model.py +1169 -0
- sage/dynamics/arithmetic_dynamics/generic_ds.py +663 -0
- sage/dynamics/arithmetic_dynamics/product_projective_ds.py +339 -0
- sage/dynamics/arithmetic_dynamics/projective_ds.py +9558 -0
- sage/dynamics/arithmetic_dynamics/projective_ds_helper.cpython-314-darwin.so +0 -0
- sage/dynamics/arithmetic_dynamics/projective_ds_helper.pyx +301 -0
- sage/dynamics/arithmetic_dynamics/wehlerK3.py +2576 -0
- sage/lfunctions/all.py +18 -0
- sage/lfunctions/dokchitser.py +745 -0
- sage/lfunctions/pari.py +818 -0
- sage/lfunctions/zero_sums.cpython-314-darwin.so +0 -0
- sage/lfunctions/zero_sums.pyx +1847 -0
- sage/modular/abvar/abvar.py +5135 -0
- sage/modular/abvar/abvar_ambient_jacobian.py +413 -0
- sage/modular/abvar/abvar_newform.py +244 -0
- sage/modular/abvar/all.py +8 -0
- sage/modular/abvar/constructor.py +186 -0
- sage/modular/abvar/cuspidal_subgroup.py +371 -0
- sage/modular/abvar/finite_subgroup.py +896 -0
- sage/modular/abvar/homology.py +720 -0
- sage/modular/abvar/homspace.py +998 -0
- sage/modular/abvar/lseries.py +415 -0
- sage/modular/abvar/morphism.py +935 -0
- sage/modular/abvar/torsion_point.py +274 -0
- sage/modular/abvar/torsion_subgroup.py +740 -0
- sage/modular/all.py +43 -0
- sage/modular/arithgroup/all.py +20 -0
- sage/modular/arithgroup/arithgroup_element.cpython-314-darwin.so +0 -0
- sage/modular/arithgroup/arithgroup_element.pyx +474 -0
- sage/modular/arithgroup/arithgroup_generic.py +1402 -0
- sage/modular/arithgroup/arithgroup_perm.py +2692 -0
- sage/modular/arithgroup/congroup.cpython-314-darwin.so +0 -0
- sage/modular/arithgroup/congroup.pyx +334 -0
- sage/modular/arithgroup/congroup_gamma.py +363 -0
- sage/modular/arithgroup/congroup_gamma0.py +692 -0
- sage/modular/arithgroup/congroup_gamma1.py +653 -0
- sage/modular/arithgroup/congroup_gammaH.py +1469 -0
- sage/modular/arithgroup/congroup_generic.py +628 -0
- sage/modular/arithgroup/congroup_sl2z.py +267 -0
- sage/modular/arithgroup/farey_symbol.cpython-314-darwin.so +0 -0
- sage/modular/arithgroup/farey_symbol.pyx +1066 -0
- sage/modular/arithgroup/tests.py +418 -0
- sage/modular/btquotients/all.py +4 -0
- sage/modular/btquotients/btquotient.py +3753 -0
- sage/modular/btquotients/pautomorphicform.py +2570 -0
- sage/modular/buzzard.py +100 -0
- sage/modular/congroup.py +29 -0
- sage/modular/congroup_element.py +13 -0
- sage/modular/cusps.py +1109 -0
- sage/modular/cusps_nf.py +1270 -0
- sage/modular/dims.py +569 -0
- sage/modular/dirichlet.py +3310 -0
- sage/modular/drinfeld_modform/all.py +2 -0
- sage/modular/drinfeld_modform/element.py +446 -0
- sage/modular/drinfeld_modform/ring.py +773 -0
- sage/modular/drinfeld_modform/tutorial.py +236 -0
- sage/modular/etaproducts.py +1065 -0
- sage/modular/hecke/algebra.py +746 -0
- sage/modular/hecke/all.py +20 -0
- sage/modular/hecke/ambient_module.py +1019 -0
- sage/modular/hecke/degenmap.py +119 -0
- sage/modular/hecke/element.py +325 -0
- sage/modular/hecke/hecke_operator.py +780 -0
- sage/modular/hecke/homspace.py +206 -0
- sage/modular/hecke/module.py +1767 -0
- sage/modular/hecke/morphism.py +174 -0
- sage/modular/hecke/submodule.py +989 -0
- sage/modular/hypergeometric_misc.cpython-314-darwin.so +0 -0
- sage/modular/hypergeometric_misc.pxd +4 -0
- sage/modular/hypergeometric_misc.pyx +166 -0
- sage/modular/hypergeometric_motive.py +2017 -0
- sage/modular/local_comp/all.py +2 -0
- sage/modular/local_comp/liftings.py +292 -0
- sage/modular/local_comp/local_comp.py +1071 -0
- sage/modular/local_comp/smoothchar.py +1825 -0
- sage/modular/local_comp/type_space.py +748 -0
- sage/modular/modform/all.py +30 -0
- sage/modular/modform/ambient.py +815 -0
- sage/modular/modform/ambient_R.py +177 -0
- sage/modular/modform/ambient_eps.py +306 -0
- sage/modular/modform/ambient_g0.py +124 -0
- sage/modular/modform/ambient_g1.py +204 -0
- sage/modular/modform/constructor.py +545 -0
- sage/modular/modform/cuspidal_submodule.py +708 -0
- sage/modular/modform/defaults.py +14 -0
- sage/modular/modform/eis_series.py +505 -0
- sage/modular/modform/eisenstein_submodule.py +663 -0
- sage/modular/modform/element.py +4131 -0
- sage/modular/modform/find_generators.py +59 -0
- sage/modular/modform/half_integral.py +154 -0
- sage/modular/modform/hecke_operator_on_qexp.py +247 -0
- sage/modular/modform/j_invariant.py +47 -0
- sage/modular/modform/l_series_gross_zagier.py +133 -0
- sage/modular/modform/l_series_gross_zagier_coeffs.cpython-314-darwin.so +0 -0
- sage/modular/modform/l_series_gross_zagier_coeffs.pyx +177 -0
- sage/modular/modform/notes.py +45 -0
- sage/modular/modform/numerical.py +514 -0
- sage/modular/modform/periods.py +14 -0
- sage/modular/modform/ring.py +1257 -0
- sage/modular/modform/space.py +1860 -0
- sage/modular/modform/submodule.py +118 -0
- sage/modular/modform/tests.py +64 -0
- sage/modular/modform/theta.py +110 -0
- sage/modular/modform/vm_basis.py +381 -0
- sage/modular/modform/weight1.py +220 -0
- sage/modular/modform_hecketriangle/abstract_ring.py +1932 -0
- sage/modular/modform_hecketriangle/abstract_space.py +2528 -0
- sage/modular/modform_hecketriangle/all.py +30 -0
- sage/modular/modform_hecketriangle/analytic_type.py +590 -0
- sage/modular/modform_hecketriangle/constructor.py +416 -0
- sage/modular/modform_hecketriangle/element.py +351 -0
- sage/modular/modform_hecketriangle/functors.py +752 -0
- sage/modular/modform_hecketriangle/graded_ring.py +541 -0
- sage/modular/modform_hecketriangle/graded_ring_element.py +2225 -0
- sage/modular/modform_hecketriangle/hecke_triangle_group_element.py +3352 -0
- sage/modular/modform_hecketriangle/hecke_triangle_groups.py +1432 -0
- sage/modular/modform_hecketriangle/readme.py +1214 -0
- sage/modular/modform_hecketriangle/series_constructor.py +580 -0
- sage/modular/modform_hecketriangle/space.py +1037 -0
- sage/modular/modform_hecketriangle/subspace.py +423 -0
- sage/modular/modsym/all.py +17 -0
- sage/modular/modsym/ambient.py +3846 -0
- sage/modular/modsym/boundary.py +1420 -0
- sage/modular/modsym/element.py +336 -0
- sage/modular/modsym/g1list.py +178 -0
- sage/modular/modsym/ghlist.py +182 -0
- sage/modular/modsym/hecke_operator.py +73 -0
- sage/modular/modsym/manin_symbol.cpython-314-darwin.so +0 -0
- sage/modular/modsym/manin_symbol.pxd +5 -0
- sage/modular/modsym/manin_symbol.pyx +497 -0
- sage/modular/modsym/manin_symbol_list.py +1295 -0
- sage/modular/modsym/modsym.py +400 -0
- sage/modular/modsym/modular_symbols.py +384 -0
- sage/modular/modsym/p1list.cpython-314-darwin.so +0 -0
- sage/modular/modsym/p1list.pxd +29 -0
- sage/modular/modsym/p1list.pyx +1372 -0
- sage/modular/modsym/p1list_nf.py +1241 -0
- sage/modular/modsym/relation_matrix.py +591 -0
- sage/modular/modsym/relation_matrix_pyx.cpython-314-darwin.so +0 -0
- sage/modular/modsym/relation_matrix_pyx.pyx +108 -0
- sage/modular/modsym/space.py +2468 -0
- sage/modular/modsym/subspace.py +455 -0
- sage/modular/modsym/tests.py +375 -0
- sage/modular/multiple_zeta.py +2632 -0
- sage/modular/multiple_zeta_F_algebra.py +786 -0
- sage/modular/overconvergent/all.py +6 -0
- sage/modular/overconvergent/genus0.py +1878 -0
- sage/modular/overconvergent/hecke_series.py +1187 -0
- sage/modular/overconvergent/weightspace.py +778 -0
- sage/modular/pollack_stevens/all.py +4 -0
- sage/modular/pollack_stevens/distributions.py +874 -0
- sage/modular/pollack_stevens/fund_domain.py +1572 -0
- sage/modular/pollack_stevens/manin_map.py +859 -0
- sage/modular/pollack_stevens/modsym.py +1593 -0
- sage/modular/pollack_stevens/padic_lseries.py +417 -0
- sage/modular/pollack_stevens/sigma0.py +534 -0
- sage/modular/pollack_stevens/space.py +1076 -0
- sage/modular/quasimodform/all.py +3 -0
- sage/modular/quasimodform/element.py +845 -0
- sage/modular/quasimodform/ring.py +828 -0
- sage/modular/quatalg/all.py +3 -0
- sage/modular/quatalg/brandt.py +1642 -0
- sage/modular/ssmod/all.py +8 -0
- sage/modular/ssmod/ssmod.py +827 -0
- sage/rings/all__sagemath_schemes.py +1 -0
- sage/rings/polynomial/all__sagemath_schemes.py +1 -0
- sage/rings/polynomial/binary_form_reduce.py +585 -0
- sage/schemes/all.py +41 -0
- sage/schemes/berkovich/all.py +6 -0
- sage/schemes/berkovich/berkovich_cp_element.py +2582 -0
- sage/schemes/berkovich/berkovich_space.py +748 -0
- sage/schemes/curves/affine_curve.py +2928 -0
- sage/schemes/curves/all.py +33 -0
- sage/schemes/curves/closed_point.py +434 -0
- sage/schemes/curves/constructor.py +381 -0
- sage/schemes/curves/curve.py +542 -0
- sage/schemes/curves/plane_curve_arrangement.py +1283 -0
- sage/schemes/curves/point.py +463 -0
- sage/schemes/curves/projective_curve.py +3026 -0
- sage/schemes/curves/zariski_vankampen.py +1932 -0
- sage/schemes/cyclic_covers/all.py +2 -0
- sage/schemes/cyclic_covers/charpoly_frobenius.py +320 -0
- sage/schemes/cyclic_covers/constructor.py +137 -0
- sage/schemes/cyclic_covers/cycliccover_finite_field.py +1309 -0
- sage/schemes/cyclic_covers/cycliccover_generic.py +310 -0
- sage/schemes/elliptic_curves/BSD.py +1036 -0
- sage/schemes/elliptic_curves/Qcurves.py +592 -0
- sage/schemes/elliptic_curves/addition_formulas_ring.py +94 -0
- sage/schemes/elliptic_curves/all.py +49 -0
- sage/schemes/elliptic_curves/cardinality.py +609 -0
- sage/schemes/elliptic_curves/cm.py +1102 -0
- sage/schemes/elliptic_curves/constructor.py +1552 -0
- sage/schemes/elliptic_curves/ec_database.py +175 -0
- sage/schemes/elliptic_curves/ell_curve_isogeny.py +3972 -0
- sage/schemes/elliptic_curves/ell_egros.py +459 -0
- sage/schemes/elliptic_curves/ell_field.py +2836 -0
- sage/schemes/elliptic_curves/ell_finite_field.py +3359 -0
- sage/schemes/elliptic_curves/ell_generic.py +3760 -0
- sage/schemes/elliptic_curves/ell_local_data.py +1207 -0
- sage/schemes/elliptic_curves/ell_modular_symbols.py +775 -0
- sage/schemes/elliptic_curves/ell_number_field.py +4220 -0
- sage/schemes/elliptic_curves/ell_padic_field.py +107 -0
- sage/schemes/elliptic_curves/ell_point.py +4787 -0
- sage/schemes/elliptic_curves/ell_rational_field.py +7368 -0
- sage/schemes/elliptic_curves/ell_tate_curve.py +671 -0
- sage/schemes/elliptic_curves/ell_torsion.py +436 -0
- sage/schemes/elliptic_curves/ell_wp.py +352 -0
- sage/schemes/elliptic_curves/formal_group.py +760 -0
- sage/schemes/elliptic_curves/gal_reps.py +1459 -0
- sage/schemes/elliptic_curves/gal_reps_number_field.py +1669 -0
- sage/schemes/elliptic_curves/gp_simon.py +152 -0
- sage/schemes/elliptic_curves/heegner.py +7335 -0
- sage/schemes/elliptic_curves/height.py +2109 -0
- sage/schemes/elliptic_curves/hom.py +1406 -0
- sage/schemes/elliptic_curves/hom_composite.py +934 -0
- sage/schemes/elliptic_curves/hom_frobenius.py +522 -0
- sage/schemes/elliptic_curves/hom_scalar.py +531 -0
- sage/schemes/elliptic_curves/hom_sum.py +682 -0
- sage/schemes/elliptic_curves/hom_velusqrt.py +1290 -0
- sage/schemes/elliptic_curves/homset.py +271 -0
- sage/schemes/elliptic_curves/isogeny_class.py +1521 -0
- sage/schemes/elliptic_curves/isogeny_small_degree.py +2797 -0
- sage/schemes/elliptic_curves/jacobian.py +237 -0
- sage/schemes/elliptic_curves/kodaira_symbol.py +344 -0
- sage/schemes/elliptic_curves/kraus.py +1014 -0
- sage/schemes/elliptic_curves/lseries_ell.py +943 -0
- sage/schemes/elliptic_curves/mod5family.py +105 -0
- sage/schemes/elliptic_curves/mod_poly.py +197 -0
- sage/schemes/elliptic_curves/mod_sym_num.cpython-314-darwin.so +0 -0
- sage/schemes/elliptic_curves/mod_sym_num.pyx +3796 -0
- sage/schemes/elliptic_curves/modular_parametrization.py +305 -0
- sage/schemes/elliptic_curves/padic_lseries.py +1793 -0
- sage/schemes/elliptic_curves/padics.py +1816 -0
- sage/schemes/elliptic_curves/period_lattice.py +2234 -0
- sage/schemes/elliptic_curves/period_lattice_region.cpython-314-darwin.so +0 -0
- sage/schemes/elliptic_curves/period_lattice_region.pyx +722 -0
- sage/schemes/elliptic_curves/saturation.py +715 -0
- sage/schemes/elliptic_curves/sha_tate.py +1158 -0
- sage/schemes/elliptic_curves/weierstrass_morphism.py +1117 -0
- sage/schemes/elliptic_curves/weierstrass_transform.py +200 -0
- sage/schemes/hyperelliptic_curves/all.py +6 -0
- sage/schemes/hyperelliptic_curves/constructor.py +291 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_finite_field.py +1914 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_g2.py +192 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_generic.py +954 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_padic_field.py +1332 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_rational_field.py +84 -0
- sage/schemes/hyperelliptic_curves/invariants.py +410 -0
- sage/schemes/hyperelliptic_curves/jacobian_endomorphism_utils.py +315 -0
- sage/schemes/hyperelliptic_curves/jacobian_g2.py +32 -0
- sage/schemes/hyperelliptic_curves/jacobian_generic.py +419 -0
- sage/schemes/hyperelliptic_curves/jacobian_homset.py +186 -0
- sage/schemes/hyperelliptic_curves/jacobian_morphism.py +875 -0
- sage/schemes/hyperelliptic_curves/kummer_surface.py +99 -0
- sage/schemes/hyperelliptic_curves/mestre.py +302 -0
- sage/schemes/hyperelliptic_curves/monsky_washnitzer.py +3871 -0
- sage/schemes/jacobians/abstract_jacobian.py +277 -0
- sage/schemes/jacobians/all.py +2 -0
- sage/schemes/overview.py +161 -0
- sage/schemes/plane_conics/all.py +22 -0
- sage/schemes/plane_conics/con_field.py +1296 -0
- sage/schemes/plane_conics/con_finite_field.py +158 -0
- sage/schemes/plane_conics/con_number_field.py +456 -0
- sage/schemes/plane_conics/con_rational_field.py +406 -0
- sage/schemes/plane_conics/con_rational_function_field.py +580 -0
- sage/schemes/plane_conics/constructor.py +249 -0
- sage/schemes/plane_quartics/all.py +2 -0
- sage/schemes/plane_quartics/quartic_constructor.py +71 -0
- sage/schemes/plane_quartics/quartic_generic.py +73 -0
- sage/schemes/riemann_surfaces/all.py +1 -0
- sage/schemes/riemann_surfaces/riemann_surface.py +4117 -0
- sage_wheels/share/cremona/cremona_mini.db +0 -0
- sage_wheels/share/ellcurves/rank0 +30427 -0
- sage_wheels/share/ellcurves/rank1 +31871 -0
- sage_wheels/share/ellcurves/rank10 +6 -0
- sage_wheels/share/ellcurves/rank11 +6 -0
- sage_wheels/share/ellcurves/rank12 +1 -0
- sage_wheels/share/ellcurves/rank14 +1 -0
- sage_wheels/share/ellcurves/rank15 +1 -0
- sage_wheels/share/ellcurves/rank17 +1 -0
- sage_wheels/share/ellcurves/rank19 +1 -0
- sage_wheels/share/ellcurves/rank2 +2388 -0
- sage_wheels/share/ellcurves/rank20 +1 -0
- sage_wheels/share/ellcurves/rank21 +1 -0
- sage_wheels/share/ellcurves/rank22 +1 -0
- sage_wheels/share/ellcurves/rank23 +1 -0
- sage_wheels/share/ellcurves/rank24 +1 -0
- sage_wheels/share/ellcurves/rank28 +1 -0
- sage_wheels/share/ellcurves/rank3 +836 -0
