passagemath-schemes 10.6.40__cp314-cp314-macosx_13_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-schemes might be problematic. Click here for more details.
- passagemath_schemes/.dylibs/libflint.22.0.dylib +0 -0
- passagemath_schemes/.dylibs/libgmp.10.dylib +0 -0
- passagemath_schemes/.dylibs/libgmpxx.4.dylib +0 -0
- passagemath_schemes/.dylibs/libmpfr.6.dylib +0 -0
- passagemath_schemes/__init__.py +3 -0
- passagemath_schemes-10.6.40.dist-info/METADATA +204 -0
- passagemath_schemes-10.6.40.dist-info/METADATA.bak +205 -0
- passagemath_schemes-10.6.40.dist-info/RECORD +314 -0
- passagemath_schemes-10.6.40.dist-info/WHEEL +6 -0
- passagemath_schemes-10.6.40.dist-info/top_level.txt +3 -0
- sage/all__sagemath_schemes.py +23 -0
- sage/databases/all__sagemath_schemes.py +7 -0
- sage/databases/cremona.py +1723 -0
- sage/dynamics/all__sagemath_schemes.py +2 -0
- sage/dynamics/arithmetic_dynamics/affine_ds.py +1083 -0
- sage/dynamics/arithmetic_dynamics/all.py +14 -0
- sage/dynamics/arithmetic_dynamics/berkovich_ds.py +1101 -0
- sage/dynamics/arithmetic_dynamics/dynamical_semigroup.py +1543 -0
- sage/dynamics/arithmetic_dynamics/endPN_automorphism_group.py +2426 -0
- sage/dynamics/arithmetic_dynamics/endPN_minimal_model.py +1169 -0
- sage/dynamics/arithmetic_dynamics/generic_ds.py +663 -0
- sage/dynamics/arithmetic_dynamics/product_projective_ds.py +339 -0
- sage/dynamics/arithmetic_dynamics/projective_ds.py +9558 -0
- sage/dynamics/arithmetic_dynamics/projective_ds_helper.cpython-314-darwin.so +0 -0
- sage/dynamics/arithmetic_dynamics/projective_ds_helper.pyx +301 -0
- sage/dynamics/arithmetic_dynamics/wehlerK3.py +2576 -0
- sage/lfunctions/all.py +18 -0
- sage/lfunctions/dokchitser.py +745 -0
- sage/lfunctions/pari.py +818 -0
- sage/lfunctions/zero_sums.cpython-314-darwin.so +0 -0
- sage/lfunctions/zero_sums.pyx +1847 -0
- sage/modular/abvar/abvar.py +5135 -0
- sage/modular/abvar/abvar_ambient_jacobian.py +413 -0
- sage/modular/abvar/abvar_newform.py +244 -0
- sage/modular/abvar/all.py +8 -0
- sage/modular/abvar/constructor.py +186 -0
- sage/modular/abvar/cuspidal_subgroup.py +371 -0
- sage/modular/abvar/finite_subgroup.py +896 -0
- sage/modular/abvar/homology.py +720 -0
- sage/modular/abvar/homspace.py +998 -0
- sage/modular/abvar/lseries.py +415 -0
- sage/modular/abvar/morphism.py +935 -0
- sage/modular/abvar/torsion_point.py +274 -0
- sage/modular/abvar/torsion_subgroup.py +740 -0
- sage/modular/all.py +43 -0
- sage/modular/arithgroup/all.py +20 -0
- sage/modular/arithgroup/arithgroup_element.cpython-314-darwin.so +0 -0
- sage/modular/arithgroup/arithgroup_element.pyx +474 -0
- sage/modular/arithgroup/arithgroup_generic.py +1402 -0
- sage/modular/arithgroup/arithgroup_perm.py +2692 -0
- sage/modular/arithgroup/congroup.cpython-314-darwin.so +0 -0
- sage/modular/arithgroup/congroup.pyx +334 -0
- sage/modular/arithgroup/congroup_gamma.py +363 -0
- sage/modular/arithgroup/congroup_gamma0.py +692 -0
- sage/modular/arithgroup/congroup_gamma1.py +653 -0
- sage/modular/arithgroup/congroup_gammaH.py +1469 -0
- sage/modular/arithgroup/congroup_generic.py +628 -0
- sage/modular/arithgroup/congroup_sl2z.py +267 -0
- sage/modular/arithgroup/farey_symbol.cpython-314-darwin.so +0 -0
- sage/modular/arithgroup/farey_symbol.pyx +1066 -0
- sage/modular/arithgroup/tests.py +418 -0
- sage/modular/btquotients/all.py +4 -0
- sage/modular/btquotients/btquotient.py +3753 -0
- sage/modular/btquotients/pautomorphicform.py +2570 -0
- sage/modular/buzzard.py +100 -0
- sage/modular/congroup.py +29 -0
- sage/modular/congroup_element.py +13 -0
- sage/modular/cusps.py +1109 -0
- sage/modular/cusps_nf.py +1270 -0
- sage/modular/dims.py +569 -0
- sage/modular/dirichlet.py +3310 -0
- sage/modular/drinfeld_modform/all.py +2 -0
- sage/modular/drinfeld_modform/element.py +446 -0
- sage/modular/drinfeld_modform/ring.py +773 -0
- sage/modular/drinfeld_modform/tutorial.py +236 -0
- sage/modular/etaproducts.py +1065 -0
- sage/modular/hecke/algebra.py +746 -0
- sage/modular/hecke/all.py +20 -0
- sage/modular/hecke/ambient_module.py +1019 -0
- sage/modular/hecke/degenmap.py +119 -0
- sage/modular/hecke/element.py +325 -0
- sage/modular/hecke/hecke_operator.py +780 -0
- sage/modular/hecke/homspace.py +206 -0
- sage/modular/hecke/module.py +1767 -0
- sage/modular/hecke/morphism.py +174 -0
- sage/modular/hecke/submodule.py +989 -0
- sage/modular/hypergeometric_misc.cpython-314-darwin.so +0 -0
- sage/modular/hypergeometric_misc.pxd +4 -0
- sage/modular/hypergeometric_misc.pyx +166 -0
- sage/modular/hypergeometric_motive.py +2017 -0
- sage/modular/local_comp/all.py +2 -0
- sage/modular/local_comp/liftings.py +292 -0
- sage/modular/local_comp/local_comp.py +1071 -0
- sage/modular/local_comp/smoothchar.py +1825 -0
- sage/modular/local_comp/type_space.py +748 -0
- sage/modular/modform/all.py +30 -0
- sage/modular/modform/ambient.py +815 -0
- sage/modular/modform/ambient_R.py +177 -0
- sage/modular/modform/ambient_eps.py +306 -0
- sage/modular/modform/ambient_g0.py +124 -0
- sage/modular/modform/ambient_g1.py +204 -0
- sage/modular/modform/constructor.py +545 -0
- sage/modular/modform/cuspidal_submodule.py +708 -0
- sage/modular/modform/defaults.py +14 -0
- sage/modular/modform/eis_series.py +505 -0
- sage/modular/modform/eisenstein_submodule.py +663 -0
- sage/modular/modform/element.py +4131 -0
- sage/modular/modform/find_generators.py +59 -0
- sage/modular/modform/half_integral.py +154 -0
- sage/modular/modform/hecke_operator_on_qexp.py +247 -0
- sage/modular/modform/j_invariant.py +47 -0
- sage/modular/modform/l_series_gross_zagier.py +133 -0
- sage/modular/modform/l_series_gross_zagier_coeffs.cpython-314-darwin.so +0 -0
- sage/modular/modform/l_series_gross_zagier_coeffs.pyx +177 -0
- sage/modular/modform/notes.py +45 -0
- sage/modular/modform/numerical.py +514 -0
- sage/modular/modform/periods.py +14 -0
- sage/modular/modform/ring.py +1257 -0
- sage/modular/modform/space.py +1860 -0
- sage/modular/modform/submodule.py +118 -0
- sage/modular/modform/tests.py +64 -0
- sage/modular/modform/theta.py +110 -0
- sage/modular/modform/vm_basis.py +381 -0
- sage/modular/modform/weight1.py +220 -0
- sage/modular/modform_hecketriangle/abstract_ring.py +1932 -0
- sage/modular/modform_hecketriangle/abstract_space.py +2528 -0
- sage/modular/modform_hecketriangle/all.py +30 -0
- sage/modular/modform_hecketriangle/analytic_type.py +590 -0
- sage/modular/modform_hecketriangle/constructor.py +416 -0
- sage/modular/modform_hecketriangle/element.py +351 -0
- sage/modular/modform_hecketriangle/functors.py +752 -0
- sage/modular/modform_hecketriangle/graded_ring.py +541 -0
- sage/modular/modform_hecketriangle/graded_ring_element.py +2225 -0
- sage/modular/modform_hecketriangle/hecke_triangle_group_element.py +3352 -0
- sage/modular/modform_hecketriangle/hecke_triangle_groups.py +1432 -0
- sage/modular/modform_hecketriangle/readme.py +1214 -0
- sage/modular/modform_hecketriangle/series_constructor.py +580 -0
- sage/modular/modform_hecketriangle/space.py +1037 -0
- sage/modular/modform_hecketriangle/subspace.py +423 -0
- sage/modular/modsym/all.py +17 -0
- sage/modular/modsym/ambient.py +3846 -0
- sage/modular/modsym/boundary.py +1420 -0
- sage/modular/modsym/element.py +336 -0
- sage/modular/modsym/g1list.py +178 -0
- sage/modular/modsym/ghlist.py +182 -0
- sage/modular/modsym/hecke_operator.py +73 -0
- sage/modular/modsym/manin_symbol.cpython-314-darwin.so +0 -0
- sage/modular/modsym/manin_symbol.pxd +5 -0
- sage/modular/modsym/manin_symbol.pyx +497 -0
- sage/modular/modsym/manin_symbol_list.py +1295 -0
- sage/modular/modsym/modsym.py +400 -0
- sage/modular/modsym/modular_symbols.py +384 -0
- sage/modular/modsym/p1list.cpython-314-darwin.so +0 -0
- sage/modular/modsym/p1list.pxd +29 -0
- sage/modular/modsym/p1list.pyx +1372 -0
- sage/modular/modsym/p1list_nf.py +1241 -0
- sage/modular/modsym/relation_matrix.py +591 -0
- sage/modular/modsym/relation_matrix_pyx.cpython-314-darwin.so +0 -0
- sage/modular/modsym/relation_matrix_pyx.pyx +108 -0
- sage/modular/modsym/space.py +2468 -0
- sage/modular/modsym/subspace.py +455 -0
- sage/modular/modsym/tests.py +375 -0
- sage/modular/multiple_zeta.py +2632 -0
