passagemath-schemes 10.6.40__cp314-cp314-macosx_13_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-schemes might be problematic. Click here for more details.
- passagemath_schemes/.dylibs/libflint.22.0.dylib +0 -0
- passagemath_schemes/.dylibs/libgmp.10.dylib +0 -0
- passagemath_schemes/.dylibs/libgmpxx.4.dylib +0 -0
- passagemath_schemes/.dylibs/libmpfr.6.dylib +0 -0
- passagemath_schemes/__init__.py +3 -0
- passagemath_schemes-10.6.40.dist-info/METADATA +204 -0
- passagemath_schemes-10.6.40.dist-info/METADATA.bak +205 -0
- passagemath_schemes-10.6.40.dist-info/RECORD +314 -0
- passagemath_schemes-10.6.40.dist-info/WHEEL +6 -0
- passagemath_schemes-10.6.40.dist-info/top_level.txt +3 -0
- sage/all__sagemath_schemes.py +23 -0
- sage/databases/all__sagemath_schemes.py +7 -0
- sage/databases/cremona.py +1723 -0
- sage/dynamics/all__sagemath_schemes.py +2 -0
- sage/dynamics/arithmetic_dynamics/affine_ds.py +1083 -0
- sage/dynamics/arithmetic_dynamics/all.py +14 -0
- sage/dynamics/arithmetic_dynamics/berkovich_ds.py +1101 -0
- sage/dynamics/arithmetic_dynamics/dynamical_semigroup.py +1543 -0
- sage/dynamics/arithmetic_dynamics/endPN_automorphism_group.py +2426 -0
- sage/dynamics/arithmetic_dynamics/endPN_minimal_model.py +1169 -0
- sage/dynamics/arithmetic_dynamics/generic_ds.py +663 -0
- sage/dynamics/arithmetic_dynamics/product_projective_ds.py +339 -0
- sage/dynamics/arithmetic_dynamics/projective_ds.py +9558 -0
- sage/dynamics/arithmetic_dynamics/projective_ds_helper.cpython-314-darwin.so +0 -0
- sage/dynamics/arithmetic_dynamics/projective_ds_helper.pyx +301 -0
- sage/dynamics/arithmetic_dynamics/wehlerK3.py +2576 -0
- sage/lfunctions/all.py +18 -0
- sage/lfunctions/dokchitser.py +745 -0
- sage/lfunctions/pari.py +818 -0
- sage/lfunctions/zero_sums.cpython-314-darwin.so +0 -0
- sage/lfunctions/zero_sums.pyx +1847 -0
- sage/modular/abvar/abvar.py +5135 -0
- sage/modular/abvar/abvar_ambient_jacobian.py +413 -0
- sage/modular/abvar/abvar_newform.py +244 -0
- sage/modular/abvar/all.py +8 -0
- sage/modular/abvar/constructor.py +186 -0
- sage/modular/abvar/cuspidal_subgroup.py +371 -0
- sage/modular/abvar/finite_subgroup.py +896 -0
- sage/modular/abvar/homology.py +720 -0
- sage/modular/abvar/homspace.py +998 -0
- sage/modular/abvar/lseries.py +415 -0
- sage/modular/abvar/morphism.py +935 -0
- sage/modular/abvar/torsion_point.py +274 -0
- sage/modular/abvar/torsion_subgroup.py +740 -0
- sage/modular/all.py +43 -0
- sage/modular/arithgroup/all.py +20 -0
- sage/modular/arithgroup/arithgroup_element.cpython-314-darwin.so +0 -0
- sage/modular/arithgroup/arithgroup_element.pyx +474 -0
- sage/modular/arithgroup/arithgroup_generic.py +1402 -0
- sage/modular/arithgroup/arithgroup_perm.py +2692 -0
- sage/modular/arithgroup/congroup.cpython-314-darwin.so +0 -0
- sage/modular/arithgroup/congroup.pyx +334 -0
- sage/modular/arithgroup/congroup_gamma.py +363 -0
- sage/modular/arithgroup/congroup_gamma0.py +692 -0
- sage/modular/arithgroup/congroup_gamma1.py +653 -0
- sage/modular/arithgroup/congroup_gammaH.py +1469 -0
- sage/modular/arithgroup/congroup_generic.py +628 -0
- sage/modular/arithgroup/congroup_sl2z.py +267 -0
- sage/modular/arithgroup/farey_symbol.cpython-314-darwin.so +0 -0
- sage/modular/arithgroup/farey_symbol.pyx +1066 -0
- sage/modular/arithgroup/tests.py +418 -0
- sage/modular/btquotients/all.py +4 -0
- sage/modular/btquotients/btquotient.py +3753 -0
- sage/modular/btquotients/pautomorphicform.py +2570 -0
- sage/modular/buzzard.py +100 -0
- sage/modular/congroup.py +29 -0
- sage/modular/congroup_element.py +13 -0
- sage/modular/cusps.py +1109 -0
- sage/modular/cusps_nf.py +1270 -0
- sage/modular/dims.py +569 -0
- sage/modular/dirichlet.py +3310 -0
- sage/modular/drinfeld_modform/all.py +2 -0
- sage/modular/drinfeld_modform/element.py +446 -0
- sage/modular/drinfeld_modform/ring.py +773 -0
- sage/modular/drinfeld_modform/tutorial.py +236 -0
- sage/modular/etaproducts.py +1065 -0
- sage/modular/hecke/algebra.py +746 -0
- sage/modular/hecke/all.py +20 -0
- sage/modular/hecke/ambient_module.py +1019 -0
- sage/modular/hecke/degenmap.py +119 -0
- sage/modular/hecke/element.py +325 -0
- sage/modular/hecke/hecke_operator.py +780 -0
- sage/modular/hecke/homspace.py +206 -0
- sage/modular/hecke/module.py +1767 -0
- sage/modular/hecke/morphism.py +174 -0
- sage/modular/hecke/submodule.py +989 -0
- sage/modular/hypergeometric_misc.cpython-314-darwin.so +0 -0
- sage/modular/hypergeometric_misc.pxd +4 -0
- sage/modular/hypergeometric_misc.pyx +166 -0
- sage/modular/hypergeometric_motive.py +2017 -0
- sage/modular/local_comp/all.py +2 -0
- sage/modular/local_comp/liftings.py +292 -0
- sage/modular/local_comp/local_comp.py +1071 -0
- sage/modular/local_comp/smoothchar.py +1825 -0
- sage/modular/local_comp/type_space.py +748 -0
- sage/modular/modform/all.py +30 -0
- sage/modular/modform/ambient.py +815 -0
- sage/modular/modform/ambient_R.py +177 -0
- sage/modular/modform/ambient_eps.py +306 -0
- sage/modular/modform/ambient_g0.py +124 -0
- sage/modular/modform/ambient_g1.py +204 -0
- sage/modular/modform/constructor.py +545 -0
- sage/modular/modform/cuspidal_submodule.py +708 -0
- sage/modular/modform/defaults.py +14 -0
- sage/modular/modform/eis_series.py +505 -0
- sage/modular/modform/eisenstein_submodule.py +663 -0
- sage/modular/modform/element.py +4131 -0
- sage/modular/modform/find_generators.py +59 -0
- sage/modular/modform/half_integral.py +154 -0
- sage/modular/modform/hecke_operator_on_qexp.py +247 -0