- sage_wheels/share/ellcurves/rank4 +10 -0
- sage_wheels/share/ellcurves/rank5 +5 -0
- sage_wheels/share/ellcurves/rank6 +5 -0
- sage_wheels/share/ellcurves/rank7 +5 -0
- sage_wheels/share/ellcurves/rank8 +6 -0
- sage_wheels/share/ellcurves/rank9 +7 -0
|
@@ -0,0 +1,2388 @@
|
|
|
1
|
+
389 a 1 [0,1,1,-2,0] 2 1
|
|
2
|
+
433 a 1 [1,0,0,0,1] 2 1
|
|
3
|
+
446 d 1 [1,-1,0,-4,4] 2 1
|
|
4
|
+
563 a 1 [1,1,1,-15,16] 2 1
|
|
5
|
+
571 b 1 [0,1,1,-4,2] 2 1
|
|
6
|
+
643 a 1 [1,0,0,-4,3] 2 1
|
|
7
|
+
655 a 1 [0,0,1,-13,18] 2 1
|
|
8
|
+
664 a 1 [0,0,0,-7,10] 2 1
|
|
9
|
+
681 c 1 [0,-1,1,0,2] 2 1
|
|
10
|
+
707 a 1 [0,1,1,-12,12] 2 1
|
|
11
|
+
709 a 1 [0,-1,1,-2,0] 2 1
|
|
12
|
+
718 b 1 [1,0,1,-5,0] 2 1
|
|
13
|
+
794 a 1 [1,0,1,-3,2] 2 1
|
|
14
|
+
817 a 1 [0,1,1,1,6] 2 1
|
|
15
|
+
916 c 1 [0,0,0,-4,1] 2 1
|
|
16
|
+
944 e 1 [0,0,0,-19,34] 2 1
|
|
17
|
+
997 b 1 [0,-1,1,-5,-3] 2 1
|
|
18
|
+
997 c 1 [0,-1,1,-24,54] 2 1
|
|
19
|
+
1001 c 1 [0,0,1,-199,1092] 2 1
|
|
20
|
+
1028 a 1 [0,1,0,-10,9] 2 1
|
|
21
|
+
1034 a 1 [1,0,1,-12,14] 2 1
|
|
22
|
+
1058 c 1 [1,0,1,0,2] 2 1
|
|
23
|
+
1058 c 2 [1,0,1,-115,462] 2 1
|
|
24
|
+
1070 a 1 [1,-1,0,-10,16] 2 1
|
|
25
|
+
1073 a 1 [0,-1,1,-45,132] 2 1
|
|
26
|
+
1077 a 1 [1,1,1,-27,42] 2 1
|
|
27
|
+
1088 j 1 [0,1,0,-25,39] 2 2
|
|
28
|
+
1088 j 2 [0,1,0,-65,-161] 2 2
|
|
29
|
+
1094 a 1 [1,0,1,-7,6] 2 1
|
|
30
|
+
1102 a 1 [1,1,0,-29,61] 2 1
|
|
31
|
+
1126 a 1 [1,-1,0,2,4] 2 1
|
|
32
|
+
1132 a 1 [0,1,0,-5,4] 2 1
|
|
33
|
+
1137 a 1 [1,1,1,-2,2] 2 1
|
|
34
|
+
1141 a 1 [1,0,0,-27,94] 2 1
|
|
35
|
+
1143 c 1 [0,0,1,-39,90] 2 1
|
|
36
|
+
1147 a 1 [0,-1,1,-9,9] 2 1
|
|
37
|
+
1171 a 1 [1,-1,1,-3,0] 2 1
|
|
38
|
+
1246 c 1 [1,-1,0,-1,13] 2 1
|
|
39
|
+
1309 b 1 [0,-1,1,-22,52] 2 1
|
|
40
|
+
1324 a 1 [0,1,0,3,4] 2 1
|
|
41
|
+
1325 e 1 [0,1,1,-8,-6] 2 1
|
|
42
|
+
1431 a 1 [1,-1,1,-29,-26] 2 1
|
|
43
|
+
1436 a 1 [0,1,0,-12,4] 2 1
|
|
44
|
+
1443 c 1 [1,1,1,-9,6] 2 2
|
|
45
|
+
1443 c 2 [1,1,1,6,42] 2 2
|
|
46
|
+
1446 a 1 [1,1,0,-4,4] 2 1
|
|
47
|
+
1466 b 1 [1,-1,1,-42,105] 2 1
|
|
48
|
+
1477 a 1 [1,0,0,-6,7] 2 1
|
|
49
|
+
1480 a 1 [0,0,0,-28,52] 2 1
|
|
50
|
+
1483 a 1 [0,1,1,2,2] 2 1
|
|
51
|
+
1525 c 1 [1,0,0,-8,7] 2 2
|
|
52
|
+
1525 c 2 [1,0,0,-33,-68] 2 2
|
|
53
|
+
1531 a 1 [0,0,1,-14,20] 2 1
|
|
54
|
+
1534 b 1 [1,-1,0,5,37] 2 1
|
|
55
|
+
1570 b 1 [1,0,1,-4,6] 2 1
|
|
56
|
+
1576 a 1 [0,1,0,-9,-5] 2 1
|
|
57
|
+
1591 a 1 [0,0,1,-71,552] 2 1
|
|
58
|
+
1594 a 1 [1,-1,1,-27,75] 2 1
|
|
59
|
+
1608 a 1 [0,-1,0,-25,61] 2 1
|
|
60
|
+
1611 d 1 [0,0,1,-9,20] 2 1
|
|
61
|
+
1613 a 1 [0,1,1,-3,0] 2 1
|
|
62
|
+
1615 a 1 [1,0,0,-215,1192] 2 2
|
|
63
|
+
1615 a 2 [1,0,0,-120,2275] 2 2
|
|
64
|
+
1621 a 1 [1,-1,1,-4,4] 2 1
|
|
65
|
+
1627 a 1 [1,1,1,-3,-2] 2 1
|
|
66
|
+
1639 b 1 [1,-1,1,-6,6] 2 1
|
|
67
|
+
1641 b 1 [0,-1,1,-4,6] 2 1
|
|
68
|
+
1642 a 1 [1,1,0,-1,5] 2 1
|
|
69
|
+
1653 a 1 [0,-1,1,-27,182] 2 1
|
|
70
|
+
1662 a 1 [1,1,0,-27,45] 2 1
|
|
71
|
+
1664 n 1 [0,0,0,-4,16] 2 1
|
|
72
|
+
1674 d 1 [1,-1,0,-9,9] 2 1
|
|
73
|
+
1688 a 1 [0,1,0,-12,16] 2 1
|
|
74
|
+
1696 d 1 [0,0,0,-76,256] 2 1
|
|
75
|
+
1696 e 1 [0,-1,0,15,1] 2 1
|
|
76
|
+
1701 j 1 [0,0,1,-27,56] 2 1
|
|
77
|
+
1712 d 1 [0,-1,0,0,16] 2 1
|
|
78
|
+
1717 b 1 [0,-1,1,-4,4] 2 1
|
|
79
|
+
1732 a 1 [0,1,0,-44,100] 2 1
|
|
80
|
+
1738 a 1 [1,1,0,-14,4] 2 1
|
|
81
|
+
1745 d 1 [0,-1,1,-6,6] 2 1
|
|
82
|
+
1746 b 1 [1,-1,0,-24,44] 2 2
|
|
83
|
+
1746 b 2 [1,-1,0,-114,-406] 2 2
|
|
84
|
+
1748 a 1 [0,-1,0,-90,361] 2 1
|
|
85
|
+
1752 e 1 [0,-1,0,-20,36] 2 2
|
|
86
|
+
1752 e 2 [0,-1,0,40,156] 2 2
|
|
87
|
+
1793 b 1 [0,1,1,6,6] 2 1
|
|
88
|
+
1832 b 1 [0,-1,0,-27,64] 2 1
|
|
89
|
+
1856 d 1 [0,-1,0,-17,49] 2 1
|
|
90
|
+
1856 d 2 [0,-1,0,143,-751] 2 1
|
|
91
|
+
1862 a 1 [1,0,1,-75,242] 2 3
|
|
92
|
+
1862 a 2 [1,0,1,170,1320] 2 1
|
|
93
|
+
1873 a 1 [1,-1,1,-1,2] 2 1
|
|
94
|
+
1887 a 1 [1,1,1,-17,20] 2 1
|
|
95
|
+
1888 a 1 [0,-1,0,-2,4] 2 1
|
|
96
|
+
1907 a 1 [1,-1,1,-46,130] 2 1
|
|
97
|
+
1909 a 1 [0,0,1,-4,2] 2 1
|
|
98
|
+
1913 a 1 [1,1,0,-202,1025] 2 1
|
|
99
|
+
1917 c 1 [1,-1,1,-41,110] 2 1
|
|
100
|
+
1918 c 1 [1,0,1,-22,-24] 2 2
|
|
101
|
+
1918 c 2 [1,0,1,-302,-2040] 2 2
|
|
102
|
+
1922 b 1 [1,1,0,-4,-4] 2 1
|
|
103
|
+
1922 b 2 [1,1,0,-159,709] 2 1
|
|
104
|
+
1933 a 1 [1,0,0,1,-2] 2 1
|
|
105
|
+
1952 b 1 [0,1,0,-17,31] 2 1
|
|
106
|
+
1957 a 1 [1,1,0,-522,4315] 2 1
|
|
107
|
+
1957 b 1 [1,1,1,-8,-12] 2 1
|
|
108
|
+
1964 a 1 [0,0,0,-16,25] 2 1
|
|
109
|
+
2006 d 1 [1,1,0,-88,284] 2 1
|
|
110
|
+
2007 a 1 [1,-1,1,-14,42] 2 1
|
|
111
|
+
2015 c 1 [0,0,1,-127,552] 2 1
|
|
112
|
+
2021 a 1 [0,0,1,-65,202] 2 1
|
|
113
|
+
2023 b 1 [1,-1,1,-12,0] 2 1
|
|
114
|
+
2027 a 1 [0,-1,1,-8,12] 2 1
|
|
115
|
+
2031 c 1 [0,1,1,-130,520] 2 1
|
|
116
|
+
2032 a 1 [0,1,0,-16,-12] 2 1
|
|
117
|
+
2035 c 1 [1,0,0,-100,375] 2 2
|
|
118
|
+
2035 c 2 [1,0,0,-155,-98] 2 2
|
|
119
|
+
2038 a 1 [1,0,0,-10,36] 2 1
|
|
120
|
+
2045 c 1 [1,1,1,-10,12] 2 1
|
|
121
|
+
2051 a 1 [1,-1,1,-9,12] 2 1
|
|
122
|
+
2056 b 1 [0,1,0,-4,-3] 2 1
|
|
123
|
+
2059 a 1 [0,1,1,-36,72] 2 1
|
|
124
|
+
2080 d 1 [0,1,0,-86,280] 2 2
|
|
125
|
+
2080 d 2 [0,1,0,-81,319] 2 2
|
|
126
|
+
2089 e 1 [1,-1,1,-39,102] 2 1
|
|
127
|
+
2103 b 1 [0,-1,1,-69,245] 2 1
|
|
128
|
+
2117 a 1 [0,1,1,-8,6] 2 1
|
|
129
|
+
2123 a 1 [0,0,1,-1,2] 2 1
|
|
130
|
+
2130 b 1 [1,1,0,-8,12] 2 2
|
|
131
|
+
2130 b 2 [1,1,0,-158,702] 2 2
|
|
132
|
+
2146 a 1 [1,1,0,2,-76] 2 1
|
|
133
|
+
2152 a 1 [0,1,0,-17,19] 2 1
|
|
134
|
+
2173 a 1 [1,1,0,-131,526] 2 1
|
|
135
|
+
2175 c 1 [1,1,1,-688,6656] 2 4
|
|
136
|
+
2175 c 2 [1,1,1,-813,3906] 2 4
|
|
137
|
+
2175 c 3 [1,1,1,-6438,-198594] 2 2
|
|
138
|
+
2175 c 4 [1,1,1,2812,32906] 2 2
|
|
139
|
+
2181 a 1 [1,1,1,3,0] 2 1
|
|
140
|
+
2215 a 1 [0,0,1,-37,90] 2 1
|
|
141
|
+
2224 f 1 [0,1,0,-56,148] 2 1
|
|
142
|
+
2225 b 1 [1,0,0,-38,67] 2 2
|
|
143
|
+
2225 b 2 [1,0,0,87,442] 2 2
|
|
144
|
+
2251 a 1 [0,0,1,1,2] 2 1
|
|
145
|
+
2253 a 1 [1,1,1,-4,2] 2 1
|
|
146
|
+
2257 a 1 [0,1,1,-15,-20] 2 1
|
|
147
|
+
2259 a 1 [0,0,1,42,-153] 2 1
|
|
148
|
+
2259 b 1 [0,0,1,-39,112] 2 1
|
|
149
|
+
2265 b 1 [0,-1,1,-30,128] 2 1
|
|
150
|
+
2271 c 1 [0,1,1,-44,98] 2 1
|
|
151
|
+
2282 a 1 [1,0,1,-10,12] 2 1
|
|
152
|
+
2284 a 1 [0,1,0,11,-9] 2 1
|
|
153
|
+
2299 b 1 [0,0,1,11,30] 2 1
|
|
154
|
+
2330 b 1 [1,1,0,2,8] 2 1
|
|
155
|
+
2343 c 1 [0,-1,1,-12,20] 2 1
|
|
156
|
+
2345 a 1 [0,1,1,-50,354] 2 1
|
|
157
|
+
2350 c 1 [1,1,0,-900,10000] 2 1
|
|
158
|
+
2350 c 2 [1,1,0,-4400,-105500] 2 1
|
|
159
|
+
2350 g 1 [1,-1,0,-7,1] 2 1
|
|
160
|
+
2366 e 1 [1,0,1,-680,6762] 2 3
|
|
161
|
+
2366 e 2 [1,0,1,165,22310] 2 1
|
|
162
|
+
2384 a 1 [0,0,0,13,50] 2 1
|
|
163
|
+
2388 a 1 [0,-1,0,-2,9] 2 1
|
|
164
|
+
2405 b 1 [0,-1,1,-16,22] 2 1
|
|
165
|
+
2406 c 1 [1,0,1,-33,112] 2 1
|
|
166
|
+
2409 d 1 [0,1,1,-32,212] 2 1
|
|
167
|
+
2424 d 1 [0,-1,0,-17,21] 2 1
|
|
168
|
+
2429 c 1 [1,-1,1,-4,2] 2 1
|
|
169
|
+
2429 d 1 [0,-1,1,-68,240] 2 1
|
|
170
|
+
2432 d 1 [0,-1,0,-9,25] 2 1
|
|
171
|
+
2433 a 1 [0,1,1,-2,110] 2 1
|
|
172
|
+
2439 a 1 [0,0,1,-21,0] 2 1
|
|
173
|
+
2445 a 1 [0,-1,1,4,26] 2 1
|
|
174
|
+
2446 a 1 [1,0,1,-17,24] 2 1
|
|
175
|
+
2451 d 1 [0,-1,1,22,2312] 2 1
|
|
176
|
+
2454 b 1 [1,1,0,-6,0] 2 2
|
|
177
|
+
2454 b 2 [1,1,0,24,30] 2 2
|
|
178
|
+
2455 a 1 [1,-1,1,-3,6] 2 1
|
|
179
|
+
2458 a 1 [1,-1,0,-56,176] 2 1
|
|
180
|
+
2458 b 1 [1,0,1,-9,8] 2 1
|
|
181
|
+
2458 d 1 [1,0,0,-57,121] 2 1
|
|
182
|
+
2465 a 1 [1,0,0,-51,136] 2 2
|
|
183
|
+
2465 a 2 [1,0,0,-46,165] 2 2
|
|
184
|
+
2466 d 1 [1,-1,0,-36,108] 2 1
|
|
185
|
+
2474 a 1 [1,-1,1,-6,21] 2 1
|
|
186
|
+
2480 j 1 [0,1,0,-16,84] 2 2
|
|
187
|
+
2480 j 2 [0,1,0,-416,3124] 2 2
|
|
188
|
+
2482 b 1 [1,-1,0,-23,-35] 2 2
|
|
189
|
+
2482 b 2 [1,-1,0,17,-171] 2 2
|
|
190
|
+
2482 c 1 [1,0,1,-27,50] 2 2
|
|
191
|
+
2482 c 2 [1,0,1,-37,6] 2 2
|
|
192
|
+
2492 a 1 [0,-1,0,-92,376] 2 1
|
|
193
|
+
2493 a 1 [1,-1,1,4,20] 2 1
|
|
194
|
+
2517 b 1 [1,0,0,-12,9] 2 1
|
|
195
|
+
2528 b 1 [0,-1,0,-17,1] 2 1
|
|
196
|
+
2534 g 1 [1,-1,1,-312,2235] 2 1
|
|
197
|
+
2537 d 1 [0,1,1,162,-708] 2 1
|
|
198
|
+
2541 c 1 [1,1,1,3,12] 2 1
|
|
199
|
+
2544 a 1 [0,-1,0,-32,96] 2 1
|
|
200
|
+
2548 a 1 [0,0,0,-49,49] 2 1
|
|
201
|
+
2552 a 1 [0,-1,0,-137,1069] 2 1
|
|
202
|
+
2554 c 1 [1,-1,1,-24,27] 2 1
|
|
203
|
+
2563 d 1 [1,0,0,-9,28] 2 1
|
|
204
|
+
2574 g 1 [1,-1,0,-9,189] 2 2
|
|
205
|
+
2574 g 2 [1,-1,0,-549,5049] 2 2
|
|
206
|
+
2576 k 1 [0,1,0,-64,-204] 2 2
|
|
207
|
+
2576 k 2 [0,1,0,-224,1012] 2 2
|
|
208
|
+
2598 b 1 [1,1,0,-56,144] 2 1
|
|
209
|
+
2601 l 1 [0,0,1,51,72] 2 1
|
|
210
|
+
2601 l 2 [0,0,1,-7599,254970] 2 1
|
|
211
|
+
2611 a 1 [0,-1,1,-414,3384] 2 1
|
|
212
|
+
2619 d 1 [1,-1,1,-14,24] 2 1
|
|
213
|
+
2620 b 1 [0,-1,0,19,25] 2 1
|
|
214
|
+
2623 a 1 [1,0,1,-144,1175] 2 1
|
|
215
|
+
2624 c 1 [0,1,0,-49,111] 2 2
|
|
216
|
+
2624 c 2 [0,1,0,31,511] 2 2
|
|
217
|
+
2648 b 1 [0,1,0,-7,6] 2 1
|
|
218
|
+
2658 c 1 [1,1,0,-16,16] 2 1
|
|
219
|
+
2666 a 1 [1,0,1,-4,0] 2 1
|
|
220
|
+
2666 e 1 [1,0,0,-387,2881] 2 3
|
|
221
|
+
2666 e 2 [1,0,0,-2467,-45471] 2 1
|
|
222
|
+
2674 a 1 [1,1,0,4,4] 2 1
|
|
223
|
+
2674 c 1 [1,-1,0,-43,709] 2 1
|
|
224
|
+
2677 a 1 [1,1,1,-4,0] 2 1
|
|
225
|
+
2678 b 1 [1,0,1,-107,414] 2 1
|
|
226
|
+
2678 i 1 [1,0,0,-35,1] 2 1
|
|
227
|
+
2679 b 1 [0,-1,1,-132,332] 2 1
|
|
228
|
+
2688 q 1 [0,-1,0,-15,-9] 2 2
|
|
229
|
+
2688 q 2 [0,-1,0,-105,441] 2 2
|
|
230
|
+
2710 b 1 [1,1,0,-3,13] 2 1
|
|
231
|
+
2710 d 1 [1,-1,0,-139,673] 2 1
|
|
232
|
+
2718 b 1 [1,-1,0,12,16] 2 1
|
|
233
|
+
2718 f 1 [1,-1,0,-99,409] 2 1
|
|
234
|
+
2724 a 1 [0,-1,0,-149,753] 2 1
|
|
235
|
+
2725 d 1 [1,-1,1,-10,-8] 2 2
|
|
236
|
+
2725 d 2 [1,-1,1,15,-58] 2 2
|
|
237
|
+
2728 c 1 [0,0,0,-119,619] 2 1
|
|
238
|
+
2728 d 1 [0,1,0,-32,61] 2 1
|
|
239
|
+
2735 c 1 [0,1,1,-6,6] 2 1
|
|
240
|
+
2736 h 1 [0,0,0,-147,610] 2 2
|
|
241
|
+
2736 h 2 [0,0,0,213,3130] 2 2
|
|
242
|
+
2738 d 1 [1,0,0,-47,121] 2 1
|
|
243
|
+
2738 d 2 [1,0,0,138,676] 2 1
|
|
244
|
+
2742 c 1 [1,1,0,-11,9] 2 2
|
|
245
|
+
2742 c 2 [1,1,0,-41,-105] 2 2
|
|
246
|
+
2757 a 1 [0,1,1,-20,20] 2 1
|
|
247
|
+
2766 c 1 [1,1,0,-9,9] 2 1
|
|
248
|
+
2768 a 1 [0,0,0,-19,-14] 2 1
|
|
249
|
+
2768 b 1 [0,-1,0,-256,1664] 2 1
|
|
250
|
+
2781 a 1 [0,0,1,-21,36] 2 1
|
|
251
|
+
2785 a 1 [0,1,1,-6,0] 2 1
|
|
252
|
+
2788 a 1 [0,-1,0,-14,25] 2 1
|
|
253
|
+
2792 a 1 [0,-1,0,-49,149] 2 1
|
|
254
|
+
2793 a 1 [1,1,1,6,6] 2 2
|
|
255
|
+
2793 a 2 [1,1,1,-29,20] 2 2
|
|
256
|
+
2797 a 1 [0,1,1,-9,-14] 2 1
|
|
257
|
+
2813 b 1 [1,1,0,4,1] 2 1
|
|
258
|
+
2834 c 1 [1,0,0,-607,5721] 2 1
|
|
259
|
+
2836 a 1 [0,0,0,-64,196] 2 1
|
|
260
|
+
2837 a 1 [0,1,1,-4,-4] 2 1
|
|
261
|
+
2843 a 1 [1,-1,1,3,0] 2 1
|
|
262
|
+
2848 c 1 [0,0,0,-28,64] 2 1
|
|
263
|
+
2859 a 1 [1,1,1,-1,2] 2 1
|
|
264
|
+
2862 b 1 [1,-1,0,-81,301] 2 1
|
|
265
|
+
2868 a 1 [0,-1,0,-22,49] 2 1
|
|
266
|
+
2870 b 1 [1,0,1,-39,86] 2 2
|
|
267
|
+
2870 b 2 [1,0,1,11,306] 2 2
|
|
268
|
+
2874 a 1 [1,0,1,-28,62] 2 1
|
|
269
|
+
2882 a 1 [1,0,0,-210,1156] 2 1
|
|
270
|
+
2899 a 1 [0,1,1,-1,2] 2 1
|
|
271
|
+
2900 c 1 [0,1,0,-233,1288] 2 2
|
|
272
|
+
2900 c 2 [0,1,0,-108,2788] 2 2
|
|
273
|
+
2913 b 1 [1,0,0,8,11] 2 1
|
|
274
|
+
2918 b 1 [1,0,0,-80,256] 2 1
|
|
275
|
+
2924 b 1 [0,-1,0,-17,34] 2 1
|
|
276
|
+
2953 a 1 [1,0,0,-9,10] 2 1
|
|
277
|
+
2955 c 1 [0,1,1,-86,266] 2 1
|
|
278
|
+
2961 f 1 [1,-1,1,58,60] 2 2
|
|
279
|
+
2961 f 2 [1,-1,1,-257,690] 2 2
|
|
280
|
+
2986 a 1 [1,0,1,-15,20] 2 1
|
|
281
|
+
2986 b 1 [1,0,0,-17,169] 2 1
|
|
282
|
+
2996 b 1 [0,0,0,-52,145] 2 1
|
|
283
|
+
3004 a 1 [0,1,0,6,1] 2 1
|
|
284
|
+
3026 a 1 [1,-1,0,-34,84] 2 2
|
|
285
|
+
3026 a 2 [1,-1,0,-74,-116] 2 2
|
|
286
|
+
3032 b 1 [0,1,0,4,16] 2 1
|
|
287
|
+
3044 a 1 [0,1,0,-6,1] 2 1
|
|
288
|
+
3046 a 1 [1,0,1,-6,-4] 2 1
|
|
289
|
+
3050 a 1 [1,0,1,-126,-352] 2 2
|
|
290
|
+
3050 a 2 [1,0,1,374,-2352] 2 2
|
|
291
|
+
3054 c 1 [1,0,1,-68,182] 2 1
|
|
292
|
+
3073 b 1 [1,0,0,31,-110] 2 1
|
|
293
|
+
3086 a 1 [1,-1,0,-1,3] 2 1
|
|
294
|
+
3102 b 1 [1,1,0,-227,1485] 2 1
|
|
295
|
+
3112 b 1 [0,1,0,-17,-29] 2 1
|
|
296
|
+
3134 b 1 [1,1,0,-5,1] 2 1
|
|
297
|
+
3136 m 1 [0,1,0,-9,55] 2 2
|
|
298
|
+
3136 m 2 [0,1,0,-289,1791] 2 2
|
|
299
|
+
3145 a 1 [0,-1,1,-50,-42] 2 1
|
|
300
|
+
3176 a 1 [0,1,0,-408,3040] 2 1
|
|
301
|
+
3185 b 1 [1,0,0,-1,6] 2 1
|
|
302
|
+
3200 o 1 [0,0,0,-100,400] 2 1
|
|
303
|
+
3206 b 1 [1,1,0,-9,1] 2 1
|
|
304
|
+
3220 a 1 [0,0,0,-13,37] 2 1
|
|
305
|
+
3260 b 1 [0,1,0,-21,55] 2 1
|
|
306
|
+
3261 b 1 [1,0,0,-472,3851] 2 1
|
|
307
|
+
3262 b 1 [1,1,0,54,-44] 2 1
|
|
308
|
+
3264 i 1 [0,-1,0,-209,1233] 2 2
|
|
309
|
+
3264 i 2 [0,-1,0,-289,289] 2 4
|
|
310
|
+
3264 i 3 [0,-1,0,-3009,-62271] 2 2
|
|
311
|
+
3264 i 4 [0,-1,0,1151,1153] 2 4
|
|
312
|
+
3278 b 1 [1,1,0,-311,1765] 2 1
|
|
313
|
+
3280 e 1 [0,1,0,-80,100] 2 2
|
|
314
|
+
3280 e 2 [0,1,0,-1080,13300] 2 2
|
|
315
|
+
3284 a 1 [0,0,0,-31,70] 2 1
|
|
316
|
+
3286 c 1 [1,-1,0,-28,-176] 2 1
|
|
317
|
+
3298 d 1 [1,0,0,-29,49] 2 2
|
|
318
|
+
3298 d 2 [1,0,0,51,289] 2 2
|
|
319
|
+
3303 a 1 [1,-1,1,-59,182] 2 1
|
|
320
|
+
3315 b 1 [1,1,1,-26,38] 2 2
|
|
321
|
+
3315 b 2 [1,1,1,-71,-196] 2 4
|
|
322
|
+
3315 b 3 [1,1,1,-1046,-13456] 2 2
|
|
323
|
+
3315 b 4 [1,1,1,184,-1012] 2 2
|
|
324
|
+
3324 a 1 [0,-1,0,-4,40] 2 1
|
|
325
|
+
3328 d 1 [0,-1,0,-7,11] 2 1
|
|
326
|
+
3328 d 2 [0,-1,0,-7,-661] 2 1
|
|
327
|
+
3328 f 1 [0,0,0,-118,496] 2 1
|
|
328
|
+
3333 a 1 [0,-1,1,-221,1340] 2 1
|
|
329
|
+
3333 b 1 [0,-1,1,-52,162] 2 1
|
|
330
|
+
3336 c 1 [0,-1,0,-12,36] 2 1
|
|
331
|
+
3339 g 1 [0,0,1,-279,1802] 2 1
|
|
332
|
+
3344 g 1 [0,0,0,-91,394] 2 1
|
|
333
|
+
3365 b 1 [0,1,1,-40,56] 2 1
|
|
334
|
+
3370 e 1 [1,-1,1,-63,231] 2 1
|
|
335
|
+
3380 d 1 [0,0,0,-13,13] 2 1
|
|
336
|
+
3384 c 1 [0,0,0,-84,164] 2 1
|
|
337
|
+
3397 b 1 [0,0,1,10,-22] 2 1
|
|
338
|
+
3403 a 1 [1,1,1,-28,48] 2 1
|
|
339
|
+
3404 a 1 [0,-1,0,-93,361] 2 1
|
|
340
|
+
3419 b 1 [1,0,0,-7,6] 2 1
|
|
341
|
+
3424 c 1 [0,0,0,-1,4] 2 1
|
|
342
|
+
3425 a 1 [1,-1,1,-130,622] 2 1
|
|
343
|
+
3442 b 1 [1,1,1,-10,-9] 2 1
|
|
344
|
+
3442 c 1 [1,-1,1,-1191,16095] 2 1
|
|
345
|
+
3448 b 1 [0,-1,0,-52,164] 2 1
|
|
346
|
+
3450 f 1 [1,1,0,-25,25] 2 1
|
|
347
|
+
3454 b 1 [1,-1,0,11,-11] 2 1
|
|
348
|
+
3454 c 1 [1,1,0,-51,121] 2 1
|
|
349
|
+
3455 b 1 [0,0,1,-602,5685] 2 1
|
|
350
|
+
3455 c 1 [0,1,1,0,6] 2 1
|
|
351
|
+
3456 l 1 [0,0,0,-84,304] 2 1
|
|
352
|
+
3479 e 1 [1,-1,1,-27,60] 2 1
|
|
353
|
+
3483 f 1 [1,-1,1,-11,-8] 2 1
|
|
354
|
+
3489 a 1 [0,-1,1,-5,17] 2 1
|
|
355
|
+
3489 b 1 [0,-1,1,-48,146] 2 1
|
|
356
|
+
3489 c 1 [0,-1,1,6,-16] 2 1
|
|
357
|
+