- sage/modular/multiple_zeta_F_algebra.py +786 -0
- sage/modular/overconvergent/all.py +6 -0
- sage/modular/overconvergent/genus0.py +1878 -0
- sage/modular/overconvergent/hecke_series.py +1187 -0
- sage/modular/overconvergent/weightspace.py +778 -0
- sage/modular/pollack_stevens/all.py +4 -0
- sage/modular/pollack_stevens/distributions.py +874 -0
- sage/modular/pollack_stevens/fund_domain.py +1572 -0
- sage/modular/pollack_stevens/manin_map.py +859 -0
- sage/modular/pollack_stevens/modsym.py +1593 -0
- sage/modular/pollack_stevens/padic_lseries.py +417 -0
- sage/modular/pollack_stevens/sigma0.py +534 -0
- sage/modular/pollack_stevens/space.py +1076 -0
- sage/modular/quasimodform/all.py +3 -0
- sage/modular/quasimodform/element.py +845 -0
- sage/modular/quasimodform/ring.py +828 -0
- sage/modular/quatalg/all.py +3 -0
- sage/modular/quatalg/brandt.py +1642 -0
- sage/modular/ssmod/all.py +8 -0
- sage/modular/ssmod/ssmod.py +827 -0
- sage/rings/all__sagemath_schemes.py +1 -0
- sage/rings/polynomial/all__sagemath_schemes.py +1 -0
- sage/rings/polynomial/binary_form_reduce.py +585 -0
- sage/schemes/all.py +41 -0
- sage/schemes/berkovich/all.py +6 -0
- sage/schemes/berkovich/berkovich_cp_element.py +2582 -0
- sage/schemes/berkovich/berkovich_space.py +748 -0
- sage/schemes/curves/affine_curve.py +2928 -0
- sage/schemes/curves/all.py +33 -0
- sage/schemes/curves/closed_point.py +434 -0
- sage/schemes/curves/constructor.py +381 -0
- sage/schemes/curves/curve.py +542 -0
- sage/schemes/curves/plane_curve_arrangement.py +1283 -0
- sage/schemes/curves/point.py +463 -0
- sage/schemes/curves/projective_curve.py +3026 -0
- sage/schemes/curves/zariski_vankampen.py +1932 -0
- sage/schemes/cyclic_covers/all.py +2 -0
- sage/schemes/cyclic_covers/charpoly_frobenius.py +320 -0
- sage/schemes/cyclic_covers/constructor.py +137 -0
- sage/schemes/cyclic_covers/cycliccover_finite_field.py +1309 -0
- sage/schemes/cyclic_covers/cycliccover_generic.py +310 -0
- sage/schemes/elliptic_curves/BSD.py +1036 -0
- sage/schemes/elliptic_curves/Qcurves.py +592 -0
- sage/schemes/elliptic_curves/addition_formulas_ring.py +94 -0
- sage/schemes/elliptic_curves/all.py +49 -0
- sage/schemes/elliptic_curves/cardinality.py +609 -0
- sage/schemes/elliptic_curves/cm.py +1102 -0
- sage/schemes/elliptic_curves/constructor.py +1552 -0
- sage/schemes/elliptic_curves/ec_database.py +175 -0
- sage/schemes/elliptic_curves/ell_curve_isogeny.py +3972 -0
- sage/schemes/elliptic_curves/ell_egros.py +459 -0
- sage/schemes/elliptic_curves/ell_field.py +2836 -0
- sage/schemes/elliptic_curves/ell_finite_field.py +3359 -0
- sage/schemes/elliptic_curves/ell_generic.py +3760 -0
- sage/schemes/elliptic_curves/ell_local_data.py +1207 -0
- sage/schemes/elliptic_curves/ell_modular_symbols.py +775 -0
- sage/schemes/elliptic_curves/ell_number_field.py +4220 -0
- sage/schemes/elliptic_curves/ell_padic_field.py +107 -0
- sage/schemes/elliptic_curves/ell_point.py +4787 -0
- sage/schemes/elliptic_curves/ell_rational_field.py +7368 -0
- sage/schemes/elliptic_curves/ell_tate_curve.py +671 -0
- sage/schemes/elliptic_curves/ell_torsion.py +436 -0
- sage/schemes/elliptic_curves/ell_wp.py +352 -0
- sage/schemes/elliptic_curves/formal_group.py +760 -0
- sage/schemes/elliptic_curves/gal_reps.py +1459 -0
- sage/schemes/elliptic_curves/gal_reps_number_field.py +1669 -0
- sage/schemes/elliptic_curves/gp_simon.py +152 -0
- sage/schemes/elliptic_curves/heegner.py +7335 -0
- sage/schemes/elliptic_curves/height.py +2109 -0
- sage/schemes/elliptic_curves/hom.py +1406 -0
- sage/schemes/elliptic_curves/hom_composite.py +934 -0
- sage/schemes/elliptic_curves/hom_frobenius.py +522 -0
- sage/schemes/elliptic_curves/hom_scalar.py +531 -0
- sage/schemes/elliptic_curves/hom_sum.py +682 -0
- sage/schemes/elliptic_curves/hom_velusqrt.py +1290 -0
- sage/schemes/elliptic_curves/homset.py +271 -0
- sage/schemes/elliptic_curves/isogeny_class.py +1521 -0
- sage/schemes/elliptic_curves/isogeny_small_degree.py +2797 -0
- sage/schemes/elliptic_curves/jacobian.py +237 -0
- sage/schemes/elliptic_curves/kodaira_symbol.py +344 -0
- sage/schemes/elliptic_curves/kraus.py +1014 -0
- sage/schemes/elliptic_curves/lseries_ell.py +943 -0
- sage/schemes/elliptic_curves/mod5family.py +105 -0
- sage/schemes/elliptic_curves/mod_poly.py +197 -0
- sage/schemes/elliptic_curves/mod_sym_num.cpython-314-darwin.so +0 -0
- sage/schemes/elliptic_curves/mod_sym_num.pyx +3796 -0
- sage/schemes/elliptic_curves/modular_parametrization.py +305 -0
- sage/schemes/elliptic_curves/padic_lseries.py +1793 -0
- sage/schemes/elliptic_curves/padics.py +1816 -0
- sage/schemes/elliptic_curves/period_lattice.py +2234 -0
- sage/schemes/elliptic_curves/period_lattice_region.cpython-314-darwin.so +0 -0
- sage/schemes/elliptic_curves/period_lattice_region.pyx +722 -0
- sage/schemes/elliptic_curves/saturation.py +715 -0
- sage/schemes/elliptic_curves/sha_tate.py +1158 -0
- sage/schemes/elliptic_curves/weierstrass_morphism.py +1117 -0
- sage/schemes/elliptic_curves/weierstrass_transform.py +200 -0
- sage/schemes/hyperelliptic_curves/all.py +6 -0
- sage/schemes/hyperelliptic_curves/constructor.py +291 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_finite_field.py +1914 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_g2.py +192 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_generic.py +954 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_padic_field.py +1332 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_rational_field.py +84 -0
- sage/schemes/hyperelliptic_curves/invariants.py +410 -0
- sage/schemes/hyperelliptic_curves/jacobian_endomorphism_utils.py +315 -0
- sage/schemes/hyperelliptic_curves/jacobian_g2.py +32 -0
- sage/schemes/hyperelliptic_curves/jacobian_generic.py +419 -0
- sage/schemes/hyperelliptic_curves/jacobian_homset.py +186 -0
- sage/schemes/hyperelliptic_curves/jacobian_morphism.py +875 -0
- sage/schemes/hyperelliptic_curves/kummer_surface.py +99 -0
- sage/schemes/hyperelliptic_curves/mestre.py +302 -0
- sage/schemes/hyperelliptic_curves/monsky_washnitzer.py +3871 -0
- sage/schemes/jacobians/abstract_jacobian.py +277 -0
- sage/schemes/jacobians/all.py +2 -0
- sage/schemes/overview.py +161 -0
- sage/schemes/plane_conics/all.py +22 -0
- sage/schemes/plane_conics/con_field.py +1296 -0
- sage/schemes/plane_conics/con_finite_field.py +158 -0
- sage/schemes/plane_conics/con_number_field.py +456 -0
- sage/schemes/plane_conics/con_rational_field.py +406 -0
- sage/schemes/plane_conics/con_rational_function_field.py +580 -0
- sage/schemes/plane_conics/constructor.py +249 -0
- sage/schemes/plane_quartics/all.py +2 -0
- sage/schemes/plane_quartics/quartic_constructor.py +71 -0
- sage/schemes/plane_quartics/quartic_generic.py +73 -0
- sage/schemes/riemann_surfaces/all.py +1 -0
- sage/schemes/riemann_surfaces/riemann_surface.py +4117 -0
- sage_wheels/share/cremona/cremona_mini.db +0 -0
- sage_wheels/share/ellcurves/rank0 +30427 -0
- sage_wheels/share/ellcurves/rank1 +31871 -0
- sage_wheels/share/ellcurves/rank10 +6 -0
- sage_wheels/share/ellcurves/rank11 +6 -0
- sage_wheels/share/ellcurves/rank12 +1 -0
- sage_wheels/share/ellcurves/rank14 +1 -0
- sage_wheels/share/ellcurves/rank15 +1 -0
- sage_wheels/share/ellcurves/rank17 +1 -0
- sage_wheels/share/ellcurves/rank19 +1 -0
- sage_wheels/share/ellcurves/rank2 +2388 -0
- sage_wheels/share/ellcurves/rank20 +1 -0
- sage_wheels/share/ellcurves/rank21 +1 -0
- sage_wheels/share/ellcurves/rank22 +1 -0
- sage_wheels/share/ellcurves/rank23 +1 -0
- sage_wheels/share/ellcurves/rank24 +1 -0
- sage_wheels/share/ellcurves/rank28 +1 -0
- sage_wheels/share/ellcurves/rank3 +836 -0
- sage_wheels/share/ellcurves/rank4 +10 -0
- sage_wheels/share/ellcurves/rank5 +5 -0
- sage_wheels/share/ellcurves/rank6 +5 -0
- sage_wheels/share/ellcurves/rank7 +5 -0
- sage_wheels/share/ellcurves/rank8 +6 -0
- sage_wheels/share/ellcurves/rank9 +7 -0
|
@@ -0,0 +1,1076 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-schemes
|
|
2
|
+
# sage.doctest: needs sage.rings.padics
|
|
3
|
+
r"""
|
|
4
|
+
Pollack-Stevens' modular symbols spaces
|
|
5
|
+
|
|
6
|
+
This module contains a class for spaces of modular symbols that use Glenn
|
|
7
|
+
Stevens' conventions, as explained in [PS2011]_.