- sage/modular/modform/j_invariant.py +47 -0
- sage/modular/modform/l_series_gross_zagier.py +133 -0
- sage/modular/modform/l_series_gross_zagier_coeffs.cpython-314-darwin.so +0 -0
- sage/modular/modform/l_series_gross_zagier_coeffs.pyx +177 -0
- sage/modular/modform/notes.py +45 -0
- sage/modular/modform/numerical.py +514 -0
- sage/modular/modform/periods.py +14 -0
- sage/modular/modform/ring.py +1257 -0
- sage/modular/modform/space.py +1860 -0
- sage/modular/modform/submodule.py +118 -0
- sage/modular/modform/tests.py +64 -0
- sage/modular/modform/theta.py +110 -0
- sage/modular/modform/vm_basis.py +381 -0
- sage/modular/modform/weight1.py +220 -0
- sage/modular/modform_hecketriangle/abstract_ring.py +1932 -0
- sage/modular/modform_hecketriangle/abstract_space.py +2528 -0
- sage/modular/modform_hecketriangle/all.py +30 -0
- sage/modular/modform_hecketriangle/analytic_type.py +590 -0
- sage/modular/modform_hecketriangle/constructor.py +416 -0
- sage/modular/modform_hecketriangle/element.py +351 -0
- sage/modular/modform_hecketriangle/functors.py +752 -0
- sage/modular/modform_hecketriangle/graded_ring.py +541 -0
- sage/modular/modform_hecketriangle/graded_ring_element.py +2225 -0
- sage/modular/modform_hecketriangle/hecke_triangle_group_element.py +3352 -0
- sage/modular/modform_hecketriangle/hecke_triangle_groups.py +1432 -0
- sage/modular/modform_hecketriangle/readme.py +1214 -0
- sage/modular/modform_hecketriangle/series_constructor.py +580 -0
- sage/modular/modform_hecketriangle/space.py +1037 -0
- sage/modular/modform_hecketriangle/subspace.py +423 -0
- sage/modular/modsym/all.py +17 -0
- sage/modular/modsym/ambient.py +3846 -0
- sage/modular/modsym/boundary.py +1420 -0
- sage/modular/modsym/element.py +336 -0
- sage/modular/modsym/g1list.py +178 -0
- sage/modular/modsym/ghlist.py +182 -0
- sage/modular/modsym/hecke_operator.py +73 -0
- sage/modular/modsym/manin_symbol.cpython-314-darwin.so +0 -0
- sage/modular/modsym/manin_symbol.pxd +5 -0
- sage/modular/modsym/manin_symbol.pyx +497 -0
- sage/modular/modsym/manin_symbol_list.py +1295 -0
- sage/modular/modsym/modsym.py +400 -0
- sage/modular/modsym/modular_symbols.py +384 -0
- sage/modular/modsym/p1list.cpython-314-darwin.so +0 -0
- sage/modular/modsym/p1list.pxd +29 -0
- sage/modular/modsym/p1list.pyx +1372 -0
- sage/modular/modsym/p1list_nf.py +1241 -0
- sage/modular/modsym/relation_matrix.py +591 -0
- sage/modular/modsym/relation_matrix_pyx.cpython-314-darwin.so +0 -0
- sage/modular/modsym/relation_matrix_pyx.pyx +108 -0
- sage/modular/modsym/space.py +2468 -0
- sage/modular/modsym/subspace.py +455 -0
- sage/modular/modsym/tests.py +375 -0
- sage/modular/multiple_zeta.py +2632 -0
- sage/modular/multiple_zeta_F_algebra.py +786 -0
- sage/modular/overconvergent/all.py +6 -0
- sage/modular/overconvergent/genus0.py +1878 -0
- sage/modular/overconvergent/hecke_series.py +1187 -0
- sage/modular/overconvergent/weightspace.py +778 -0
- sage/modular/pollack_stevens/all.py +4 -0
- sage/modular/pollack_stevens/distributions.py +874 -0
- sage/modular/pollack_stevens/fund_domain.py +1572 -0
- sage/modular/pollack_stevens/manin_map.py +859 -0
- sage/modular/pollack_stevens/modsym.py +1593 -0
- sage/modular/pollack_stevens/padic_lseries.py +417 -0
- sage/modular/pollack_stevens/sigma0.py +534 -0
- sage/modular/pollack_stevens/space.py +1076 -0
- sage/modular/quasimodform/all.py +3 -0
- sage/modular/quasimodform/element.py +845 -0
- sage/modular/quasimodform/ring.py +828 -0
- sage/modular/quatalg/all.py +3 -0
- sage/modular/quatalg/brandt.py +1642 -0
- sage/modular/ssmod/all.py +8 -0
- sage/modular/ssmod/ssmod.py +827 -0
- sage/rings/all__sagemath_schemes.py +1 -0
- sage/rings/polynomial/all__sagemath_schemes.py +1 -0
- sage/rings/polynomial/binary_form_reduce.py +585 -0
- sage/schemes/all.py +41 -0
- sage/schemes/berkovich/all.py +6 -0
- sage/schemes/berkovich/berkovich_cp_element.py +2582 -0
- sage/schemes/berkovich/berkovich_space.py +748 -0
- sage/schemes/curves/affine_curve.py +2928 -0
- sage/schemes/curves/all.py +33 -0
- sage/schemes/curves/closed_point.py +434 -0
- sage/schemes/curves/constructor.py +381 -0
- sage/schemes/curves/curve.py +542 -0
- sage/schemes/curves/plane_curve_arrangement.py +1283 -0
- sage/schemes/curves/point.py +463 -0
- sage/schemes/curves/projective_curve.py +3026 -0
- sage/schemes/curves/zariski_vankampen.py +1932 -0
- sage/schemes/cyclic_covers/all.py +2 -0
- sage/schemes/cyclic_covers/charpoly_frobenius.py +320 -0
- sage/schemes/cyclic_covers/constructor.py +137 -0
- sage/schemes/cyclic_covers/cycliccover_finite_field.py +1309 -0
- sage/schemes/cyclic_covers/cycliccover_generic.py +310 -0
- sage/schemes/elliptic_curves/BSD.py +1036 -0
- sage/schemes/elliptic_curves/Qcurves.py +592 -0
- sage/schemes/elliptic_curves/addition_formulas_ring.py +94 -0
- sage/schemes/elliptic_curves/all.py +49 -0
- sage/schemes/elliptic_curves/cardinality.py +609 -0
- sage/schemes/elliptic_curves/cm.py +1102 -0
- sage/schemes/elliptic_curves/constructor.py +1552 -0
- sage/schemes/elliptic_curves/ec_database.py +175 -0
- sage/schemes/elliptic_curves/ell_curve_isogeny.py +3972 -0
- sage/schemes/elliptic_curves/ell_egros.py +459 -0
- sage/schemes/elliptic_curves/ell_field.py +2836 -0
- sage/schemes/elliptic_curves/ell_finite_field.py +3359 -0
- sage/schemes/elliptic_curves/ell_generic.py +3760 -0
- sage/schemes/elliptic_curves/ell_local_data.py +1207 -0
- sage/schemes/elliptic_curves/ell_modular_symbols.py +775 -0
- sage/schemes/elliptic_curves/ell_number_field.py +4220 -0