3496 b 1 [0,0,0,-1484,22004] 2 1
|
|
358
|
+
3496 c 1 [0,0,0,5,-17] 2 1
|
|
359
|
+
3497 a 1 [0,1,1,-26,42] 2 1
|
|
360
|
+
3505 b 1 [0,1,1,-25,-46] 2 1
|
|
361
|
+
3509 a 1 [0,0,1,-11,-14] 2 1
|
|
362
|
+
3509 c 1 [0,0,1,-4477,115464] 2 1
|
|
363
|
+
3515 b 1 [0,0,1,-307,1950] 2 1
|
|
364
|
+
3525 f 1 [0,-1,1,217,2093] 2 1
|
|
365
|
+
3525 f 2 [0,-1,1,-2033,-73282] 2 1
|
|
366
|
+
3525 i 1 [0,-1,1,-18,38] 2 1
|
|
367
|
+
3536 g 1 [0,1,0,-144,532] 2 2
|
|
368
|
+
3536 g 2 [0,1,0,-2224,39636] 2 2
|
|
369
|
+
3542 c 1 [1,0,1,-162,896] 2 2
|
|
370
|
+
3542 c 2 [1,0,1,-2692,53520] 2 2
|
|
371
|
+
3555 d 1 [1,-1,1,-968,11832] 2 1
|
|
372
|
+
3560 f 1 [0,1,0,-36,64] 2 2
|
|
373
|
+
3560 f 2 [0,1,0,-136,-576] 2 2
|
|
374
|
+
3561 c 1 [0,1,1,-24,56] 2 1
|
|
375
|
+
3562 b 1 [1,0,1,6,20] 2 1
|
|
376
|
+
3565 a 1 [1,1,0,-1783,28898] 2 1
|
|
377
|
+
3565 b 1 [0,-1,1,4,12] 2 1
|
|
378
|
+
3568 a 1 [0,-1,0,-24,-32] 2 1
|
|
379
|
+
3573 b 1 [1,-1,1,-14,22] 2 1
|
|
380
|
+
3575 f 1 [0,0,1,-25,6] 2 1
|
|
381
|
+
3586 e 1 [1,0,0,-232,576] 2 1
|
|
382
|
+
3595 a 1 [0,1,1,4,0] 2 1
|
|
383
|
+
3633 a 1 [1,1,1,-7,2] 2 1
|
|
384
|
+
3634 b 1 [1,-1,0,-220,1312] 2 1
|
|
385
|
+
3634 d 1 [1,1,1,-267,-1223] 2 1
|
|
386
|
+
3661 a 1 [0,1,1,-329,3393] 2 1
|
|
387
|
+
3661 b 1 [0,1,1,2,8] 2 1
|
|
388
|
+
3663 e 1 [1,-1,1,49,182] 2 2
|
|
389
|
+
3663 e 2 [1,-1,1,-356,2126] 2 4
|
|
390
|
+
3663 e 3 [1,-1,1,-1841,-28168] 2 2
|
|
391
|
+
3663 e 4 [1,-1,1,-5351,151976] 2 4
|
|
392
|
+
3664 d 1 [0,-1,0,-12,16] 2 1
|
|
393
|
+
3664 e 1 [0,0,0,-43,106] 2 1
|
|
394
|
+
3664 g 1 [0,-1,0,-32,64] 2 1
|
|
395
|
+
3672 i 1 [0,0,0,-39,106] 2 1
|
|
396
|
+
3681 a 1 [0,0,1,24,-5] 2 1
|
|
397
|
+
3681 b 1 [0,0,1,-345,2470] 2 1
|
|
398
|
+
3684 a 1 [0,-1,0,-9,18] 2 1
|
|
399
|
+
3686 e 1 [1,0,0,-149,865] 2 1
|
|
400
|
+
3687 a 1 [1,1,1,-12,0] 2 1
|
|
401
|
+
3706 a 1 [1,1,0,0,4] 2 1
|
|
402
|
+
3710 a 1 [1,-1,0,-49,193] 2 1
|
|
403
|
+
3712 f 1 [0,0,0,2,4] 2 1
|
|
404
|
+
3712 i 1 [0,-1,0,-11,19] 2 1
|
|
405
|
+
3714 f 1 [1,1,1,-50,191] 2 1
|
|
406
|
+
3717 b 1 [1,-1,1,-11,2] 2 2
|
|
407
|
+
3717 b 2 [1,-1,1,-116,506] 2 2
|
|
408
|
+
3718 k 1 [1,0,1,-30,80] 2 1
|
|
409
|
+
3718 k 2 [1,0,1,230,-960] 2 1
|
|
410
|
+
3731 c 1 [0,1,1,-112,992] 2 1
|
|
411
|
+
3737 b 1 [0,0,1,-8927,324638] 2 1
|
|
412
|
+
3742 b 1 [1,0,0,-9,25] 2 1
|
|
413
|
+
3752 j 1 [0,-1,0,-12,4] 2 1
|
|
414
|
+
3758 b 1 [1,-1,0,4,-4] 2 1
|
|
415
|
+
3758 c 1 [1,0,1,-19,30] 2 1
|
|
416
|
+
3774 d 1 [1,1,0,227,1789] 2 1
|
|
417
|
+
3776 h 1 [0,-1,0,-37,101] 2 1
|
|
418
|
+
3776 h 2 [0,-1,0,123,421] 2 1
|
|
419
|
+
3776 s 1 [0,0,0,8,-8] 2 1
|
|
420
|
+
3779 a 1 [0,0,1,2,-3] 2 1
|
|
421
|
+
3782 a 1 [1,-1,0,-131,613] 2 1
|
|
422
|
+
3784 f 1 [0,-1,0,199,-611] 2 1
|
|
423
|
+
3786 a 1 [1,1,0,4,6] 2 1
|
|
424
|
+
3786 c 1 [1,1,1,-205,1091] 2 1
|
|
425
|
+
3799 a 1 [0,1,1,-4,-18] 2 1
|
|
426
|
+
3800 e 1 [0,1,0,117,238] 2 2
|
|
427
|
+
3800 e 2 [0,1,0,-508,1488] 2 2
|
|
428
|
+
3801 d 1 [0,-1,1,-14,26] 2 1
|
|
429
|
+
3806 d 1 [1,-1,0,-55,-101] 2 1
|
|
430
|
+
3806 l 1 [1,-1,1,-1179,15819] 2 1
|
|
431
|
+
3819 b 1 [0,-1,1,-1,-42] 2 1
|
|
432
|
+
3826 a 1 [1,-1,0,-7,13] 2 1
|
|
433
|
+
3829 a 1 [0,0,1,4,7] 2 1
|
|
434
|
+
3829 b 1 [1,0,0,7,4] 2 1
|
|
435
|
+
3834 d 1 [1,-1,0,12,224] 2 1
|
|
436
|
+
3842 b 1 [1,0,0,-659,6433] 2 2
|
|
437
|
+
3842 b 2 [1,0,0,-339,12769] 2 2
|
|
438
|
+
3848 a 1 [0,-1,0,-4089,102013] 2 1
|
|
439
|
+
3852 c 1 [0,0,0,-9,1] 2 1
|
|
440
|
+
3857 b 1 [1,1,1,-4332,109570] 2 1
|
|
441
|
+
3858 a 1 [1,1,0,3,45] 2 1
|
|
442
|
+
3879 b 1 [0,0,1,-6,2] 2 1
|
|
443
|
+
3879 d 1 [1,-1,1,-41,182] 2 1
|
|
444
|
+
3880 a 1 [0,1,0,-65,163] 2 1
|
|
445
|
+
3883 a 1 [0,1,1,1,3] 2 1
|
|
446
|
+
3886 c 1 [1,1,0,-1368,18916] 2 1
|
|
447
|
+
3886 g 1 [1,0,0,-24,64] 2 1
|
|
448
|
+
3888 j 1 [0,0,0,-27,90] 2 1
|
|
449
|
+
3914 b 1 [1,-1,0,-28,64] 2 1
|
|
450
|
+
3924 f 1 [0,0,0,-21,101] 2 1
|
|
451
|
+
3926 b 1 [1,1,0,-2,10] 2 1
|
|
452
|
+
3928 b 1 [0,-1,0,1,4] 2 1
|
|
453
|
+
3933 b 1 [0,0,1,-3,130] 2 1
|
|
454
|
+
3940 a 1 [0,-1,0,-6,1] 2 1
|
|
455
|
+
3940 g 1 [0,0,0,-757,7981] 2 1
|
|
456
|
+
3952 e 1 [0,0,0,16,-36] 2 1
|
|
457
|
+
3952 f 1 [0,0,0,-979,11794] 2 1
|
|
458
|
+
3954 d 1 [1,1,0,-24,36] 2 1
|
|
459
|
+
3954 f 1 [1,1,1,-127,485] 2 1
|
|
460
|
+
3956 c 1 [0,-1,0,22,1] 2 1
|
|
461
|
+
3959 b 1 [0,0,1,-334,2349] 2 1
|
|
462
|
+
3966 b 1 [1,0,1,-75,250] 2 1
|
|
463
|
+
3967 a 1 [1,0,0,2,3] 2 1
|
|
464
|
+
3972 a 1 [0,-1,0,-137,666] 2 1
|
|
465
|
+
3974 c 1 [1,-1,1,-51,147] 2 1
|
|
466
|
+
3975 e 1 [0,-1,1,-1083,13943] 2 1
|
|
467
|
+
3987 c 1 [1,-1,1,22,-142] 2 1
|
|
468
|
+
3987 d 1 [1,-1,1,-752,8120] 2 1
|
|
469
|
+
3988 a 1 [0,0,0,-16,4] 2 1
|
|
470
|
+
3994 b 1 [1,1,1,460,2421] 2 1
|
|
471
|
+
3994 c 1 [1,-1,1,-21,45] 2 1
|
|
472
|
+
3997 a 1 [0,0,1,4,56] 2 1
|
|
473
|
+
4002 c 1 [1,1,0,-231,1269] 2 2
|
|
474
|
+
4002 c 2 [1,1,0,-3711,85485] 2 2
|
|
475
|
+
4006 a 1 [1,-1,0,4,-2] 2 1
|
|
476
|
+
4006 b 1 [1,0,0,-87,361] 2 1
|
|
477
|
+
4012 a 1 [0,0,0,-184,961] 2 1
|
|
478
|
+
4014 b 1 [1,-1,0,255,-451] 2 1
|
|
479
|
+
4024 b 1 [0,-1,0,12,4] 2 1
|
|
480
|
+
4025 d 1 [0,0,1,-325,6156] 2 1
|
|
481
|
+
4046 d 1 [1,-1,0,-343,2461] 2 1
|
|
482
|
+
4060 a 1 [0,1,0,-21,4] 2 2
|
|
483
|
+
4060 a 2 [0,1,0,-196,-1116] 2 2
|
|
484
|
+
4064 c 1 [0,0,0,-59,174] 2 1
|
|
485
|
+
4066 d 1 [1,0,0,-912,12544] 2 1
|
|
486
|
+
4069 a 1 [0,0,1,-4,0] 2 1
|
|
487
|
+
4069 b 1 [0,1,1,-382,-2958] 2 1
|
|
488
|
+
4075 b 1 [0,0,1,-50,156] 2 1
|
|
489
|
+
4077 a 1 [0,0,1,-6,-5] 2 1
|
|
490
|
+
4081 c 1 [0,-1,1,98,502] 2 1
|
|
491
|
+
4090 b 1 [1,1,0,7,37] 2 1
|
|
492
|
+
4092 b 1 [0,-1,0,-22,121] 2 1
|
|
493
|
+
4098 a 1 [1,1,0,-4,16] 2 1
|
|
494
|
+
4098 b 1 [1,0,1,-40,362] 2 1
|
|
495
|
+
4102 a 1 [1,1,0,12,64] 2 1
|
|
496
|
+
4105 a 1 [1,-1,0,20,1] 2 1
|
|
497
|
+
4105 b 1 [1,1,1,-11,-42] 2 1
|
|
498
|
+
4118 b 1 [1,1,0,-27,1057] 2 1
|
|
499
|
+
4119 a 1 [1,0,0,-25,-4] 2 1
|
|
500
|
+
4123 a 1 [0,0,1,4,0] 2 1
|
|
501
|
+
4123 b 1 [0,1,1,-84,306] 2 1
|
|
502
|
+
4123 c 1 [0,1,1,-1373,19131] 2 3
|
|
503
|
+
4123 c 2 [0,1,1,-1293,21540] 2 3
|
|
504
|
+
4123 c 3 [0,1,1,9557,-177883] 2 1
|
|
505
|
+
4136 a 1 [0,0,0,13,30] 2 1
|
|
506
|
+
4136 b 1 [0,0,0,-6868,219556] 2 1
|
|
507
|
+
4139 a 1 [0,-1,1,4,0] 2 1
|
|
508
|
+
4144 e 1 [0,1,0,16,1060] 2 2
|
|
509
|
+
4144 e 2 [0,1,0,-1464,20596] 2 2
|
|
510
|
+
4178 d 1 [1,1,0,-9,-11] 2 1
|
|
511
|
+
4178 e 1 [1,-1,1,-54,69] 2 1
|
|
512
|
+
4182 f 1 [1,1,1,-120,441] 2 2
|
|
513
|
+
4182 f 2 [1,1,1,40,1721] 2 2
|
|
514
|
+
4185 l 1 [0,0,1,162,-682] 2 1
|
|
515
|
+
4190 c 1 [1,-1,0,-64,220] 2 1
|
|
516
|
+
4195 a 1 [0,0,1,-8,9] 2 1
|
|
517
|
+
4198 c 1 [1,0,1,-24,38] 2 1
|
|
518
|
+
4202 a 1 [1,1,0,-1204,13136] 2 1
|
|
519
|
+
4215 b 1 [1,1,1,-61,158] 2 1
|
|
520
|
+
4227 a 1 [1,0,0,23,26] 2 1
|
|
521
|
+
4233 a 1 [1,0,0,-222,1629] 2 1
|
|
522
|
+
4251 f 1 [1,0,0,-5070,138411] 2 2
|
|
523
|
+
4251 f 2 [1,0,0,-6285,66726] 2 2
|
|
524
|
+
4255 a 1 [0,0,1,-58,24] 2 1
|
|
525
|
+
4270 a 1 [1,-1,0,-70,196] 2 1
|
|
526
|
+
4279 b 1 [0,0,1,-14,17] 2 1
|
|
527
|
+
4279 c 1 [0,1,1,-7892,267240] 2 1
|
|
528
|
+
4285 a 1 [1,-1,1,2,2] 2 1
|
|
529
|
+
4286 c 1 [1,1,1,-20,21] 2 1
|
|
530
|
+
4296 a 1 [0,-1,0,-57,189] 2 1
|
|
531
|
+
4299 a 1 [1,1,1,-14,20] 2 1
|
|
532
|
+
4312 l 1 [0,1,0,-100,384] 2 2
|
|
533
|
+
4312 l 2 [0,1,0,-1640,25024] 2 2
|
|
534
|
+
4330 c 1 [1,-1,0,40,16] 2 1
|
|
535
|
+
4347 d 1 [0,0,1,-489,3510] 2 1
|
|
536
|
+
4350 f 1 [1,1,0,-20,0] 2 2
|
|
537
|
+
4350 f 2 [1,1,0,80,100] 2 2
|
|
538
|
+
4352 h 1 [0,0,0,-46,120] 2 2
|
|
539
|
+
4352 h 2 [0,0,0,-56,64] 2 2
|
|
540
|
+
4355 c 1 [0,1,1,-5155,140756] 2 3
|
|
541
|
+
4355 c 2 [0,1,1,-2405,292581] 2 1
|
|
542
|
+
4357 a 1 [0,0,1,-10,-12] 2 1
|
|
543
|
+
4362 b 1 [1,0,1,-55,170] 2 1
|
|
544
|
+
4377 a 1 [0,-1,1,1,5] 2 1
|
|
545
|
+
4385 c 1 [0,0,1,-7,0] 2 1
|
|
546
|
+
4386 e 1 [1,1,0,-806,7764] 2 2
|
|
547
|
+
4386 e 2 [1,1,0,914,38380] 2 2
|
|
548
|
+
4396 c 1 [0,1,0,23,24] 2 3
|
|
549
|
+
4396 c 2 [0,1,0,-257,-1964] 2 1
|
|
550
|
+
4400 g 1 [0,1,0,12,28] 2 2
|
|
551
|
+
4400 g 2 [0,1,0,-88,228] 2 2
|
|
552
|
+
4407 a 1 [0,-1,1,5,9] 2 1
|
|
553
|
+
4414 a 1 [1,-1,0,-23,29] 2 1
|
|
554
|
+
4416 r 1 [0,-1,0,15,81] 2 2
|
|
555
|
+
4416 r 2 [0,-1,0,-225,1281] 2 2
|
|
556
|
+
4416 bb 1 [0,1,0,-185,1479] 2 2
|
|
557
|
+
4416 bb 2 [0,1,0,-3425,75999] 2 2
|
|
558
|
+
4428 b 1 [0,0,0,-12,25] 2 1
|
|
559
|
+
4430 b 1 [1,0,0,-36,16] 2 1
|
|
560
|
+
4448 b 1 [0,1,0,-2,4] 2 1
|
|
561
|
+
4450 c 1 [1,-1,0,-1292,17616] 2 2
|
|
562
|
+
4450 c 2 [1,-1,0,-3292,-48384] 2 4
|
|
563
|
+
4450 c 3 [1,-1,0,-47792,-4008884] 2 2
|
|
564
|
+
4450 c 4 [1,-1,0,9208,-335884] 2 2
|
|
565
|
+
4466 b 1 [1,0,1,137,3942] 2 2
|
|
566
|
+
4466 b 2 [1,0,1,-3053,61362] 2 2
|
|
567
|
+
4480 c 1 [0,1,0,49,49] 2 2
|
|
568
|
+
4480 c 2 [0,1,0,-201,199] 2 2
|
|
569
|
+
4481 c 1 [1,-1,1,-13,20] 2 1
|
|
570
|
+
4490 b 1 [1,1,0,-182,-374] 2 1
|
|
571
|
+
4490 i 1 [1,-1,1,-447,2919] 2 1
|
|
572
|
+
4503 c 1 [0,-1,1,-237,1487] 2 1
|
|
573
|
+
4504 a 1 [0,-1,0,-4,20] 2 1
|
|
574
|
+
4504 b 1 [0,-1,0,5,-4] 2 1
|
|
575
|
+
4504 c 1 [0,0,0,-10,13] 2 1
|
|
576
|
+
4505 a 1 [1,0,1,-27124,1717101] 2 2
|
|
577
|
+
4505 a 2 [1,0,1,-27119,1717767] 2 2
|
|
578
|
+
4506 a 1 [1,0,1,-642,6244] 2 1
|
|
579
|
+
4511 c 1 [0,0,1,-16,27] 2 1
|
|
580
|
+
4514 a 1 [1,-1,0,-23,49] 2 1
|
|
581
|
+
4514 b 1 [1,0,1,-10373,406512] 2 1
|
|
582
|
+
4515 c 1 [0,-1,1,-236,1496] 2 1
|
|
583
|
+
4518 b 1 [1,-1,0,-3,9] 2 1
|
|
584
|
+
4518 d 1 [1,-1,0,-1359,19629] 2 1
|
|
585
|
+
4526 c 1 [1,1,0,-10,8] 2 1
|
|
586
|
+
4528 a 1 [0,1,0,-4,12] 2 1
|
|
587
|
+
4528 b 1 [0,0,0,4,-1] 2 1
|
|
588
|
+
4544 g 1 [0,-1,0,-33,1] 2 1
|
|
589
|
+
4544 l 1 [0,-1,0,-289,1985] 2 1
|
|
590
|
+
4547 a 1 [0,-1,1,-43,124] 2 1
|
|
591
|
+
4554 b 1 [1,-1,0,12,0] 2 2
|
|
592
|
+
4554 b 2 [1,-1,0,-48,36] 2 2
|
|
593
|
+
4564 a 1 [0,0,0,1,-26] 2 1
|
|
594
|
+
4569 b 1 [1,0,0,-29,30] 2 1
|
|
595
|
+
4572 b 1 [0,0,0,-24,4] 2 1
|
|
596
|
+
4578 c 1 [1,1,0,-14,24] 2 1
|
|
597
|
+
4582 b 1 [1,1,0,-48,64] 2 1
|
|
598
|
+
4584 a 1 [0,1,0,-265,1499] 2 1
|
|
599
|
+
4588 g 1 [0,0,0,7,-39] 2 1
|
|
600
|
+
4588 h 1 [0,0,0,-3112,66820] 2 1
|
|
601
|
+
4592 b 1 [0,-1,0,-112,416] 2 1
|
|
602
|
+
4592 c 1 [0,0,0,53,-390] 2 2
|
|
603
|
+
4592 c 2 [0,0,0,-587,-4870] 2 2
|
|
604
|
+
4592 g 1 [0,0,0,-643,6274] 2 1
|
|
605
|
+
4593 a 1 [0,-1,1,8,12] 2 1
|
|
606
|
+
4595 a 1 [1,1,0,3,4] 2 1
|
|
607
|
+
4600 g 1 [0,1,0,7,43] 2 1
|
|
608
|
+
4605 e 1 [0,1,1,-16,40] 2 1
|
|
609
|
+
4606 c 1 [1,0,1,-467,-3090] 2 2
|
|
610
|
+
4606 c 2 [1,0,1,-2427,43166] 2 2
|
|
611
|
+
4606 d 1 [1,0,1,-12,-10] 2 2
|
|
612
|
+
4606 d 2 [1,0,1,-82,270] 2 2
|
|
613
|
+
4617 h 1 [1,-1,1,-2,10] 2 1
|
|
614
|
+
4623 a 1 [1,1,0,-5,-6] 2 1
|
|
615
|
+
4623 c 1 [1,0,0,-1140,-13599] 2 1
|
|
616
|
+
4629 a 1 [0,-1,1,-4,0] 2 1
|
|
617
|
+
4630 b 1 [1,-1,0,5,1] 2 1
|
|
618
|
+
4630 c 1 [1,1,0,-157,701] 2 1
|
|
619
|
+
4632 f 1 [0,1,0,-100,224] 2 2
|
|
620
|
+
4632 f 2 [0,1,0,-640,-6256] 2 2
|
|
621
|
+
4652 a 1 [0,0,0,-16,36] 2 1
|
|
622
|
+
4655 c 1 [0,1,1,-13491,598665] 2 3
|
|
623
|
+
4655 c 2 [0,1,1,-6631,1211606] 2 1
|
|
624
|
+
4655 f 1 [0,0,1,7,-2] 2 1
|
|
625
|
+
4655 h 1 [0,0,1,-4753,126138] 2 1
|
|
626
|
+
4656 c 1 [0,-1,0,-24,0] 2 2
|
|
627
|
+
4656 c 2 [0,-1,0,96,-96] 2 2
|
|
628
|
+
4659 a 1 [0,-1,1,3,-4] 2 1
|
|
629
|
+
4659 b 1 [0,1,1,-144,992] 2 1
|
|
630
|
+
4662 b 1 [1,-1,0,-63,445] 2 2
|
|
631
|
+
4662 b 2 [1,-1,0,-1323,18841] 2 2
|
|
632
|
+
4668 a 1 [0,-1,0,-77,249] 2 1
|
|
633
|
+
4669 b 1 [1,1,1,-452,3522] 2 1
|
|
634
|
+
4675 i 1 [1,-1,1,45,132] 2 1
|
|
635
|
+
4702 b 1 [1,1,0,12,16] 2 1
|
|
636
|
+
4717 b 1 [1,0,0,-24,53] 2 1
|
|
637
|
+
4731 b 1 [0,-1,1,-76,1050] 2 1
|
|
638
|
+
4737 a 1 [1,0,0,-220,1241] 2 1
|
|
639
|
+
4739 b 1 [0,1,1,-8,0] 2 1
|
|
640
|
+
4749 b 1 [1,0,0,-101,372] 2 1
|
|
641
|
+
4755 b 1 [1,1,1,-15,30] 2 1
|
|
642
|
+
4758 b 1 [1,1,0,-12,0] 2 2
|
|
643
|
+
4758 b 2 [1,1,0,48,60] 2 2
|
|
644
|
+
4761 b 1 [0,0,1,0,-6] 2 1
|
|
645
|
+
4761 b 2 [0,0,1,0,155] 2 1
|
|
646
|
+
4768 a 1 [0,1,0,-24,40] 2 1
|
|
647
|
+
4776 b 1 [0,-1,0,-72,261] 2 1
|
|
648
|
+
4799 c 1 [1,0,0,-31,64] 2 1
|
|
649
|
+
4806 e 1 [1,-1,1,-167,735] 2 1
|
|
650
|
+
4811 a 1 [1,0,0,-18,31] 2 1
|
|
651
|
+
4836 b 1 [0,-1,0,474,16209] 2 1
|
|
652
|
+
4839 a 1 [0,1,1,-40,70] 2 1
|
|
653
|
+
4845 c 1 [1,1,1,-1,14] 2 2
|
|
654
|
+
4845 c 2 [1,1,1,-96,318] 2 2
|
|
655
|
+
4857 a 1 [1,0,0,-119,498] 2 1
|
|
656
|
+
4858 b 1 [1,0,1,-120,182] 2 1
|
|
657
|
+
4862 a 1 [1,0,1,-52,126] 2 2
|
|
658
|
+
4862 a 2 [1,0,1,-182,-810] 2 2
|
|
659
|
+
4864 j 1 [0,-1,0,1,-5] 2 1
|
|
660
|
+
4864 l 1 [0,0,0,-22,40] 2 1
|
|
661
|
+
4865 c 1 [0,0,1,-73,234] 2 1
|
|
662
|
+
4874 c 1 [1,0,1,3,-4] 2 1
|
|
663
|
+
4876 c 1 [0,-1,0,6,-1127] 2 1
|
|
664
|
+
4878 c 1 [1,-1,0,-54,184] 2 1
|
|
665
|
+
4907 d 1 [0,-1,1,-14,36] 2 1
|
|
666
|
+
4912 g 1 [0,1,0,-8,52] 2 1
|
|
667
|
+
4918 a 1 [1,0,1,-14,0] 2 1
|
|
668
|
+
4920 e 1 [0,-1,0,-116,516] 2 2
|
|
669
|
+
4920 e 2 [0,-1,0,-16,1276] 2 2
|
|
670
|
+
4928 w 1 [0,1,0,-49,207] 2 2
|
|
671
|
+
4928 w 2 [0,1,0,-929,10591] 2 2
|
|
672
|
+
4928 bj 1 [0,1,0,135,6919] 2 2
|
|
673
|
+
4928 bj 2 [0,1,0,-4705,118239] 2 2
|
|
674
|
+
4935 b 1 [0,-1,1,-2000,35156] 2 1
|
|
675
|
+
4941 c 1 [0,0,1,-9,2] 2 1
|
|
676
|
+
4942 b 1 [1,0,0,-62,196] 2 1
|
|
677
|
+
4960 b 1 [0,0,0,7,8] 2 2
|
|
678
|
+
4960 b 2 [0,0,0,-43,78] 2 2
|
|
679
|
+
4962 g 1 [1,1,1,-57,135] 2 1
|
|
680
|
+
4963 a 1 [0,-1,1,-85,325] 2 1
|
|
681
|
+
4963 b 1 [0,-1,1,-47,-93] 2 1
|
|
682
|
+
4963 d 1 [0,0,1,-103,402] 2 1
|
|
683
|
+
4968 n 1 [0,0,0,-39,74] 2 1
|
|
684
|
+
4971 b 1 [0,1,1,-15369,728597] 2 1
|
|
685
|
+
4971 c 1 [0,1,1,-14,32] 2 1
|
|
686
|
+
4975 b 1 [0,-1,1,-383,3168] 2 1
|
|
687
|
+
4975 b 2 [0,-1,1,2117,3793] 2 1
|
|
688
|
+
4975 d 1 [0,0,1,5,6] 2 1
|
|
689
|
+
4976 a 1 [0,1,0,-24,52] 2 1
|
|
690
|
+
4976 b 1 [0,0,0,133,170] 2 1
|
|
691
|
+
4989 a 1 [1,0,0,6,9] 2 1
|
|
692
|
+
5002 b 1 [1,0,1,-1477,21660] 2 2
|
|
693
|
+
5002 b 2 [1,0,1,-2087,1896] 2 2
|
|
694
|
+
5020 c 1 [0,1,0,-10,33] 2 1
|
|
695
|
+
5022 c 1 [1,-1,0,-90,564] 2 1
|
|
696
|
+
5028 c 1 [0,1,0,-30,9] 2 1
|
|
697
|
+
5042 b 1 [1,0,1,-13,-18] 2 1
|
|
698
|
+
5042 c 1 [1,0,0,-39,73] 2 1
|
|
699
|
+
5046 j 1 [1,1,1,-90,231] 2 1
|
|
700
|
+
5049 b 1 [1,-1,1,436,9074] 2 1
|
|
701
|
+
5056 g 1 [0,-1,0,-65,193] 2 1
|
|
702
|
+
5056 i 1 [0,-1,0,-2977,63521] 2 1
|
|
703
|
+
5056 i 2 [0,-1,0,-5217,-41759] 2 1
|
|
704
|
+
5056 i 3 [0,-1,0,-333857,-74137439] 2 1
|
|
705
|
+
5056 o 1 [0,0,0,-28,16] 2 1
|
|
706
|
+
5060 d 1 [0,-1,0,-286,1961] 2 1
|
|
707
|
+
5061 a 1 [0,1,1,-70,310] 2 1
|
|
708
|
+
5067 b 1 [1,-1,1,52,-80] 2 1