|
|
8
|
+
|
|
9
|
+
There are two main differences between the modular symbols in this directory
|
|
10
|
+
and the ones in :mod:`sage.modular.modsym`:
|
|
11
|
+
|
|
12
|
+
- There is a shift in the weight: weight `k=0` here corresponds to weight `k=2`
|
|
13
|
+
there.
|
|
14
|
+
|
|
15
|
+
- There is a duality: these modular symbols are functions from
|
|
16
|
+
`\textrm{Div}^0(P^1(\QQ))` (cohomological objects), the others are formal linear
|
|
17
|
+
combinations of `\textrm{Div}^0(P^1(\QQ))` (homological objects).
|
|
18
|
+
|
|
19
|
+
EXAMPLES:
|
|
20
|
+
|
|
21
|
+
First we create the space of modular symbols of weight 0 (`k=2`) and level 11::
|
|
22
|
+
|
|
23
|
+
sage: M = PollackStevensModularSymbols(Gamma0(11), 0); M
|
|
24
|
+
Space of modular symbols for Congruence Subgroup Gamma0(11) with sign 0 and values in Sym^0 Q^2
|
|
25
|
+
|
|
26
|
+
One can also create a space of overconvergent modular symbols, by specifying a prime and a precision::
|
|
27
|
+
|
|
28
|
+
sage: M = PollackStevensModularSymbols(Gamma0(11), p = 5, prec_cap = 10, weight = 0); M
|
|
29
|
+
Space of overconvergent modular symbols for Congruence Subgroup Gamma0(11) with sign 0 and values in Space of 5-adic distributions with k=0 action and precision cap 10
|
|
30
|
+
|
|
31
|
+
Currently not much functionality is available on the whole space, and these
|
|
32
|
+
spaces are mainly used as parents for the modular symbols. These can be constructed from the corresponding
|
|
33
|
+
classical modular symbols (or even elliptic curves) as follows::
|
|
34
|
+
|
|
35
|
+
sage: A = ModularSymbols(13, sign=1, weight=4).decomposition()[0]
|
|
36
|
+
sage: A.is_cuspidal()
|
|
37
|
+
True
|
|
38
|
+
sage: from sage.modular.pollack_stevens.space import ps_modsym_from_simple_modsym_space
|
|
39
|
+
sage: f = ps_modsym_from_simple_modsym_space(A); f
|
|
40
|
+
Modular symbol of level 13 with values in Sym^2 Q^2
|
|
41
|
+
sage: f.values()
|
|
42
|
+
[(-13, 0, -1),
|
|
43
|
+
(247/2, 13/2, -6),
|
|
44
|
+
(39/2, 117/2, 42),
|
|
45
|
+
(-39/2, 39, 111/2),
|
|
46
|
+
(-247/2, -117, -209/2)]
|
|
47
|
+
sage: f.parent()
|
|
48
|
+
Space of modular symbols for Congruence Subgroup Gamma0(13) with sign 1 and values in Sym^2 Q^2
|
|
49
|
+
|
|
50
|
+
::
|
|
51
|
+
|
|
52
|
+
sage: # needs eclib
|
|
53
|
+
sage: E = EllipticCurve('37a1')
|
|
54
|
+
sage: phi = E.pollack_stevens_modular_symbol(); phi
|
|
55
|
+
Modular symbol of level 37 with values in Sym^0 Q^2
|
|
56
|
+
sage: phi.values()
|
|
57
|
+
[0, 1, 0, 0, 0, -1, 1, 0, 0]
|
|
58
|
+
sage: phi.parent()
|
|
59
|
+
Space of modular symbols for Congruence Subgroup Gamma0(37) with sign 0 and values in Sym^0 Q^2
|
|
60
|
+
"""
|
|
61
|
+
# ****************************************************************************
|
|
62
|
+
# Copyright (C) 2012 Robert Pollack <rpollack@math.bu.edu>
|
|
63
|
+
#
|
|
64
|
+
# Distributed under the terms of the GNU General Public License (GPL)
|
|
65
|
+
# as published by the Free Software Foundation; either version 2 of
|
|
66
|
+
# the License, or (at your option) any later version.
|
|
67
|
+
# https://www.gnu.org/licenses/
|
|
68
|
+
# ****************************************************************************
|
|
69
|
+
from sage.modules.module import Module
|
|
70
|
+
from sage.modular.dirichlet import DirichletCharacter
|
|
71
|
+
from sage.modular.arithgroup.all import Gamma0
|
|
72
|
+
from sage.modular.arithgroup.arithgroup_element import ArithmeticSubgroupElement
|
|
73
|
+
from sage.rings.integer import Integer
|
|
74
|
+
from sage.rings.rational_field import QQ
|
|
75
|
+
from .fund_domain import ManinRelations
|
|
76
|
+
from sage.rings.infinity import infinity as oo
|
|
77
|
+
from sage.structure.factory import UniqueFactory
|
|
78
|
+
|
|
79
|
+
from .distributions import OverconvergentDistributions, Symk
|
|
80
|
+
from .modsym import (PSModularSymbolElement, PSModularSymbolElement_symk,
|
|
81
|
+
PSModularSymbolElement_dist, PSModSymAction)
|
|
82
|
+
from .manin_map import ManinMap
|
|
83
|
+
from .sigma0 import Sigma0, Sigma0Element
|
|
84
|
+
|
|
85
|
+
|
|
86
|
+
class PollackStevensModularSymbols_factory(UniqueFactory):
|
|
87
|
+
r"""
|
|
88
|
+
Create a space of Pollack-Stevens modular symbols.
|
|
89
|
+
|
|
90
|
+
INPUT:
|
|
91
|
+
|
|
92
|
+
- ``group`` -- integer or congruence subgroup
|
|
93
|
+
|
|
94
|
+
- ``weight`` -- integer `\ge 0`, or ``None``
|
|
95
|
+
|
|
96
|
+
- ``sign`` -- integer; -1, 0, 1
|
|
97
|
+
|
|
98
|
+
- ``base_ring`` -- ring or ``None``
|
|
99
|
+
|
|
100
|
+
- ``p`` -- prime or ``None``
|
|
101
|
+
|
|
102
|
+
- ``prec_cap`` -- positive integer or ``None``
|
|
103
|
+
|
|
104
|
+
- ``coefficients`` -- the coefficient module (a special type of module,
|
|
105
|
+
typically distributions), or ``None``
|
|
106
|
+
|
|
107
|
+
If an explicit coefficient module is given, then the arguments ``weight``,
|
|
108
|
+
``base_ring``, ``prec_cap``, and ``p`` are redundant and must be ``None``.
|
|
109
|
+
They are only relevant if ``coefficients`` is ``None``, in which case the
|
|
110
|
+
coefficient module is inferred from the other data.
|
|
111
|
+
|
|
112
|
+
.. NOTE::
|
|
113
|
+
|
|
114
|
+
We emphasize that in the Pollack-Stevens notation, the
|
|
115
|
+
``weight`` is the usual weight minus 2, so a classical weight
|
|
116
|
+
2 modular form corresponds to a modular symbol of "weight 0".
|
|
117
|
+
|
|
118
|
+
EXAMPLES::
|
|
119
|
+
|
|
120
|
+
sage: M = PollackStevensModularSymbols(Gamma0(7), weight=0, prec_cap = None); M
|
|
121
|
+
Space of modular symbols for Congruence Subgroup Gamma0(7) with sign 0 and values in Sym^0 Q^2
|
|
122
|
+
|
|
123
|
+
An example with an explicit coefficient module::
|
|
124
|
+
|
|
125
|
+
sage: D = OverconvergentDistributions(3, 7, prec_cap=10)
|
|
126
|
+
sage: M = PollackStevensModularSymbols(Gamma0(7), coefficients=D); M
|
|
127
|
+
Space of overconvergent modular symbols for Congruence Subgroup Gamma0(7) with sign 0 and values in Space of 7-adic distributions with k=3 action and precision cap 10
|
|
128
|
+
|
|
129
|
+
TESTS::
|
|
130
|
+
|
|
131
|
+
sage: TestSuite(PollackStevensModularSymbols).run()
|
|
132
|
+
"""
|
|
133
|
+
def create_key(self, group, weight=None, sign=0, base_ring=None, p=None, prec_cap=None, coefficients=None):
|
|
134
|
+
r"""
|
|
135
|
+
Sanitize input.
|
|
136
|
+
|
|
137
|
+
EXAMPLES::
|
|
138
|
+
|
|
139
|
+
sage: D = OverconvergentDistributions(3, 7, prec_cap=10)
|
|
140
|
+
sage: M = PollackStevensModularSymbols(Gamma0(7), coefficients=D) # indirect doctest
|
|
141
|
+
"""
|
|
142
|
+
if sign not in (-1, 0, 1):
|
|
143
|
+
raise ValueError("sign must be -1, 0, 1")
|
|
144
|
+
|
|
145
|
+
if isinstance(group, (int, Integer)):
|
|
146
|
+
group = Gamma0(group)
|
|
147
|
+
|
|
148
|
+
if coefficients is None:
|
|
149
|
+
if isinstance(group, DirichletCharacter):
|
|
150
|
+
character = group.minimize_base_ring()
|
|
151
|
+
group = Gamma0(character.modulus())
|
|
152
|
+
if character.is_trivial():
|
|
153
|
+
character = None
|
|
154
|
+
else:
|
|
155
|
+
character = None
|
|
156
|
+
|
|
157
|
+
if weight is None:
|
|
158
|
+
raise ValueError("you must specify a weight "
|
|
159
|
+
"or coefficient module")
|
|
160
|
+
|
|
161
|
+
if prec_cap is None:
|
|
162
|
+
coefficients = Symk(weight, base_ring, character)
|
|
163
|
+
else:
|
|
164
|
+
coefficients = OverconvergentDistributions(weight, p, prec_cap, base_ring,
|
|
165
|
+
character)
|
|
166
|
+
else:
|
|
167
|
+
if weight is not None or base_ring is not None or p is not None or prec_cap is not None:
|
|
168
|
+
raise ValueError("if coefficients are specified, then weight, "
|
|
169
|
+
"base_ring, p, and prec_cap must take their "
|
|
170
|
+
"default value None")
|
|
171
|
+
|
|
172
|
+
return (group, coefficients, sign)
|
|
173
|
+
|
|
174
|
+
def create_object(self, version, key):
|
|
175
|
+
r"""
|
|
176
|
+
Create a space of modular symbols from ``key``.