- sage/schemes/elliptic_curves/ell_padic_field.py +107 -0
- sage/schemes/elliptic_curves/ell_point.py +4787 -0
- sage/schemes/elliptic_curves/ell_rational_field.py +7368 -0
- sage/schemes/elliptic_curves/ell_tate_curve.py +671 -0
- sage/schemes/elliptic_curves/ell_torsion.py +436 -0
- sage/schemes/elliptic_curves/ell_wp.py +352 -0
- sage/schemes/elliptic_curves/formal_group.py +760 -0
- sage/schemes/elliptic_curves/gal_reps.py +1459 -0
- sage/schemes/elliptic_curves/gal_reps_number_field.py +1669 -0
- sage/schemes/elliptic_curves/gp_simon.py +152 -0
- sage/schemes/elliptic_curves/heegner.py +7335 -0
- sage/schemes/elliptic_curves/height.py +2109 -0
- sage/schemes/elliptic_curves/hom.py +1406 -0
- sage/schemes/elliptic_curves/hom_composite.py +934 -0
- sage/schemes/elliptic_curves/hom_frobenius.py +522 -0
- sage/schemes/elliptic_curves/hom_scalar.py +531 -0
- sage/schemes/elliptic_curves/hom_sum.py +682 -0
- sage/schemes/elliptic_curves/hom_velusqrt.py +1290 -0
- sage/schemes/elliptic_curves/homset.py +271 -0
- sage/schemes/elliptic_curves/isogeny_class.py +1521 -0
- sage/schemes/elliptic_curves/isogeny_small_degree.py +2797 -0
- sage/schemes/elliptic_curves/jacobian.py +237 -0
- sage/schemes/elliptic_curves/kodaira_symbol.py +344 -0
- sage/schemes/elliptic_curves/kraus.py +1014 -0
- sage/schemes/elliptic_curves/lseries_ell.py +943 -0
- sage/schemes/elliptic_curves/mod5family.py +105 -0
- sage/schemes/elliptic_curves/mod_poly.py +197 -0
- sage/schemes/elliptic_curves/mod_sym_num.cpython-314-darwin.so +0 -0
- sage/schemes/elliptic_curves/mod_sym_num.pyx +3796 -0
- sage/schemes/elliptic_curves/modular_parametrization.py +305 -0
- sage/schemes/elliptic_curves/padic_lseries.py +1793 -0
- sage/schemes/elliptic_curves/padics.py +1816 -0
- sage/schemes/elliptic_curves/period_lattice.py +2234 -0
- sage/schemes/elliptic_curves/period_lattice_region.cpython-314-darwin.so +0 -0
- sage/schemes/elliptic_curves/period_lattice_region.pyx +722 -0
- sage/schemes/elliptic_curves/saturation.py +715 -0
- sage/schemes/elliptic_curves/sha_tate.py +1158 -0
- sage/schemes/elliptic_curves/weierstrass_morphism.py +1117 -0
- sage/schemes/elliptic_curves/weierstrass_transform.py +200 -0
- sage/schemes/hyperelliptic_curves/all.py +6 -0
- sage/schemes/hyperelliptic_curves/constructor.py +291 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_finite_field.py +1914 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_g2.py +192 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_generic.py +954 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_padic_field.py +1332 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_rational_field.py +84 -0
- sage/schemes/hyperelliptic_curves/invariants.py +410 -0
- sage/schemes/hyperelliptic_curves/jacobian_endomorphism_utils.py +315 -0
- sage/schemes/hyperelliptic_curves/jacobian_g2.py +32 -0
- sage/schemes/hyperelliptic_curves/jacobian_generic.py +419 -0
- sage/schemes/hyperelliptic_curves/jacobian_homset.py +186 -0
- sage/schemes/hyperelliptic_curves/jacobian_morphism.py +875 -0
- sage/schemes/hyperelliptic_curves/kummer_surface.py +99 -0
- sage/schemes/hyperelliptic_curves/mestre.py +302 -0
- sage/schemes/hyperelliptic_curves/monsky_washnitzer.py +3871 -0
- sage/schemes/jacobians/abstract_jacobian.py +277 -0
- sage/schemes/jacobians/all.py +2 -0
- sage/schemes/overview.py +161 -0
- sage/schemes/plane_conics/all.py +22 -0
- sage/schemes/plane_conics/con_field.py +1296 -0
- sage/schemes/plane_conics/con_finite_field.py +158 -0
- sage/schemes/plane_conics/con_number_field.py +456 -0
- sage/schemes/plane_conics/con_rational_field.py +406 -0
- sage/schemes/plane_conics/con_rational_function_field.py +580 -0
- sage/schemes/plane_conics/constructor.py +249 -0
- sage/schemes/plane_quartics/all.py +2 -0
- sage/schemes/plane_quartics/quartic_constructor.py +71 -0
- sage/schemes/plane_quartics/quartic_generic.py +73 -0
- sage/schemes/riemann_surfaces/all.py +1 -0
- sage/schemes/riemann_surfaces/riemann_surface.py +4117 -0
- sage_wheels/share/cremona/cremona_mini.db +0 -0
- sage_wheels/share/ellcurves/rank0 +30427 -0
- sage_wheels/share/ellcurves/rank1 +31871 -0
- sage_wheels/share/ellcurves/rank10 +6 -0
- sage_wheels/share/ellcurves/rank11 +6 -0
- sage_wheels/share/ellcurves/rank12 +1 -0
- sage_wheels/share/ellcurves/rank14 +1 -0
- sage_wheels/share/ellcurves/rank15 +1 -0
- sage_wheels/share/ellcurves/rank17 +1 -0
- sage_wheels/share/ellcurves/rank19 +1 -0
- sage_wheels/share/ellcurves/rank2 +2388 -0
- sage_wheels/share/ellcurves/rank20 +1 -0
- sage_wheels/share/ellcurves/rank21 +1 -0
- sage_wheels/share/ellcurves/rank22 +1 -0
- sage_wheels/share/ellcurves/rank23 +1 -0
- sage_wheels/share/ellcurves/rank24 +1 -0
- sage_wheels/share/ellcurves/rank28 +1 -0
- sage_wheels/share/ellcurves/rank3 +836 -0
- sage_wheels/share/ellcurves/rank4 +10 -0
- sage_wheels/share/ellcurves/rank5 +5 -0
- sage_wheels/share/ellcurves/rank6 +5 -0
- sage_wheels/share/ellcurves/rank7 +5 -0
- sage_wheels/share/ellcurves/rank8 +6 -0
- sage_wheels/share/ellcurves/rank9 +7 -0
|
@@ -0,0 +1,591 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-schemes
|
|
2
|
+
# sage.doctest: needs sage.libs.flint
|
|
3
|
+
"""
|
|
4
|
+
Relation matrices for ambient modular symbols spaces
|
|
5
|
+
|
|
6
|
+
This file contains functions that are used by the various ambient modular
|
|
7
|
+
symbols classes to compute presentations of spaces in terms of generators and
|
|
8
|
+
relations, using the standard methods based on Manin symbols.
|
|
9
|
+
"""