|
|
709
|
+
5082 d 1 [1,1,0,-849,9189] 2 1
|
|
710
|
+
5088 e 1 [0,-1,0,-816,9252] 2 1
|
|
711
|
+
5090 a 1 [1,1,0,-2913,59317] 2 1
|
|
712
|
+
5095 c 1 [1,1,1,-21,28] 2 1
|
|
713
|
+
5097 a 1 [0,1,1,-4,52] 2 1
|
|
714
|
+
5115 f 1 [1,1,1,625,8060] 2 4
|
|
715
|
+
5115 f 2 [1,1,1,-4180,77252] 2 4
|
|
716
|
+
5115 f 3 [1,1,1,-22935,-1280610] 2 2
|
|
717
|
+
5115 f 4 [1,1,1,-62305,5959502] 2 2
|
|
718
|
+
5117 d 1 [1,1,1,-11,12] 2 1
|
|
719
|
+
5126 b 1 [1,0,1,-6,-40] 2 1
|
|
720
|
+
5133 b 1 [0,1,1,-9,-7] 2 1
|
|
721
|
+
5133 d 1 [0,1,1,-1220,15980] 2 1
|
|
722
|
+
5140 b 1 [0,1,0,-46,105] 2 1
|
|
723
|
+
5143 b 1 [0,1,1,-984,-10784] 2 1
|
|
724
|
+
5144 a 1 [0,1,0,12,16] 2 1
|
|
725
|
+
5144 b 1 [0,0,0,-2,5] 2 1
|
|
726
|
+
5144 c 1 [0,1,0,-39,82] 2 1
|
|
727
|
+
5150 d 1 [1,-1,0,-617,6541] 2 1
|
|
728
|
+
5158 a 1 [1,1,1,-29,51] 2 1
|
|
729
|
+
5159 e 1 [0,1,1,0,30] 2 1
|
|
730
|
+
5160 b 1 [0,-1,0,-41,141] 2 1
|
|
731
|
+
5163 a 1 [0,-1,1,-3,5] 2 1
|
|
732
|
+
5170 b 1 [1,0,1,21,602] 2 1
|
|
733
|
+
5171 a 1 [0,1,1,-17,22] 2 1
|
|
734
|
+
5178 c 1 [1,0,1,-100,350] 2 1
|
|
735
|
+
5184 bb 1 [0,0,0,36,144] 2 1
|
|
736
|
+
5184 bb 2 [0,0,0,-1404,20304] 2 1
|
|
737
|
+
5210 b 1 [1,0,1,-28,6] 2 2
|
|
738
|
+
5210 b 2 [1,0,1,-278,-1794] 2 2
|
|
739
|
+
5220 m 1 [0,0,0,-273,1753] 2 1
|
|
740
|
+
5221 a 1 [1,-1,0,4,1] 2 1
|
|
741
|
+
5229 c 1 [1,-1,1,-1076,11886] 2 2
|
|
742
|
+
5229 c 2 [1,-1,1,-16511,820680] 2 2
|
|
743
|
+
5236 b 1 [0,0,0,-1384,41764] 2 1
|
|
744
|
+
5238 b 1 [1,-1,0,15,29] 2 1
|
|
745
|
+
5241 a 1 [0,1,1,116,136] 2 1
|
|
746
|
+
5244 b 1 [0,-1,0,299,529] 2 1
|
|
747
|
+
5246 a 1 [1,0,1,-4,258] 2 1
|
|
748
|
+
5248 a 1 [0,0,0,-26,60] 2 2
|
|
749
|
+
5248 a 2 [0,0,0,-436,3504] 2 2
|
|
750
|
+
5265 h 1 [0,0,1,-207,650] 2 1
|
|
751
|
+
5268 a 1 [0,-1,0,6,9] 2 1
|
|
752
|
+
5285 b 1 [1,1,1,220,-28800] 2 1
|
|
753
|
+
5296 b 1 [0,0,0,1,14] 2 1
|
|
754
|
+
5300 g 1 [0,1,0,-933,10663] 2 1
|
|
755
|
+
5302 c 1 [1,1,0,-66,-236] 2 1
|
|
756
|
+
5302 d 1 [1,0,1,-8,-8] 2 1
|
|
757
|
+
5302 e 1 [1,0,1,-7019,225750] 2 1
|
|
758
|
+
5302 f 1 [1,-1,1,-126,525] 2 1
|
|
759
|
+
5302 i 1 [1,1,1,-2365,43251] 2 5
|
|
760
|
+
5302 i 2 [1,1,1,-60335,-5725809] 2 1
|
|
761
|
+
5304 k 1 [0,-1,0,-39,264] 2 4
|
|
762
|
+
5304 k 2 [0,-1,0,-884,10404] 2 4
|
|
763
|
+
5304 k 3 [0,-1,0,-1144,4060] 2 2
|
|
764
|
+
5304 k 4 [0,-1,0,-14144,652188] 2 2
|
|
765
|
+
5310 a 1 [1,-1,0,-15,45] 2 1
|
|
766
|
+
5310 h 1 [1,-1,0,-639,6673] 2 1
|
|
767
|
+
5312 f 1 [0,-1,0,7,25] 2 1
|
|
768
|
+
5312 j 1 [0,-1,0,-169,905] 2 1
|
|
769
|
+
5318 b 1 [1,1,1,-52,117] 2 1
|
|
770
|
+
5327 a 1 [1,-1,1,-16,-20] 2 1
|
|
771
|
+
5331 d 1 [1,1,1,6,0] 2 1
|
|
772
|
+
5345 a 1 [1,1,1,-6,4] 2 1
|
|
773
|
+
5346 e 1 [1,-1,0,12,44] 2 1
|
|
774
|
+
5350 d 1 [1,1,0,50,500] 2 1
|
|
775
|
+
5350 d 2 [1,1,0,-450,-14000] 2 1
|
|
776
|
+
5369 a 1 [0,0,1,-68,287] 2 1
|
|
777
|
+
5369 b 1 [0,1,1,-96,474] 2 1
|
|
778
|
+
5376 g 1 [0,-1,0,-19,-17] 2 2
|
|
779
|
+
5376 g 2 [0,-1,0,51,-171] 2 2
|
|
780
|
+
5382 g 1 [1,-1,0,297,11421] 2 2
|
|
781
|
+
5382 g 2 [1,-1,0,-6183,178605] 2 4
|
|
782
|
+
5382 g 3 [1,-1,0,-18603,-752895] 2 2
|
|
783
|
+
5382 g 4 [1,-1,0,-97443,11732121] 2 4
|
|
784
|
+
5385 a 1 [1,1,1,64,14] 2 1
|
|
785
|
+
5390 l 1 [1,-1,0,-499,5305] 2 1
|
|
786
|
+
5391 a 1 [1,-1,0,27,486] 2 1
|
|
787
|
+
5392 a 1 [0,-1,0,-64,224] 2 1
|
|
788
|
+
5392 b 1 [0,-1,0,56,-16] 2 1
|
|
789
|
+
5394 d 1 [1,0,1,-35,2] 2 1
|
|
790
|
+
5414 a 1 [1,-1,1,-81,321] 2 1
|
|
791
|
+
5415 c 1 [1,1,0,6852,13707] 2 2
|
|
792
|
+
5415 c 2 [1,1,0,-27443,75438] 2 2
|
|
793
|
+
5415 d 1 [0,-1,1,-6,2] 2 1
|
|
794
|
+
5422 a 1 [1,0,1,-79,258] 2 1
|
|
795
|
+
5424 i 1 [0,1,0,-72,324] 2 1
|
|
796
|
+
5427 b 1 [0,0,1,-450,3674] 2 3
|
|
797
|
+
5427 b 2 [0,0,1,-270,6635] 2 1
|
|
798
|
+
5427 f 1 [0,0,1,9,2] 2 1
|
|
799
|
+
5445 b 1 [0,0,1,-33,74] 2 1
|
|
800
|
+
5450 g 1 [1,0,1,-251,1398] 2 2
|
|
801
|
+
5450 g 2 [1,0,1,249,6398] 2 2
|
|
802
|
+
5451 a 1 [0,-1,1,-100,420] 2 1
|
|
803
|
+
5451 b 1 [0,1,1,18,20] 2 1
|
|
804
|
+
5472 b 1 [0,0,0,-21,36] 2 2
|
|
805
|
+
5472 b 2 [0,0,0,-51,-90] 2 2
|
|
806
|
+
5472 g 1 [0,0,0,-21,344] 2 2
|
|
807
|
+
5472 g 2 [0,0,0,-876,9920] 2 2
|
|
808
|
+
5484 a 1 [0,-1,0,3,6] 2 1
|
|
809
|
+
5484 d 1 [0,1,0,-457,3656] 2 1
|
|
810
|
+
5497 a 1 [1,1,1,-128,504] 2 1
|
|
811
|
+
5499 f 1 [0,0,1,-309,2002] 2 1
|
|
812
|
+
5510 b 1 [1,1,0,-6308,170512] 2 1
|
|
813
|
+
5510 e 1 [1,-1,0,-19,25] 2 1
|
|
814
|
+
5511 b 1 [1,1,1,0,6] 2 1
|
|
815
|
+
5515 a 1 [0,1,1,-16,20] 2 1
|
|
816
|
+
5525 e 1 [1,0,0,-1488,21967] 2 2
|
|
817
|
+
5525 e 2 [1,0,0,-1363,25842] 2 2
|
|
818
|
+
5525 k 1 [0,-1,1,-208,718] 2 1
|
|
819
|
+
5528 a 1 [0,0,0,4,20] 2 1
|
|
820
|
+
5546 a 1 [1,-1,0,-30850,2093332] 2 1
|
|
821
|
+
5550 h 1 [1,1,0,-75,225] 2 1
|
|
822
|
+
5551 c 1 [0,1,1,-3606,84042] 2 1
|
|
823
|
+
5558 c 1 [1,-1,1,-249,1689] 2 1
|
|
824
|
+
5572 d 1 [0,1,0,34,121] 2 1
|
|
825
|
+
5574 f 1 [1,1,1,-22,275] 2 1
|
|
826
|
+
5576 c 1 [0,0,0,-7,-5] 2 1
|
|
827
|
+
5576 i 1 [0,1,0,-464,-3715] 2 1
|
|
828
|
+
5576 j 1 [0,1,0,-9524,354592] 2 2
|
|
829
|
+
5576 j 2 [0,1,0,-9504,356176] 2 2
|
|
830
|
+
5584 b 1 [0,0,0,-16,-20] 2 1
|
|
831
|
+
5586 c 1 [1,1,0,17,1] 2 1
|
|
832
|
+
5586 f 1 [1,1,0,-1887,27525] 2 2
|
|
833
|
+
5586 f 2 [1,1,0,-29327,1920885] 2 2
|
|
834
|
+
5596 a 1 [0,0,0,7,1] 2 1
|
|
835
|
+
5612 a 1 [0,0,0,-685,7021] 2 1
|
|
836
|
+
5626 a 1 [1,-1,0,-67,229] 2 1
|
|
837
|
+
5629 a 1 [1,0,0,-2191,39292] 2 1
|
|
838
|
+
5629 b 1 [1,1,0,-4,-1] 2 1
|
|
839
|
+
5637 a 1 [1,1,1,4,20] 2 1
|
|
840
|
+
5637 b 1 [1,0,0,-60,171] 2 1
|
|
841
|
+
5643 c 1 [1,-1,1,-257,1730] 2 1
|
|
842
|
+
5648 a 1 [0,0,0,-203,1114] 2 1
|
|
843
|
+
5648 b 1 [0,1,0,8,84] 2 1
|
|
844
|
+
5649 a 1 [0,-1,1,-12,2] 2 1
|
|
845
|
+
5650 d 1 [1,1,0,-10,20] 2 1
|
|
846
|
+
5650 d 2 [1,1,0,90,-440] 2 1
|
|
847
|
+
5650 j 1 [1,0,0,-78,772] 2 1
|
|
848
|
+
5655 c 1 [1,1,1,-295,1820] 2 2
|
|
849
|
+
5655 c 2 [1,1,1,-150,3792] 2 2
|
|
850
|
+
5656 b 1 [0,1,0,-57,139] 2 1
|
|
851
|
+
5662 a 1 [1,-1,0,-155,757] 2 1
|
|
852
|
+
5662 b 1 [1,0,0,-32,64] 2 1
|
|
853
|
+
5673 c 1 [1,1,0,36,81] 2 1
|
|
854
|
+
5675 e 1 [1,-1,1,-30,72] 2 1
|
|
855
|
+
5676 a 1 [0,-1,0,-10,1] 2 1
|
|
856
|
+
5677 d 1 [0,1,1,-266,1584] 2 1
|
|
857
|
+
5678 d 1 [1,-1,0,-64,214] 2 1
|
|
858
|
+
5678 e 1 [1,1,1,-9,55] 2 1
|
|
859
|
+
5680 d 1 [0,0,0,-43,58] 2 1
|
|
860
|
+
5681 c 1 [0,1,1,-16,62] 2 1
|
|
861
|
+
5684 a 1 [0,-1,0,-1486,-17023] 2 1
|
|
862
|
+
5692 a 1 [0,1,0,-18,25] 2 1
|
|
863
|
+
5694 a 1 [1,1,0,7,9] 2 1
|
|
864
|
+
5694 b 1 [1,1,0,-43452,3468240] 2 2
|
|
865
|
+
5694 b 2 [1,1,0,-43692,3427680] 2 2
|
|
866
|
+
5695 a 1 [0,-1,1,-6,12] 2 1
|
|
867
|
+
5696 d 1 [0,0,0,-116,480] 2 2
|
|
868
|
+
5696 d 2 [0,0,0,-76,816] 2 2
|
|
869
|
+
5707 a 1 [0,1,1,-3,3] 2 1
|
|
870
|
+
5709 b 1 [0,-1,1,-22,0] 2 1
|
|
871
|
+
5709 d 1 [0,1,1,-296,1862] 2 1
|
|
872
|
+
5712 c 1 [0,-1,0,16,144] 2 2
|
|
873
|
+
5712 c 2 [0,-1,0,-344,2448] 2 2
|
|
874
|
+
5715 a 1 [1,-1,1,-8,12] 2 1
|
|
875
|
+
5715 c 1 [1,-1,0,540,-6075] 2 1
|
|
876
|
+
5718 a 1 [1,0,1,-290,1892] 2 1
|
|
877
|
+
5723 a 1 [0,0,1,-25,48] 2 1
|
|
878
|
+
5724 c 1 [0,0,0,-39,-34] 2 1
|
|
879
|
+
5727 b 1 [0,-1,1,-652,6630] 2 1
|
|
880
|
+
5727 c 1 [0,-1,1,-116,248] 2 1
|
|
881
|
+
5727 i 1 [0,1,1,-62,62] 2 1
|
|
882
|
+
5732 a 1 [0,0,0,-7,30] 2 1
|
|
883
|
+
5734 a 1 [1,-1,0,-11825,-497251] 2 1
|
|
884
|
+
5736 f 1 [0,-1,0,8,1] 2 1
|
|
885
|
+
5741 a 1 [1,-1,0,-5,4] 2 1
|
|
886
|
+
5754 a 1 [1,1,0,-226,1216] 2 2
|
|
887
|
+
5754 a 2 [1,1,0,-156,2070] 2 2
|
|
888
|
+
5760 r 1 [0,0,0,42,92] 2 2
|
|
889
|
+
5760 r 2 [0,0,0,-228,848] 2 2
|
|
890
|
+
5763 d 1 [0,1,1,404,2044] 2 1
|
|
891
|
+
5764 a 1 [0,0,0,-16,100] 2 1
|
|
892
|
+
5772 d 1 [0,1,0,-2165,37884] 2 2
|
|
893
|
+
5772 d 2 [0,1,0,-3380,-10716] 2 2
|
|
894
|
+
5781 d 1 [0,-1,1,-87,335] 2 1
|
|
895
|
+
5781 h 1 [0,1,1,-3026,-57778] 2 1
|
|
896
|
+
5784 a 1 [0,-1,0,-84,324] 2 2
|
|
897
|
+
5784 a 2 [0,-1,0,-144,-132] 2 2
|
|
898
|
+
5789 c 1 [0,-1,1,6,6] 2 1
|
|
899
|
+
5793 f 1 [1,0,0,-12,171] 2 1
|
|
900
|
+
5794 a 1 [1,1,1,-1394,19455] 2 1
|
|
901
|
+
5794 c 1 [1,-1,1,9,15] 2 1
|
|
902
|
+
5798 a 1 [1,0,1,-24168,1442742] 2 1
|
|
903
|
+
5798 b 1 [1,1,0,-80,244] 2 1
|
|
904
|
+
5799 a 1 [1,1,1,-10,-16] 2 1
|
|
905
|
+
5805 e 1 [0,0,1,-378,3179] 2 1
|
|
906
|
+
5808 k 1 [0,1,0,-920,10404] 2 2
|
|
907
|
+
5808 k 2 [0,1,0,-1360,-1036] 2 2
|
|
908
|
+
5813 a 1 [0,0,1,-5,2] 2 1
|
|
909
|
+
5814 b 1 [1,-1,0,-30,72] 2 1
|
|
910
|
+
5814 k 1 [1,-1,0,54,-972] 2 1
|
|
911
|
+
5814 k 2 [1,-1,0,-486,26568] 2 3
|
|
912
|
+
5826 b 1 [1,0,1,-745,7772] 2 1
|
|
913
|
+
5830 f 1 [1,-1,1,-708,7527] 2 1
|
|
914
|
+
5834 b 1 [1,1,1,-159,325] 2 1
|
|
915
|
+
5840 a 1 [0,0,0,-787,8434] 2 1
|
|
916
|
+
5840 l 1 [0,-1,0,-240,-1088] 2 1
|
|
917
|
+
5840 l 2 [0,-1,0,-5840,173632] 2 1
|
|
918
|
+
5848 c 1 [0,-1,0,-51,184] 2 1
|
|
919
|
+
5854 b 1 [1,0,0,-1736,27712] 2 1
|
|
920
|
+
5854 c 1 [1,0,0,18,4] 2 1
|
|
921
|
+
5856 d 1 [0,-1,0,63,81] 2 1
|
|
922
|
+
5862 i 1 [1,1,1,-517,4235] 2 1
|
|
923
|
+
5864 a 1 [0,-1,0,-24,28] 2 1
|
|
924
|
+
5871 b 1 [1,1,1,-1217,15860] 2 1
|
|
925
|
+
5871 c 1 [0,-1,1,-856,9948] 2 1
|
|
926
|
+
5886 g 1 [1,-1,1,-77,245] 2 1
|
|
927
|
+
5891 a 1 [0,1,1,22,-12] 2 1
|
|
928
|
+
5895 a 1 [1,-1,1,-113,506] 2 1
|
|
929
|
+
5904 b 1 [0,0,0,-99,386] 2 1
|
|
930
|
+
5904 v 1 [0,0,0,-219,4106] 2 1
|
|
931
|
+
5904 v 2 [0,0,0,1941,-101734] 2 1
|
|
932
|
+
5906 b 1 [1,1,0,-32,58] 2 1
|
|
933
|
+
5906 c 1 [1,-1,1,6,57] 2 1
|
|
934
|
+
5907 c 1 [0,-1,1,3,20] 2 1
|
|
935
|
+
5918 b 1 [1,-1,0,-878,10236] 2 1
|
|
936
|
+
5918 c 1 [1,0,0,-20,16] 2 1
|
|
937
|
+
5920 i 1 [0,-1,0,-61,-139] 2 1
|
|
938
|
+
5922 e 1 [1,-1,0,-243,1701] 2 2
|
|
939
|
+
5922 e 2 [1,-1,0,-4023,99225] 2 2
|
|
940
|
+
5928 b 1 [0,-1,0,-5697,167589] 2 1
|
|
941
|
+
5930 e 1 [1,1,0,-122,484] 2 1
|
|
942
|
+
5930 g 1 [1,0,0,-216,1600] 2 1
|
|
943
|
+
5932 a 1 [0,0,0,-56,164] 2 1
|
|
944
|
+
5934 d 1 [1,0,1,-2755,60542] 2 1
|
|
945
|
+
5954 h 1 [1,-1,1,-204,1167] 2 1
|
|
946
|
+
5956 a 1 [0,-1,0,-10,-7] 2 1
|
|
947
|
+
5962 a 1 [1,0,1,-15,2] 2 1
|
|
948
|
+
5966 b 1 [1,0,1,-197,1044] 2 1
|
|
949
|
+
5970 d 1 [1,0,1,-104,506] 2 1
|
|
950
|
+
5978 c 1 [1,1,0,-11,1] 2 1
|
|
951
|
+
5982 h 1 [1,1,0,-928,10504] 2 1
|
|
952
|
+
5982 l 1 [1,1,1,-27,105] 2 1
|
|
953
|
+
5988 b 1 [0,1,0,-157,716] 2 3
|
|
954
|
+
5988 b 2 [0,1,0,563,4064] 2 1
|
|
955
|
+
5992 c 1 [0,-1,0,-239,1660] 2 1
|
|
956
|
+
6005 b 1 [0,1,1,-80,234] 2 1
|
|
957
|
+
6008 a 1 [0,0,0,-11,15] 2 1
|
|
958
|
+
6011 c 1 [0,0,1,-1,-4] 2 1
|
|
959
|
+
6013 b 1 [0,1,1,-106,392] 2 1
|
|
960
|
+
6017 a 1 [0,0,1,10,2] 2 1
|
|
961
|
+
6018 c 1 [1,1,0,-887,-1515] 2 2
|
|
962
|
+
6018 c 2 [1,1,0,-10327,-407435] 2 2
|
|
963
|
+
6021 g 1 [0,0,1,-54,-115] 2 1
|
|
964
|
+
6024 b 1 [0,-1,0,-1,37] 2 1
|
|
965
|
+
6034 b 1 [1,-1,0,-40,112] 2 1
|
|
966
|
+
6036 e 1 [0,1,0,-37,44] 2 1
|
|
967
|
+
6040 i 1 [0,-1,0,-30060,2016100] 2 1
|
|
968
|
+
6040 j 1 [0,0,0,-7,106] 2 1
|
|
969
|
+
6042 a 1 [1,1,0,-633,-4059] 2 1
|
|
970
|
+
6042 f 1 [1,0,1,-45,100] 2 1
|
|
971
|
+
6043 a 1 [1,0,0,-3,4] 2 1
|
|
972
|
+
6057 b 1 [0,0,1,-9,12] 2 1
|
|
973
|
+
6071 a 1 [0,1,1,10,10] 2 1
|
|
974
|
+
6074 a 1 [1,0,0,-124,528] 2 1
|
|
975
|
+
6075 z 1 [1,-1,1,-380,2872] 2 1
|
|
976
|
+
6080 f 1 [0,0,0,-268,7408] 2 1
|
|
977
|
+
6080 l 1 [0,-1,0,-161,865] 2 1
|
|
978
|
+
6084 p 1 [0,0,0,-156,169] 2 2
|
|
979
|
+
6084 p 2 [0,0,0,-1911,32110] 2 2
|
|
980
|
+
6088 b 1 [0,0,0,-83,291] 2 1
|
|
981
|
+
6093 a 1 [0,0,1,-66,-180] 2 1
|
|
982
|
+
6096 h 1 [0,-1,0,-152,624] 2 1
|
|
983
|
+
6097 a 1 [0,1,1,-722,7242] 2 1
|
|
984
|
+
6104 b 1 [0,1,0,-2329,42507] 2 1
|
|
985
|
+
6105 c 1 [1,1,1,-31,-76] 2 2
|
|
986
|
+
6105 c 2 [1,1,1,24,-252] 2 2
|
|
987
|
+
6114 b 1 [1,1,0,-1,19] 2 1
|
|
988
|
+
6118 b 1 [1,1,0,-1613,-21059] 2 1
|
|
989
|
+
6118 g 1 [1,-1,1,-114,369] 2 1
|
|
990
|
+
6123 b 1 [1,1,0,-41,-120] 2 2
|
|
991
|
+
6123 b 2 [1,1,0,-26,-189] 2 2
|
|
992
|
+
6124 b 1 [0,1,0,3,31] 2 1
|
|
993
|
+
6136 b 1 [0,-1,0,208,1564] 2 1
|
|
994
|
+
6138 b 1 [1,-1,0,-579,3029] 2 2
|
|
995
|
+
6138 b 2 [1,-1,0,-8019,278309] 2 2
|
|
996
|
+
6146 b 1 [1,-1,0,-8,16] 2 1
|
|
997
|
+
6150 i 1 [1,1,0,-225,1125] 2 2
|
|
998
|
+
6150 i 2 [1,1,0,-725,-6375] 2 4
|
|
999
|
+
6150 i 3 [1,1,0,-10975,-447125] 2 2
|
|
1000
|
+
6150 i 4 [1,1,0,1525,-35625] 2 2
|
|
1001
|
+
6156 h 1 [0,0,0,-189,-459] 2 1
|
|
1002
|
+
6162 b 1 [1,1,0,-864,9486] 2 1
|
|
1003
|
+
6162 k 1 [1,1,1,-92,317] 2 1
|
|
1004
|
+
6165 h 1 [1,-1,1,-797,-4354] 2 1
|
|
1005
|
+
6168 b 1 [0,-1,0,-24,45] 2 1
|
|
1006
|
+
6170 b 1 [1,1,0,-13,17] 2 1
|
|
1007
|
+
6175 i 1 [0,0,1,-7900,-55119] 2 1
|
|
1008
|
+
6181 a 1 [0,-1,1,-61,205] 2 1
|
|
1009
|
+
6181 c 1 [0,0,1,-19,-18] 2 1
|
|
1010
|
+
6190 a 1 [1,0,1,21,342] 2 1
|
|
1011
|
+
6190 b 1 [1,-1,0,-4,28] 2 1
|
|
1012
|
+
6192 d 1 [0,0,0,-51,130] 2 2
|
|
1013
|
+
6192 d 2 [0,0,0,-171,-710] 2 2
|
|
1014
|
+
6193 a 1 [1,1,0,50,-13] 2 1
|
|
1015
|
+
6198 b 1 [1,1,0,-86,276] 2 1
|
|
1016
|
+
6199 b 1 [1,0,0,-146,667] 2 1
|
|
1017
|
+
6201 b 1 [0,0,1,3,6] 2 1
|
|
1018
|
+
6201 e 1 [0,0,1,-120,2358] 2 1
|
|
1019
|
+
6201 e 2 [0,0,1,-17670,904077] 2 3
|
|
1020
|
+
6206 a 1 [1,1,0,14,-16] 2 1
|
|
1021
|
+
6210 d 1 [1,-1,0,0,36] 2 1
|
|
1022
|
+
6216 l 1 [0,-1,0,-19,4] 2 2
|
|
1023
|
+
6216 l 2 [0,-1,0,-204,1188] 2 2
|
|
1024
|
+
6222 c 1 [1,0,1,-3970,96020] 2 1
|
|
1025
|
+
6228 b 1 [0,0,0,-69,221] 2 1
|
|
1026
|
+
6228 e 1 [0,0,0,87,169] 2 1
|
|
1027
|
+
6241 b 1 [1,-1,0,-64,-179] 2 1
|
|
1028
|
+
6246 e 1 [1,-1,0,9,81] 2 1
|
|
1029
|
+
6255 b 1 [1,-1,1,-17,34] 2 1
|
|
1030
|
+
6265 b 1 [1,-1,1,-387,-1476] 2 1
|
|
1031
|
+
6279 a 1 [0,-1,1,-8,-4] 2 1
|
|
1032
|
+
6279 g 1 [0,-1,1,-9380,303122] 2 1
|
|
1033
|
+
6290 d 1 [1,0,1,-1109,14112] 2 2
|
|
1034
|
+
6290 d 2 [1,0,1,-1029,16256] 2 2
|
|
1035
|
+
6291 b 1 [1,-1,1,-56,136] 2 1
|
|
1036
|
+
6292 a 1 [0,0,0,-88,484] 2 1
|
|
1037
|
+
6293 d 1 [0,0,1,-17,-4] 2 1
|
|
1038
|
+
6293 f 1 [0,1,1,-63,138] 2 3
|
|
1039
|
+
6293 f 2 [0,1,1,-1513,-23149] 2 1
|
|
1040
|
+
6302 b 1 [1,-1,0,-59,191] 2 1
|
|
1041
|
+
6302 d 1 [1,0,0,203,-351] 2 1
|
|
1042
|
+
6304 d 1 [0,1,0,-29,-53] 2 1
|
|
1043
|
+
6307 d 1 [1,1,0,-7640,253873] 2 1
|
|
1044
|
+
6307 g 1 [1,1,1,-18,-20] 2 1
|
|
1045
|
+
6309 b 1 [0,0,1,-21,-14] 2 1
|
|
1046
|
+
6320 j 1 [0,1,0,-640,6900] 2 2
|
|
1047
|
+
6320 j 2 [0,1,0,-10640,418900] 2 2
|
|
1048
|
+
6321 f 1 [1,0,0,6,1035] 2 2
|
|
1049
|
+
6321 f 2 [1,0,0,-1499,21804] 2 2
|
|
1050
|
+
6324 c 1 [0,1,0,-1062,13689] 2 1
|
|
1051
|
+
6334 a 1 [1,1,1,-17,15] 2 1
|
|
1052
|
+
6334 b 1 [1,-1,1,-669,-5211] 2 1
|
|
1053
|
+