|
|
177
|
+
|
|
178
|
+
INPUT:
|
|
179
|
+
|
|
180
|
+
- ``version`` -- the version of the object to create
|
|
181
|
+
|
|
182
|
+
- ``key`` -- tuple of parameters, as created by :meth:`create_key`
|
|
183
|
+
|
|
184
|
+
EXAMPLES::
|
|
185
|
+
|
|
186
|
+
sage: D = OverconvergentDistributions(5, 7, 15)
|
|
187
|
+
sage: M = PollackStevensModularSymbols(Gamma0(7), coefficients=D) # indirect doctest
|
|
188
|
+
sage: M2 = PollackStevensModularSymbols(Gamma0(7), coefficients=D) # indirect doctest
|
|
189
|
+
sage: M is M2
|
|
190
|
+
True
|
|
191
|
+
"""
|
|
192
|
+
return PollackStevensModularSymbolspace(*key)
|
|
193
|
+
|
|
194
|
+
|
|
195
|
+
PollackStevensModularSymbols = PollackStevensModularSymbols_factory('PollackStevensModularSymbols')
|
|
196
|
+
|
|
197
|
+
|
|
198
|
+
class PollackStevensModularSymbolspace(Module):
|
|
199
|
+
r"""
|
|
200
|
+
A class for spaces of modular symbols that use Glenn Stevens' conventions.
|
|
201
|
+
This class should not be instantiated directly by the user: this is handled
|
|
202
|
+
by the factory object :class:`PollackStevensModularSymbols_factory`.
|
|
203
|
+
|
|
204
|
+
INPUT:
|
|
205
|
+
|
|
206
|
+
- ``group`` -- congruence subgroup
|
|
207
|
+
|
|
208
|
+
- ``coefficients`` -- a coefficient module
|
|
209
|
+
|
|
210
|
+
- ``sign`` -- (default: 0) 0, -1, or 1
|
|
211
|
+
|
|
212
|
+
EXAMPLES::
|
|
213
|
+
|
|
214
|
+
sage: D = OverconvergentDistributions(2, 11)
|
|
215
|
+
sage: M = PollackStevensModularSymbols(Gamma0(2), coefficients=D); M.sign()
|
|
216
|
+
0
|
|
217
|
+
sage: M = PollackStevensModularSymbols(Gamma0(2), coefficients=D, sign=-1); M.sign()
|
|
218
|
+
-1
|
|
219
|
+
sage: M = PollackStevensModularSymbols(Gamma0(2), coefficients=D, sign=1); M.sign()
|
|
220
|
+
1
|
|
221
|
+
"""
|
|
222
|
+
def __init__(self, group, coefficients, sign=0):
|
|
223
|
+
r"""
|
|
224
|
+
INPUT:
|
|
225
|
+
|
|
226
|
+
See :class:`PollackStevensModularSymbolspace`
|
|
227
|
+
|
|
228
|
+
EXAMPLES::
|
|
229
|
+
|
|
230
|
+
sage: D = OverconvergentDistributions(2, 11)
|
|
231
|
+
sage: M = PollackStevensModularSymbols(Gamma0(11), coefficients=D)
|
|
232
|
+
sage: type(M)
|
|
233
|
+
<class 'sage.modular.pollack_stevens.space.PollackStevensModularSymbolspace_with_category'>
|
|
234
|
+
sage: TestSuite(M).run()
|
|
235
|
+
"""
|
|
236
|
+
Module.__init__(self, coefficients.base_ring())
|
|
237
|
+
if sign not in [0, -1, 1]:
|
|
238
|
+
# sign must be 0, -1 or 1
|
|
239
|
+
raise ValueError("sign must be 0, -1, or 1")
|
|
240
|
+
self._group = group
|
|
241
|
+
self._coefficients = coefficients
|
|
242
|
+
if coefficients.is_symk():
|
|
243
|
+
self.Element = PSModularSymbolElement_symk
|
|
244
|
+
else:
|
|
245
|
+
self.Element = PSModularSymbolElement_dist
|
|
246
|
+
self._sign = sign
|
|
247
|
+
# should distinguish between Gamma0 and Gamma1...
|
|
248
|
+
self._source = ManinRelations(group.level())
|
|
249
|
+
|
|
250
|
+
# Register the action of 2x2 matrices on self.
|
|
251
|
+
|
|
252
|
+
if coefficients.is_symk():
|
|
253
|
+
action = PSModSymAction(Sigma0(1), self)
|
|
254
|
+
else:
|
|
255
|
+
action = PSModSymAction(Sigma0(self.prime()), self)
|
|
256
|
+
|
|
257
|
+
self._populate_coercion_lists_(action_list=[action])
|
|
258
|
+
|
|
259
|
+
def _element_constructor_(self, data):
|
|
260
|
+
r"""
|
|
261
|
+
Construct an element of ``self`` from data.
|
|
262
|
+
|
|
263
|
+
EXAMPLES::
|
|
264
|
+
|
|
265
|
+
sage: D = OverconvergentDistributions(0, 11)
|
|
266
|
+
sage: M = PollackStevensModularSymbols(Gamma0(11), coefficients=D)
|
|
267
|
+
sage: M(1) # indirect doctest
|
|
268
|
+
Modular symbol of level 11 with values in Space of 11-adic distributions with k=0 action and precision cap 20
|
|
269
|
+
"""
|
|
270
|
+
if isinstance(data, PSModularSymbolElement):
|
|
271
|
+
data = data._map
|
|
272
|
+
elif isinstance(data, ManinMap):
|
|
273
|
+
pass
|
|
274
|
+
else:
|
|
275
|
+
# a dict, or a single distribution specifying a constant symbol, etc.
|
|
276
|
+
data = ManinMap(self._coefficients, self._source, data)
|
|
277
|
+
|
|
278
|
+
if data._codomain != self._coefficients:
|
|
279
|
+
data = data.extend_codomain(self._coefficients)
|
|
280
|
+
|
|
281
|
+
return self.element_class(data, self, construct=True)
|
|
282
|
+
|
|
283
|
+
def _coerce_map_from_(self, other):
|
|
284
|
+
r"""
|
|
285
|
+
Used for comparison and coercion.
|
|
286
|
+
|
|
287
|
+
EXAMPLES::
|
|
288
|
+
|
|
289
|
+
sage: M1 = PollackStevensModularSymbols(Gamma0(11), coefficients=Symk(3))
|
|
290
|
+
sage: M2 = PollackStevensModularSymbols(Gamma0(11), coefficients=Symk(3,Qp(11)))
|
|
291
|
+
sage: M3 = PollackStevensModularSymbols(Gamma0(11), coefficients=Symk(4))
|
|
292
|
+
sage: M4 = PollackStevensModularSymbols(Gamma0(11), coefficients=OverconvergentDistributions(3, 11, 10))
|
|
293
|
+
sage: M1.has_coerce_map_from(M2)
|
|
294
|
+
False
|
|
295
|
+
sage: M2.has_coerce_map_from(M1)
|
|
296
|
+
True
|
|
297
|
+
sage: M1.has_coerce_map_from(M3)
|
|
298
|
+
False
|
|
299
|
+
sage: M1.has_coerce_map_from(M4)
|
|
300
|
+
False
|
|
301
|
+
sage: M2.has_coerce_map_from(M4)
|
|
302
|
+
True
|
|
303
|
+
"""
|
|
304
|
+
if isinstance(other, PollackStevensModularSymbolspace):
|
|
305
|
+
return (other.group() == self.group()
|
|
306
|
+
and self.coefficient_module().has_coerce_map_from(other.coefficient_module()))
|
|
307
|
+
|
|
308
|
+
return False
|
|
309
|
+
|
|
310
|
+
def _repr_(self):
|
|
311
|
+
r"""
|
|
312
|
+
Return string representation.
|
|
313
|
+
|
|
314
|
+
EXAMPLES::
|
|
315
|
+
|
|
316
|
+
sage: D = OverconvergentDistributions(2, 11)
|
|
317
|
+
sage: M = PollackStevensModularSymbols(Gamma0(2), coefficients=D)
|
|
318
|
+
sage: M._repr_()
|
|
319
|
+
'Space of overconvergent modular symbols for Congruence Subgroup Gamma0(2) with sign 0 and values in Space of 11-adic distributions with k=2 action and precision cap 20'
|
|
320
|
+
"""
|
|
321
|
+
if self.coefficient_module().is_symk():
|
|
322
|
+
s = "Space of modular symbols for "
|
|
323
|
+
else:
|
|
324
|
+
s = "Space of overconvergent modular symbols for "
|
|
325
|
+
s += "%s with sign %s and values in %s" % (self.group(), self.sign(),
|
|
326
|
+
self.coefficient_module())
|
|
327
|
+
return s
|
|
328
|
+
|
|
329
|
+
def source(self):
|
|
330
|
+
r"""
|
|
331
|
+
Return the domain of the modular symbols in this space.
|
|
332
|
+
|
|
333
|
+
OUTPUT: a :class:`sage.modular.pollack_stevens.fund_domain.PollackStevensModularDomain`
|
|
334
|
+
|
|
335
|
+
EXAMPLES::
|
|
336
|
+
|
|
337
|
+
sage: D = OverconvergentDistributions(2, 11)
|
|
338
|
+
sage: M = PollackStevensModularSymbols(Gamma0(2), coefficients=D)
|
|
339
|
+
sage: M.source()
|
|
340
|
+
Manin Relations of level 2
|
|
341
|
+
"""
|
|
342
|
+
return self._source
|
|
343
|
+
|
|
344
|
+
def coefficient_module(self):
|
|
345
|
+
r"""
|
|
346
|
+
Return the coefficient module of this space.
|
|
347
|
+
|
|
348
|
+
EXAMPLES::
|
|
349
|
+
|
|
350
|
+
sage: D = OverconvergentDistributions(2, 11)
|
|
351
|
+
sage: M = PollackStevensModularSymbols(Gamma0(2), coefficients=D)
|
|
352
|
+
sage: M.coefficient_module()
|
|
353
|
+
Space of 11-adic distributions with k=2 action and precision cap 20
|
|
354
|
+
sage: M.coefficient_module() is D
|
|
355
|
+
True
|
|
356
|
+
"""
|
|
357
|
+
return self._coefficients
|
|
358
|
+
|
|
359
|
+
def group(self):
|
|
360
|
+
r"""
|
|
361
|
+
Return the congruence subgroup of this space.
