passagemath-schemes 10.6.40__cp314-cp314-macosx_13_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-schemes might be problematic. Click here for more details.
- passagemath_schemes/.dylibs/libflint.22.0.dylib +0 -0
- passagemath_schemes/.dylibs/libgmp.10.dylib +0 -0
- passagemath_schemes/.dylibs/libgmpxx.4.dylib +0 -0
- passagemath_schemes/.dylibs/libmpfr.6.dylib +0 -0
- passagemath_schemes/__init__.py +3 -0
- passagemath_schemes-10.6.40.dist-info/METADATA +204 -0
- passagemath_schemes-10.6.40.dist-info/METADATA.bak +205 -0
- passagemath_schemes-10.6.40.dist-info/RECORD +314 -0
- passagemath_schemes-10.6.40.dist-info/WHEEL +6 -0
- passagemath_schemes-10.6.40.dist-info/top_level.txt +3 -0
- sage/all__sagemath_schemes.py +23 -0
- sage/databases/all__sagemath_schemes.py +7 -0
- sage/databases/cremona.py +1723 -0
- sage/dynamics/all__sagemath_schemes.py +2 -0
- sage/dynamics/arithmetic_dynamics/affine_ds.py +1083 -0
- sage/dynamics/arithmetic_dynamics/all.py +14 -0
- sage/dynamics/arithmetic_dynamics/berkovich_ds.py +1101 -0
- sage/dynamics/arithmetic_dynamics/dynamical_semigroup.py +1543 -0
- sage/dynamics/arithmetic_dynamics/endPN_automorphism_group.py +2426 -0
- sage/dynamics/arithmetic_dynamics/endPN_minimal_model.py +1169 -0
- sage/dynamics/arithmetic_dynamics/generic_ds.py +663 -0
- sage/dynamics/arithmetic_dynamics/product_projective_ds.py +339 -0
- sage/dynamics/arithmetic_dynamics/projective_ds.py +9558 -0
- sage/dynamics/arithmetic_dynamics/projective_ds_helper.cpython-314-darwin.so +0 -0
- sage/dynamics/arithmetic_dynamics/projective_ds_helper.pyx +301 -0
- sage/dynamics/arithmetic_dynamics/wehlerK3.py +2576 -0
- sage/lfunctions/all.py +18 -0
- sage/lfunctions/dokchitser.py +745 -0
- sage/lfunctions/pari.py +818 -0
- sage/lfunctions/zero_sums.cpython-314-darwin.so +0 -0
- sage/lfunctions/zero_sums.pyx +1847 -0
- sage/modular/abvar/abvar.py +5135 -0
- sage/modular/abvar/abvar_ambient_jacobian.py +413 -0
- sage/modular/abvar/abvar_newform.py +244 -0
- sage/modular/abvar/all.py +8 -0
- sage/modular/abvar/constructor.py +186 -0
- sage/modular/abvar/cuspidal_subgroup.py +371 -0
- sage/modular/abvar/finite_subgroup.py +896 -0
- sage/modular/abvar/homology.py +720 -0
- sage/modular/abvar/homspace.py +998 -0
- sage/modular/abvar/lseries.py +415 -0
- sage/modular/abvar/morphism.py +935 -0
- sage/modular/abvar/torsion_point.py +274 -0
- sage/modular/abvar/torsion_subgroup.py +740 -0
- sage/modular/all.py +43 -0
- sage/modular/arithgroup/all.py +20 -0
- sage/modular/arithgroup/arithgroup_element.cpython-314-darwin.so +0 -0
- sage/modular/arithgroup/arithgroup_element.pyx +474 -0
- sage/modular/arithgroup/arithgroup_generic.py +1402 -0
- sage/modular/arithgroup/arithgroup_perm.py +2692 -0
- sage/modular/arithgroup/congroup.cpython-314-darwin.so +0 -0
- sage/modular/arithgroup/congroup.pyx +334 -0
- sage/modular/arithgroup/congroup_gamma.py +363 -0
- sage/modular/arithgroup/congroup_gamma0.py +692 -0
- sage/modular/arithgroup/congroup_gamma1.py +653 -0
- sage/modular/arithgroup/congroup_gammaH.py +1469 -0
- sage/modular/arithgroup/congroup_generic.py +628 -0
- sage/modular/arithgroup/congroup_sl2z.py +267 -0
- sage/modular/arithgroup/farey_symbol.cpython-314-darwin.so +0 -0
- sage/modular/arithgroup/farey_symbol.pyx +1066 -0
- sage/modular/arithgroup/tests.py +418 -0
- sage/modular/btquotients/all.py +4 -0
- sage/modular/btquotients/btquotient.py +3753 -0
- sage/modular/btquotients/pautomorphicform.py +2570 -0
- sage/modular/buzzard.py +100 -0
- sage/modular/congroup.py +29 -0
- sage/modular/congroup_element.py +13 -0
- sage/modular/cusps.py +1109 -0
- sage/modular/cusps_nf.py +1270 -0
- sage/modular/dims.py +569 -0
- sage/modular/dirichlet.py +3310 -0
- sage/modular/drinfeld_modform/all.py +2 -0