6336 v 1 [0,0,0,-372,2720] 2 2
|
|
1054
|
+
6336 v 2 [0,0,0,-12,7760] 2 2
|
|
1055
|
+
6336 bm 1 [0,0,0,-36,64] 2 2
|
|
1056
|
+
6336 bm 2 [0,0,0,84,400] 2 2
|
|
1057
|
+
6336 ck 1 [0,0,0,24,1240] 2 2
|
|
1058
|
+
6336 ck 2 [0,0,0,-1596,23920] 2 4
|
|
1059
|
+
6336 ck 3 [0,0,0,-3756,-54704] 2 2
|
|
1060
|
+
6336 ck 4 [0,0,0,-25356,1554064] 2 2
|
|
1061
|
+
6346 a 1 [1,0,1,-22,36] 2 1
|
|
1062
|
+
6350 d 1 [1,1,0,-950,-3500] 2 1
|
|
1063
|
+
6351 a 1 [0,1,1,-937,10747] 2 1
|
|
1064
|
+
6354 c 1 [1,-1,0,-12,18] 2 1
|
|
1065
|
+
6354 r 1 [1,-1,1,-482,1505] 2 1
|
|
1066
|
+
6358 e 1 [1,1,0,-14,16] 2 1
|
|
1067
|
+
6358 e 2 [1,1,0,71,101] 2 1
|
|
1068
|
+
6369 a 1 [0,-1,1,-165,902] 2 1
|
|
1069
|
+
6369 b 1 [1,1,0,-3,-6] 2 1
|
|
1070
|
+
6369 c 1 [0,-1,1,32,-2424] 2 1
|
|
1071
|
+
6369 d 1 [0,-1,1,-3410,77792] 2 1
|
|
1072
|
+
6369 g 1 [1,0,0,603,8586] 2 1
|
|
1073
|
+
6370 a 1 [1,0,1,-369,3476] 2 3
|
|
1074
|
+
6370 a 2 [1,0,1,2816,-36018] 2 1
|
|
1075
|
+
6372 c 1 [0,0,0,-21,29] 2 1
|
|
1076
|
+
6376 a 1 [0,-1,0,-128,604] 2 1
|
|
1077
|
+
6378 a 1 [1,1,1,-147,657] 2 1
|
|
1078
|
+
6400 k 1 [0,-1,0,17,-13] 2 1
|
|
1079
|
+
6400 k 2 [0,-1,0,-1583,24787] 2 1
|
|
1080
|
+
6400 q 1 [0,-1,0,-3,7] 2 1
|
|
1081
|
+
6402 b 1 [1,1,0,-226,-1376] 2 2
|
|
1082
|
+
6402 b 2 [1,1,0,44,-4130] 2 2
|
|
1083
|
+
6402 c 1 [1,1,0,-236,1296] 2 2
|
|
1084
|
+
6402 c 2 [1,1,0,-116,2760] 2 2
|
|
1085
|
+
6405 c 1 [0,-1,1,-36,146] 2 1
|
|
1086
|
+
6408 b 1 [0,0,0,-12,340] 2 1
|
|
1087
|
+
6413 f 1 [0,1,1,4,94] 2 1
|
|
1088
|
+
6417 d 1 [1,-1,0,-15,-18] 2 1
|
|
1089
|
+
6426 f 1 [1,-1,0,-1071,14161] 2 1
|
|
1090
|
+
6430 a 1 [1,0,1,116,-54] 2 1
|
|
1091
|
+
6432 f 1 [0,1,0,-257,1551] 2 1
|
|
1092
|
+
6432 j 1 [0,-1,0,-29,693] 2 1
|
|
1093
|
+
6440 b 1 [0,-1,0,-936,11365] 2 1
|
|
1094
|
+
6447 d 1 [0,1,1,-750,12530] 2 1
|
|
1095
|
+
6448 d 1 [0,0,0,-139,3226] 2 1
|
|
1096
|
+
6456 a 1 [0,1,0,-417,2979] 2 1
|
|
1097
|
+
6460 e 1 [0,1,0,-361,0] 2 2
|
|
1098
|
+
6460 e 2 [0,1,0,1444,1444] 2 2
|
|
1099
|
+
6465 c 1 [0,1,1,-36,20] 2 1
|
|
1100
|
+
6475 g 1 [0,0,1,-40,381] 2 1
|
|
1101
|
+
6478 a 1 [1,1,0,-204,-176] 2 1
|
|
1102
|
+
6486 f 1 [1,1,0,-845,9129] 2 2
|
|
1103
|
+
6486 f 2 [1,1,0,-13535,600483] 2 2
|
|
1104
|
+
6486 h 1 [1,1,0,-122,-6060] 2 2
|
|
1105
|
+
6486 h 2 [1,1,0,-5762,-169620] 2 2
|
|
1106
|
+
6486 j 1 [1,0,1,-77,20] 2 2
|
|
1107
|
+
6486 j 2 [1,0,1,-887,10064] 2 2
|
|
1108
|
+
6486 o 1 [1,1,1,6,11655] 2 2
|
|
1109
|
+
6486 o 2 [1,1,1,-7674,251271] 2 2
|
|
1110
|
+
6495 b 1 [0,-1,1,-76,282] 2 1
|
|
1111
|
+
6496 c 1 [0,0,0,-41,100] 2 2
|
|
1112
|
+
6496 c 2 [0,0,0,-76,-96] 2 2
|
|
1113
|
+
6496 e 1 [0,0,0,-17,40] 2 2
|
|
1114
|
+
6496 e 2 [0,0,0,-307,2070] 2 2
|
|
1115
|
+
6496 f 1 [0,0,0,2132,-12224] 2 1
|
|
1116
|
+
6496 l 1 [0,0,0,-124,544] 2 1
|
|
1117
|
+
6508 b 1 [0,0,0,-127,550] 2 1
|
|
1118
|
+
6510 b 1 [1,1,0,47,-107] 2 2
|
|
1119
|
+
6510 b 2 [1,1,0,-273,-1323] 2 4
|
|
1120
|
+
6510 b 3 [1,1,0,-3993,-98787] 2 2
|
|
1121
|
+
6510 b 4 [1,1,0,-1673,24717] 2 2
|
|
1122
|
+
6513 a 1 [0,-1,1,-31,78] 2 1
|
|
1123
|
+
6519 a 1 [0,-1,1,36,-34] 2 1
|
|
1124
|
+
6519 b 1 [0,1,1,-1309,19051] 2 1
|
|
1125
|
+
6522 b 1 [1,0,1,-20,2] 2 1
|
|
1126
|
+
6528 k 1 [0,-1,0,1,39] 2 2
|
|
1127
|
+
6528 k 2 [0,-1,0,-169,889] 2 2
|
|
1128
|
+
6535 a 1 [0,-1,1,-25,58] 2 1
|
|
1129
|
+
6536 a 1 [0,0,0,-452,3700] 2 1
|
|
1130
|
+
6538 c 1 [1,1,1,-15512,736857] 2 1
|
|
1131
|
+
6538 d 1 [1,-1,1,-39,-33] 2 1
|
|
1132
|
+
6546 d 1 [1,0,1,-30,52] 2 1
|
|
1133
|
+
6552 ba 1 [0,0,0,-1902,31925] 2 2
|
|
1134
|
+
6552 ba 2 [0,0,0,-1767,36650] 2 2
|
|
1135
|
+
6554 a 1 [1,0,1,26,28] 2 1
|
|
1136
|
+
6556 a 1 [0,1,0,-44,-124] 2 1
|
|
1137
|
+
6560 d 1 [0,1,0,-430,2928] 2 2
|
|
1138
|
+
6560 d 2 [0,1,0,-6680,207928] 2 2
|
|
1139
|
+
6562 c 1 [1,0,0,-79,249] 2 2
|
|
1140
|
+
6562 c 2 [1,0,0,-239,-1127] 2 2
|
|
1141
|
+
6565 d 1 [1,0,0,-880,9927] 2 2
|
|
1142
|
+
6565 d 2 [1,0,0,-1385,-2900] 2 2
|
|
1143
|
+
6566 n 1 [1,1,1,-8772,-261563] 2 1
|
|
1144
|
+
6566 n 2 [1,1,1,-212612,37621317] 2 1
|
|
1145
|
+
6566 n 3 [1,1,1,-17218552,27493481637] 2 1
|
|
1146
|
+
6566 p 1 [1,-1,1,-384,2979] 2 1
|
|
1147
|
+
6567 d 1 [1,0,0,-287,1926] 2 1
|
|
1148
|
+
6570 c 1 [1,-1,0,-360,2700] 2 2
|
|
1149
|
+
6570 c 2 [1,-1,0,-630,-1674] 2 2
|
|
1150
|
+
6570 f 1 [1,-1,0,-270,-1004] 2 2
|
|
1151
|
+
6570 f 2 [1,-1,0,810,-7700] 2 2
|
|
1152
|
+
6571 a 1 [1,-1,1,-1,-4] 2 1
|
|
1153
|
+
6572 a 1 [0,-1,0,-388,3080] 2 1
|
|
1154
|
+
6572 b 1 [0,1,0,-326,2161] 2 1
|
|
1155
|
+
6573 a 1 [0,-1,1,-7,15] 2 1
|
|
1156
|
+
6573 c 1 [0,1,1,-4002,96230] 2 1
|
|
1157
|
+
6574 b 1 [1,0,1,-11,6] 2 1
|
|
1158
|
+
6575 d 1 [0,1,1,-33,219] 2 1
|
|
1159
|
+
6575 e 1 [0,0,1,-5075,139156] 2 1
|
|
1160
|
+
6576 e 1 [0,1,0,-352,2564] 2 1
|
|
1161
|
+
6578 d 1 [1,-1,1,-2529,51249] 2 1
|
|
1162
|
+
6579 e 1 [1,-1,1,526,4794] 2 1
|
|
1163
|
+
6582 c 1 [1,1,0,14,4] 2 1
|
|
1164
|
+
6598 c 1 [1,1,1,-156,685] 2 1
|
|
1165
|
+
6598 d 1 [1,1,1,23,87] 2 1
|
|
1166
|
+
6600 v 1 [0,-1,0,17,712] 2 2
|
|
1167
|
+
6600 v 2 [0,-1,0,-1108,14212] 2 4
|
|
1168
|
+
6600 v 3 [0,-1,0,-2608,-30788] 2 2
|
|
1169
|
+
6600 v 4 [0,-1,0,-17608,905212] 2 2
|
|
1170
|
+
6606 b 1 [1,-1,0,-21,-27] 2 1
|
|
1171
|
+
6606 d 1 [1,-1,0,-639,-243] 2 1
|
|
1172
|
+
6609 b 1 [0,1,1,0,20] 2 1
|
|
1173
|
+
6612 b 1 [0,-1,0,-1477,23041] 2 1
|
|
1174
|
+
6613 a 1 [0,1,1,-21,27] 2 1
|
|
1175
|
+
6614 a 1 [1,0,1,-48,122] 2 1
|
|
1176
|
+
6621 a 1 [1,1,1,-8,2] 2 1
|
|
1177
|
+
6622 d 1 [1,-1,0,12112,-419584] 2 2
|
|
1178
|
+
6622 d 2 [1,-1,0,-63568,-3764640] 2 2
|
|
1179
|
+
6622 e 1 [1,-1,0,-43,121] 2 1
|
|
1180
|
+
6630 c 1 [1,1,0,-208,1072] 2 2
|
|
1181
|
+
6630 c 2 [1,1,0,-228,828] 2 4
|
|
1182
|
+
6630 c 3 [1,1,0,-1398,-19998] 2 2
|
|
1183
|
+
6630 c 4 [1,1,0,622,6438] 2 2
|
|
1184
|
+
6630 e 1 [1,1,0,-587,5229] 2 2
|
|
1185
|
+
6630 e 2 [1,1,0,-767,1521] 2 4
|
|
1186
|
+
6630 e 3 [1,1,0,-7397,-246441] 2 2
|
|
1187
|
+
6630 e 4 [1,1,0,2983,15771] 2 2
|
|
1188
|
+
6632 a 1 [0,-1,0,-17,-11] 2 1
|
|
1189
|
+
6634 a 1 [1,-1,0,10,84] 2 1
|
|
1190
|
+
6640 b 1 [0,-1,0,-16,80] 2 1
|
|
1191
|
+
6640 f 1 [0,-1,0,600,3952] 2 1
|
|
1192
|
+
6640 f 2 [0,-1,0,-13400,608752] 2 1
|
|
1193
|
+
6640 i 1 [0,0,0,-1747,28114] 2 1
|
|
1194
|
+
6641 a 1 [1,0,1,-345,2355] 2 1
|
|
1195
|
+
6642 h 1 [1,-1,0,-123,-451] 2 1
|
|
1196
|
+
6642 t 1 [1,-1,1,-227,1315] 2 1
|
|
1197
|
+
6645 a 1 [1,1,1,-50,92] 2 1
|
|
1198
|
+
6672 d 1 [0,1,0,-912,10404] 2 1
|
|
1199
|
+
6672 i 1 [0,-1,0,8,-656] 2 1
|
|
1200
|
+
6677 b 1 [0,0,1,-5,-2] 2 1
|
|
1201
|
+
6677 d 1 [0,1,1,-349,2351] 2 1
|
|
1202
|
+
6683 a 1 [0,-1,1,-20,42] 2 1
|
|
1203
|
+
6688 b 1 [0,-1,0,-104,1108] 2 1
|
|
1204
|
+
6691 b 1 [1,0,0,1,4] 2 1
|
|
1205
|
+
6696 d 1 [0,0,0,324,2484] 2 1
|
|
1206
|
+
6696 e 1 [0,0,0,-3051,64854] 2 1
|
|
1207
|
+
6700 b 1 [0,-1,0,-158,937] 2 1
|
|
1208
|
+
6704 a 1 [0,-1,0,-24,64] 2 1
|
|
1209
|
+
6705 d 1 [0,0,1,-117,982] 2 1
|
|
1210
|
+
6705 j 1 [0,0,1,-3,184] 2 1
|
|
1211
|
+
6708 e 1 [0,-1,0,-689,7098] 2 2
|
|
1212
|
+
6708 e 2 [0,-1,0,-44,19224] 2 2
|
|
1213
|
+
6720 bj 1 [0,-1,0,-36,-30] 2 2
|
|
1214
|
+
6720 bj 2 [0,-1,0,-281,1881] 2 4
|
|
1215
|
+
6720 bj 3 [0,-1,0,-4481,116961] 2 2
|
|
1216
|
+
6720 bj 4 [0,-1,0,-1,5185] 2 2
|
|
1217
|
+
6722 a 1 [1,-1,0,-11,21] 2 1
|
|
1218
|
+
6726 g 1 [1,1,1,-2584,49625] 2 1
|
|
1219
|
+
6729 a 1 [0,-1,1,-8,14] 2 1
|
|
1220
|
+
6736 a 1 [0,0,0,-35,66] 2 1
|
|
1221
|
+
6744 d 1 [0,1,0,-140,624] 2 1
|
|
1222
|
+
6749 b 1 [0,0,1,-56,161] 2 1
|
|
1223
|
+
6751 b 1 [1,1,0,-23,34] 2 1
|
|
1224
|
+
6751 c 1 [0,-1,1,-850,-12028] 2 1
|
|
1225
|
+
6760 h 1 [0,-1,0,-56,25] 2 1
|
|
1226
|
+
6766 b 1 [1,-1,0,-34,-68] 2 1
|
|
1227
|
+
6766 d 1 [1,1,1,-77,195] 2 1
|
|
1228
|
+
6768 i 1 [0,0,0,-24,-36] 2 1
|
|
1229
|
+
6770 a 1 [1,-1,0,-25,61] 2 1
|
|
1230
|
+
6771 c 1 [1,0,0,-38,-69] 2 2
|
|
1231
|
+
6771 c 2 [1,0,0,97,-420] 2 2
|
|
1232
|
+
6776 b 1 [0,0,0,-1804,29524] 2 1
|
|
1233
|
+
6782 b 1 [1,1,1,-527,4437] 2 1
|
|
1234
|
+
6782 c 1 [1,-1,1,-99,-93] 2 1
|
|
1235
|
+
6784 e 1 [0,1,0,-109,-2453] 2 1
|
|
1236
|
+
6784 g 1 [0,1,0,-57,151] 2 1
|
|
1237
|
+
6784 i 1 [0,-1,0,-13,53] 2 1
|
|
1238
|
+
6789 b 1 [0,1,1,-2946,62642] 2 1
|
|
1239
|
+
6792 a 1 [0,-1,0,-23,60] 2 1
|
|
1240
|
+
6794 a 1 [1,0,1,-145,-680] 2 1
|
|
1241
|
+
6794 b 1 [1,-1,0,-466,3988] 2 1
|
|
1242
|
+
6794 c 1 [1,1,1,-3297,71455] 2 1
|
|
1243
|
+
6807 b 1 [0,-1,1,-31,-57] 2 1
|
|
1244
|
+
6807 c 1 [1,1,1,-5,-4] 2 1
|
|
1245
|
+
6808 c 1 [0,-1,0,-529,2645] 2 1
|
|
1246
|
+
6811 d 1 [0,-1,1,-9,6] 2 1
|
|
1247
|
+
6811 g 1 [1,0,0,-8,13] 2 1
|
|
1248
|
+
6813 a 1 [0,0,1,-156,742] 2 1
|
|
1249
|
+
6813 c 1 [0,0,1,-57,126] 2 1
|
|
1250
|
+
6814 b 1 [1,1,0,10,4] 2 1
|
|
1251
|
+
6822 b 1 [1,-1,0,-396,3136] 2 1
|
|
1252
|
+
6835 a 1 [1,0,0,-11,10] 2 1
|
|
1253
|
+
6838 a 1 [1,0,1,-424,3318] 2 1
|
|
1254
|
+
6838 c 1 [1,-1,0,-41,81] 2 1
|
|
1255
|
+
6838 f 1 [1,0,0,-61,177] 2 1
|
|
1256
|
+
6848 g 1 [0,-1,0,-13,29] 2 1
|
|
1257
|
+
6848 m 1 [0,0,0,-44,144] 2 1
|
|
1258
|
+
6848 p 1 [0,1,0,-629,5867] 2 1
|
|
1259
|
+
6848 s 1 [0,1,0,95,-33] 2 1
|
|
1260
|
+
6850 d 1 [1,0,1,9,-22] 2 1
|
|
1261
|
+
6853 b 1 [1,0,1,95,145] 2 1
|
|
1262
|
+
6862 b 1 [1,1,0,-1137,14293] 2 1
|
|
1263
|
+
6862 c 1 [1,1,0,1,-11] 2 1
|
|
1264
|
+
6864 e 1 [0,-1,0,168,144] 2 1
|
|
1265
|
+
6864 s 1 [0,-1,0,208,2496] 2 1
|
|
1266
|
+
6864 s 2 [0,-1,0,-9872,381504] 2 1
|
|
1267
|
+
6867 c 1 [1,-1,1,-86,1212] 2 4
|
|
1268
|
+
6867 c 2 [1,-1,1,-2291,42666] 2 4
|
|
1269
|
+
6867 c 3 [1,-1,1,-3236,4866] 2 2
|
|
1270
|
+
6867 c 4 [1,-1,1,-36626,2707062] 2 2
|
|
1271
|
+
6868 a 1 [0,0,0,-40,-92] 2 1
|
|
1272
|
+
6872 a 1 [0,1,0,-41,91] 2 1
|
|
1273
|
+
6894 b 1 [1,-1,0,-72,254] 2 1
|
|
1274
|
+
6894 m 1 [1,-1,1,-212,695] 2 1
|
|
1275
|
+
6896 e 1 [0,1,0,-32,-1036] 2 1
|
|
1276
|
+
6896 f 1 [0,0,0,-139,634] 2 1
|
|
1277
|
+
6902 c 1 [1,-1,1,-459,16347] 2 1
|
|
1278
|
+
6903 a 1 [0,0,1,-1998,13547] 2 1
|
|
1279
|
+
6903 b 1 [0,0,1,-9,-8] 2 1
|
|
1280
|
+
6905 a 1 [1,1,1,20,102] 2 1
|
|
1281
|
+
6912 l 1 [0,0,0,-54,216] 2 1
|
|
1282
|
+
6912 q 1 [0,0,0,6,16] 2 1
|
|
1283
|
+
6916 a 1 [0,1,0,-14,25] 2 1
|
|
1284
|
+
6916 d 1 [0,1,0,-4674,138985] 2 1
|
|
1285
|
+
6918 a 1 [1,1,1,-40,41] 2 2
|
|
1286
|
+
6918 a 2 [1,1,1,-280,-1879] 2 2
|
|
1287
|
+
6921 a 1 [0,0,1,-786,8500] 2 1
|
|
1288
|
+
6921 c 1 [0,0,1,15,58] 2 1
|
|
1289
|
+
6945 b 1 [0,-1,1,1155,-36412] 2 1
|
|
1290
|
+
6945 c 1 [0,-1,1,-20,56] 2 1
|
|
1291
|
+
6952 a 1 [0,-1,0,-217,24509] 2 1
|
|
1292
|
+
6958 c 1 [1,1,0,-25,-1483] 2 1
|
|
1293
|
+
6970 b 1 [1,-1,0,-230,1376] 2 2
|
|
1294
|
+
6970 b 2 [1,-1,0,20,4026] 2 2
|
|
1295
|
+
6970 c 1 [1,0,1,-314,1836] 2 2
|
|
1296
|
+
6970 c 2 [1,0,1,-1314,-16564] 2 2
|
|
1297
|
+
6970 f 1 [1,0,0,-6086,182116] 2 2
|
|
1298
|
+
6970 f 2 [1,0,0,-4806,261220] 2 2
|
|
1299
|
+
6976 f 1 [0,0,0,-524,4624] 2 1
|
|
1300
|
+
6976 g 1 [0,1,0,-1,-129] 2 1
|
|
1301
|
+
6984 a 1 [0,0,0,12,36] 2 1
|
|
1302
|
+
6986 a 1 [1,-1,0,-5,17] 2 1
|
|
1303
|
+
6987 a 1 [1,0,0,-3,36] 2 1
|
|
1304
|
+
7006 b 1 [1,1,1,-19,-39] 2 1
|
|
1305
|
+
7006 c 1 [1,-1,1,-171,891] 2 1
|
|
1306
|
+
7014 h 1 [1,0,1,-123,562] 2 2
|
|
1307
|
+
7014 h 2 [1,0,1,-2013,34582] 2 2
|
|
1308
|
+
7019 b 1 [1,0,0,-5,-2] 2 1
|
|
1309
|
+
7021 a 1 [0,1,1,30,180] 2 1
|
|
1310
|
+
7029 b 1 [0,0,1,-48,67] 2 1
|
|
1311
|
+
7029 i 1 [0,0,1,-939,11070] 2 1
|
|
1312
|
+
7029 j 1 [0,0,1,-6249,185980] 2 1
|
|
1313
|
+
7030 e 1 [1,1,1,94,303] 2 1
|
|
1314
|
+
7040 q 1 [0,-1,0,-41,121] 2 1
|
|
1315
|
+
7040 bb 1 [0,0,0,-532,44656] 2 1
|
|
1316
|
+
7051 a 1 [0,1,1,3,-3] 2 1
|
|
1317
|
+
7053 b 1 [0,-1,1,-665,6827] 2 1
|
|
1318
|
+
7053 c 1 [1,0,1,-133487,18760601] 2 1
|
|
1319
|
+
7053 d 1 [1,0,0,-14,15] 2 1
|
|
1320
|
+
7053 e 1 [0,1,1,-14,-22] 2 1
|
|
1321
|
+
7059 d 1 [1,0,0,-40,71] 2 2
|
|
1322
|
+
7059 d 2 [1,0,0,95,476] 2 2
|
|
1323
|
+
7060 e 1 [0,0,0,-112,409] 2 1
|
|
1324
|
+
7067 a 1 [0,1,1,-28,6] 2 1
|
|
1325
|
+
7072 f 1 [0,1,0,-14,-8] 2 2
|
|
1326
|
+
7072 f 2 [0,1,0,-144,616] 2 2
|
|
1327
|
+
7077 c 1 [1,1,1,-14,2] 2 2
|
|
1328
|
+
7077 c 2 [1,1,1,-119,-544] 2 2
|
|
1329
|
+
7084 i 1 [0,0,0,-397,3085] 2 1
|
|
1330
|
+
7088 b 1 [0,0,0,-59,-406] 2 1
|
|
1331
|
+
7098 e 1 [1,1,0,-94,616] 2 1
|
|
1332
|
+
7102 b 1 [1,1,0,36,-32] 2 1
|
|
1333
|
+
7110 h 1 [1,-1,0,0,400] 2 1
|
|
1334
|
+
7119 j 1 [0,0,1,-48,1512] 2 1
|
|
1335
|
+
7120 h 1 [0,0,0,-83,18] 2 2
|
|
1336
|
+
7120 h 2 [0,0,0,-883,-10062] 2 2
|
|
1337
|
+
7130 b 1 [1,-1,0,-85,325] 2 1
|
|
1338
|
+
7131 a 1 [0,1,1,-84,272] 2 1
|
|
1339
|
+
7137 e 1 [1,-1,1,-146,712] 2 2
|
|
1340
|
+
7137 e 2 [1,-1,1,-101,1126] 2 2
|
|
1341
|
+
7137 g 1 [1,-1,1,-176,-790] 2 2
|
|
1342
|
+
7137 g 2 [1,-1,1,-581,4556] 2 4
|
|
1343
|
+
7137 g 3 [1,-1,1,-8816,320780] 2 4
|
|
1344
|
+
7137 g 4 [1,-1,1,1174,25616] 2 2
|
|
1345
|
+
7138 a 1 [1,0,1,-26,-308] 2 1
|
|
1346
|
+
7146 b 1 [1,-1,0,-960,-11008] 2 1
|
|
1347
|
+
7146 d 1 [1,-1,0,-135,-243] 2 1
|
|
1348
|
+
7147 a 1 [0,0,1,-950,11270] 2 1
|
|
1349
|
+
7152 a 1 [0,-1,0,-48,288] 2 1
|
|
1350
|
+
7172 a 1 [0,1,0,-269,1615] 2 1
|
|
1351
|
+
7191 a 1 [0,0,1,-63,190] 2 1
|
|
1352
|
+
7198 c 1 [1,0,1,-1820,29722] 2 1
|
|
1353
|
+
7205 b 1 [0,-1,1,54,-24] 2 1
|
|
1354
|
+
7205 c 1 [0,-1,1,-96,426] 2 1
|
|
1355
|
+
7205 k 1 [0,-1,1,-5,153] 2 1
|
|
1356
|
+
7216 c 1 [0,1,0,-16,36] 2 1
|
|
1357
|
+
7218 a 1 [1,-1,0,72,256] 2 1
|
|
1358
|
+
7224 d 1 [0,1,0,-225,1539] 2 1
|
|
1359
|
+
7230 b 1 [1,1,0,-5378,-149772] 2 2
|
|
1360
|
+
7230 b 2 [1,1,0,-85378,-9637772] 2 2
|
|
1361
|
+
7230 c 1 [1,1,0,-48,108] 2 2
|
|
1362
|
+
7230 c 2 [1,1,0,-98,-222] 2 2
|
|
1363
|
+
7232 a 1 [0,0,0,-140,624] 2 2
|
|
1364
|
+
7232 a 2 [0,0,0,20,1968] 2 2
|
|
1365
|
+
7232 c 1 [0,1,0,-129,-545] 2 2
|
|
1366
|
+
7232 c 2 [0,1,0,191,-2529] 2 2
|
|
1367
|
+
7233 a 1 [1,1,1,-3,-6] 2 1
|
|
1368
|
+
7234 a 1 [1,-1,0,-10,12] 2 1
|
|
1369
|
+
7239 e 1 [0,1,1,-246,272] 2 1
|
|
1370
|
+
7246 d 1 [1,1,1,-49,207] 2 1
|
|
1371
|
+
7248 b 1 [0,1,0,-472,1076] 2 1
|
|
1372
|
+
7248 d 1 [0,-1,0,-96,384] 2 1
|
|
1373
|
+
7249 a 1 [1,-1,0,-11,-2] 2 1
|
|
1374
|
+
7257 e 1 [0,-1,1,-7789,267729] 2 1
|
|
1375
|
+
7257 m 1 [1,0,1,-2540,-34045] 2 1
|
|
1376
|
+
7257 n 1 [0,1,1,172,7658] 2 1
|
|
1377
|
+
7266 a 1 [1,1,0,-3173,-64371] 2 1
|
|
1378
|
+
7268 a 1 [0,-1,0,-18,85] 2 1
|
|
1379
|
+
7275 l 1 [0,1,1,-98,314] 2 1
|
|
1380
|
+
7285 e 1 [0,0,1,-712,8115] 2 1
|
|
1381
|
+
7286 a 1 [1,0,1,34,-48] 2 1
|
|
1382
|
+
7286 b 1 [1,1,1,-4,261] 2 1
|
|
1383
|
+
7286 c 1 [1,-1,1,-336,2451] 2 1
|
|
1384
|
+
7287 a 1 [1,1,0,-4714,-93341] 2 1
|
|
1385
|
+
7299 a 1 [0,0,1,-18,47] 2 1
|
|
1386
|
+
7300 g 1 [0,0,0,-25,25] 2 1
|
|
1387
|
+
7306 a 1 [1,-1,0,-22,52] 2 1