|
|
362
|
+
|
|
363
|
+
EXAMPLES::
|
|
364
|
+
|
|
365
|
+
sage: D = OverconvergentDistributions(2, 5)
|
|
366
|
+
sage: G = Gamma0(23)
|
|
367
|
+
sage: M = PollackStevensModularSymbols(G, coefficients=D)
|
|
368
|
+
sage: M.group()
|
|
369
|
+
Congruence Subgroup Gamma0(23)
|
|
370
|
+
sage: D = Symk(4)
|
|
371
|
+
sage: G = Gamma1(11)
|
|
372
|
+
sage: M = PollackStevensModularSymbols(G, coefficients=D)
|
|
373
|
+
sage: M.group()
|
|
374
|
+
Congruence Subgroup Gamma1(11)
|
|
375
|
+
"""
|
|
376
|
+
return self._group
|
|
377
|
+
|
|
378
|
+
def sign(self):
|
|
379
|
+
r"""
|
|
380
|
+
Return the sign of this space.
|
|
381
|
+
|
|
382
|
+
EXAMPLES::
|
|
383
|
+
|
|
384
|
+
sage: D = OverconvergentDistributions(3, 17)
|
|
385
|
+
sage: M = PollackStevensModularSymbols(Gamma(5), coefficients=D)
|
|
386
|
+
sage: M.sign()
|
|
387
|
+
0
|
|
388
|
+
sage: D = Symk(4)
|
|
389
|
+
sage: M = PollackStevensModularSymbols(Gamma1(8), coefficients=D, sign=-1)
|
|
390
|
+
sage: M.sign()
|
|
391
|
+
-1
|
|
392
|
+
"""
|
|
393
|
+
return self._sign
|
|
394
|
+
|
|
395
|
+
def ngens(self):
|
|
396
|
+
r"""
|
|
397
|
+
Return the number of generators defining this space.
|
|
398
|
+
|
|
399
|
+
EXAMPLES::
|
|
400
|
+
|
|
401
|
+
sage: D = OverconvergentDistributions(4, 29)
|
|
402
|
+
sage: M = PollackStevensModularSymbols(Gamma1(12), coefficients=D)
|
|
403
|
+
sage: M.ngens()
|
|
404
|
+
5
|
|
405
|
+
sage: D = Symk(2)
|
|
406
|
+
sage: M = PollackStevensModularSymbols(Gamma0(2), coefficients=D)
|
|
407
|
+
sage: M.ngens()
|
|
408
|
+
2
|
|
409
|
+
"""
|
|
410
|
+
return len(self._source.indices())
|
|
411
|
+
|
|
412
|
+
def ncoset_reps(self):
|
|
413
|
+
r"""
|
|
414
|
+
Return the number of coset representatives defining the domain of the
|
|
415
|
+
modular symbols in this space.
|
|
416
|
+
|
|
417
|
+
OUTPUT:
|
|
418
|
+
|
|
419
|
+
The number of coset representatives stored in the manin relations.
|
|
420
|
+
(Just the size of `P^1(\ZZ/N\ZZ)`)
|
|
421
|
+
|
|
422
|
+
EXAMPLES::
|
|
423
|
+
|
|
424
|
+
sage: D = Symk(2)
|
|
425
|
+
sage: M = PollackStevensModularSymbols(Gamma0(2), coefficients=D)
|
|
426
|
+
sage: M.ncoset_reps()
|
|
427
|
+
3
|
|
428
|
+
"""
|
|
429
|
+
return len(self._source.reps())
|
|
430
|
+
|
|
431
|
+
def level(self):
|
|
432
|
+
r"""
|
|
433
|
+
Return the level `N`, where this space is of level `\Gamma_0(N)`.
|
|
434
|
+
|
|
435
|
+
EXAMPLES::
|
|
436
|
+
|
|
437
|
+
sage: D = OverconvergentDistributions(7, 11)
|
|
438
|
+
sage: M = PollackStevensModularSymbols(Gamma1(14), coefficients=D)
|
|
439
|
+
sage: M.level()
|
|
440
|
+
14
|
|
441
|
+
"""
|
|
442
|
+
return self._source.level()
|
|
443
|
+
|
|
444
|
+
def _grab_relations(self):
|
|
445
|
+
r"""
|
|
446
|
+
This is used internally as part of a consistency check.
|
|
447
|
+
|
|
448
|
+
EXAMPLES::
|
|
449
|
+
|
|
450
|
+
sage: D = OverconvergentDistributions(4, 3)
|
|
451
|
+
sage: M = PollackStevensModularSymbols(Gamma1(13), coefficients=D)
|
|
452
|
+
sage: M._grab_relations()
|
|
453
|
+
[[(1, [1 0]
|
|
454
|
+
[0 1], 0)], [(-1, [-1 -1]
|
|
455
|
+
[ 0 -1], 0)], [(1, [1 0]
|
|
456
|
+
[0 1], 2)], [(1, [1 0]
|
|
457
|
+
[0 1], 3)], [(1, [1 0]
|
|
458
|
+
[0 1], 4)], [(1, [1 0]
|
|
459
|
+
[0 1], 5)]]
|
|
460
|
+
"""
|
|
461
|
+
S0N = Sigma0(self._source._N)
|
|
462
|
+
v = []
|
|
463
|
+
for r in range(len(self._source.gens())):
|
|
464
|
+
for j in range(len(self._source.reps())):
|
|
465
|
+
R = self._source.relations(j)
|
|
466
|
+
if len(R) == 1 and R[0][2] == self._source.indices(r):
|
|
467
|
+
if R[0][0] != -1 or R[0][1] != S0N(1):
|
|
468
|
+
v += [R]
|
|
469
|
+
return v
|
|
470
|
+
|
|
471
|
+
def precision_cap(self):
|
|
472
|
+
r"""
|
|
473
|
+
Return the number of moments of each element of this space.
|
|
474
|
+
|
|
475
|
+
EXAMPLES::
|
|
476
|
+
|
|
477
|
+
sage: D = OverconvergentDistributions(2, 5)
|
|
478
|
+
sage: M = PollackStevensModularSymbols(Gamma1(13), coefficients=D)
|
|
479
|
+
sage: M.precision_cap()
|
|
480
|
+
20
|
|
481
|
+
sage: D = OverconvergentDistributions(3, 7, prec_cap=10)
|
|
482
|
+
sage: M = PollackStevensModularSymbols(Gamma0(7), coefficients=D)
|
|
483
|
+
sage: M.precision_cap()
|
|
484
|
+
10
|
|
485
|
+
"""
|
|
486
|
+
# WARNING -- IF YOU ARE WORKING IN SYM^K(Q^2) THIS WILL JUST
|
|
487
|
+
# RETURN K-1. NOT GOOD
|
|
488
|
+
return self.coefficient_module()._prec_cap
|
|
489
|
+
|
|
490
|
+
def weight(self):
|
|
491
|
+
r"""
|
|
492
|
+
Return the weight of this space.
|
|
493
|
+
|
|
494
|
+
.. WARNING::
|
|
495
|
+
|
|
496
|
+
We emphasize that in the Pollack-Stevens notation, this is
|
|
497
|
+
the usual weight minus 2, so a classical weight 2 modular
|
|
498
|
+
form corresponds to a modular symbol of "weight 0".
|
|
499
|
+
|
|
500
|
+
EXAMPLES::
|
|
501
|
+
|
|
502
|
+
sage: D = Symk(5)
|
|
503
|
+
sage: M = PollackStevensModularSymbols(Gamma1(7), coefficients=D)
|
|
504
|
+
sage: M.weight()
|
|
505
|
+
5
|
|
506
|
+
"""
|
|
507
|
+
return self.coefficient_module()._k
|
|
508
|
+
|
|
509
|
+
def prime(self):
|
|
510
|
+
r"""
|
|
511
|
+
Return the prime of this space.
|
|
512
|
+
|
|
513
|
+
EXAMPLES::
|
|
514
|
+
|
|
515
|
+
sage: D = OverconvergentDistributions(2, 11)
|
|
516
|
+
sage: M = PollackStevensModularSymbols(Gamma(2), coefficients=D)
|
|
517
|
+
sage: M.prime()
|
|
518
|
+
11
|
|
519
|
+
"""
|
|
520
|
+
return self.coefficient_module()._p
|
|
521
|
+
|
|
522
|
+
def _p_stabilize_parent_space(self, p, new_base_ring):
|
|
523
|
+
r"""
|
|
524
|
+
Return the space of Pollack-Stevens modular symbols of level
|
|
525
|
+
`p N`, with changed base ring. This is used internally when
|
|
526
|
+
constructing the `p`-stabilization of a modular symbol.
|
|
527
|
+
|
|
528
|
+
INPUT:
|
|
529
|
+
|
|
530
|
+
- ``p`` -- prime number
|
|
531
|
+
- ``new_base_ring`` -- the base ring of the result
|
|
532
|
+
|
|
533
|
+
OUTPUT:
|
|
534
|
+
|
|
535
|
+
The space of modular symbols of level `p N`, where `N` is the level
|
|
536
|
+
of this space.
|
|
537
|
+
|
|
538
|
+
EXAMPLES::
|
|
539
|
+
|
|
540
|
+
sage: D = OverconvergentDistributions(2, 7)
|
|
541
|
+
sage: M = PollackStevensModularSymbols(Gamma(13), coefficients=D)
|
|
542
|
+
sage: M._p_stabilize_parent_space(7, M.base_ring())
|
|
543
|
+
Space of overconvergent modular symbols for Congruence Subgroup
|
|
544
|
+
Gamma(91) with sign 0 and values in Space of 7-adic distributions
|
|
545
|
+
with k=2 action and precision cap 20
|
|
546
|
+
|
|
547
|
+
sage: D = OverconvergentDistributions(4, 17)
|
|
548
|
+
sage: M = PollackStevensModularSymbols(Gamma1(3), coefficients=D)
|
|
549
|
+
sage: M._p_stabilize_parent_space(17, Qp(17))
|
|
550
|
+
Space of overconvergent modular symbols for Congruence
|
|
551
|
+
Subgroup Gamma1(51) with sign 0 and values in Space of
|
|
552
|
+
17-adic distributions with k=4 action and precision cap 20
|
|
553
|
+
"""
|
|
554
|
+
N = self.level()
|
|
555
|
+
if N % p == 0:
|
|
556
|
+
raise ValueError("the level is not prime to p")
|
|
557
|
+
from sage.modular.arithgroup.all import (Gamma, Gamma_class, Gamma0,
|
|
558
|
+
Gamma0_class, Gamma1, Gamma1_class)
|
|
559
|
+
G = self.group()
|
|
560
|
+
if isinstance(G, Gamma0_class):
|
|
561
|
+
G = Gamma0(N * p)
|
|
562
|
+
elif isinstance(G, Gamma1_class):
|
|
563
|
+
G = Gamma1(N * p)
|
|
564
|
+
elif isinstance(G, Gamma_class):
|
|
565
|
+
G = Gamma(N * p)
|
|
566
|
+
else:
|
|
567
|
+
raise NotImplementedError
|
|
568
|
+
return PollackStevensModularSymbols(G, coefficients=self.coefficient_module().change_ring(new_base_ring), sign=self.sign())
|
|
569
|
+
|
|
570
|
+
def _specialize_parent_space(self, new_base_ring):
|
|
571
|
+
r"""
|
|
572
|
+
Internal function that is used by the specialize method on
|
|
573
|
+
elements. It returns a space with same parameters as this
|
|
574
|
+
one, but over ``new_base_ring``.