|
|
10
|
+
# ****************************************************************************
|
|
11
|
+
# Sage: Open Source Mathematical Software
|
|
12
|
+
#
|
|
13
|
+
# Copyright (C) 2005 William Stein <wstein@gmail.com>
|
|
14
|
+
#
|
|
15
|
+
# Distributed under the terms of the GNU General Public License (GPL)
|
|
16
|
+
#
|
|
17
|
+
# This code is distributed in the hope that it will be useful,
|
|
18
|
+
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
19
|
+
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
20
|
+
# General Public License for more details.
|
|
21
|
+
#
|
|
22
|
+
# The full text of the GPL is available at:
|
|
23
|
+
#
|
|
24
|
+
# https://www.gnu.org/licenses/
|
|
25
|
+
# ****************************************************************************
|
|
26
|
+
|
|
27
|
+
from sage.matrix.matrix_space import MatrixSpace
|
|
28
|
+
from sage.misc.search import search
|
|
29
|
+
from sage.misc.verbose import verbose
|
|
30
|
+
from sage.modular.modsym.manin_symbol_list import ManinSymbolList
|
|
31
|
+
from sage.rings.rational_field import RationalField
|
|
32
|
+
from sage.categories.rings import Rings
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
SPARSE = True
|
|
36
|
+
|
|
37
|
+
# S = [0,-1; 1,0]
|
|
38
|
+
# T = [0,-1; 1,-1],
|
|
39
|
+
# T^2 = [-1, 1, -1, 0]
|
|
40
|
+
# I = [-1,0; 0,1]
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
######################################################################
|
|
44
|
+
# The following four functions are used to compute the quotient
|
|
45
|
+
# modulo the S, I, and T relations more efficiently that the generic
|
|
46
|
+
# code in the relation_matrix file:
|
|
47
|
+
# modS_relations -- compute the S relations.
|
|
48
|
+
# modI_quotient -- compute the I relations.
|
|
49
|
+
# T_relation_matrix -- matrix whose echelon form gives
|
|
50
|
+
# the quotient by 3-term T relations.
|
|
51
|
+
# gens_to_basis_matrix -- compute echelon form of 3-term
|
|
52
|
+
# relation matrix, and read off each
|
|
53
|
+
# generator in terms of basis.
|
|
54
|
+
# These four functions are orchestrated in the function
|
|
55
|
+
# compute_presentation
|
|
56
|
+
# which is defined below. See the comment at the beginning
|
|
57
|
+
# of that function for an overall description of the algorithm.
|
|
58
|
+
######################################################################
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
def modS_relations(syms):
|
|
62
|
+
r"""
|
|
63
|
+
Compute quotient of Manin symbols by the S relations.
|
|
64
|
+
|
|
65
|
+
Here S is the 2x2 matrix [0, -1; 1, 0].
|
|
66
|
+
|
|
67
|
+
INPUT:
|
|
68
|
+
|
|
69
|
+
- ``syms`` -- :class:`ManinSymbolList`
|
|
70
|
+
|
|
71
|
+
OUTPUT:
|
|
72
|
+
|
|
73
|
+
- ``rels`` -- set of pairs of pairs (j, s), where if
|
|
74
|
+
mod[i] = (j,s), then x_i = s\*x_j (mod S relations)
|
|
75
|
+
|
|
76
|
+
EXAMPLES::
|
|
77
|
+
|
|
78
|
+
sage: from sage.modular.modsym.manin_symbol_list import ManinSymbolList_gamma0
|
|
79
|
+
sage: from sage.modular.modsym.relation_matrix import modS_relations
|
|
80
|
+
|
|
81
|
+
::
|
|
82
|
+
|
|
83
|
+
sage: syms = ManinSymbolList_gamma0(2, 4); syms
|
|
84
|
+
Manin Symbol List of weight 4 for Gamma0(2)
|
|
85
|
+
sage: modS_relations(syms)
|
|
86
|
+
{((0, 1), (7, 1)),
|
|
87
|
+
((1, 1), (6, 1)),
|
|
88
|
+
((2, 1), (8, 1)),
|
|
89
|
+
((3, -1), (4, 1)),
|
|
90
|
+
((3, 1), (4, -1)),
|
|
91
|
+
((5, -1), (5, 1))}
|
|
92
|
+
|
|
93
|
+
::
|
|
94
|
+
|
|
95
|
+
sage: syms = ManinSymbolList_gamma0(7, 2); syms
|
|
96
|
+
Manin Symbol List of weight 2 for Gamma0(7)
|
|
97
|
+
sage: modS_relations(syms)
|
|
98
|
+
{((0, 1), (1, 1)), ((2, 1), (7, 1)), ((3, 1), (4, 1)), ((5, 1), (6, 1))}
|
|
99
|
+
|
|
100
|
+
Next we do an example with Gamma1::
|
|
101
|
+
|
|
102
|
+
sage: from sage.modular.modsym.manin_symbol_list import ManinSymbolList_gamma1
|
|
103
|
+
sage: syms = ManinSymbolList_gamma1(3,2); syms
|
|
104
|
+
Manin Symbol List of weight 2 for Gamma1(3)
|
|
105
|
+
sage: modS_relations(syms)
|
|
106
|
+
{((0, 1), (2, 1)),
|
|
107
|
+
((0, 1), (5, 1)),
|
|
108
|
+
((1, 1), (2, 1)),
|
|
109
|
+
((1, 1), (5, 1)),
|
|
110
|
+
((3, 1), (4, 1)),
|
|
111
|
+
((3, 1), (6, 1)),
|
|
112
|
+
((4, 1), (7, 1)),
|
|
113
|
+
((6, 1), (7, 1))}
|
|
114
|
+
"""
|
|
115
|
+
if not isinstance(syms, ManinSymbolList):
|
|
116
|
+
raise TypeError("syms must be a ManinSymbolList")
|
|
117
|
+
tm = verbose()
|
|
118
|
+
# We will fill in this set with the relations x_i + s*x_j = 0,
|
|
119
|
+
# where the notation is as in _sparse_2term_quotient.
|
|
120
|
+
rels = set()
|
|
121
|
+
for i in range(len(syms)):
|
|
122
|
+
j, s = syms.apply_S(i)
|
|
123
|
+
assert j != -1
|
|
124
|
+
if i < j:
|
|
125
|
+
rels.add(((i, 1), (j, s)))
|
|
126
|
+
else:
|
|
127
|
+
rels.add(((j, s), (i, 1)))
|
|
128
|
+
verbose("finished creating S relations", tm)
|
|
129
|
+
return rels
|
|
130
|
+
|
|
131
|
+
|
|
132
|
+
def modI_relations(syms, sign):
|
|
133
|
+
r"""
|
|
134
|
+
Compute quotient of Manin symbols by the I relations.
|
|
135
|
+
|
|
136
|
+
INPUT:
|
|
137
|
+
|
|
138
|
+
- ``syms`` -- :class:`ManinSymbolList`
|
|
139
|
+
|
|
140
|
+
- ``sign`` -- integer (either -1, 0, or 1)
|
|
141
|
+
|
|
142
|
+
OUTPUT:
|
|
143
|
+
|
|
144
|
+
- ``rels`` -- set of pairs of pairs (j, s), where if
|
|
145
|
+
mod[i] = (j,s), then x_i = s\*x_j (mod S relations)
|
|
146
|
+
|
|
147
|
+
EXAMPLES::
|
|
148
|
+
|
|
149
|
+
sage: L = sage.modular.modsym.manin_symbol_list.ManinSymbolList_gamma1(4, 3)
|
|
150
|
+
sage: sage.modular.modsym.relation_matrix.modI_relations(L, 1)
|
|
151
|
+
{((0, 1), (0, -1)),
|
|
152
|
+
((1, 1), (1, -1)),
|
|
153
|
+
((2, 1), (8, -1)),
|
|
154
|
+
((3, 1), (9, -1)),
|
|
155
|
+
((4, 1), (10, -1)),
|
|
156
|
+
((5, 1), (11, -1)),
|
|
157
|
+
((6, 1), (6, -1)),
|
|
158
|
+
((7, 1), (7, -1)),
|
|
159
|
+
((8, 1), (2, -1)),
|
|
160
|
+
((9, 1), (3, -1)),
|
|
161
|
+
((10, 1), (4, -1)),
|
|
162
|
+
((11, 1), (5, -1)),
|
|
163
|
+
((12, 1), (12, 1)),
|
|
164
|
+
((13, 1), (13, 1)),
|
|
165
|
+
((14, 1), (20, 1)),
|
|
166
|
+
((15, 1), (21, 1)),
|
|
167
|
+
((16, 1), (22, 1)),
|
|
168
|
+
((17, 1), (23, 1)),
|
|
169
|
+
((18, 1), (18, 1)),
|
|
170
|
+
((19, 1), (19, 1)),
|
|
171
|
+
((20, 1), (14, 1)),
|
|
172
|
+
((21, 1), (15, 1)),
|
|
173
|
+
((22, 1), (16, 1)),
|
|
174
|
+
((23, 1), (17, 1))}
|
|
175
|
+
|
|
176
|
+
.. warning::
|
|
177
|
+
|
|
178
|
+
We quotient by the involution eta((u,v)) = (-u,v), which has
|
|
179
|
+
the opposite sign as the involution in Merel's Springer LNM
|
|
180
|
+
1585 paper! Thus our +1 eigenspace is his -1 eigenspace,
|
|
181
|
+
etc. We do this for consistency with MAGMA.