|
|
1388
|
+
7311 b 1 [1,0,0,-65,606] 2 1
|
|
1389
|
+
7314 a 1 [1,1,0,-3,9] 2 1
|
|
1390
|
+
7318 a 1 [1,0,1,-51,134] 2 1
|
|
1391
|
+
7320 o 1 [0,-1,0,5,100] 2 2
|
|
1392
|
+
7320 o 2 [0,-1,0,-300,2052] 2 2
|
|
1393
|
+
7328 a 1 [0,-1,0,-6,4] 2 1
|
|
1394
|
+
7329 a 1 [1,1,1,7,2] 2 1
|
|
1395
|
+
7330 e 1 [1,1,1,-2056,-32631] 2 1
|
|
1396
|
+
7334 a 1 [1,-1,0,-13,-11] 2 1
|
|
1397
|
+
7338 d 1 [1,0,1,-293,992] 2 1
|
|
1398
|
+
7338 f 1 [1,1,1,-89,-25] 2 1
|
|
1399
|
+
7359 d 1 [0,-1,1,-38,-34] 2 1
|
|
1400
|
+
7366 c 1 [1,-1,0,-41,-89] 2 1
|
|
1401
|
+
7366 d 1 [1,-1,0,-73,4237] 2 1
|
|
1402
|
+
7366 f 1 [1,0,1,-364,2638] 2 1
|
|
1403
|
+
7366 g 1 [1,-1,0,245,7429] 2 1
|
|
1404
|
+
7366 l 1 [1,0,0,-441,-2183] 2 1
|
|
1405
|
+
7368 c 1 [0,-1,0,-9,45] 2 1
|
|
1406
|
+
7387 a 1 [1,1,1,-150,3364] 2 1
|
|
1407
|
+
7390 b 1 [1,0,0,-21,1] 2 1
|
|
1408
|
+
7406 d 1 [1,0,1,-276,-3586] 2 2
|
|
1409
|
+
7406 d 2 [1,0,1,-5566,-160170] 2 2
|
|
1410
|
+
7406 d 3 [1,0,1,2369,74706] 2 2
|
|
1411
|
+
7406 d 4 [1,0,1,-18791,811074] 2 2
|
|
1412
|
+
7406 d 5 [1,0,1,-90206,10450512] 2 2
|
|
1413
|
+
7406 d 6 [1,0,1,-1444446,668069456] 2 2
|
|
1414
|
+
7423 a 1 [1,0,1,-237,-1419] 2 1
|
|
1415
|
+
7423 b 1 [1,1,1,-13,12] 2 1
|
|
1416
|
+
7440 c 1 [0,-1,0,-240,3600] 2 2
|
|
1417
|
+
7440 c 2 [0,-1,0,-5240,147600] 2 2
|
|
1418
|
+
7447 b 1 [0,1,1,-49,116] 2 1
|
|
1419
|
+
7448 e 1 [0,1,0,-16,48] 2 1
|
|
1420
|
+
7450 f 1 [1,-1,0,-22,36] 2 2
|
|
1421
|
+
7450 f 2 [1,-1,0,-122,-464] 2 2
|
|
1422
|
+
7451 a 1 [0,0,1,-7,8] 2 1
|
|
1423
|
+
7458 a 1 [1,0,1,-155,1730] 2 1
|
|
1424
|
+
7462 d 1 [1,1,0,-17,25] 2 1
|
|
1425
|
+
7464 d 1 [0,1,0,-145,179] 2 1
|
|
1426
|
+
7466 a 1 [1,0,0,-30,196] 2 1
|
|
1427
|
+
7475 b 1 [1,1,1,-313,1656] 2 1
|
|
1428
|
+
7479 b 1 [1,-1,1,-17,-22] 2 1
|
|
1429
|
+
7488 u 1 [0,0,0,-192,-920] 2 2
|
|
1430
|
+
7488 u 2 [0,0,0,-732,6640] 2 2
|
|
1431
|
+
7495 b 1 [0,0,1,2,9] 2 1
|
|
1432
|
+
7497 c 1 [0,0,1,-28812,2055856] 2 1
|
|
1433
|
+
7504 l 1 [0,0,0,-139,586] 2 1
|
|
1434
|
+
7504 n 1 [0,-1,0,-56,112] 2 1
|
|
1435
|
+
7504 t 1 [0,-1,0,-1272,17584] 2 1
|
|
1436
|
+
7511 c 1 [1,0,0,-20,31] 2 2
|
|
1437
|
+
7511 c 2 [1,0,0,15,136] 2 2
|
|
1438
|
+
7514 d 1 [1,0,1,-83,222] 2 2
|
|
1439
|
+
7514 d 2 [1,0,1,-423,-3178] 2 2
|
|
1440
|
+
7518 d 1 [1,1,1,-105,471] 2 1
|
|
1441
|
+
7520 c 1 [0,-1,0,-225,625] 2 1
|
|
1442
|
+
7520 e 1 [0,0,0,-28,-32] 2 1
|
|
1443
|
+
7526 e 1 [1,-1,0,-832,9448] 2 1
|
|
1444
|
+
7526 g 1 [1,1,1,-2038,30963] 2 1
|
|
1445
|
+
7526 h 1 [1,1,1,-115,-519] 2 1
|
|
1446
|
+
7526 n 1 [1,1,1,-479,-1275] 2 1
|
|
1447
|
+
7531 c 1 [0,-1,1,-133,637] 2 1
|
|
1448
|
+
7541 a 1 [0,0,1,-23,42] 2 1
|
|
1449
|
+
7543 a 1 [1,-1,1,5,16] 2 1
|
|
1450
|
+
7548 a 1 [0,-1,0,28,-24] 2 1
|
|
1451
|
+
7548 d 1 [0,-1,0,-1076,16584] 2 1
|
|
1452
|
+
7551 a 1 [1,-1,1,-50,614] 2 1
|
|
1453
|
+
7552 c 1 [0,0,0,-20,48] 2 1
|
|
1454
|
+
7564 a 1 [0,1,0,908,-3996] 2 3
|
|
1455
|
+
7564 a 2 [0,1,0,-16172,-817004] 2 1
|
|
1456
|
+
7566 c 1 [1,1,0,-337,2245] 2 2
|
|
1457
|
+
7566 c 2 [1,1,0,-277,3145] 2 2
|
|
1458
|
+
7571 a 1 [1,1,1,0,4] 2 1
|
|
1459
|
+
7575 d 1 [1,1,1,-93,306] 2 2
|
|
1460
|
+
7575 d 2 [1,1,1,-68,506] 2 2
|
|
1461
|
+
7579 d 1 [0,0,1,776,10380] 2 1
|
|
1462
|
+
7581 d 1 [1,0,0,-55,56] 2 2
|
|
1463
|
+
7581 d 2 [1,0,0,-720,7371] 2 2
|
|
1464
|
+
7586 a 1 [1,-1,1,-7,15] 2 1
|
|
1465
|
+
7587 b 1 [0,0,1,-135,614] 2 1
|
|
1466
|
+
7598 b 1 [1,0,1,-1775,-145310] 2 1
|
|
1467
|
+
7598 c 1 [1,0,1,-6,2] 2 1
|
|
1468
|
+
7598 d 1 [1,-1,0,-26957,1710309] 2 1
|
|
1469
|
+
7598 e 1 [1,0,1,-490,5980] 2 1
|
|
1470
|
+
7598 f 1 [1,-1,0,284,628] 2 1
|
|
1471
|
+
7605 d 1 [1,-1,1,7,56] 2 2
|
|
1472
|
+
7605 d 2 [1,-1,1,-188,992] 2 2
|
|
1473
|
+
7606 b 1 [1,1,1,-55,141] 2 1
|
|
1474
|
+
7610 d 1 [1,0,1,-13,-12] 2 2
|
|
1475
|
+
7610 d 2 [1,0,1,37,-72] 2 2
|
|
1476
|
+
7616 g 1 [0,1,0,-1113,13927] 2 2
|
|
1477
|
+
7616 g 2 [0,1,0,-1153,12831] 2 2
|
|
1478
|
+
7617 a 1 [1,0,0,-49,170] 2 1
|
|
1479
|
+
7628 a 1 [0,1,0,-20,4] 2 1
|
|
1480
|
+
7632 b 1 [0,0,0,-147,1010] 2 1
|
|
1481
|
+
7632 n 1 [0,0,0,-8715,313274] 2 1
|
|
1482
|
+
7632 n 2 [0,0,0,6405,1241642] 2 1
|
|
1483
|
+
7632 q 1 [0,0,0,141,1586] 2 1
|
|
1484
|
+
7632 q 2 [0,0,0,-1299,-48814] 2 1
|
|
1485
|
+
7652 a 1 [0,1,0,20,4] 2 1
|
|
1486
|
+
7658 a 1 [1,-1,0,-52808,4684096] 2 1
|
|
1487
|
+
7658 f 1 [1,0,0,-25785,1639801] 2 1
|
|
1488
|
+
7668 a 1 [0,0,0,33,70] 2 1
|
|
1489
|
+
7669 a 1 [0,0,1,-7,-6] 2 1
|
|
1490
|
+
7685 b 1 [1,-1,1,42,186] 2 1
|
|
1491
|
+
7685 c 1 [1,0,1,-204,1107] 2 1
|
|
1492
|
+
7685 d 1 [1,1,1,105,370] 2 1
|
|
1493
|
+
7689 g 1 [0,1,1,11,-14] 2 1
|
|
1494
|
+
7689 h 1 [0,1,1,-1600,30910] 2 1
|
|
1495
|
+
7690 a 1 [1,1,0,-8,-8] 2 1
|
|
1496
|
+
7690 e 1 [1,1,1,-301,-1821] 2 1
|
|
1497
|
+
7690 g 1 [1,-1,1,-867,9891] 2 1
|
|
1498
|
+
7693 a 1 [1,-1,1,113,-318] 2 1
|
|
1499
|
+
7694 b 1 [1,-1,0,-8,10] 2 1
|
|
1500
|
+
7694 c 1 [1,0,0,-199,9] 2 1
|
|
1501
|
+
7695 b 1 [1,-1,1,-83,406] 2 1
|
|
1502
|
+
7696 e 1 [0,0,0,-40,76] 2 1
|
|
1503
|
+
7700 b 1 [0,1,0,-2133,36988] 2 2
|
|
1504
|
+
7700 b 2 [0,1,0,-3508,-18012] 2 2
|
|
1505
|
+
7704 g 1 [0,0,0,-39,11] 2 1
|
|
1506
|
+
7704 r 1 [0,0,0,-183,911] 2 1
|
|
1507
|
+
7708 a 1 [0,1,0,2,9] 2 1
|
|
1508
|
+
7713 a 1 [0,0,1,-12,198] 2 1
|
|
1509
|
+
7714 b 1 [1,1,0,116,116] 2 1
|
|
1510
|
+
7714 c 1 [1,-1,0,-190,1444] 2 1
|
|
1511
|
+
7714 d 1 [1,-1,1,72,123] 2 1
|
|
1512
|
+
7715 a 1 [1,1,1,-25,42] 2 1
|
|
1513
|
+
7716 c 1 [0,1,0,-422,3129] 2 3
|
|
1514
|
+
7716 c 2 [0,1,0,-4202,-104979] 2 1
|
|
1515
|
+
7718 a 1 [1,1,0,-8,4] 2 1
|
|
1516
|
+
7719 a 1 [0,-1,1,-9,11] 2 1
|
|
1517
|
+
7724 a 1 [0,0,0,-4,9] 2 1
|
|
1518
|
+
7730 c 1 [1,1,0,-8,-2] 2 1
|
|
1519
|
+
7730 i 1 [1,1,1,-541,-141] 2 1
|
|
1520
|
+
7732 a 1 [0,0,0,-95,358] 2 1
|
|
1521
|
+
7733 d 1 [0,1,1,-153,678] 2 3
|
|
1522
|
+
7733 d 2 [0,1,1,-703,-6769] 2 1
|
|
1523
|
+
7734 b 1 [1,1,0,1,21] 2 1
|
|
1524
|
+
7743 b 1 [0,-1,1,-7,0] 2 1
|
|
1525
|
+
7743 e 1 [1,1,1,-100,-154] 2 1
|
|
1526
|
+
7743 g 1 [1,0,0,-923,10266] 2 1
|
|
1527
|
+
7744 e 1 [0,0,0,-44,176] 2 1
|
|
1528
|
+
7744 m 1 [0,1,0,-161,-3137] 2 1
|
|
1529
|
+
7744 m 2 [0,1,0,-232481,43068991] 2 1
|
|
1530
|
+
7752 e 1 [0,-1,0,-484,4228] 2 2
|
|
1531
|
+
7752 e 2 [0,-1,0,-864,-2916] 2 2
|
|
1532
|
+
7767 b 1 [1,-1,1,-8,-2] 2 1
|
|
1533
|
+
7771 a 1 [1,0,0,3,4] 2 1
|
|
1534
|
+
7776 k 1 [0,0,0,-81,324] 2 1
|
|
1535
|
+
7777 a 1 [0,0,1,-2588,43302] 2 1
|
|
1536
|
+
7777 d 1 [0,1,1,-2282,-37620] 2 1
|
|
1537
|
+
7782 c 1 [1,1,1,-65,191] 2 1
|
|
1538
|
+
7791 b 1 [1,1,0,-92145,-10804464] 2 2
|
|
1539
|
+
7791 b 2 [1,1,0,-93860,-10383603] 2 2
|
|
1540
|
+
7791 d 1 [0,-1,1,-2,20] 2 1
|
|
1541
|
+
7794 a 1 [1,-1,0,-297,-243] 2 2
|
|
1542
|
+
7794 a 2 [1,-1,0,-3537,-79947] 2 2
|
|
1543
|
+
7794 b 1 [1,-1,0,-63,121] 2 2
|
|
1544
|
+
7794 b 2 [1,-1,0,207,715] 2 2
|
|
1545
|
+
7805 b 1 [1,1,1,-861,9364] 2 1
|
|
1546
|
+
7808 g 1 [0,0,0,-248,1504] 2 1
|
|
1547
|
+
7808 j 1 [0,1,0,19,43] 2 1
|
|
1548
|
+
7810 e 1 [1,-1,1,-3282,52689] 2 1
|
|
1549
|
+
7811 a 1 [0,0,1,-4,5] 2 1
|
|
1550
|
+
7812 b 1 [0,0,0,-216,1241] 2 2
|
|
1551
|
+
7812 b 2 [0,0,0,-3471,78710] 2 2
|
|
1552
|
+
7820 e 1 [0,-1,0,-550,11177] 2 1
|
|
1553
|
+
7822 b 1 [1,0,1,-108,-438] 2 1
|
|
1554
|
+
7822 c 1 [1,-1,1,-156,735] 2 1
|
|
1555
|
+
7824 e 1 [0,-1,0,-72,-144] 2 1
|
|
1556
|
+
7826 d 1 [1,0,1,-8,42] 2 1
|
|
1557
|
+
7826 f 1 [1,0,1,-8151,282542] 2 3
|
|
1558
|
+
7826 f 2 [1,0,1,-8026,291660] 2 3
|
|
1559
|
+
7826 f 3 [1,0,1,45079,345324] 2 1
|
|
1560
|
+
7828 a 1 [0,-1,0,-9,10] 2 1
|
|
1561
|
+
7828 b 1 [0,0,0,-40,97] 2 1
|
|
1562
|
+
7828 c 1 [0,-1,0,-3573,83350] 2 1
|
|
1563
|
+
7830 d 1 [1,-1,0,-45,121] 2 1
|
|
1564
|
+
7832 c 1 [0,0,0,-191,-510] 2 4
|
|
1565
|
+
7832 c 2 [0,0,0,-2611,-51330] 2 4
|
|
1566
|
+
7832 c 3 [0,0,0,-41771,-3285946] 2 2
|
|
1567
|
+
7832 c 4 [0,0,0,-2171,-69194] 2 2
|
|
1568
|
+
7846 a 1 [1,-1,1,-33,-15] 2 1
|
|
1569
|
+
7848 b 1 [0,0,0,-27,55] 2 1
|
|
1570
|
+
7848 f 1 [0,0,0,9,-1] 2 1
|
|
1571
|
+
7852 a 1 [0,1,0,-29,52] 2 1
|
|
1572
|
+
7852 b 1 [0,0,0,4,1441] 2 1
|
|
1573
|
+
7856 b 1 [0,-1,0,-4,-16] 2 1
|
|
1574
|
+
7863 a 1 [0,1,1,-52,112] 2 1
|
|
1575
|
+
7867 a 1 [0,0,1,1,4] 2 1
|
|
1576
|
+
7869 a 1 [1,1,1,-46,-208] 2 1
|
|
1577
|
+
7874 a 1 [1,-1,0,-824,9344] 2 1
|
|
1578
|
+
7880 g 1 [0,-1,0,-20,25] 2 1
|
|
1579
|
+
7893 a 1 [1,-1,1,-14,204] 2 1
|
|
1580
|
+
7896 k 1 [0,1,0,-740,8064] 2 2
|
|
1581
|
+
7896 k 2 [0,1,0,-12080,507024] 2 2
|
|
1582
|
+
7898 e 1 [1,0,0,-116,-368] 2 1
|
|
1583
|
+
7904 b 1 [0,1,0,-237,1339] 2 1
|
|
1584
|
+
7904 c 1 [0,0,0,77,934] 2 1
|
|
1585
|
+
7908 a 1 [0,-1,0,-36,72] 2 1
|
|
1586
|
+
7910 c 1 [1,0,1,-64,186] 2 2
|
|
1587
|
+
7910 c 2 [1,0,1,-134,-318] 2 2
|
|
1588
|
+
7912 b 1 [0,0,0,-151,1159] 2 1
|
|
1589
|
+
7917 c 1 [1,0,0,-14,123] 2 2
|
|
1590
|
+
7917 c 2 [1,0,0,-469,3854] 2 2
|
|
1591
|
+
7918 a 1 [1,-1,0,-5,-51] 2 1
|
|
1592
|
+
7923 a 1 [1,1,1,8,-28] 2 1
|
|
1593
|
+
7925 e 1 [1,-1,1,-180,972] 2 1
|
|
1594
|
+
7926 b 1 [1,0,1,-22,20] 2 2
|
|
1595
|
+
7926 b 2 [1,0,1,68,164] 2 2
|
|
1596
|
+
7934 d 1 [1,0,0,-298,1956] 2 1
|
|
1597
|
+
7936 b 1 [0,1,0,-23,-35] 2 2
|
|
1598
|
+
7936 b 2 [0,1,0,-333,-2453] 2 2
|
|
1599
|
+
7942 d 1 [1,0,1,23818,223624] 2 1
|
|
1600
|
+
7942 e 1 [1,0,1,-8,-6] 2 1
|
|
1601
|
+
7942 f 1 [1,0,1,-730,5580] 2 3
|
|
1602
|
+
7942 f 2 [1,0,1,-20585,-1138068] 2 1
|
|
1603
|
+
7942 l 1 [1,1,1,-1480,21321] 2 1
|
|
1604
|
+
7953 a 1 [1,1,1,-251,1442] 2 1
|
|
1605
|
+
7962 a 1 [1,0,1,-130,452] 2 1
|
|
1606
|
+
7965 a 1 [0,0,1,-108,438] 2 1
|
|
1607
|
+
7965 b 1 [1,-1,1,-23,56] 2 1
|
|
1608
|
+
7968 a 1 [0,-1,0,-1,49] 2 1
|
|
1609
|
+
7968 i 1 [0,1,0,-657,6399] 2 1
|
|
1610
|
+
7971 a 1 [0,-1,1,5,0] 2 1
|
|
1611
|
+
7971 c 1 [1,0,0,-71,252] 2 1
|
|
1612
|
+
7973 d 1 [0,0,1,-5,0] 2 1
|
|
1613
|
+
7973 h 1 [0,1,1,-565,4985] 2 1
|
|
1614
|
+
7974 e 1 [1,-1,0,-261,1701] 2 1
|
|
1615
|
+
7984 b 1 [0,1,0,8,36] 2 1
|
|
1616
|
+
7989 b 1 [0,1,1,-22,-20] 2 1
|
|
1617
|
+
7990 c 1 [1,-1,0,-604,5728] 2 1
|
|
1618
|
+
7992 j 1 [0,0,0,81,594] 2 1
|
|
1619
|
+
7994 f 1 [1,0,0,-27,49] 2 1
|
|
1620
|
+
7995 c 1 [1,1,1,-1385,19262] 2 2
|
|
1621
|
+
7995 c 2 [1,1,1,-1340,20630] 2 2
|
|
1622
|
+
7997 a 1 [0,1,1,-5,0] 2 1
|
|
1623
|
+
7998 c 1 [1,1,1,-72,-183] 2 1
|
|
1624
|
+
8001 b 1 [0,0,1,-33,70] 2 1
|
|
1625
|
+
8001 c 1 [0,0,1,-32889,2295720] 2 1
|
|
1626
|
+
8001 g 1 [0,0,1,-1704,7227] 2 1
|
|
1627
|
+
8001 g 2 [0,0,1,-107544,13574592] 2 3
|
|
1628
|
+
8008 b 1 [0,-1,0,23,221] 2 1
|
|
1629
|
+
8024 e 1 [0,-1,0,64,-68] 2 1
|
|
1630
|
+
8025 d 1 [0,-1,1,-633,5168] 2 1
|
|
1631
|
+
8025 d 2 [0,-1,1,-15633,-746707] 2 1
|
|
1632
|
+
8025 q 1 [0,1,1,-338,-616] 2 1
|
|
1633
|
+
8027 b 1 [0,0,1,5,0] 2 1
|
|
1634
|
+
8028 b 1 [0,0,0,-159,774] 2 1
|
|
1635
|
+
8028 e 1 [0,0,0,177,1334] 2 1
|
|
1636
|
+
8034 a 1 [1,1,0,-162,-810] 2 1
|
|
1637
|
+
8034 e 1 [1,1,1,-29009,1888175] 2 1
|
|
1638
|
+
8036 b 1 [0,-1,0,-506,4537] 2 1
|
|
1639
|
+
8037 a 1 [0,0,1,-318,-1998] 2 1
|
|
1640
|
+
8043 h 1 [0,1,1,-92,-178] 2 1
|
|
1641
|
+
8048 f 1 [0,-1,0,80,-64] 2 1
|
|
1642
|
+
8048 g 1 [0,-1,0,-3360,76096] 2 1
|
|
1643
|
+
8048 i 1 [0,0,0,29,34] 2 1
|
|
1644
|
+
8051 c 1 [1,-1,0,-22,-53] 2 1
|
|
1645
|
+
8054 d 1 [1,0,0,2,-12] 2 1
|
|
1646
|
+
8060 b 1 [0,-1,0,-125,15625] 2 1
|
|
1647
|
+
8084 c 1 [0,0,0,-8,1] 2 1
|
|
1648
|
+
8086 b 1 [1,0,0,-399,3193] 2 1
|
|
1649
|
+
8090 b 1 [1,0,1,-14,12] 2 2
|
|
1650
|
+
8090 b 2 [1,0,1,36,92] 2 2
|
|
1651
|
+
8091 b 1 [1,-1,1,-176,940] 2 1
|
|
1652
|
+
8091 c 1 [1,-1,1,130,-1762] 2 1
|
|
1653
|
+
8092 b 1 [0,-1,0,-28,56] 2 1
|
|
1654
|
+
8092 b 2 [0,-1,0,-708,-7016] 2 1
|
|
1655
|
+
8092 h 1 [0,-1,0,-3564,77848] 2 1
|
|
1656
|
+
8106 c 1 [1,1,0,-31,49] 2 2
|
|
1657
|
+
8106 c 2 [1,1,0,39,315] 2 2
|
|
1658
|
+
8106 f 1 [1,1,1,-900,9861] 2 2
|
|
1659
|
+
8106 f 2 [1,1,1,-14340,654981] 2 2
|
|
1660
|
+
8109 d 1 [1,-1,1,-32,20] 2 1
|
|
1661
|
+
8112 g 1 [0,-1,0,-4,64] 2 2
|
|
1662
|
+
8112 g 2 [0,-1,0,-264,1728] 2 2
|
|
1663
|
+
8124 c 1 [0,1,0,-69,-153] 2 1
|
|
1664
|
+
8136 d 1 [0,0,0,-84,484] 2 1
|
|
1665
|
+
8136 m 1 [0,0,0,-39,394] 2 1
|
|
1666
|
+
8160 c 1 [0,-1,0,-2830,58900] 2 2
|
|
1667
|
+
8160 c 2 [0,-1,0,-2785,60817] 2 2
|
|
1668
|
+
8170 b 1 [1,0,1,-23,78] 2 1
|
|
1669
|
+
8170 c 1 [1,-1,0,-509,6213] 2 1
|
|
1670
|
+
8178 b 1 [1,1,0,573,13005] 2 1
|
|
1671
|
+
8180 a 1 [0,0,0,17,22] 2 1
|
|
1672
|
+
8180 b 1 [0,0,0,-5407,153094] 2 1
|
|
1673
|
+
8183 b 1 [1,-1,1,15,-24] 2 1
|
|
1674
|
+
8193 a 1 [0,-1,1,-11,20] 2 1
|
|
1675
|
+
8194 h 1 [1,0,0,-64,0] 2 2
|
|
1676
|
+
8194 h 2 [1,0,0,256,64] 2 2
|
|
1677
|
+
8195 c 1 [1,1,1,-155,450] 2 1
|
|
1678
|
+
8198 b 1 [1,0,1,-50,132] 2 1
|
|
1679
|
+
8200 e 1 [0,0,0,-70,225] 2 2
|
|
1680
|
+
8200 e 2 [0,0,0,-95,50] 2 2
|
|
1681
|
+
8200 h 1 [0,1,0,-383,1738] 2 2
|
|
1682
|
+
8200 h 2 [0,1,0,-5508,155488] 2 2
|
|
1683
|
+
8202 j 1 [1,0,0,-1520,20736] 2 1
|
|
1684
|
+
8210 b 1 [1,0,1,-53774,4795072] 2 1
|
|
1685
|
+
8210 c 1 [1,1,0,-168,772] 2 1
|
|
1686
|
+
8210 d 1 [1,0,1,1,6] 2 1
|
|
1687
|
+
8210 g 1 [1,-1,1,-252,2751] 2 1
|
|
1688
|
+
8211 i 1 [1,0,0,-15299,737190] 2 1
|
|
1689
|
+
8216 b 1 [0,1,0,-33,67] 2 1
|
|
1690
|
+
8217 e 1 [0,0,1,6,-68] 2 1
|
|
1691
|
+
8217 m 1 [0,0,1,-1083,13900] 2 1
|
|
1692
|
+
8219 a 1 [0,-1,1,-21,45] 2 1
|
|
1693
|
+
8228 d 1 [0,1,0,-18,-35] 2 1
|
|
1694
|
+
8228 d 2 [0,1,0,-238,1329] 2 1
|
|
1695
|
+
8236 c 1 [0,0,0,-8,36] 2 1
|
|
1696
|
+
8238 a 1 [1,1,0,-34,64] 2 1
|
|
1697
|
+
8238 b 1 [1,0,1,116,1430] 2 1
|
|
1698
|
+
8238 c 1 [1,0,1,-3938,94772] 2 1
|
|
1699
|
+
8240 d 1 [0,0,0,-67,274] 2 1
|
|
1700
|
+
8241 a 1 [0,-1,1,-38349,2911529] 2 1
|
|
1701
|
+
8241 b 1 [1,1,1,-13,14] 2 1
|
|
1702
|
+
8245 f 1 [0,1,1,-210,1014] 2 1
|
|
1703
|
+
8253 g 1 [1,-1,1,-95,-282] 2 2
|
|
1704
|
+
8253 g 2 [1,-1,1,-410,2994] 2 2
|
|
1705
|
+
8255 c 1 [1,0,0,-3316,20481] 2 1
|
|
1706
|
+
8255 e 1 [1,0,0,-20,25] 2 1
|
|
1707
|
+
8255 f 1 [0,0,1,-77,260] 2 1
|
|
1708
|
+
8255 g 1 [0,1,1,-369525,86337579] 2 3
|
|
1709
|
+
8255 g 2 [0,1,1,-169525,179243204] 2 1
|
|
1710
|
+
8256 bh 1 [0,-1,0,-17,81] 2 1
|
|
1711
|
+
8256 bt 1 [0,1,0,-177,5679] 2 1
|
|
1712
|
+
8256 bt 2 [0,1,0,-30417,2031759] 2 1
|
|
1713
|
+
8262 c 1 [1,-1,0,-366,-2092] 2 1
|
|
1714
|
+
8262 c 2 [1,-1,0,-9006,331028] 2 3
|
|
1715
|
+
8262 d 1 [1,-1,0,-15,17] 2 1
|
|
1716
|
+
8268 c 1 [0,-1,0,-1209,10170] 2 2
|
|
1717
|
+
8268 c 2 [0,-1,0,-8364,-284616] 2 2
|
|
1718
|
+
8272 a 1 [0,0,0,13,-30] 2 1
|
|
1719
|
+
8272 e 1 [0,1,0,-2784,55780] 2 1
|
|
1720
|
+
8283 f 1 [0,1,1,-987,11612] 2 1
|
|
1721
|
+
8283 g 1 [0,1,1,154,1952] 2 1
|
|
1722
|
+
8285 b 1 [1,-1,1,-52,154] 2 1
|
|
1723