|
|
575
|
+
|
|
576
|
+
INPUT:
|
|
577
|
+
|
|
578
|
+
- ``new_base_ring`` -- a ring
|
|
579
|
+
|
|
580
|
+
OUTPUT: a space of modular symbols to which our space specializes
|
|
581
|
+
|
|
582
|
+
EXAMPLES::
|
|
583
|
+
|
|
584
|
+
sage: D = OverconvergentDistributions(7, 5)
|
|
585
|
+
sage: M = PollackStevensModularSymbols(Gamma0(2), coefficients=D); M
|
|
586
|
+
Space of overconvergent modular symbols for Congruence Subgroup Gamma0(2) with sign 0 and values in Space of 5-adic distributions with k=7 action and precision cap 20
|
|
587
|
+
sage: M._specialize_parent_space(QQ)
|
|
588
|
+
Space of modular symbols for Congruence Subgroup Gamma0(2) with sign 0 and values in Sym^7 Q^2
|
|
589
|
+
sage: M.base_ring()
|
|
590
|
+
5-adic Ring with capped absolute precision 20
|
|
591
|
+
sage: M._specialize_parent_space(QQ).base_ring()
|
|
592
|
+
Rational Field
|
|
593
|
+
"""
|
|
594
|
+
return PollackStevensModularSymbols(self.group(), coefficients=self.coefficient_module().specialize(new_base_ring), sign=self.sign())
|
|
595
|
+
|
|
596
|
+
def _lift_parent_space(self, p, M, new_base_ring):
|
|
597
|
+
r"""
|
|
598
|
+
Used internally to lift a space of modular symbols to space of
|
|
599
|
+
overconvergent modular symbols.
|
|
600
|
+
|
|
601
|
+
INPUT:
|
|
602
|
+
|
|
603
|
+
- ``p`` -- prime
|
|
604
|
+
- ``M`` -- precision cap
|
|
605
|
+
- ``new_base_ring`` -- ring
|
|
606
|
+
|
|
607
|
+
OUTPUT: a space of distribution valued modular symbols
|
|
608
|
+
|
|
609
|
+
EXAMPLES::
|
|
610
|
+
|
|
611
|
+
sage: D = OverconvergentDistributions(4, 17, 2); M = PollackStevensModularSymbols(Gamma1(3), coefficients=D)
|
|
612
|
+
sage: D.is_symk()
|
|
613
|
+
False
|
|
614
|
+
sage: M._lift_parent_space(17, 10, Qp(17))
|
|
615
|
+
Traceback (most recent call last):
|
|
616
|
+
...
|
|
617
|
+
TypeError: Coefficient module must be a Symk
|
|
618
|
+
sage: PollackStevensModularSymbols(Gamma1(3), weight=1)._lift_parent_space(17,10,Qp(17))
|
|
619
|
+
Space of overconvergent modular symbols for Congruence Subgroup Gamma1(3) with sign 0 and values in Space of 17-adic distributions with k=1 action and precision cap 10
|
|
620
|
+
"""
|
|
621
|
+
if self.coefficient_module().is_symk():
|
|
622
|
+
return PollackStevensModularSymbols(self.group(), coefficients=self.coefficient_module().lift(p, M, new_base_ring), sign=self.sign())
|
|
623
|
+
else:
|
|
624
|
+
raise TypeError("Coefficient module must be a Symk")
|
|
625
|
+
|
|
626
|
+
def change_ring(self, new_base_ring):
|
|
627
|
+
r"""
|
|
628
|
+
Change the base ring of this space to ``new_base_ring``.
|
|
629
|
+
|
|
630
|
+
INPUT:
|
|
631
|
+
|
|
632
|
+
- ``new_base_ring`` -- a ring
|
|
633
|
+
|
|
634
|
+
OUTPUT: a space of modular symbols over the specified base
|
|
635
|
+
|
|
636
|
+
EXAMPLES::
|
|
637
|
+
|
|
638
|
+
sage: from sage.modular.pollack_stevens.distributions import Symk
|
|
639
|
+
sage: D = Symk(4)
|
|
640
|
+
sage: M = PollackStevensModularSymbols(Gamma(6), coefficients=D); M
|
|
641
|
+
Space of modular symbols for Congruence Subgroup Gamma(6) with sign 0 and values in Sym^4 Q^2
|
|
642
|
+
sage: M.change_ring(Qp(5,8))
|
|
643
|
+
Space of modular symbols for Congruence Subgroup Gamma(6) with sign 0 and values in Sym^4 Q_5^2
|
|
644
|
+
"""
|
|
645
|
+
return PollackStevensModularSymbols(self.group(), coefficients=self.coefficient_module().change_ring(new_base_ring), sign=self.sign())
|
|
646
|
+
|
|
647
|
+
def _an_element_(self):
|
|
648
|
+
r"""
|
|
649
|
+
Return the cusps associated to an element of a congruence subgroup.
|
|
650
|
+
|
|
651
|
+
OUTPUT: an element of the modular symbol space
|
|
652
|
+
|
|
653
|
+
This returns a "typical" element of this space; in this case
|
|
654
|
+
the constant map sending every element to an element of the
|
|
655
|
+
coefficient module.
|
|
656
|
+
|
|
657
|
+
.. WARNING::
|
|
658
|
+
|
|
659
|
+
This is not really an element of the space because it does
|
|
660
|
+
not satisfy the Manin relations.
|
|
661
|
+
|
|
662
|
+
EXAMPLES::
|
|
663
|
+
|
|
664
|
+
sage: D = Symk(4)
|
|
665
|
+
sage: M = PollackStevensModularSymbols(Gamma(6), coefficients=D)
|
|
666
|
+
sage: x = M.an_element(); x # indirect doctest
|
|
667
|
+
Modular symbol of level 6 with values in Sym^4 Q^2
|
|
668
|
+
sage: x.values()
|
|
669
|
+
[(0, 1, 2, 3, 4), (0, 1, 2, 3, 4), (0, 1, 2, 3, 4)]
|
|
670
|
+
sage: D = Symk(2, Qp(11)); M = PollackStevensModularSymbols(Gamma0(2), coefficients=D)
|
|
671
|
+
sage: x = M.an_element(); x.values()
|
|
672
|
+
[(0, 1 + O(11^20), 2 + O(11^20)), (0, 1 + O(11^20), 2 + O(11^20))]
|
|
673
|
+
sage: x in M
|
|
674
|
+
True
|
|
675
|
+
"""
|
|
676
|
+
return self(self.coefficient_module().an_element())
|
|
677
|
+
|
|
678
|
+
def random_element(self, M=None):
|
|
679
|
+
r"""
|
|
680
|
+
Return a random overconvergent modular symbol in this space with `M` moments.
|
|
681
|
+
|
|
682
|
+
INPUT:
|
|
683
|
+
|
|
684
|
+
- ``M`` -- positive integer
|
|
685
|
+
|
|
686
|
+
OUTPUT: an element of the modular symbol space with `M` moments
|
|
687
|
+
|
|
688
|
+
Returns a random element in this space by randomly choosing
|
|
689
|
+
values of distributions on all but one divisor, and solves the
|
|
690
|
+
difference equation to determine the value on the last
|
|
691
|
+
divisor. ::
|
|
692
|
+
|
|
693
|
+
sage: D = OverconvergentDistributions(2, 11)
|
|
694
|
+
sage: M = PollackStevensModularSymbols(Gamma0(11), coefficients=D)
|
|
695
|
+
sage: M.random_element(10)
|
|
696
|
+
Traceback (most recent call last):
|
|
697
|
+
...
|
|
698
|
+
NotImplementedError
|
|
699
|
+
"""
|
|
700
|
+
# This function still has bugs and is not used in the rest of
|
|
701
|
+
# the package. It is left to be implemented in the future.
|
|
702
|
+
raise NotImplementedError
|
|
703
|
+
|
|
704
|
+
if M is None and not self.coefficient_module().is_symk():
|
|
705
|
+
M = self.coefficient_module().precision_cap()
|
|
706
|
+
|
|
707
|
+
k = self.coefficient_module()._k
|
|
708
|
+
# p = self.prime()
|
|
709
|
+
manin = self.source()
|
|
710
|
+
|
|
711
|
+
# # There must be a problem here with that +1 -- should be
|
|
712
|
+
# # variable depending on a c of some matrix We'll need to
|
|
713
|
+
# # divide by some power of p and so we add extra accuracy
|
|
714
|
+
# # here.
|
|
715
|
+
# if k != 0:
|
|
716
|
+
# MM = M + valuation(k,p) + 1 + M.exact_log(p)
|
|
717
|
+
# else:
|
|
718
|
+
# MM = M + M.exact_log(p) + 1
|
|
719
|
+
|
|
720
|
+
# this loop runs thru all of the generators (except
|
|
721
|
+
# (0)-(infty)) and randomly chooses a distribution to assign
|
|
722
|
+
# to this generator (in the 2,3-torsion cases care is taken
|
|
723
|
+
# to satisfy the relevant relation)
|
|
724
|
+
D = {}
|
|
725
|
+
for g in manin.gens():
|
|
726
|
+
D[g] = self.coefficient_module().random_element(M)
|
|
727
|
+
if g in manin.reps_with_two_torsion() and g in manin.reps_with_three_torsion():
|
|
728
|
+
raise ValueError("Level 1 not implemented")
|
|
729
|
+
if g in manin.reps_with_two_torsion():
|
|
730
|
+
gamg = manin.two_torsion_matrix(g)
|
|
731
|
+
D[g] = D[g] - D[g] * gamg
|
|
732
|
+
else:
|
|
733
|
+
if g in manin.reps_with_three_torsion():
|
|
734
|
+
gamg = manin.three_torsion_matrix(g)
|
|
735
|
+
D[g] = 2 * D[g] - D[g] * gamg - D[g] * gamg ** 2
|
|
736
|
+
# print("post:",D[g])
|
|
737
|
+
|
|
738
|
+
# now we compute nu_infty of Prop 5.1 of [PS1]
|
|
739
|
+
t = self.coefficient_module().zero()
|
|
740
|
+
for g in manin.gens()[1:]:
|
|
741
|
+
if (g not in manin.reps_with_two_torsion()) and (g not in manin.reps_with_three_torsion()):
|
|
742
|
+
t += D[g] * manin.gammas[g] - D[g]
|
|
743
|
+
else:
|
|
744
|
+
# this was previously MR.reps_with_two_torsion() but there is no variable MR defined...
|
|
745
|
+
if g in manin.reps_with_two_torsion():
|
|
746
|
+
t -= D[g]
|
|
747
|
+
else:
|
|
748
|
+
t -= D[g]
|
|
749
|
+
|
|
750
|
+
# If k = 0, then t has total measure zero. However, this is not true when k != 0
|
|
751
|
+
# (unlike Prop 5.1 of [PS1] this is not a lift of classical symbol).
|
|
752
|
+
# So instead we simply add (const)*mu_1 to some (non-torsion) v[j] to fix this
|
|
753
|
+
# here since (mu_1 |_k ([a,b,c,d]-1))(trivial char) = chi(a) k a^{k-1} c ,
|
|
754
|
+
# we take the constant to be minus the total measure of t divided by (chi(a) k a^{k-1} c)
|
|
755
|
+
|
|
756
|
+
if k != 0:
|
|
757
|
+
j = 1
|
|
758
|
+
g = manin.gens()[j]
|
|
759
|
+
while (g in manin.reps_with_two_torsion()) or (g in manin.reps_with_three_torsion()) and (j < len(manin.gens())):
|
|
760
|
+
j = j + 1
|
|
761
|
+
g = manin.gens()[j]
|
|
762
|
+
if j == len(manin.gens()):
|
|
763
|
+
raise ValueError("everything is 2 or 3 torsion! NOT YET IMPLEMENTED IN THIS CASE")
|
|
764
|
+
|
|
765
|
+
gam = manin.gammas[g]
|
|
766
|
+
a = gam.matrix()[0, 0]
|
|
767
|
+
c = gam.matrix()[1, 0]
|
|
768
|
+
|
|
769
|
+
if self.coefficient_module()._character is not None:
|
|
770
|
+
chara = self.coefficient_module()._character(a)
|
|
771
|
+
else:
|
|
772
|
+
chara = 1
|
|
773
|
+
err = -t.moment(0) / (chara * k * a ** (k - 1) * c)
|
|
774
|
+
v = [0] * M
|
|
775
|
+
v[1] = 1
|
|
776
|
+
mu_1 = self.base_ring()(err) * self.coefficient_module()(v)
|
|
777
|
+
D[g] += mu_1
|
|
778
|
+
t = t + mu_1 * gam - mu_1
|
|
779
|
+
|
|
780
|
+
Id = manin.gens()[0]
|
|
781
|
+
if not self.coefficient_module().is_symk():
|
|
782
|
+
mu = t.solve_difference_equation()
|
|
783
|
+
D[Id] = -mu
|
|
784
|
+
else:
|
|
785
|
+
if self.coefficient_module()._k == 0:
|
|
786
|
+
D[Id] = self.coefficient_module().random_element()
|
|
787
|
+
else:
|
|
788
|
+
raise ValueError("Not implemented for symk with k>0 yet")
|
|
789
|
+
|
|
790
|
+
return self(D)
|
|
791
|
+
|
|
792
|
+
|
|
793
|
+
def cusps_from_mat(g):
|
|
794
|
+
r"""
|
|
795
|
+
Return the cusps associated to an element of a congruence subgroup.
|
|
796
|
+
|
|
797
|
+
INPUT:
|
|
798
|
+
|
|
799
|
+
- ``g`` -- an element of a congruence subgroup or a matrix
|
|
800
|
+
|
|
801
|
+
OUTPUT: a tuple of cusps associated to ``g``
|
|
802
|
+
|
|
803
|
+
EXAMPLES::
|
|
804
|
+
|
|
805
|
+
sage: from sage.modular.pollack_stevens.space import cusps_from_mat
|
|
806
|
+
sage: g = SL2Z.one()
|
|
807
|
+
sage: cusps_from_mat(g)
|
|
808
|
+
(+Infinity, 0)
|
|
809
|
+
|
|
810
|
+
You can also just give the matrix of ``g``::
|
|
811
|
+
|
|
812
|
+
sage: type(g)
|
|
813
|
+
<class 'sage.modular.arithgroup.arithgroup_element.ArithmeticSubgroupElement'>
|
|
814
|
+
sage: cusps_from_mat(g.matrix())
|
|
815
|
+
(+Infinity, 0)
|
|
816
|
+
|
|
817
|
+
Another example::
|
|
818
|
+
|
|
819
|
+
sage: from sage.modular.pollack_stevens.space import cusps_from_mat
|
|
820
|
+
sage: g = GammaH(3, [2]).generators()[1].matrix(); g
|
|
821
|
+
[-1 1]
|
|
822
|
+
[-3 2]
|
|
823
|
+
sage: cusps_from_mat(g)
|
|
824
|
+
(1/3, 1/2)
|
|
825
|
+
"""
|
|
826
|
+
if isinstance(g, (ArithmeticSubgroupElement, Sigma0Element)):
|
|
827
|
+
g = g.matrix()
|
|
828
|
+
a, b, c, d = g.list()
|
|
829
|
+
if c:
|
|
830
|
+
ac = a / c
|
|
831
|
+
else:
|
|
832
|
+
ac = oo
|
|
833
|
+
if d:
|
|
834
|
+
bd = b / d
|
|
835
|
+
else:
|
|
836
|
+
bd = oo
|
|
837
|
+
return ac, bd
|
|
838
|
+
|
|
839
|
+
|
|
840
|
+
def ps_modsym_from_elliptic_curve(E, sign=0, implementation='eclib'):
|
|
841
|
+
r"""
|
|
842
|
+
Return the overconvergent modular symbol associated to
|
|
843
|
+
an elliptic curve defined over the rationals.
|
|
844
|
+
|
|
845
|
+
INPUT:
|
|
846
|
+
|
|
847
|
+
- ``E`` -- an elliptic curve defined over the rationals
|
|
848
|
+
|
|
849
|
+
- ``sign`` -- the sign (default: 0). If nonzero, returns either
|
|
850
|
+
the plus (if ``sign`` == 1) or the minus (if ``sign`` == -1) modular
|
|
851
|
+
symbol. The default of 0 returns the sum of the plus and minus symbols.
|
|
852
|
+
|
|
853
|
+
- ``implementation`` -- either ``'eclib'`` (default) or ``'sage'``. This
|
|
854
|
+
determines which implementation of the underlying classical
|
|
855
|
+
modular symbols is used.
|
|
856
|
+
|
|
857
|
+
OUTPUT: the overconvergent modular symbol associated to ``E``
|
|
858
|
+
|
|
859
|
+
EXAMPLES::
|
|
860
|
+
|
|
861
|
+
sage: # needs eclib
|
|
862
|
+
sage: E = EllipticCurve('113a1')
|
|
863
|
+
sage: symb = E.pollack_stevens_modular_symbol() # indirect doctest
|
|
864
|
+
sage: symb
|
|
865
|
+
Modular symbol of level 113 with values in Sym^0 Q^2
|
|
866
|
+
sage: symb.values()
|
|
867
|
+
[-1/2, 1, -1, 0, 0, 1, 1, -1, 0, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, 0, 0]
|
|
868
|
+
|
|
869
|
+
sage: E = EllipticCurve([0,1])
|
|
870
|
+
sage: symb = E.pollack_stevens_modular_symbol()
|
|
871
|
+
sage: symb.values()
|
|
872
|
+
[-1/6, 1/3, 1/2, 1/6, -1/6, 1/3, -1/3, -1/2, -1/6, 1/6, 0, -1/6, -1/6]
|
|
873
|
+
"""
|
|
874
|
+
if E.base_ring() is not QQ:
|
|
875
|
+
raise ValueError("The elliptic curve must be defined over the "
|
|
876
|
+
"rationals.")
|
|
877
|
+
sign = Integer(sign)
|
|
878
|
+
if sign not in [0, 1, -1]:
|
|
879
|
+
raise ValueError("The sign must be either 0, 1 or -1")
|
|
880
|
+
N = E.conductor()
|
|
881
|
+
V = PollackStevensModularSymbols(Gamma0(N), 0)
|
|
882
|
+
D = V.coefficient_module()
|
|
883
|
+
manin = V.source()
|
|
884
|
+
# if sage's modular symbols are used we take the
|
|
885
|
+
# normalization given by 'L_ratio' in modular_symbol
|
|
886
|
+
if sign <= 0:
|
|
887
|
+
minus_sym = E.modular_symbol(sign=-1, implementation=implementation)
|
|
888
|
+
if sign >= 0:
|
|
889
|
+
plus_sym = E.modular_symbol(sign=1, implementation=implementation)
|
|
890
|
+
val = {}
|
|
891
|
+
for g in manin.gens():
|
|
892
|
+
ac, bd = cusps_from_mat(g)
|
|
893
|
+
val[g] = D(0)
|
|
894
|
+
if sign >= 0:
|
|
895
|
+
val[g] += D(plus_sym(ac) - plus_sym(bd))
|
|
896
|
+
if sign <= 0:
|
|
897
|
+
val[g] += D(minus_sym(ac) - minus_sym(bd))
|
|
898
|
+
return V(val)
|
|
899
|
+
|
|
900
|
+
|
|
901
|
+
def ps_modsym_from_simple_modsym_space(A, name='alpha'):
|
|
902
|
+
r"""
|
|
903
|
+
Return some choice -- only well defined up a nonzero scalar (!) -- of an
|
|
904
|
+
overconvergent modular symbol that corresponds to ``A``.
|
|
905
|
+
|
|
906
|
+
INPUT:
|
|
907
|
+
|
|
908
|
+
- ``A`` -- nonzero simple Hecke equivariant new space of modular symbols,
|
|
909
|
+
which need not be cuspidal
|
|
910
|
+
|
|
911
|
+
OUTPUT:
|
|
912
|
+
|
|
913
|
+
A choice of corresponding overconvergent modular symbols; when dim(A)>1,
|
|
914
|
+
we make an arbitrary choice of defining polynomial for the codomain field.
|
|
915
|
+
|
|
916
|
+
EXAMPLES:
|
|
917
|
+
|
|
918
|
+
The level 11 example::
|
|
919
|
+
|
|
920
|
+
sage: from sage.modular.pollack_stevens.space import ps_modsym_from_simple_modsym_space
|
|
921
|
+
sage: A = ModularSymbols(11, sign=1, weight=2).decomposition()[0]
|
|
922
|
+
sage: A.is_cuspidal()
|
|
923
|
+
True
|
|
924
|
+
sage: f = ps_modsym_from_simple_modsym_space(A); f
|
|
925
|
+
Modular symbol of level 11 with values in Sym^0 Q^2
|
|
926
|
+
sage: f.values()
|
|
927
|
+
[1, -5/2, -5/2]
|
|
928
|
+
sage: f.weight() # this is A.weight()-2 !!!!!!