|
|
182
|
+
"""
|
|
183
|
+
tm = verbose()
|
|
184
|
+
# We will fill in this set with the relations x_i - sign*s*x_j = 0,
|
|
185
|
+
# where the notation is as in _sparse_2term_quotient.
|
|
186
|
+
rels = set()
|
|
187
|
+
for i in range(len(syms)):
|
|
188
|
+
j, s = syms.apply_I(i)
|
|
189
|
+
assert j != -1
|
|
190
|
+
rels.add(((i, 1), (j, -sign * s)))
|
|
191
|
+
verbose("finished creating I relations", tm)
|
|
192
|
+
return rels
|
|
193
|
+
|
|
194
|
+
|
|
195
|
+
def T_relation_matrix_wtk_g0(syms, mod, field, sparse):
|
|
196
|
+
r"""
|
|
197
|
+
Compute a matrix whose echelon form gives the quotient by 3-term T
|
|
198
|
+
relations. Despite the name, this is used for all modular symbols spaces
|
|
199
|
+
(including those with character and those for `\Gamma_1` and `\Gamma_H`
|
|
200
|
+
groups), not just `\Gamma_0`.
|
|
201
|
+
|
|
202
|
+
INPUT:
|
|
203
|
+
|
|
204
|
+
- ``syms`` -- :class:`ManinSymbolList`
|
|
205
|
+
|
|
206
|
+
- ``mod`` -- list that gives quotient modulo some two-term relations, i.e.,
|
|
207
|
+
the S relations, and if sign is nonzero, the I relations
|
|
208
|
+
|
|
209
|
+
- ``field`` -- ``base_ring``
|
|
210
|
+
|
|
211
|
+
- ``sparse`` -- boolean; whether to use sparse rather than dense
|
|
212
|
+
linear algebra
|
|
213
|
+
|
|
214
|
+
OUTPUT: a sparse matrix whose rows correspond to the reduction of
|
|
215
|
+
the `T` relations modulo the `S` and `I` relations.
|
|
216
|
+
|
|
217
|
+
EXAMPLES::
|
|
218
|
+
|
|
219
|
+
sage: from sage.modular.modsym.relation_matrix import sparse_2term_quotient, T_relation_matrix_wtk_g0, modS_relations
|
|
220
|
+
sage: L = sage.modular.modsym.manin_symbol_list.ManinSymbolList_gamma_h(GammaH(36, [17,19]), 2)
|
|
221
|
+
sage: modS = sparse_2term_quotient(modS_relations(L), 216, QQ)
|
|
222
|
+
sage: T_relation_matrix_wtk_g0(L, modS, QQ, False)
|
|
223
|
+
72 x 216 dense matrix over Rational Field (use the '.str()' method to see the entries)
|
|
224
|
+
sage: T_relation_matrix_wtk_g0(L, modS, GF(17), True)
|
|
225
|
+
72 x 216 sparse matrix over Finite Field of size 17 (use the '.str()' method to see the entries)
|
|
226
|
+
"""
|
|
227
|
+
tm = verbose()
|
|
228
|
+
row = 0
|
|
229
|
+
entries = {}
|
|
230
|
+
already_seen = set()
|
|
231
|
+
w = syms.weight()
|
|
232
|
+
for i in range(len(syms)):
|
|
233
|
+
if i in already_seen:
|
|
234
|
+
continue
|
|
235
|
+
iT_plus_iTT = syms.apply_T(i) + syms.apply_TT(i)
|
|
236
|
+
j0, s0 = mod[i]
|
|
237
|
+
v = {j0: s0}
|
|
238
|
+
for j, s in iT_plus_iTT:
|
|
239
|
+
if w == 2:
|
|
240
|
+
already_seen.add(j)
|
|
241
|
+
j0, s0 = mod[j]
|
|
242
|
+
s0 = s * s0
|
|
243
|
+
if j0 in v:
|
|
244
|
+
v[j0] += s0
|
|
245
|
+
else:
|
|
246
|
+
v[j0] = s0
|
|
247
|
+
for j0, vj0 in v.items():
|
|
248
|
+
entries[(row, j0)] = vj0
|
|
249
|
+
row += 1
|
|
250
|
+
|
|
251
|
+
MAT = MatrixSpace(field, row, len(syms), sparse=True)
|
|
252
|
+
R = MAT(entries)
|
|
253
|
+
if not sparse:
|
|
254
|
+
R = R.dense_matrix()
|
|
255
|
+
verbose("finished (number of rows=%s)" % row, tm)
|
|
256
|
+
return R
|
|
257
|
+
|
|
258
|
+
|
|
259
|
+
def gens_to_basis_matrix(syms, relation_matrix, mod, field, sparse):
|
|
260
|
+
"""
|
|
261
|
+
Compute echelon form of 3-term relation matrix, and read off each
|
|
262
|
+
generator in terms of basis.
|
|
263
|
+
|
|
264
|
+
INPUT:
|
|
265
|
+
|
|
266
|
+
- ``syms`` -- :class:`ManinSymbolList`
|
|
267
|
+
|
|
268
|
+
- ``relation_matrix`` -- as output by
|
|
269
|
+
``__compute_T_relation_matrix(self, mod)``
|
|
270
|
+
|
|
271
|
+
- ``mod`` -- quotient of modular symbols modulo the
|
|
272
|
+
2-term S (and possibly I) relations
|
|
273
|
+
|
|
274
|
+
- ``field`` -- base field
|
|
275
|
+
|
|
276
|
+
- ``sparse`` -- boolean; whether or not matrix should be sparse
|
|
277
|
+
|
|
278
|
+
OUTPUT:
|
|
279
|
+
|
|
280
|
+
``matrix`` -- a matrix whose `i`-th row expresses the Manin symbol
|
|
281
|
+
generators in terms of a basis of Manin symbols (modulo the S, (possibly
|
|
282
|
+
I,) and T rels). Note that the entries of the matrix need not be integers.