|
+
8298 j 1 [1,-1,1,31,1329] 2 1
|
|
1724
|
+
8298 l 1 [1,-1,1,-7034,229817] 2 1
|
|
1725
|
+
8304 c 1 [0,1,0,-24,1332] 2 1
|
|
1726
|
+
8304 f 1 [0,-1,0,160,-2304] 2 1
|
|
1727
|
+
8318 a 1 [1,1,0,-41,85] 2 1
|
|
1728
|
+
8320 e 1 [0,0,0,-4333,109782] 2 2
|
|
1729
|
+
8320 e 2 [0,0,0,-4328,110048] 2 2
|
|
1730
|
+
8325 g 1 [0,0,1,-585,5446] 2 1
|
|
1731
|
+
8325 h 1 [0,0,1,75,-344] 2 1
|
|
1732
|
+
8325 j 1 [0,0,1,-120,506] 2 1
|
|
1733
|
+
8325 bd 1 [0,0,1,-300,6556] 2 1
|
|
1734
|
+
8335 b 1 [1,-1,1,-147,444] 2 1
|
|
1735
|
+
8342 a 1 [1,-1,0,-10,4] 2 1
|
|
1736
|
+
8350 d 1 [1,0,1,-11,18] 2 1
|
|
1737
|
+
8357 a 1 [0,1,1,-29,51] 2 1
|
|
1738
|
+
8360 q 1 [0,1,0,-275,28798] 2 2
|
|
1739
|
+
8360 q 2 [0,1,0,-15900,760048] 2 2
|
|
1740
|
+
8361 a 1 [1,-1,0,18,-621] 2 1
|
|
1741
|
+
8361 b 1 [1,-1,1,-4730,126380] 2 1
|
|
1742
|
+
8361 c 1 [1,-1,1,31,-358] 2 1
|
|
1743
|
+
8362 a 1 [1,1,1,-766,7995] 2 1
|
|
1744
|
+
8362 b 1 [1,-1,1,6,9] 2 1
|
|
1745
|
+
8363 b 1 [1,0,1,-86,297] 2 1
|
|
1746
|
+
8365 a 1 [0,1,1,-1,11] 2 1
|
|
1747
|
+
8368 c 1 [0,1,0,11,15] 2 1
|
|
1748
|
+
8370 d 1 [1,-1,0,-2175,38861] 2 1
|
|
1749
|
+
8374 b 1 [1,1,0,-2653,50621] 2 1
|
|
1750
|
+
8378 e 1 [1,1,1,-414,3067] 2 1
|
|
1751
|
+
8378 h 1 [1,0,0,-37,129] 2 1
|
|
1752
|
+
8379 n 1 [1,-1,1,-671,-5610] 2 2
|
|
1753
|
+
8379 n 2 [1,-1,1,-2876,54366] 2 4
|
|
1754
|
+
8379 n 3 [1,-1,1,-44771,3657336] 2 2
|
|
1755
|
+
8379 n 4 [1,-1,1,3739,263400] 2 2
|
|
1756
|
+
8380 c 1 [0,-1,0,-5,22] 2 1
|
|
1757
|
+
8384 e 1 [0,0,0,-140,752] 2 1
|
|
1758
|
+
8384 j 1 [0,1,0,31,-65] 2 1
|
|
1759
|
+
8398 c 1 [1,0,1,-267,566] 2 2
|
|
1760
|
+
8398 c 2 [1,0,1,-2347,-43530] 2 2
|
|
1761
|
+
8402 a 1 [1,-1,0,-5,9] 2 1
|
|
1762
|
+
8412 a 1 [0,-1,0,-29,9] 2 1
|
|
1763
|
+
8424 b 1 [0,0,0,-36,36] 2 1
|
|
1764
|
+
8430 b 1 [1,0,1,-89,812] 2 1
|
|
1765
|
+
8430 f 1 [1,1,1,-106,119] 2 2
|
|
1766
|
+
8430 f 2 [1,1,1,-906,-10761] 2 2
|
|
1767
|
+
8440 e 1 [0,-1,0,-36,100] 2 1
|
|
1768
|
+
8443 a 1 [0,1,1,2,-4] 2 1
|
|
1769
|
+
8448 o 1 [0,-1,0,-19,55] 2 2
|
|
1770
|
+
8448 o 2 [0,-1,0,-349,2629] 2 2
|
|
1771
|
+
8449 a 1 [1,1,1,1,-18] 2 1
|
|
1772
|
+
8454 b 1 [1,1,0,-1035,-13251] 2 1
|
|
1773
|
+
8454 c 1 [1,1,0,13,33] 2 1
|
|
1774
|
+
8454 d 1 [1,1,0,-124,484] 2 1
|
|
1775
|
+
8454 f 1 [1,0,1,-72,154] 2 1
|
|
1776
|
+
8454 h 1 [1,1,1,-37,107] 2 1
|
|
1777
|
+
8463 j 1 [0,1,1,-8104,278206] 2 1
|
|
1778
|
+
8464 i 1 [0,1,0,-176,1156] 2 1
|
|
1779
|
+
8466 b 1 [1,1,0,-1133,14829] 2 1
|
|
1780
|
+
8468 a 1 [0,0,0,-32,-60] 2 1
|
|
1781
|
+
8470 g 1 [1,0,1,41,42] 2 2
|
|
1782
|
+
8470 g 2 [1,0,1,-179,306] 2 2
|
|
1783
|
+
8474 a 1 [1,1,0,-2471,46261] 2 1
|
|
1784
|
+
8475 e 1 [0,-1,1,-20533,1139343] 2 1
|
|
1785
|
+
8475 e 2 [0,-1,1,-15283,1729968] 2 1
|
|
1786
|
+
8475 i 1 [0,1,1,-2808,57044] 2 1
|
|
1787
|
+
8477 c 1 [0,-1,1,-16,580] 2 1
|
|
1788
|
+
8478 e 1 [1,-1,1,-104,299] 2 1
|
|
1789
|
+
8484 a 1 [0,-1,0,-117,81] 2 1
|
|
1790
|
+
8490 d 1 [1,1,0,-42,144] 2 1
|
|
1791
|
+
8491 e 1 [0,0,1,-10,3] 2 1
|
|
1792
|
+
8492 a 1 [0,0,0,-17176,866436] 2 1
|
|
1793
|
+
8493 d 1 [1,1,1,-16,2] 2 1
|
|
1794
|
+
8495 a 1 [0,1,1,-5,9] 2 1
|
|
1795
|
+
8502 b 1 [1,0,1,-42,76] 2 2
|
|
1796
|
+
8502 b 2 [1,0,1,-222,-1220] 2 4
|
|
1797
|
+
8502 b 3 [1,0,1,-3492,-79700] 2 2
|
|
1798
|
+
8502 b 4 [1,0,1,168,-4964] 2 2
|
|
1799
|
+
8505 b 1 [1,-1,1,187,13042] 2 1
|
|
1800
|
+
8511 a 1 [0,-1,1,-1808,30200] 2 1
|
|
1801
|
+
8515 a 1 [1,-1,0,-185,-664] 2 2
|
|
1802
|
+
8515 a 2 [1,-1,0,470,-4725] 2 2
|
|
1803
|
+
8518 a 1 [1,-1,1,-15,-9] 2 1
|
|
1804
|
+
8520 f 1 [0,-1,0,-145,757] 2 1
|
|
1805
|
+
8526 d 1 [1,1,0,24,624] 2 2
|
|
1806
|
+
8526 d 2 [1,1,0,-956,10620] 2 4
|
|
1807
|
+
8526 d 3 [1,1,0,-2426,-32010] 2 2
|
|
1808
|
+
8526 d 4 [1,1,0,-15166,712594] 2 2
|
|
1809
|
+
8540 a 1 [0,-1,0,-36,40] 2 1
|
|
1810
|
+
8540 d 1 [0,-1,0,-10836,436936] 2 1
|
|
1811
|
+
8547 c 1 [1,1,1,31,-34] 2 2
|
|
1812
|
+
8547 c 2 [1,1,1,-154,-478] 2 2
|
|
1813
|
+
8549 b 1 [0,1,1,-20,-42] 2 1
|
|
1814
|
+
8549 c 1 [0,0,1,-197,1064] 2 1
|
|
1815
|
+
8551 a 1 [1,-1,1,0,18] 2 1
|
|
1816
|
+
8554 l 1 [1,1,1,-4382,110427] 2 1
|
|
1817
|
+
8554 n 1 [1,-1,1,-159,8967] 2 1
|
|
1818
|
+
8560 d 1 [0,-1,0,-160,2192] 2 1
|
|
1819
|
+
8565 a 1 [0,-1,1,9,11] 2 1
|
|
1820
|
+
8565 b 1 [0,-1,1,34,236] 2 1
|
|
1821
|
+
8565 h 1 [0,1,1,-1130,14756] 2 1
|
|
1822
|
+
8568 d 1 [0,0,0,-804,8836] 2 1
|
|
1823
|
+
8570 b 1 [1,0,1,-49,-134] 2 1
|
|
1824
|
+
8570 c 1 [1,0,1,-88,438] 2 1
|
|
1825
|
+
8570 f 1 [1,-1,1,-93,357] 2 1
|
|
1826
|
+
8577 a 1 [1,-1,0,-9,-68] 2 1
|
|
1827
|
+
8579 a 1 [0,0,1,-16,12] 2 1
|
|
1828
|
+
8584 f 1 [0,1,0,-89,-325] 2 1
|
|
1829
|
+
8585 b 1 [0,0,1,-313,-1956] 2 1
|
|
1830
|
+
8586 e 1 [1,-1,0,9,-47] 2 1
|
|
1831
|
+
8595 d 1 [0,0,1,-177,902] 2 1
|
|
1832
|
+
8595 g 1 [0,0,1,-102,-365] 2 1
|
|
1833
|
+
8598 a 1 [1,1,0,-50,132] 2 1
|
|
1834
|
+
8598 b 1 [1,1,0,9,9] 2 1
|
|
1835
|
+
8598 g 1 [1,0,0,-505,4601] 2 1
|
|
1836
|
+
8601 h 1 [0,1,1,-461,3647] 2 1
|
|
1837
|
+
8604 e 1 [0,0,0,-93,421] 2 1
|
|
1838
|
+
8604 h 1 [0,0,0,-9,81] 2 1
|
|
1839
|
+
8605 b 1 [0,1,1,-11,10] 2 1
|
|
1840
|
+
8605 c 1 [0,-1,1,-160,-494] 2 1
|
|
1841
|
+
8606 a 1 [1,0,1,-14,48] 2 1
|
|
1842
|
+
8608 b 1 [0,0,0,-824,9104] 2 1
|
|
1843
|
+
8613 b 1 [0,0,1,-12,-9] 2 1
|
|
1844
|
+
8613 e 1 [1,-1,1,-32,60] 2 1
|
|
1845
|
+
8613 i 1 [1,-1,0,-137553,12174146] 2 1
|
|
1846
|
+
8613 j 1 [0,0,1,-1431,20540] 2 1
|
|
1847
|
+
8622 a 1 [1,-1,0,18,-1580] 2 1
|
|
1848
|
+
8635 c 1 [1,-1,1,-13,12] 2 2
|
|
1849
|
+
8635 c 2 [1,-1,1,42,56] 2 2
|
|
1850
|
+
8642 a 1 [1,-1,0,-647,-7121] 2 1
|
|
1851
|
+
8645 a 1 [1,1,1,-3920,93882] 2 1
|
|
1852
|
+
8646 g 1 [1,1,1,-204,39405] 2 1
|
|
1853
|
+
8649 b 1 [0,0,1,0,-8] 2 1
|
|
1854
|
+
8649 b 2 [0,0,1,0,209] 2 1
|
|
1855
|
+
8654 a 1 [1,1,1,-59,201] 2 1
|
|
1856
|
+
8655 d 1 [0,1,1,-146,1010] 2 1
|
|
1857
|
+
8658 b 1 [1,-1,0,-78,260] 2 2
|
|
1858
|
+
8658 b 2 [1,-1,0,102,1160] 2 2
|
|
1859
|
+
8662 d 1 [1,-1,0,19,421] 2 1
|
|
1860
|
+
8662 e 1 [1,1,0,-55,53] 2 1
|
|
1861
|
+
8664 n 1 [0,1,0,-44,240] 2 1
|
|
1862
|
+
8670 i 1 [1,0,1,-134,596] 2 1
|
|
1863
|
+
8673 b 1 [1,1,1,34,-610] 2 1
|
|
1864
|
+
8673 c 1 [1,1,1,-295,-1324] 2 2
|
|
1865
|
+
8673 c 2 [1,1,1,-2010,32976] 2 2
|
|
1866
|
+
8675 a 1 [0,-1,1,-143,708] 2 1
|
|
1867
|
+
8675 a 2 [0,-1,1,-43,1573] 2 1
|
|
1868
|
+
8675 g 1 [0,0,1,125,156] 2 1
|
|
1869
|
+
8680 l 1 [0,1,0,-36,160] 2 2
|
|
1870
|
+
8680 l 2 [0,1,0,-736,7440] 2 2
|
|
1871
|
+
8683 a 1 [0,1,1,-84,-1674] 2 1
|
|
1872
|
+
8685 a 1 [0,0,1,12,-7] 2 1
|
|
1873
|
+
8688 e 1 [0,1,0,-112,-76] 2 1
|
|
1874
|
+
8688 n 1 [0,1,0,-15752,755316] 2 1
|
|
1875
|
+
8694 b 1 [1,-1,0,-36,76] 2 1
|
|
1876
|
+
8697 a 1 [0,-1,1,-332,2462] 2 1
|
|
1877
|
+
8699 a 1 [0,1,1,-31,57] 2 1
|
|
1878
|
+
8710 c 1 [1,-1,0,-35,85] 2 1
|
|
1879
|
+
8710 h 1 [1,0,1,-1528,22506] 2 3
|
|
1880
|
+
8710 h 2 [1,0,1,-13403,-587994] 2 3
|
|
1881
|
+
8710 h 3 [1,0,1,-1080378,-432316564] 2 1
|
|
1882
|
+
8720 h 1 [0,0,0,-43,-38] 2 1
|
|
1883
|
+
8720 o 1 [0,-1,0,-5440,89600] 2 1
|
|
1884
|
+
8720 o 2 [0,-1,0,-385440,92233600] 2 1
|
|
1885
|
+
8721 f 1 [1,-1,1,-596,-10880] 2 1
|
|
1886
|
+
8722 e 1 [1,1,0,318,232] 2 1
|
|
1887
|
+
8722 o 1 [1,1,1,293,9897] 2 1
|
|
1888
|
+
8722 o 2 [1,1,1,-27147,1711177] 2 1
|
|
1889
|
+
8724 b 1 [0,1,0,108,2916] 2 3
|
|
1890
|
+
8724 b 2 [0,1,0,-972,-79596] 2 1
|
|
1891
|
+
8725 e 1 [0,1,1,-133,144] 2 1
|
|
1892
|
+
8732 a 1 [0,0,0,-1,9] 2 1
|
|
1893
|
+
8732 b 1 [0,-1,0,-24277,1464017] 2 1
|
|
1894
|
+
8734 c 1 [1,-1,0,-10,22] 2 1
|
|
1895
|
+
8745 c 1 [1,1,1,-46,98] 2 2
|
|
1896
|
+
8745 c 2 [1,1,1,9,384] 2 2
|
|
1897
|
+
8745 e 1 [1,1,1,-105,102] 2 2
|
|
1898
|
+
8745 e 2 [1,1,1,390,1290] 2 2
|
|
1899
|
+
8746 a 1 [1,0,0,13,1] 2 1
|
|
1900
|
+
8747 b 1 [0,-1,1,3,3] 2 1
|
|
1901
|
+
8754 a 1 [1,1,0,-15,-9] 2 1
|
|
1902
|
+
8758 a 1 [1,1,1,81,757] 2 1
|
|
1903
|
+
8764 b 1 [0,1,0,-26,73] 2 1
|
|
1904
|
+
8766 y 1 [1,-1,1,-119,847] 2 1
|
|
1905
|
+
8768 h 1 [0,1,0,-97,351] 2 1
|
|
1906
|
+
8768 j 1 [0,0,0,52,144] 2 1
|
|
1907
|
+
8780 d 1 [0,1,0,-70,225] 2 1
|
|
1908
|
+
8784 a 1 [0,0,0,141,466] 2 1
|
|
1909
|
+
8784 j 1 [0,0,0,-123,554] 2 1
|
|
1910
|
+
8789 b 1 [1,-1,0,-626,6163] 2 1
|
|
1911
|
+
8789 c 1 [1,-1,1,-148462,-18764872] 2 1
|
|
1912
|
+
8789 d 1 [0,0,1,41,-78] 2 1
|
|
1913
|
+
8792 a 1 [0,0,0,-194,1041] 2 1
|
|
1914
|
+
8794 b 1 [1,-1,1,-6132,186455] 2 1
|
|
1915
|
+
8800 t 1 [0,1,0,-258,988] 2 2
|
|
1916
|
+
8800 t 2 [0,1,0,-1633,-25137] 2 2
|
|
1917
|
+
8802 f 1 [1,-1,0,-18,40] 2 1
|
|
1918
|
+
8805 b 1 [0,-1,1,-16,36] 2 1
|
|
1919
|
+
8808 a 1 [0,-1,0,-4,13] 2 1
|
|
1920
|
+
8808 d 1 [0,-1,0,40,-39] 2 1
|
|
1921
|
+
8808 h 1 [0,1,0,-252,1296] 2 1
|
|
1922
|
+
8811 a 1 [0,0,1,-15,34] 2 1
|
|
1923
|
+
8815 b 1 [0,-1,1,-10,256] 2 1
|
|
1924
|
+
8816 a 1 [0,-1,0,-712,8864] 2 1
|
|
1925
|
+
8825 c 1 [1,1,1,-88,156] 2 1
|
|
1926
|
+
8828 b 1 [0,1,0,-28,36] 2 1
|
|
1927
|
+
8830 c 1 [1,0,1,-63,338] 2 1
|
|
1928
|
+
8832 e 1 [0,1,0,-339,2277] 2 2
|
|
1929
|
+
8832 e 2 [0,1,0,-569,-1449] 2 2
|
|
1930
|
+
8835 g 1 [1,0,0,-171,1296] 2 2
|
|
1931
|
+
8835 g 2 [1,0,0,-3116,66675] 2 2
|
|
1932
|
+
8852 a 1 [0,1,0,-13,12] 2 1
|
|
1933
|
+
8853 a 1 [0,-1,1,-34,126] 2 1
|
|
1934
|
+
8853 b 1 [0,1,1,91,-127] 2 1
|
|
1935
|
+
8856 a 1 [0,0,0,54,81] 2 1
|
|
1936
|
+
8856 b 1 [0,0,0,-8316,291924] 2 1
|
|
1937
|
+
8860 b 1 [0,-1,0,555,-8975] 2 1
|
|
1938
|
+
8864 b 1 [0,1,0,-33,79] 2 1
|
|
1939
|
+
8866 f 1 [1,0,1,-367,2676] 2 1
|
|
1940
|
+
8866 h 1 [1,-1,1,23,-55] 2 1
|
|
1941
|
+
8866 i 1 [1,-1,1,-35898,2627193] 2 1
|
|
1942
|
+
8869 c 1 [0,1,1,5,-10] 2 1
|
|
1943
|
+
8883 e 1 [1,-1,1,-2273,42270] 2 1
|
|
1944
|
+
8888 a 1 [0,1,0,-41,43] 2 1
|
|
1945
|
+
8896 h 1 [0,1,0,3,19] 2 1
|
|
1946
|
+
8904 a 1 [0,-1,0,23,301] 2 1
|
|
1947
|
+
8911 c 1 [1,1,1,-21077,-1095138] 2 1
|
|
1948
|
+
8920 a 1 [0,-1,0,-376,2876] 2 1
|
|
1949
|
+
8930 k 1 [1,1,1,-9071,471093] 2 1
|
|
1950
|
+
8931 a 1 [1,0,0,-59,168] 2 2
|
|
1951
|
+
8931 a 2 [1,0,0,-14,429] 2 2
|
|
1952
|
+
8946 b 1 [1,-1,0,9,-7] 2 1
|
|
1953
|
+
8946 l 1 [1,-1,0,-441,9261] 2 1
|
|
1954
|
+
8946 l 2 [1,-1,0,-49581,4261761] 2 3
|
|
1955
|
+
8950 m 1 [1,1,1,-33,31] 2 1
|
|
1956
|
+
8954 f 1 [1,0,0,-96,1024] 2 1
|
|
1957
|
+
8954 h 1 [1,0,0,663,-39599] 2 1
|
|
1958
|
+
8954 h 2 [1,0,0,-5992,1095744] 2 1
|
|
1959
|
+
8955 a 1 [1,-1,1,7,-18] 2 1
|
|
1960
|
+
8960 e 1 [0,1,0,-71,205] 2 2
|
|
1961
|
+
8960 e 2 [0,1,0,-141,-341] 2 2
|
|
1962
|
+
8962 b 1 [1,-1,0,-329,2381] 2 1
|
|
1963
|
+
8962 d 1 [1,-1,1,-19,-13] 2 1
|
|
1964
|
+
8962 e 1 [1,0,0,-76,144] 2 1
|
|
1965
|
+
8965 c 1 [0,1,1,-9820,371324] 2 1
|
|
1966
|
+
8968 a 1 [0,0,0,-668,7636] 2 1
|
|
1967
|
+
8970 i 1 [1,1,1,-3316,73013] 2 2
|
|
1968
|
+
8970 i 2 [1,1,1,-53236,4705589] 2 2
|
|
1969
|
+
8973 c 1 [1,-1,0,66,-73] 2 1
|
|
1970
|
+
8973 d 1 [1,-1,1,7,0] 2 1
|
|
1971
|
+
8974 c 1 [1,0,0,-4,48] 2 1
|
|
1972
|
+
8975 c 1 [0,0,1,-50,1281] 2 1
|
|
1973
|
+
8976 f 1 [0,-1,0,-184,1024] 2 2
|
|
1974
|
+
8976 f 2 [0,-1,0,-144,1440] 2 2
|
|
1975
|
+
8984 a 1 [0,1,0,15,19] 2 1
|
|
1976
|
+
8988 d 1 [0,1,0,-82,161] 2 1
|
|
1977
|
+
9003 c 1 [0,1,1,17,37] 2 1
|
|
1978
|
+
9003 d 1 [0,1,1,-34,76] 2 1
|
|
1979
|
+
9006 a 1 [1,1,0,10,-108] 2 1
|
|
1980
|
+
9008 b 1 [0,1,0,5,4] 2 1
|
|
1981
|
+
9009 d 1 [1,-1,1,94,-2280] 2 2
|
|
1982
|
+
9009 d 2 [1,-1,1,-2111,-34914] 2 4
|
|
1983
|
+
9009 d 3 [1,-1,1,-33296,-2330130] 2 2
|
|
1984
|
+
9009 d 4 [1,-1,1,-6206,145266] 2 2
|
|
1985
|
+
9010 a 1 [1,-1,0,-95,381] 2 2
|
|
1986
|
+
9010 a 2 [1,-1,0,-115,225] 2 4
|
|
1987
|
+
9010 a 3 [1,-1,0,-965,-11165] 2 2
|
|
1988
|
+
9010 a 4 [1,-1,0,415,1391] 2 2
|
|
1989
|
+
9010 b 1 [1,0,1,-89,-324] 2 2
|
|
1990
|
+
9010 b 2 [1,0,1,-9,-868] 2 2
|
|
1991
|
+
9012 a 1 [0,1,0,-20,324] 2 1
|
|
1992
|
+
9022 c 1 [1,0,0,-716,7312] 2 1
|
|
1993
|
+
9022 f 1 [1,0,0,-227,-1151] 2 1
|
|
1994
|
+
9024 p 1 [0,1,0,-9,567] 2 2
|
|
1995
|
+
9024 p 2 [0,1,0,-1089,13311] 2 2
|
|
1996
|
+
9024 ba 1 [0,-1,0,-513,6561] 2 2
|
|
1997
|
+
9024 ba 2 [0,-1,0,-9153,340065] 2 2
|
|
1998
|
+
9024 be 1 [0,-1,0,31,-255] 2 2
|
|
1999
|
+
9024 be 2 [0,-1,0,-449,-3231] 2 2
|
|
2000
|
+
9032 a 1 [0,0,0,-7,3] 2 1
|
|
2001
|
+
9035 a 1 [1,-1,0,-275,1680] 2 2
|
|
2002
|
+
9035 a 2 [1,-1,0,-970,-9579] 2 2
|
|
2003
|
+
9036 g 1 [0,0,0,-264,1924] 2 1
|
|
2004
|
+
9045 b 1 [1,-1,1,-32,6] 2 1
|
|
2005
|
+
9048 n 1 [0,1,0,-7779,-259434] 2 2
|
|
2006
|
+
9048 n 2 [0,1,0,-18764,623760] 2 2
|
|
2007
|
+
9050 f 1 [1,-1,1,1395,41397] 2 1
|
|
2008
|
+
9050 g 1 [1,1,1,-268,1581] 2 1
|
|
2009
|
+
9054 l 1 [1,-1,1,-2294,42757] 2 1
|
|
2010
|
+
9054 t 1 [1,-1,1,-104,-21] 2 1
|
|
2011
|
+
9060 b 1 [0,-1,0,-21,81] 2 1
|
|
2012
|
+
9062 d 1 [1,0,0,9,-23] 2 1
|
|
2013
|
+
9064 a 1 [0,-1,0,-841,9677] 2 1
|
|
2014
|
+
9066 b 1 [1,1,0,15,21] 2 1
|
|
2015
|
+
9070 c 1 [1,0,0,-75,625] 2 1
|
|
2016
|
+
9072 j 1 [0,0,0,-171,954] 2 1
|
|
2017
|
+
9075 i 1 [1,1,1,-8,56] 2 2
|
|
2018
|
+
9075 i 2 [1,1,1,-283,1706] 2 2
|
|
2019
|
+
9078 a 1 [1,1,0,-25,-47] 2 2
|
|
2020
|
+
9078 a 2 [1,1,0,65,-209] 2 2
|
|
2021
|
+
9078 f 1 [1,1,1,-5164,138701] 2 4
|
|
2022
|
+
9078 f 2 [1,1,1,-10284,-188979] 2 4
|
|
2023
|
+
9078 f 3 [1,1,1,-138444,-19874355] 2 2
|
|
2024
|
+
9078 f 4 [1,1,1,35956,-1372723] 2 2
|
|
2025
|
+
9082 a 1 [1,0,1,16,-2] 2 1
|
|
2026
|
+
9084 d 1 [0,1,0,-285,-801] 2 1
|
|
2027
|
+
9088 e 1 [0,-1,0,-24793,1510889] 2 1
|
|
2028
|
+
9088 f 1 [0,-1,0,-25,41] 2 1
|
|
2029
|
+
9096 b 1 [0,-1,0,-235,1468] 2 1
|
|
2030
|
+
9096 c 1 [0,-1,0,-7,16] 2 1
|
|
2031
|
+
9096 f 1 [0,1,0,-332,2256] 2 1
|
|
2032
|
+
9105 e 1 [1,0,0,-16,5] 2 1
|
|
2033
|
+
9106 c 1 [1,-1,0,-71,-249] 2 1
|
|
2034
|
+
9106 d 1 [1,-1,1,92,455] 2 1
|
|
2035
|
+
9107 b 1 [0,1,1,-14,12] 2 1
|
|
2036
|
+
9112 e 1 [0,0,0,-95,-286] 2 2
|
|
2037
|
+
9112 e 2 [0,0,0,-1435,-20922] 2 2
|
|
2038
|
+
9114 b 1 [1,1,0,-515,-1287] 2 2
|
|
2039
|
+
9114 b 2 [1,1,0,-4925,130131] 2 2
|
|
2040
|
+
9114 c 1 [1,1,0,-46,64] 2 2
|
|
2041
|
+
9114 c 2 [1,1,0,-676,6490] 2 2
|
|
2042
|
+
9114 w 1 [1,1,1,-190,251] 2 2
|
|
2043
|
+
9114 w 2 [1,1,1,-2430,45051] 2 2
|
|
2044
|
+
9119 a 1 [0,1,1,-712,7080] 2 1
|
|
2045
|
+
9120 m 1 [0,-1,0,14,16] 2 2
|
|
2046
|
+
9120 m 2 [0,-1,0,-81,225] 2 2
|
|
2047
|
+
9127 b 1 [1,-1,1,-4,6] 2 1
|
|
2048
|
+
9130 e 1 [1,0,0,-211,1185] 2 1
|
|
2049
|
+
9130 g 1 [1,0,0,7504,375040] 2 1
|
|
2050
|
+
9132 d 1 [0,1,0,-162,729] 2 1
|
|
2051
|
+
9135 i 1 [0,0,1,-1497,22792] 2 1
|
|
2052
|
+
9136 a 1 [0,1,0,16,212] 2 1
|
|
2053
|
+
9136 c 1 [0,1,0,-14869,692931] 2 1
|
|
2054
|
+
9138 d 1 [1,1,1,-235,1241] 2 1
|
|
2055
|
+
9139 c 1 [0,-1,1,-33,27] 2 1
|
|
2056
|
+
9142 a 1 [1,0,0,-942,12676] 2 1
|
|
2057
|