|
|
929
|
+
0
|
|
930
|
+
|
|
931
|
+
And the -1 sign for the level 11 example::
|
|
932
|
+
|
|
933
|
+
sage: A = ModularSymbols(11, sign=-1, weight=2).decomposition()[0]
|
|
934
|
+
sage: f = ps_modsym_from_simple_modsym_space(A); f.values()
|
|
935
|
+
[0, 1, -1]
|
|
936
|
+
|
|
937
|
+
A does not have to be cuspidal; it can be Eisenstein::
|
|
938
|
+
|
|
939
|
+
sage: A = ModularSymbols(11, sign=1, weight=2).decomposition()[1]
|
|
940
|
+
sage: A.is_cuspidal()
|
|
941
|
+
False
|
|
942
|
+
sage: f = ps_modsym_from_simple_modsym_space(A); f
|
|
943
|
+
Modular symbol of level 11 with values in Sym^0 Q^2
|
|
944
|
+
sage: f.values()
|
|
945
|
+
[1, 0, 0]
|
|
946
|
+
|
|
947
|
+
We create the simplest weight 2 example in which ``A`` has dimension
|
|
948
|
+
bigger than 1::
|
|
949
|
+
|
|
950
|
+
sage: A = ModularSymbols(23, sign=1, weight=2).decomposition()[0]
|
|
951
|
+
sage: f = ps_modsym_from_simple_modsym_space(A); f.values()
|
|
952
|
+
[1, 0, 0, 0, 0]
|
|
953
|
+
sage: A = ModularSymbols(23, sign=-1, weight=2).decomposition()[0]
|
|
954
|
+
sage: f = ps_modsym_from_simple_modsym_space(A); f.values()
|
|
955
|
+
[0, 1, -alpha, alpha, -1]
|
|
956
|
+
sage: f.base_ring()
|
|
957
|
+
Number Field in alpha with defining polynomial x^2 + x - 1
|
|
958
|
+
|
|
959
|
+
We create the +1 modular symbol attached to the weight 12 modular form ``Delta``::
|
|
960
|
+
|
|
961
|
+
sage: A = ModularSymbols(1, sign=+1, weight=12).decomposition()[0]
|
|
962
|
+
sage: f = ps_modsym_from_simple_modsym_space(A); f
|
|
963
|
+
Modular symbol of level 1 with values in Sym^10 Q^2
|
|
964
|
+
sage: f.values()
|
|
965
|
+
[(-1620/691, 0, 1, 0, -9/14, 0, 9/14, 0, -1, 0, 1620/691), (1620/691, 1620/691, 929/691, -453/691, -29145/9674, -42965/9674, -2526/691, -453/691, 1620/691, 1620/691, 0), (0, -1620/691, -1620/691, 453/691, 2526/691, 42965/9674, 29145/9674, 453/691, -929/691, -1620/691, -1620/691)]
|
|
966
|
+
|
|
967
|
+
And, the -1 modular symbol attached to ``Delta``::
|
|
968
|
+
|
|
969
|
+
sage: A = ModularSymbols(1, sign=-1, weight=12).decomposition()[0]
|
|
970
|
+
sage: f = ps_modsym_from_simple_modsym_space(A); f
|
|
971
|
+
Modular symbol of level 1 with values in Sym^10 Q^2
|
|
972
|
+
sage: f.values()
|
|
973
|
+
[(0, 1, 0, -25/48, 0, 5/12, 0, -25/48, 0, 1, 0), (0, -1, -2, -119/48, -23/12, -5/24, 23/12, 3, 2, 0, 0), (0, 0, 2, 3, 23/12, -5/24, -23/12, -119/48, -2, -1, 0)]
|
|
974
|
+
|
|
975
|
+
A consistency check with :meth:`sage.modular.pollack_stevens.space.ps_modsym_from_simple_modsym_space`::
|
|
976
|
+
|
|
977
|
+
sage: # needs eclib
|
|
978
|
+
sage: from sage.modular.pollack_stevens.space import ps_modsym_from_simple_modsym_space
|
|
979
|
+
sage: E = EllipticCurve('11a')
|
|
980
|
+
sage: f_E = E.pollack_stevens_modular_symbol(); f_E.values()
|
|
981
|
+
[-1/5, 1, 0]
|
|
982
|
+
sage: A = ModularSymbols(11, sign=1, weight=2).decomposition()[0]
|
|
983
|
+
sage: f_plus = ps_modsym_from_simple_modsym_space(A); f_plus.values()
|
|
984
|
+
[1, -5/2, -5/2]
|
|
985
|
+
sage: A = ModularSymbols(11, sign=-1, weight=2).decomposition()[0]
|
|
986
|
+
sage: f_minus = ps_modsym_from_simple_modsym_space(A); f_minus.values()
|
|
987
|
+
[0, 1, -1]
|
|
988
|
+
|
|
989
|
+
We find that a linear combination of the plus and minus parts equals the
|
|
990
|
+
Pollack-Stevens symbol attached to ``E``. This illustrates how
|
|
991
|
+
``ps_modsym_from_simple_modsym_space`` is only well-defined up to a nonzero
|
|
992
|
+
scalar::
|
|
993
|
+
|
|
994
|
+
sage: # needs eclib
|
|
995
|
+
sage: (-1/5)*vector(QQ, f_plus.values()) + (1/2)*vector(QQ, f_minus.values())
|
|
996
|
+
(-1/5, 1, 0)
|
|
997
|
+
sage: vector(QQ, f_E.values())
|
|
998
|
+
(-1/5, 1, 0)
|
|
999
|
+
|
|
1000
|
+
The next few examples all illustrate the ways in which exceptions are
|
|
1001
|
+
raised if A does not satisfy various constraints.
|
|
1002
|
+
|
|
1003
|
+
First, ``A`` must be new::
|
|
1004
|
+
|
|
1005
|
+
sage: A = ModularSymbols(33,sign=1).cuspidal_subspace().old_subspace()
|
|
1006
|
+
sage: ps_modsym_from_simple_modsym_space(A)
|
|
1007
|
+
Traceback (most recent call last):
|
|
1008
|
+
...
|
|
1009
|
+
ValueError: A must be new
|
|
1010
|
+
|
|
1011
|
+
``A`` must be simple::
|
|
1012
|
+
|
|
1013
|
+
sage: A = ModularSymbols(43,sign=1).cuspidal_subspace()
|
|
1014
|
+
sage: ps_modsym_from_simple_modsym_space(A)
|
|
1015
|
+
Traceback (most recent call last):
|
|
1016
|
+
...
|
|
1017
|
+
ValueError: A must be simple
|
|
1018
|
+
|
|
1019
|
+
``A`` must have sign -1 or +1 in order to be simple::
|
|
1020
|
+
|
|
1021
|
+
sage: A = ModularSymbols(11).cuspidal_subspace()
|
|
1022
|
+
sage: ps_modsym_from_simple_modsym_space(A)
|
|
1023
|
+
Traceback (most recent call last):
|
|
1024
|
+
...
|
|
1025
|
+
ValueError: A must have sign +1 or -1 (otherwise it is not simple)
|
|
1026
|
+
|
|
1027
|
+
The dimension must be positive::
|
|
1028
|
+
|
|
1029
|
+
sage: A = ModularSymbols(10).cuspidal_subspace(); A
|
|
1030
|
+
Modular Symbols subspace of dimension 0 of Modular Symbols space of dimension 3 for Gamma_0(10) of weight 2 with sign 0 over Rational Field
|
|
1031
|
+
sage: ps_modsym_from_simple_modsym_space(A)
|
|
1032
|
+
Traceback (most recent call last):
|
|
1033
|
+
...
|
|
1034
|
+
ValueError: A must have positive dimension
|
|
1035
|
+
|
|
1036
|
+
We check that forms of nontrivial character are getting handled correctly::
|
|
1037
|
+
|
|
1038
|
+
sage: from sage.modular.pollack_stevens.space import ps_modsym_from_simple_modsym_space
|
|
1039
|
+
sage: f = Newforms(Gamma1(13), names='a')[0]
|
|
1040
|
+
sage: phi = ps_modsym_from_simple_modsym_space(f.modular_symbols(1))
|
|
1041
|
+
sage: phi.hecke(7)
|
|
1042
|
+
Modular symbol of level 13 with values in Sym^0 (Number Field in alpha with defining polynomial x^2 + 3*x + 3)^2 twisted by Dirichlet character modulo 13 of conductor 13 mapping 2 |--> -alpha - 1
|
|
1043
|
+
sage: phi.hecke(7).values()
|
|
1044
|
+
[0, 0, 0, 0, 0]
|
|
1045
|
+
"""
|
|
1046
|
+
if A.dimension() == 0:
|
|
1047
|
+
raise ValueError("A must have positive dimension")
|
|
1048
|
+
|
|
1049
|
+
if A.sign() == 0:
|
|
1050
|
+
raise ValueError("A must have sign +1 or -1 (otherwise it is"
|
|
1051
|
+
" not simple)")
|
|
1052
|
+
|
|
1053
|
+
if not A.is_new():
|
|
1054
|
+
raise ValueError("A must be new")
|
|
1055
|
+
|
|
1056
|
+
if not A.is_simple():
|
|
1057
|
+
raise ValueError("A must be simple")
|
|
1058
|
+
|
|
1059
|
+
M = A.ambient_module()
|
|
1060
|
+
w = A.dual_eigenvector(name)
|
|
1061
|
+
K = w.base_ring()
|
|
1062
|
+
chi = A.q_eigenform_character(name)
|
|
1063
|
+
V = PollackStevensModularSymbols(chi, A.weight() - 2, base_ring=K, sign=A.sign())
|
|
1064
|
+
D = V.coefficient_module()
|
|
1065
|
+
# N = V.level()
|
|
1066
|
+
k = V.weight() # = A.weight() - 2
|
|
1067
|
+
manin = V.source()
|
|
1068
|
+
val = {}
|
|
1069
|
+
for g in manin.gens():
|
|
1070
|
+
ac, bd = cusps_from_mat(g)
|
|
1071
|
+
v = []
|
|
1072
|
+
for j in range(k + 1):
|
|
1073
|
+
# TODO: The following might be backward: it should be the coefficient of X^j Y^(k-j)
|
|
1074
|
+
v.append(w.dot_product(M.modular_symbol([j, ac, bd]).element()) * (-1) ** (k - j))
|
|
1075
|
+
val[g] = D(v)
|
|
1076
|
+
return V(val)
|