|
|
283
|
+
|
|
284
|
+
- ``list`` -- integers `i`, such that the Manin symbols `x_i` are a basis
|
|
285
|
+
|
|
286
|
+
EXAMPLES::
|
|
287
|
+
|
|
288
|
+
sage: from sage.modular.modsym.relation_matrix import sparse_2term_quotient, T_relation_matrix_wtk_g0, gens_to_basis_matrix, modS_relations
|
|
289
|
+
sage: L = sage.modular.modsym.manin_symbol_list.ManinSymbolList_gamma1(4, 3)
|
|
290
|
+
sage: modS = sparse_2term_quotient(modS_relations(L), 24, GF(3))
|
|
291
|
+
sage: gens_to_basis_matrix(L, T_relation_matrix_wtk_g0(L, modS, GF(3), 24), modS, GF(3), True)
|
|
292
|
+
(24 x 2 sparse matrix over Finite Field of size 3, [13, 23])
|
|
293
|
+
"""
|
|
294
|
+
from sage.structure.element import Matrix
|
|
295
|
+
if not isinstance(relation_matrix, Matrix):
|
|
296
|
+
raise TypeError("relation_matrix must be a matrix")
|
|
297
|
+
if not isinstance(mod, list):
|
|
298
|
+
raise TypeError("mod must be a list")
|
|
299
|
+
|
|
300
|
+
verbose(str(relation_matrix.parent()))
|
|
301
|
+
|
|
302
|
+
try:
|
|
303
|
+
h = relation_matrix.height()
|
|
304
|
+
except AttributeError:
|
|
305
|
+
h = 9999999
|
|
306
|
+
tm = verbose("putting relation matrix in echelon form (height = %s)" % h)
|
|
307
|
+
if h < 10:
|
|
308
|
+
A = relation_matrix.echelon_form(algorithm='multimodular',
|
|
309
|
+
height_guess=1)
|
|
310
|
+
else:
|
|
311
|
+
A = relation_matrix.echelon_form()
|
|
312
|
+
A.set_immutable()
|
|
313
|
+
tm = verbose('finished echelon', tm)
|
|
314
|
+
|
|
315
|
+
tm = verbose("Now creating gens --> basis mapping")
|
|
316
|
+
|
|
317
|
+
basis_set = set(A.nonpivots())
|
|
318
|
+
pivots = A.pivots()
|
|
319
|
+
|
|
320
|
+
basis_mod2 = {j for j, c in mod if c != 0}
|
|
321
|
+
|
|
322
|
+
basis_set = basis_set.intersection(basis_mod2)
|
|
323
|
+
basis = sorted(basis_set)
|
|
324
|
+
|
|
325
|
+
ONE = field(1)
|
|
326
|
+
|
|
327
|
+
verbose("done doing setup", tm)
|
|
328
|
+
|
|
329
|
+
tm = verbose("now forming quotient matrix")
|
|
330
|
+
M = MatrixSpace(field, len(syms), len(basis), sparse=sparse)
|
|
331
|
+
|
|
332
|
+
B = M(0)
|
|
333
|
+
cols_index = {basis[i]: i for i in range(len(basis))}
|
|
334
|
+
|
|
335
|
+
for i in basis_mod2:
|
|
336
|
+
t, l = search(basis, i)
|
|
337
|
+
if t:
|
|
338
|
+
B[i, l] = ONE
|
|
339
|
+
else:
|
|
340
|
+
_, r = search(pivots, i) # so pivots[r] = i
|
|
341
|
+
# Set row i to -(row r of A), but where we only take
|
|
342
|
+
# the non-pivot columns of A:
|
|
343
|
+
B._set_row_to_negative_of_row_of_A_using_subset_of_columns(i, A, r, basis, cols_index)
|
|
344
|
+
|
|
345
|
+
verbose("done making quotient matrix", tm)
|
|
346
|
+
|
|
347
|
+
# The following is very fast (over Q at least).
|
|
348
|
+
tm = verbose('now filling in the rest of the matrix')
|
|
349
|
+
k = 0
|
|
350
|
+
for i in range(len(mod)):
|
|
351
|
+
j, s = mod[i]
|
|
352
|
+
if j != i and s != 0: # ignored in the above matrix
|
|
353
|
+
k += 1
|
|
354
|
+
B.set_row_to_multiple_of_row(i, j, s)
|
|
355
|
+
verbose("set %s rows" % k)
|
|
356
|
+
tm = verbose("time to fill in rest of matrix", tm)
|
|
357
|
+
|
|
358
|
+
return B, basis
|
|
359
|
+
|
|
360
|
+
|
|
361
|
+
def compute_presentation(syms, sign, field, sparse=None):
|
|
362
|
+
r"""
|
|
363
|
+
Compute the presentation for self, as a quotient of Manin symbols
|
|
364
|
+
modulo relations.
|
|
365
|
+
|
|
366
|
+
INPUT:
|
|
367
|
+
|
|
368
|
+
- ``syms`` -- :class:`ManinSymbolList`
|
|
369
|
+
|
|
370
|
+
- ``sign`` -- integer (-1, 0, 1)
|
|
371
|
+
|
|
372
|
+
- ``field`` -- a field
|
|
373
|
+
|
|
374
|
+
OUTPUT:
|
|
375
|
+
|
|
376
|
+
- sparse matrix whose rows give each generator
|
|
377
|
+
in terms of a basis for the quotient
|
|
378
|
+
|
|
379
|
+
- list of integers that give the basis for the
|
|
380
|
+
quotient
|
|
381
|
+
|
|
382
|
+
- mod: list where mod[i]=(j,s) means that x_i
|
|
383
|
+
= s\*x_j modulo the 2-term S (and possibly I) relations.
|
|
384
|
+
|
|
385
|
+
|
|
386
|
+
ALGORITHM:
|
|
387
|
+
|
|
388
|
+
#. Let `S = [0,-1; 1,0], T = [0,-1; 1,-1]`, and
|
|
389
|
+
`I = [-1,0; 0,1]`.
|
|
390
|
+
|
|
391
|
+
#. Let `x_0,\ldots, x_{n-1}` by a list of all
|
|
392
|
+
non-equivalent Manin symbols.
|
|
393
|
+
|
|
394
|
+
#. Form quotient by 2-term S and (possibly) I relations.
|
|
395
|
+
|
|
396
|
+
#. Create a sparse matrix `A` with `m` columns,
|
|
397
|
+
whose rows encode the relations
|
|
398
|
+
|
|
399
|
+
.. MATH::
|
|
400
|
+
|
|
401
|
+
[x_i] + [x_i T] + [x_i T^2] = 0.
|
|
402
|
+
|
|
403
|
+
|
|
404
|
+
There are about n such rows. The number of nonzero entries per row
|
|
405
|
+
is at most 3\*(k-1). Note that we must include rows for *all* i,
|
|
406
|
+
since even if `[x_i] = [x_j]`, it need not be the case
|
|
407
|
+
that `[x_i T] = [x_j T]`, since `S` and
|
|
408
|
+
`T` do not commute. However, in many cases we have an a
|
|
409
|
+
priori formula for the dimension of the quotient by all these
|
|
410
|
+
relations, so we can omit many relations and just check that there
|
|
411
|
+
are enough at the end--if there aren't, we add in more.
|
|
412
|
+
|
|
413
|
+
#. Compute the reduced row echelon form of `A` using sparse
|
|
414
|
+
Gaussian elimination.
|
|
415
|
+
|
|
416
|
+
#. Use what we've done above to read off a sparse matrix R that
|
|
417
|
+
uniquely expresses each of the n Manin symbols in terms of a subset
|
|
418
|
+
of Manin symbols, modulo the relations. This subset of Manin
|
|
419
|
+
symbols is a basis for the quotient by the relations.
|
|
420
|
+
|
|
421
|
+
EXAMPLES::
|
|
422
|
+
|
|
423
|
+
sage: L = sage.modular.modsym.manin_symbol_list.ManinSymbolList_gamma0(8,2)
|
|
424
|
+
sage: sage.modular.modsym.relation_matrix.compute_presentation(L, 1, GF(9,'a'), True)
|
|
425
|
+
(
|
|
426
|
+
[2 0 0]
|
|
427
|
+
[1 0 0]
|
|
428
|
+
[0 0 0]
|
|
429
|
+
[0 2 0]
|
|
430
|
+
[0 0 0]
|
|
431
|
+
[0 0 2]
|
|
432
|
+
[0 0 0]
|
|
433
|
+
[0 2 0]
|
|
434
|
+
[0 0 0]
|
|
435
|
+
[0 1 0]
|
|
436
|
+
[0 1 0]
|
|
437
|
+
[0 0 1], [1, 9, 11], [(1, 2), (1, 1), (0, 0), (9, 2), (0, 0), (11, 2), (0, 0), (9, 2), (0, 0), (9, 1), (9, 1), (11, 1)]
|
|
438
|
+
)
|
|
439
|
+
"""
|
|
440
|
+
if sparse is None:
|
|
441
|
+
if syms.weight() >= 6:
|
|
442
|
+
sparse = False
|
|
443
|
+
else:
|
|
444
|
+
sparse = True
|
|
445
|
+
R, mod = relation_matrix_wtk_g0(syms, sign, field, sparse)
|
|
446
|
+
B, basis = gens_to_basis_matrix(syms, R, mod, field, sparse)
|
|
447
|
+
return B, basis, mod
|
|
448
|
+
|
|
449
|
+
|
|
450
|
+
def relation_matrix_wtk_g0(syms, sign, field, sparse):
|
|
451
|
+
r"""
|
|
452
|
+
Compute the matrix of relations. Despite the name, this is used for all
|
|
453
|
+
spaces (not just for Gamma0). For a description of the algorithm, see the
|
|
454
|
+
docstring for ``compute_presentation``.