+
9144 k 1 [0,0,0,-228,-524] 2 1
|
|
2058
|
+
9149 c 1 [0,-1,1,0,12] 2 1
|
|
2059
|
+
9152 f 1 [0,-1,0,-577,7169] 2 1
|
|
2060
|
+
9152 h 1 [0,0,0,116,496] 2 1
|
|
2061
|
+
9156 b 1 [0,-1,0,-29,54] 2 2
|
|
2062
|
+
9156 b 2 [0,-1,0,76,264] 2 2
|
|
2063
|
+
9161 a 1 [1,0,0,-17,26] 2 1
|
|
2064
|
+
9162 c 1 [1,-1,0,-33,81] 2 1
|
|
2065
|
+
9162 f 1 [1,-1,0,-162,724] 2 1
|
|
2066
|
+
9162 g 1 [1,-1,0,-45,-81] 2 1
|
|
2067
|
+
9162 h 1 [1,-1,0,-62829,6077349] 2 1
|
|
2068
|
+
9162 n 1 [1,-1,1,-104,427] 2 1
|
|
2069
|
+
9163 g 1 [0,-1,1,523,-9318] 2 1
|
|
2070
|
+
9163 g 2 [0,-1,1,-4867,300607] 2 1
|
|
2071
|
+
9168 d 1 [0,-1,0,-13,1] 2 1
|
|
2072
|
+
9176 e 1 [0,0,0,-580,244] 2 1
|
|
2073
|
+
9180 a 1 [0,0,0,-48,1028] 2 1
|
|
2074
|
+
9184 b 1 [0,0,0,-19,-26] 2 1
|
|
2075
|
+
9184 c 1 [0,-1,0,-656,-1148] 2 1
|
|
2076
|
+
9190 b 1 [1,-1,0,-154,1828] 2 1
|
|
2077
|
+
9192 c 1 [0,1,0,-177,819] 2 1
|
|
2078
|
+
9198 j 1 [1,-1,1,-767,7975] 2 2
|
|
2079
|
+
9198 j 2 [1,-1,1,-2207,-29465] 2 2
|
|
2080
|
+
9200 l 1 [0,-1,0,-608,6112] 2 1
|
|
2081
|
+
9200 r 1 [0,0,0,-200,1500] 2 1
|
|
2082
|
+
9200 x 1 [0,0,0,125,3970] 2 1
|
|
2083
|
+
9203 a 1 [0,-1,1,-3,6] 2 1
|
|
2084
|
+
9205 c 1 [1,-1,1,17,12] 2 1
|
|
2085
|
+
9207 b 1 [0,0,1,-12,256] 2 1
|
|
2086
|
+
9210 a 1 [1,1,0,-8,48] 2 1
|
|
2087
|
+
9214 a 1 [1,1,0,-11,-29] 2 1
|
|
2088
|
+
9218 b 1 [1,1,0,4,-20] 2 1
|
|
2089
|
+
9225 j 1 [1,-1,0,-4617,121916] 2 1
|
|
2090
|
+
9225 k 1 [0,0,1,75,56] 2 1
|
|
2091
|
+
9225 p 1 [1,-1,1,40,182] 2 1
|
|
2092
|
+
9225 q 1 [1,-1,1,-4730,126272] 2 2
|
|
2093
|
+
9225 q 2 [1,-1,1,-3605,187022] 2 2
|
|
2094
|
+
9234 b 1 [1,-1,0,-87,-355] 2 1
|
|
2095
|
+
9234 b 2 [1,-1,0,633,2573] 2 3
|
|
2096
|
+
9243 a 1 [1,-1,0,-78,295] 2 2
|
|
2097
|
+
9243 a 2 [1,-1,0,-1263,17596] 2 2
|
|
2098
|
+
9246 b 1 [1,0,1,-128,542] 2 1
|
|
2099
|
+
9248 g 1 [0,0,0,-17,0] 2 2
|
|
2100
|
+
9248 g 2 [0,0,0,68,0] 2 2
|
|
2101
|
+
9249 a 1 [0,-1,1,7,2] 2 1
|
|
2102
|
+
9249 c 1 [0,1,1,6,218] 2 1
|
|
2103
|
+
9251 c 1 [1,-1,0,2,-5] 2 1
|
|
2104
|
+
9254 e 1 [1,-1,0,-3890,94552] 2 1
|
|
2105
|
+
9254 f 1 [1,0,1,10,12] 2 1
|
|
2106
|
+
9258 a 1 [1,1,1,-246,1395] 2 1
|
|
2107
|
+
9258 b 1 [1,1,1,53,377] 2 1
|
|
2108
|
+
9258 c 1 [1,1,1,-697,9095] 2 1
|
|
2109
|
+
9266 b 1 [1,-1,0,-97,393] 2 2
|
|
2110
|
+
9266 b 2 [1,-1,0,-107,315] 2 2
|
|
2111
|
+
9270 b 1 [1,-1,0,-2709,54965] 2 1
|
|
2112
|
+
9270 m 1 [1,-1,0,-9,513] 2 1
|
|
2113
|
+
9273 a 1 [0,-1,1,-291,2243] 2 1
|
|
2114
|
+
9276 a 1 [0,1,0,-94,401] 2 1
|
|
2115
|
+
9277 a 1 [0,-1,1,-13,-14] 2 1
|
|
2116
|
+
9282 a 1 [1,1,0,-121,229] 2 2
|
|
2117
|
+
9282 a 2 [1,1,0,399,2205] 2 2
|
|
2118
|
+
9285 b 1 [0,-1,1,-1851,31277] 2 1
|
|
2119
|
+
9285 e 1 [0,1,1,-200,254] 2 1
|
|
2120
|
+
9294 b 1 [1,0,1,40,182] 2 1
|
|
2121
|
+
9295 b 1 [0,1,1,-901,17255] 2 1
|
|
2122
|
+
9295 b 2 [0,1,1,7549,-313140] 2 1
|
|
2123
|
+
9295 e 1 [0,1,1,-1200,16254] 2 1
|
|
2124
|
+
9296 a 1 [0,1,0,16,52] 2 1
|
|
2125
|
+
9296 c 1 [0,1,0,-344,2452] 2 1
|
|
2126
|
+
9300 a 1 [0,-1,0,-633,3762] 2 2
|
|
2127
|
+
9300 a 2 [0,-1,0,-4508,-112488] 2 2
|
|
2128
|
+
9303 a 1 [1,0,0,-4326,109197] 2 1
|
|
2129
|
+
9306 a 1 [1,-1,0,147,-2395] 2 2
|
|
2130
|
+
9306 a 2 [1,-1,0,-2013,-31339] 2 2
|
|
2131
|
+
9307 a 1 [0,0,1,-104,408] 2 1
|
|
2132
|
+
9308 b 1 [0,0,0,-25,49] 2 1
|
|
2133
|
+
9312 d 1 [0,-1,0,-34,88] 2 2
|
|
2134
|
+
9312 d 2 [0,-1,0,-64,-56] 2 2
|
|
2135
|
+
9315 k 1 [0,0,1,-837,8822] 2 1
|
|
2136
|
+
9324 f 1 [0,0,0,-552,1825] 2 2
|
|
2137
|
+
9324 f 2 [0,0,0,-7167,233350] 2 2
|
|
2138
|
+
9325 f 1 [0,0,1,-10,11] 2 1
|
|
2139
|
+
9325 h 1 [0,0,1,-250,1406] 2 1
|
|
2140
|
+
9330 c 1 [1,0,1,-264,1762] 2 2
|
|
2141
|
+
9330 c 2 [1,0,1,-4314,108682] 2 2
|
|
2142
|
+
9334 d 1 [1,0,1,-605,5112] 2 1
|
|
2143
|
+
9338 a 1 [1,-1,0,58,0] 2 2
|
|
2144
|
+
9338 a 2 [1,-1,0,-232,174] 2 2
|
|
2145
|
+
9338 j 1 [1,0,0,-2639,41209] 2 2
|
|
2146
|
+
9338 j 2 [1,0,0,-39759,3047929] 2 2
|
|
2147
|
+
9350 h 1 [1,1,0,-1700,34000] 2 1
|
|
2148
|
+
9358 a 1 [1,-1,1,29,35] 2 1
|
|
2149
|
+
9364 a 1 [0,1,0,-4,36] 2 1
|
|
2150
|
+
9372 b 1 [0,-1,0,-2197,39601] 2 1
|
|
2151
|
+
9373 b 1 [1,-1,1,-18,30] 2 1
|
|
2152
|
+
9373 e 1 [0,0,1,-49754,5075010] 2 1
|
|
2153
|
+
9378 a 1 [1,-1,0,-144,704] 2 1
|
|
2154
|
+
9378 c 1 [1,-1,0,27,81] 2 1
|
|
2155
|
+
9380 b 1 [0,1,0,-365,2575] 2 1
|
|
2156
|
+
9386 n 1 [1,-1,1,-87,4335] 2 1
|
|
2157
|
+
9390 e 1 [1,1,1,-131,353] 2 2
|
|
2158
|
+
9390 e 2 [1,1,1,349,2849] 2 2
|
|
2159
|
+
9395 a 1 [1,1,0,-28,47] 2 1
|
|
2160
|
+
9396 b 1 [0,0,0,-108,-351] 2 1
|
|
2161
|
+
9408 q 1 [0,-1,0,131,-755] 2 2
|
|
2162
|
+
9408 q 2 [0,-1,0,-849,-6831] 2 4
|
|
2163
|
+
9408 q 3 [0,-1,0,-12609,-540735] 2 2
|
|
2164
|
+
9408 q 4 [0,-1,0,-4769,122529] 2 4
|
|
2165
|
+
9408 q 5 [0,-1,0,-75329,7982913] 2 2
|
|
2166
|
+
9408 q 6 [0,-1,0,3071,478465] 2 2
|
|
2167
|
+
9410 c 1 [1,0,0,-161,841] 2 1
|
|
2168
|
+
9410 d 1 [1,-1,1,-462,3549] 2 1
|
|
2169
|
+
9420 d 1 [0,-1,0,-110,225] 2 1
|
|
2170
|
+
9424 g 1 [0,0,0,-14971,706474] 2 1
|
|
2171
|
+
9425 b 1 [1,-1,1,-205,1172] 2 2
|
|
2172
|
+
9425 b 2 [1,-1,1,-330,-328] 2 4
|
|
2173
|
+
9425 b 3 [1,-1,1,-3955,-94578] 2 2
|
|
2174
|
+
9425 b 4 [1,-1,1,1295,-3578] 2 2
|
|
2175
|
+
9430 b 1 [1,0,1,-399,-2878] 2 2
|
|
2176
|
+
9430 b 2 [1,0,1,401,-12798] 2 2
|
|
2177
|
+
9435 c 1 [1,1,1,-1611,-25536] 2 2
|
|
2178
|
+
9435 c 2 [1,1,1,-1206,-38172] 2 2
|
|
2179
|
+
9443 c 1 [1,0,0,-2904,59993] 2 1
|
|
2180
|
+
9447 e 1 [1,0,1,-470,19685] 2 1
|
|
2181
|
+
9450 t 1 [1,-1,0,-117,441] 2 1
|
|
2182
|
+
9456 c 1 [0,-1,0,-45,81] 2 1
|
|
2183
|
+
9460 c 1 [0,1,0,-646,6105] 2 3
|
|
2184
|
+
9460 c 2 [0,1,0,-2186,-33011] 2 1
|
|
2185
|
+
9467 a 1 [1,0,0,-19,30] 2 1
|
|
2186
|
+
9474 d 1 [1,0,1,13,-34] 2 1
|
|
2187
|
+
9474 e 1 [1,0,1,-23892,1418404] 2 1
|
|
2188
|
+
9474 i 1 [1,0,0,-400,2816] 2 1
|
|
2189
|
+
9479 a 1 [1,0,0,-7,-6] 2 1
|
|
2190
|
+
9490 a 1 [1,0,1,-94,336] 2 2
|
|
2191
|
+
9490 a 2 [1,0,1,-14,912] 2 2
|
|
2192
|
+
9495 a 1 [0,0,1,-18,28] 2 1
|
|
2193
|
+
9495 g 1 [0,0,1,-237,-878] 2 1
|
|
2194
|
+
9498 c 1 [1,1,0,-48,-144] 2 1
|
|
2195
|
+
9503 d 1 [1,0,1,-46,-45] 2 2
|
|
2196
|
+
9503 d 2 [1,0,1,169,-303] 2 2
|
|
2197
|
+
9504 d 1 [0,0,0,-12,160] 2 1
|
|
2198
|
+
9504 k 1 [0,0,0,-3996,98496] 2 1
|
|
2199
|
+
9510 c 1 [1,1,0,-323,2253] 2 1
|
|
2200
|
+
9513 b 1 [0,0,1,-1476,21826] 2 1
|
|
2201
|
+
9513 c 1 [0,0,1,-66,301] 2 1
|
|
2202
|
+
9520 c 1 [0,0,0,-1867,35674] 2 1
|
|
2203
|
+
9520 l 1 [0,-1,0,-680,25072] 2 1
|
|
2204
|
+
9520 l 2 [0,-1,0,-89080,10263152] 2 1
|
|
2205
|
+
9523 a 1 [1,-1,1,21,-36] 2 1
|
|
2206
|
+
9530 a 1 [1,1,0,-57,1] 2 1
|
|
2207
|
+
9535 a 1 [1,0,0,-16,21] 2 1
|
|
2208
|
+
9537 f 1 [0,-1,1,-1847,31187] 2 1
|
|
2209
|
+
9537 f 2 [0,-1,1,1213,117632] 2 1
|
|
2210
|
+
9542 d 1 [1,1,1,-209,1071] 2 1
|
|
2211
|
+
9560 a 1 [0,1,0,-345,2443] 2 1
|
|
2212
|
+
9565 a 1 [1,1,1,4,54] 2 1
|
|
2213
|
+
9568 a 1 [0,0,0,-25,36] 2 2
|
|
2214
|
+
9568 a 2 [0,0,0,-140,-608] 2 2
|
|
2215
|
+
9568 b 1 [0,0,0,-1,-24] 2 2
|
|
2216
|
+
9568 b 2 [0,0,0,-131,-570] 2 2
|
|
2217
|
+
9574 b 1 [1,-1,0,4,8] 2 1
|
|
2218
|
+
9574 d 1 [1,0,0,-586,5412] 2 1
|
|
2219
|
+
9576 w 1 [0,0,0,-426,3341] 2 2
|
|
2220
|
+
9576 w 2 [0,0,0,-831,-4030] 2 4
|
|
2221
|
+
9576 w 3 [0,0,0,-11091,-449314] 2 2
|
|
2222
|
+
9576 w 4 [0,0,0,2949,-30490] 2 4
|
|
2223
|
+
9578 b 1 [1,-1,1,-2161,-2015] 2 1
|
|
2224
|
+
9578 c 1 [1,0,0,-75,241] 2 1
|
|
2225
|
+
9585 d 1 [0,0,1,-57,-50] 2 1
|
|
2226
|
+
9585 f 1 [0,0,1,-47952,4037735] 2 1
|
|
2227
|
+
9594 e 1 [1,-1,0,-21,41] 2 1
|
|
2228
|
+
9594 j 1 [1,-1,0,-585,-563] 2 1
|
|
2229
|
+
9597 b 1 [0,-1,1,-5,2] 2 1
|
|
2230
|
+
9597 e 1 [0,-1,1,-603,-5461] 2 1
|
|
2231
|
+
9597 h 1 [0,1,1,-784,8146] 2 1
|
|
2232
|
+
9598 b 1 [1,1,1,-72,457] 2 1
|
|
2233
|
+
9600 l 1 [0,-1,0,-23,-33] 2 2
|
|
2234
|
+
9600 l 2 [0,-1,0,-73,217] 2 2
|
|
2235
|
+
9603 h 1 [1,-1,1,-1040,-9894] 2 2
|
|
2236
|
+
9603 h 2 [1,-1,1,-5405,145500] 2 2
|
|
2237
|
+
9615 d 1 [1,0,0,-4295,270462] 2 1
|
|
2238
|
+
9620 a 1 [0,1,0,-801,8464] 2 2
|
|
2239
|
+
9620 a 2 [0,1,0,-796,8580] 2 2
|
|
2240
|
+
9624 b 1 [0,-1,0,-48,156] 2 1
|
|
2241
|
+
9630 a 1 [1,-1,0,-5820,-163504] 2 2
|
|
2242
|
+
9630 a 2 [1,-1,0,-92220,-10756144] 2 2
|
|
2243
|
+
9630 e 1 [1,-1,0,-90,256] 2 2
|
|
2244
|
+
9630 e 2 [1,-1,0,-540,-4514] 2 2
|
|
2245
|
+
9634 a 1 [1,1,1,-42,55] 2 1
|
|
2246
|
+
9638 b 1 [1,1,1,-117,427] 2 1
|
|
2247
|
+
9646 d 1 [1,0,0,-27,721] 2 1
|
|
2248
|
+
9647 b 1 [0,-1,1,-89,-246] 2 1
|
|
2249
|
+
9647 c 1 [0,-1,1,-170,912] 2 1
|
|
2250
|
+
9648 f 1 [0,0,0,-51,50] 2 2
|
|
2251
|
+
9648 f 2 [0,0,0,189,386] 2 2
|
|
2252
|
+
9648 r 1 [0,0,0,-5331,149650] 2 2
|
|
2253
|
+
9648 r 2 [0,0,0,-3891,232306] 2 2
|
|
2254
|
+
9648 s 1 [0,0,0,24,-164] 2 1
|
|
2255
|
+
9650 e 1 [1,1,0,-75,-275] 2 1
|
|
2256
|
+
9650 f 1 [1,1,0,-3325,72125] 2 1
|
|
2257
|
+
9654 f 1 [1,1,1,16,17] 2 1
|
|
2258
|
+
9654 g 1 [1,0,0,-1605,25281] 2 1
|
|
2259
|
+
9664 e 1 [0,1,0,31,95] 2 1
|
|
2260
|
+
9664 f 1 [0,-1,0,-193,1121] 2 1
|
|
2261
|
+
9664 i 1 [0,0,0,20,-1712] 2 1
|
|
2262
|
+
9667 b 1 [1,-1,1,5,-2] 2 1
|
|
2263
|
+
9672 h 1 [0,-1,0,-52,169] 2 1
|
|
2264
|
+
9687 a 1 [1,1,1,11,2] 2 1
|
|
2265
|
+
9690 f 1 [1,1,0,-2017,34021] 2 2
|
|
2266
|
+
9690 f 2 [1,1,0,-2397,19809] 2 2
|
|
2267
|
+
9690 k 1 [1,0,1,-54,712] 2 2
|
|
2268
|
+
9690 k 2 [1,0,1,-1574,23816] 2 2
|
|
2269
|
+
9693 f 1 [0,0,1,-81,-250] 2 1
|
|
2270
|
+
9696 e 1 [0,-1,0,-77,-219] 2 1
|
|
2271
|
+
9699 a 1 [0,1,1,-54,182] 2 1
|
|
2272
|
+
9706 b 1 [1,-1,0,-8,-4] 2 1
|
|
2273
|
+
9709 b 1 [0,1,1,-1107,8092] 2 3
|
|
2274
|
+
9709 b 2 [0,1,1,-38837,-2958515] 2 3
|
|
2275
|
+
9709 b 3 [0,1,1,-3145717,-2148521298] 2 1
|
|
2276
|
+
9709 c 1 [0,1,1,-103,701] 2 3
|
|
2277
|
+
9709 c 2 [0,1,1,877,-13950] 2 1
|
|
2278
|
+
9709 d 1 [0,0,1,-523,4560] 2 1
|
|
2279
|
+
9716 a 1 [0,0,0,8,100] 2 1
|
|
2280
|
+
9717 a 1 [0,-1,1,-13,132] 2 1
|
|
2281
|
+
9720 f 1 [0,0,0,-108,468] 2 1
|
|
2282
|
+
9720 n 1 [0,0,0,-567,5274] 2 1
|
|
2283
|
+
9732 a 1 [0,1,0,-317,2079] 2 1
|
|
2284
|
+
9737 b 1 [0,1,1,-30836,2206554] 2 1
|
|
2285
|
+
9744 c 1 [0,-1,0,-204,-1056] 2 2
|
|
2286
|
+
9744 c 2 [0,-1,0,-224,-816] 2 4
|
|
2287
|
+
9744 c 3 [0,-1,0,-1384,19600] 2 2
|
|
2288
|
+
9744 c 4 [0,-1,0,616,-6192] 2 2
|
|
2289
|
+
9744 n 1 [0,-1,0,720,6336] 2 2
|
|
2290
|
+
9744 n 2 [0,-1,0,-3920,62016] 2 2
|
|
2291
|
+
9747 e 1 [0,0,1,-57,166] 2 1
|
|
2292
|
+
9747 f 1 [0,0,1,0,90] 2 3
|
|
2293
|
+
9747 f 2 [0,0,1,0,-2437] 2 1
|
|
2294
|
+
9756 b 1 [0,0,0,-96,356] 2 1
|
|
2295
|
+
9758 g 1 [1,0,0,-69,1729] 2 2
|
|
2296
|
+
9758 g 2 [1,0,0,-2629,51393] 2 2
|
|
2297
|
+
9763 a 1 [0,1,1,-53,132] 2 1
|
|
2298
|
+
9772 a 1 [0,0,0,4,9] 2 1
|
|
2299
|
+
9775 f 1 [1,-1,1,-7230,238422] 2 1
|
|
2300
|
+
9780 d 1 [0,-1,0,-50,177] 2 1
|
|
2301
|
+
9783 b 1 [1,-1,0,-126,-509] 2 1
|
|
2302
|
+
9784 a 1 [0,1,0,-40,-96] 2 1
|
|
2303
|
+
9789 c 1 [0,-1,1,-7140,234614] 2 1
|
|
2304
|
+
9789 d 1 [0,-1,1,18,2] 2 1
|
|
2305
|
+
9789 f 1 [0,1,1,-302,1940] 2 1
|
|
2306
|
+
9789 h 1 [0,1,1,-7,265] 2 1
|
|
2307
|
+
9790 f 1 [1,0,1,-998,10728] 2 2
|
|
2308
|
+
9790 f 2 [1,0,1,1422,55256] 2 2
|
|
2309
|
+
9790 g 1 [1,0,0,-171,-335] 2 2
|
|
2310
|
+
9790 g 2 [1,0,0,629,-2415] 2 2
|
|
2311
|
+
9792 l 1 [0,0,0,-156,-304] 2 2
|
|
2312
|
+
9792 l 2 [0,0,0,564,-2320] 2 2
|
|
2313
|
+
9797 b 1 [0,0,1,-89,-320] 2 1
|
|
2314
|
+
9798 a 1 [1,1,0,-90896,11463936] 2 2
|
|
2315
|
+
9798 a 2 [1,1,0,-1490576,699826560] 2 2
|
|
2316
|
+
9798 k 1 [1,0,0,-610,4676] 2 2
|
|
2317
|
+
9798 k 2 [1,0,0,-9250,341636] 2 2
|
|
2318
|
+
9800 h 1 [0,-1,0,-3033,65437] 2 1
|
|
2319
|
+
9802 c 1 [1,-1,0,-77,-155] 2 2
|
|
2320
|
+
9802 c 2 [1,-1,0,-1117,-14091] 2 2
|
|
2321
|
+
9820 a 1 [0,1,0,39,-40] 2 1
|
|
2322
|
+
9820 e 1 [0,-1,0,-85,350] 2 1
|
|
2323
|
+
9824 c 1 [0,0,0,-5,-8] 2 1
|
|
2324
|
+
9825 c 1 [1,1,1,2,-4] 2 1
|
|
2325
|
+
9828 c 1 [0,0,0,-129,569] 2 1
|
|
2326
|
+
9829 b 1 [0,0,1,-52,144] 2 1
|
|
2327
|
+
9829 c 1 [0,1,1,-22,-48] 2 1
|
|
2328
|
+
9832 a 1 [0,1,0,-20,16] 2 1
|
|
2329
|
+
9832 c 1 [0,0,0,-83,286] 2 1
|
|
2330
|
+
9832 d 1 [0,0,0,-14,-19] 2 1
|
|
2331
|
+
9832 e 1 [0,1,0,-7,-6] 2 1
|
|
2332
|
+
9840 c 1 [0,-1,0,-136,640] 2 2
|
|
2333
|
+
9840 c 2 [0,-1,0,-336,-1440] 2 2
|
|
2334
|
+
9842 d 1 [1,0,1,-58850,5490030] 2 3
|
|
2335
|
+
9842 d 2 [1,0,1,-59055,5449802] 2 3
|
|
2336
|
+
9842 d 3 [1,0,1,-485110,-127395960] 2 1
|
|
2337
|
+
9842 j 1 [1,0,0,-882,9604] 2 1
|
|
2338
|
+
9849 a 1 [1,1,0,-564,5181] 2 1
|
|
2339
|
+
9849 p 1 [1,0,0,244,3177] 2 1
|
|
2340
|
+
9849 q 1 [1,0,0,-1030,15371] 2 2
|
|
2341
|
+
9849 q 2 [1,0,0,-17445,885366] 2 2
|
|
2342
|
+
9856 b 1 [0,1,0,-19,21] 2 2
|
|
2343
|
+
9856 b 2 [0,1,0,-89,-329] 2 2
|
|
2344
|
+
9861 b 1 [1,1,0,-116,381] 2 1
|
|
2345
|
+
9861 c 1 [0,-1,1,-1920,-36826] 2 1
|
|
2346
|
+
9864 c 1 [0,0,0,21,86] 2 1
|
|
2347
|
+
9865 b 1 [0,1,1,-31,56] 2 1
|
|
2348
|
+
9867 c 1 [1,1,1,-204,1092] 2 2
|
|
2349
|
+
9867 c 2 [1,1,1,-3309,71886] 2 2
|
|
2350
|
+
9874 b 1 [1,-1,1,-4,39] 2 1
|
|
2351
|
+
9876 b 1 [0,1,0,-70,209] 2 1
|
|
2352
|
+
9878 e 1 [1,1,0,-308,1936] 2 1
|
|
2353
|
+
9878 g 1 [1,-1,0,-10,-8] 2 1
|
|
2354
|
+
9882 e 1 [1,-1,0,-1032,13022] 2 3
|
|
2355
|
+
9882 e 2 [1,-1,0,-1257,7109] 2 1
|
|
2356
|
+
9882 i 1 [1,-1,1,-47,55] 2 1
|
|
2357
|
+
9888 d 1 [0,1,0,-3457,78191] 2 1
|
|
2358
|
+
9888 j 1 [0,1,0,-17,159] 2 1
|
|
2359
|
+
9890 i 1 [1,-1,1,-123,1131] 2 1
|
|
2360
|
+
9898 d 1 [1,-1,1,-1749,29229] 2 1
|
|
2361
|
+
9898 g 1 [1,1,1,13,-15] 2 1
|
|
2362
|
+
9898 g 2 [1,1,1,-127,825] 2 1
|
|
2363
|
+
9903 b 1 [0,-1,1,-17,32] 2 1
|
|
2364
|
+
9903 c 1 [0,-1,1,-16,0] 2 1
|
|
2365
|
+
9906 d 1 [1,1,1,-802,3887] 2 1
|
|
2366
|
+
9911 e 1 [0,-1,1,-2432,47010] 2 1
|
|
2367
|
+
9920 k 1 [0,1,0,-125,-125] 2 2
|
|
2368
|
+
9920 k 2 [0,1,0,495,-497] 2 2
|
|
2369
|
+
9921 a 1 [1,0,0,145,36] 2 1
|
|
2370
|
+
9930 g 1 [1,0,1,-74,272] 2 1
|
|
2371
|
+
9934 e 1 [1,-1,1,-7714,262689] 2 1
|
|
2372
|
+
9934 f 1 [1,0,0,24,64] 2 1
|
|
2373
|
+
9936 f 1 [0,0,0,-243,1026] 2 1
|
|
2374
|
+
9936 bb 1 [0,0,0,-219,1226] 2 1
|
|
2375
|
+
9936 bw 1 [0,0,0,-1899,-31846] 2 1
|
|
2376
|
+
9936 bw 2 [0,0,0,-4779,84186] 2 1
|
|
2377
|
+
9942 d 1 [1,0,1,-197,-484] 2 2
|
|
2378
|
+
9942 d 2 [1,0,1,-2627,-52000] 2 2
|
|
2379
|
+
9942 e 1 [1,0,1,-27,-26] 2 2
|
|
2380
|
+
9942 e 2 [1,0,1,93,-170] 2 2
|
|
2381
|
+
9946 a 1 [1,-1,0,38,52] 2 1
|
|
2382
|
+
9950 e 1 [1,-1,0,-17,-9] 2 1
|
|
2383
|
+
9950 q 1 [1,0,0,-2713,53817] 2 1
|
|
2384
|
+
9962 a 1 [1,1,1,40,-39] 2 1
|
|
2385
|
+
9963 c 1 [0,0,1,-126,545] 2 1
|
|
2386
|
+
9966 c 1 [1,1,1,-17,47] 2 1
|
|
2387
|
+
9978 a 1 [1,1,0,-536,4560] 2 1
|
|
2388
|
+
9999 f 1 [0,0,1,-234,1370] 2 1
|