|
|
455
|
+
|
|
456
|
+
INPUT:
|
|
457
|
+
|
|
458
|
+
- ``syms`` -- :class:`ManinSymbolList`
|
|
459
|
+
|
|
460
|
+
- ``sign`` -- integer (0, 1 or -1)
|
|
461
|
+
|
|
462
|
+
- ``field`` -- the base field (non-field base rings not supported at present)
|
|
463
|
+
|
|
464
|
+
- ``sparse`` -- boolean; whether to use sparse arithmetic
|
|
465
|
+
|
|
466
|
+
Note that ManinSymbolList objects already have a specific weight, so there
|
|
467
|
+
is no need for an extra ``weight`` parameter.
|
|
468
|
+
|
|
469
|
+
OUTPUT: a pair (R, mod) where
|
|
470
|
+
|
|
471
|
+
- R is a matrix as output by ``T_relation_matrix_wtk_g0``
|
|
472
|
+
|
|
473
|
+
- mod is a set of 2-term relations as output by ``sparse_2term_quotient``
|
|
474
|
+
|
|
475
|
+
EXAMPLES::
|
|
476
|
+
|
|
477
|
+
sage: L = sage.modular.modsym.manin_symbol_list.ManinSymbolList_gamma0(8,2)
|
|
478
|
+
sage: A = sage.modular.modsym.relation_matrix.relation_matrix_wtk_g0(L, 0, GF(2), True); A
|
|
479
|
+
(
|
|
480
|
+
[0 0 0 0 0 0 0 0 1 0 0 0]
|
|
481
|
+
[0 0 0 0 0 0 0 0 1 1 1 0]
|
|
482
|
+
[0 0 0 0 0 0 1 0 0 1 1 0]
|
|
483
|
+
[0 0 0 0 0 0 1 0 0 0 0 0], [(1, 1), (1, 1), (8, 1), (10, 1), (6, 1), (11, 1), (6, 1), (9, 1), (8, 1), (9, 1), (10, 1), (11, 1)]
|
|
484
|
+
)
|
|
485
|
+
sage: A[0].is_sparse()
|
|
486
|
+
True
|
|
487
|
+
"""
|
|
488
|
+
rels = modS_relations(syms)
|
|
489
|
+
if sign != 0:
|
|
490
|
+
# Let rels = rels union I relations.
|
|
491
|
+
rels.update(modI_relations(syms, sign))
|
|
492
|
+
|
|
493
|
+
rels = sorted(rels)
|
|
494
|
+
# required for stability of doctests with python3
|
|
495
|
+
|
|
496
|
+
if syms._apply_S_only_0pm1() and isinstance(field, RationalField):
|
|
497
|
+
from . import relation_matrix_pyx
|
|
498
|
+
mod = relation_matrix_pyx.sparse_2term_quotient_only_pm1(rels, len(syms))
|
|
499
|
+
else:
|
|
500
|
+
mod = sparse_2term_quotient(rels, len(syms), field)
|
|
501
|
+
|
|
502
|
+
R = T_relation_matrix_wtk_g0(syms, mod, field, sparse)
|
|
503
|
+
return R, mod
|
|
504
|
+
|
|
505
|
+
|
|
506
|
+
def sparse_2term_quotient(rels, n, F):
|
|
507
|
+
r"""
|
|
508
|
+
Perform Sparse Gauss elimination on a matrix all of whose columns
|
|
509
|
+
have at most 2 nonzero entries. We use an obvious algorithm, which
|
|
510
|
+
runs fast enough. (Typically making the list of relations takes
|
|
511
|
+
more time than computing this quotient.) This algorithm is more
|
|
512
|
+
subtle than just "identify symbols in pairs", since complicated
|
|
513
|
+
relations can cause generators to surprisingly equal 0.
|
|
514
|
+
|
|
515
|
+
INPUT:
|
|
516
|
+
|
|
517
|
+
- ``rels`` -- iterable made of pairs ((i,s), (j,t)). The pair
|
|
518
|
+
represents the relation `s x_i + t x_j = 0`, where the `i, j` must
|
|
519
|
+
be Python int's.
|
|
520
|
+
|
|
521
|
+
- ``n`` -- integer, the `x_i` are `x_0, \ldots, x_{n-1}`
|
|
522
|
+
|
|
523
|
+
- ``F`` -- base field
|
|
524
|
+
|
|
525
|
+
OUTPUT:
|
|
526
|
+
|
|
527
|
+
``mod`` -- list such that ``mod[i] = (j,s)``, which means that `x_i` is
|
|
528
|
+
equivalent to `s x_j`, where the `x_j` are a basis for the quotient.
|
|
529
|
+
|
|
530
|
+
EXAMPLES: We quotient out by the relations
|
|
531
|
+
|
|
532
|
+
.. MATH::
|
|
533
|
+
|
|
534
|
+
3*x0 - x1 = 0,\qquad x1 + x3 = 0,\qquad x2 + x3 = 0,\qquad x4 - x5 = 0
|
|
535
|
+
|
|
536
|
+
to get::
|
|
537
|
+
|
|
538
|
+
sage: rels = [((int(0),3), (int(1),-1)), ((int(1),1), (int(3),1)), ((int(2),1),(int(3),1)), ((int(4),1),(int(5),-1))]
|
|
539
|
+
sage: n = 6
|
|
540
|
+
sage: from sage.modular.modsym.relation_matrix import sparse_2term_quotient
|
|
541
|
+
sage: sparse_2term_quotient(rels, n, QQ)
|
|
542
|
+
[(3, -1/3), (3, -1), (3, -1), (3, 1), (5, 1), (5, 1)]
|
|
543
|
+
"""
|
|
544
|
+
n = int(n)
|
|
545
|
+
if F not in Rings():
|
|
546
|
+
raise TypeError("F must be a ring")
|
|
547
|
+
|
|
548
|
+
tm = verbose("Starting sparse 2-term quotient...")
|
|
549
|
+
free = list(range(n))
|
|
550
|
+
ONE = F.one()
|
|
551
|
+
ZERO = F.zero()
|
|
552
|
+
coef = [ONE for i in range(n)]
|
|
553
|
+
related_to_me = [[] for i in range(n)]
|
|
554
|
+
for v0, v1 in sorted(rels):
|
|
555
|
+
c0 = coef[v0[0]] * F(v0[1])
|
|
556
|
+
c1 = coef[v1[0]] * F(v1[1])
|
|
557
|
+
|
|
558
|
+
# Mod out by the following relation:
|
|
559
|
+
#
|
|
560
|
+
# c0*free[v0[0]] + c1*free[v1[0]] = 0.
|
|
561
|
+
#
|
|
562
|
+
die = None
|
|
563
|
+
if c0 == ZERO and c1 == ZERO:
|
|
564
|
+
pass
|
|
565
|
+
elif c0 == ZERO and c1 != ZERO: # free[v1[0]] --> 0
|
|
566
|
+
die = free[v1[0]]
|
|
567
|
+
elif c1 == ZERO and c0 != ZERO:
|
|
568
|
+
die = free[v0[0]]
|
|
569
|
+
elif free[v0[0]] == free[v1[0]]:
|
|
570
|
+
if c0 + c1 != 0:
|
|
571
|
+
# all xi equal to free[v0[0]] must now equal to zero.
|
|
572
|
+
die = free[v0[0]]
|
|
573
|
+
else: # x1 = -c1/c0 * x2.
|
|
574
|
+
x = free[v0[0]]
|
|
575
|
+
free[x] = free[v1[0]]
|
|
576
|
+
coef[x] = -c1 / c0
|
|
577
|
+
for i in related_to_me[x]:
|
|
578
|
+
free[i] = free[x]
|
|
579
|
+
coef[i] *= coef[x]
|
|
580
|
+
related_to_me[free[v1[0]]].append(i)
|
|
581
|
+
related_to_me[free[v1[0]]].append(x)
|
|
582
|
+
if die is not None:
|
|
583
|
+
for i in related_to_me[die]:
|
|
584
|
+
free[i] = 0
|
|
585
|
+
coef[i] = ZERO
|
|
586
|
+
free[die] = 0
|
|
587
|
+
coef[die] = ZERO
|
|
588
|
+
|
|
589
|
+
mod = [(free[i], coef[i]) for i in range(len(free))]
|
|
590
|
+
verbose("finished", tm)
|
|
591
|
+
return mod
|
|
Binary file
|
|
@@ -0,0 +1,108 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-schemes
|
|
2
|
+
"""
|
|
3
|
+
Optimized computing of relation matrices in certain cases
|
|
4
|
+
"""
|
|
5
|
+
|
|
6
|
+
#############################################################################
|
|
7
|
+
# Copyright (C) 2010 William Stein <wstein@gmail.com>
|
|
8
|
+
# Distributed under the terms of the GNU General Public License (GPL) v2+.
|
|
9
|
+
# The full text of the GPL is available at:
|
|
10
|
+
# https://www.gnu.org/licenses/
|
|
11
|
+
#############################################################################
|
|
12
|
+
|
|
13
|
+
from sage.misc.verbose import verbose
|
|
14
|
+
from sage.rings.rational cimport Rational
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
def sparse_2term_quotient_only_pm1(rels, n):
|
|
18
|
+
r"""
|
|
19
|
+
Perform Sparse Gauss elimination on a matrix all of whose columns
|
|
20
|
+
have at most 2 nonzero entries with relations all 1 or -1.
|
|
21
|
+
|
|
22
|
+
This algorithm is more subtle than just "identify symbols in pairs",
|
|
23
|
+
since complicated relations can cause generators to equal 0.
|
|
24
|
+
|
|
25
|
+
.. NOTE::
|
|
26
|
+
|
|
27
|
+
Note the condition on the s,t coefficients in the relations
|
|
28
|
+
being 1 or -1 for this optimized function. There is a more
|
|
29
|
+
general function in relation_matrix.py, which is much, much
|
|
30
|
+
slower.
|
|
31
|
+
|
|
32
|
+
INPUT:
|
|
33
|
+
|
|
34
|
+
- ``rels`` -- iterable made of pairs ((i,s), (j,t)). The pair
|
|
35
|
+
represents the relation `s x_i + t x_j = 0`, where the `i, j` must
|
|
36
|
+
be Python int's, and the `s, t` must all be 1 or -1.
|
|
37
|
+
|
|
38
|
+
- ``n`` -- integer; the `x_i` are `x_0, \ldots, x_{n-1}`
|
|
39
|
+
|
|
40
|
+
OUTPUT:
|
|
41
|
+
|
|
42
|
+
- ``mod`` -- list such that mod[i] = (j,s), which means that x_i
|
|
43
|
+
is equivalent to s*x_j, where the x_j are a basis for the
|
|
44
|
+
quotient.
|
|
45
|
+
|
|
46
|
+
The output depends on the order of the input.
|
|
47
|
+
|
|
48
|
+
EXAMPLES::
|
|
49
|
+
|
|
50
|
+
sage: from sage.modular.modsym.relation_matrix_pyx import sparse_2term_quotient_only_pm1
|
|
51
|
+
sage: rels = [((0,1), (1,-1)), ((1,1), (3,1)), ((2,1),(3,1)), ((4,1),(5,-1))]
|
|
52
|
+
sage: n = 6
|
|
53
|
+
sage: sparse_2term_quotient_only_pm1(rels, n)
|
|
54
|
+
[(3, -1), (3, -1), (3, -1), (3, 1), (5, 1), (5, 1)]
|
|
55
|
+
"""
|
|
56
|
+
n = int(n)
|
|
57
|
+
|
|
58
|
+
tm = verbose("Starting optimized integer sparse 2-term quotient...")
|
|
59
|
+
|
|
60
|
+
cdef int c0, c1, i, die
|
|
61
|
+
cdef list free = list(range(n))
|
|
62
|
+
cdef list coef = [1] * n
|
|
63
|
+
cdef list related_to_me = [[] for i in range(n)]
|
|
64
|
+
|
|
65
|
+
for v0, v1 in rels:
|
|
66
|
+
c0 = coef[v0[0]] * v0[1]
|
|
67
|
+
c1 = coef[v1[0]] * v1[1]
|
|
68
|
+
|
|
69
|
+
# Mod out by the following relation:
|
|
70
|
+
#
|
|
71
|
+
# c0*free[v0[0]] + c1*free[v1[0]] = 0.
|
|
72
|
+
#
|
|
73
|
+
die = -1
|
|
74
|
+
if c0 == 0 and c1 == 0:
|
|
75
|
+
pass
|
|
76
|
+
elif c0 == 0 and c1 != 0: # free[v1[0]] --> 0
|
|
77
|
+
die = free[v1[0]]
|
|
78
|
+
elif c1 == 0 and c0 != 0:
|
|
79
|
+
die = free[v0[0]]
|
|
80
|
+
elif free[v0[0]] == free[v1[0]]:
|
|
81
|
+
if c0 + c1 != 0:
|
|
82
|
+
# all xi equal to free[v0[0]] must now equal to zero.
|
|
83
|
+
die = free[v0[0]]
|
|
84
|
+
else: # x1 = -c1/c0 * x2.
|
|
85
|
+
x = free[v0[0]]
|
|
86
|
+
free[x] = free[v1[0]]
|
|
87
|
+
if c0 != 1 and c0 != -1:
|
|
88
|
+
raise ValueError("coefficients must all be -1 or 1.")
|
|
89
|
+
coef[x] = -c1 * c0
|
|
90
|
+
for i in related_to_me[x]:
|
|
91
|
+
free[i] = free[x]
|
|
92
|
+
coef[i] *= coef[x]
|
|
93
|
+
related_to_me[free[v1[0]]].append(i)
|
|
94
|
+
related_to_me[free[v1[0]]].append(x)
|
|
95
|
+
if die != -1:
|
|
96
|
+
for i in related_to_me[die]:
|
|
97
|
+
free[i] = 0
|
|
98
|
+
coef[i] = 0
|
|
99
|
+
free[die] = 0
|
|
100
|
+
coef[die] = 0
|
|
101
|
+
|
|
102
|
+
# Special casing the rationals leads to a huge speedup,
|
|
103
|
+
# actually. (All the code above is slower than just this line
|
|
104
|
+
# without this special case.)
|
|
105
|
+
mod = [(fi, Rational(ci)) for fi, ci in zip(free, coef)]
|
|
106
|
+
|
|
107
|
+
verbose("finished", tm)
|
|
108
|
+
return mod
|