- sage/modular/drinfeld_modform/element.py +446 -0
- sage/modular/drinfeld_modform/ring.py +773 -0
- sage/modular/drinfeld_modform/tutorial.py +236 -0
- sage/modular/etaproducts.py +1065 -0
- sage/modular/hecke/algebra.py +746 -0
- sage/modular/hecke/all.py +20 -0
- sage/modular/hecke/ambient_module.py +1019 -0
- sage/modular/hecke/degenmap.py +119 -0
- sage/modular/hecke/element.py +325 -0
- sage/modular/hecke/hecke_operator.py +780 -0
- sage/modular/hecke/homspace.py +206 -0
- sage/modular/hecke/module.py +1767 -0
- sage/modular/hecke/morphism.py +174 -0
- sage/modular/hecke/submodule.py +989 -0
- sage/modular/hypergeometric_misc.cpython-314-darwin.so +0 -0
- sage/modular/hypergeometric_misc.pxd +4 -0
- sage/modular/hypergeometric_misc.pyx +166 -0
- sage/modular/hypergeometric_motive.py +2017 -0
- sage/modular/local_comp/all.py +2 -0
- sage/modular/local_comp/liftings.py +292 -0
- sage/modular/local_comp/local_comp.py +1071 -0
- sage/modular/local_comp/smoothchar.py +1825 -0
- sage/modular/local_comp/type_space.py +748 -0
- sage/modular/modform/all.py +30 -0
- sage/modular/modform/ambient.py +815 -0
- sage/modular/modform/ambient_R.py +177 -0
- sage/modular/modform/ambient_eps.py +306 -0
- sage/modular/modform/ambient_g0.py +124 -0
- sage/modular/modform/ambient_g1.py +204 -0
- sage/modular/modform/constructor.py +545 -0
- sage/modular/modform/cuspidal_submodule.py +708 -0
- sage/modular/modform/defaults.py +14 -0
- sage/modular/modform/eis_series.py +505 -0
- sage/modular/modform/eisenstein_submodule.py +663 -0
- sage/modular/modform/element.py +4131 -0
- sage/modular/modform/find_generators.py +59 -0
- sage/modular/modform/half_integral.py +154 -0
- sage/modular/modform/hecke_operator_on_qexp.py +247 -0
- sage/modular/modform/j_invariant.py +47 -0
- sage/modular/modform/l_series_gross_zagier.py +133 -0
- sage/modular/modform/l_series_gross_zagier_coeffs.cpython-314-darwin.so +0 -0
- sage/modular/modform/l_series_gross_zagier_coeffs.pyx +177 -0
- sage/modular/modform/notes.py +45 -0
- sage/modular/modform/numerical.py +514 -0
- sage/modular/modform/periods.py +14 -0
- sage/modular/modform/ring.py +1257 -0
- sage/modular/modform/space.py +1860 -0
- sage/modular/modform/submodule.py +118 -0
- sage/modular/modform/tests.py +64 -0
- sage/modular/modform/theta.py +110 -0
- sage/modular/modform/vm_basis.py +381 -0
- sage/modular/modform/weight1.py +220 -0
- sage/modular/modform_hecketriangle/abstract_ring.py +1932 -0
- sage/modular/modform_hecketriangle/abstract_space.py +2528 -0
- sage/modular/modform_hecketriangle/all.py +30 -0
- sage/modular/modform_hecketriangle/analytic_type.py +590 -0
- sage/modular/modform_hecketriangle/constructor.py +416 -0
- sage/modular/modform_hecketriangle/element.py +351 -0
- sage/modular/modform_hecketriangle/functors.py +752 -0
- sage/modular/modform_hecketriangle/graded_ring.py +541 -0
- sage/modular/modform_hecketriangle/graded_ring_element.py +2225 -0
- sage/modular/modform_hecketriangle/hecke_triangle_group_element.py +3352 -0
- sage/modular/modform_hecketriangle/hecke_triangle_groups.py +1432 -0
- sage/modular/modform_hecketriangle/readme.py +1214 -0
- sage/modular/modform_hecketriangle/series_constructor.py +580 -0
- sage/modular/modform_hecketriangle/space.py +1037 -0
- sage/modular/modform_hecketriangle/subspace.py +423 -0
- sage/modular/modsym/all.py +17 -0
- sage/modular/modsym/ambient.py +3846 -0
- sage/modular/modsym/boundary.py +1420 -0
- sage/modular/modsym/element.py +336 -0
- sage/modular/modsym/g1list.py +178 -0
- sage/modular/modsym/ghlist.py +182 -0
- sage/modular/modsym/hecke_operator.py +73 -0
- sage/modular/modsym/manin_symbol.cpython-314-darwin.so +0 -0
- sage/modular/modsym/manin_symbol.pxd +5 -0
- sage/modular/modsym/manin_symbol.pyx +497 -0
- sage/modular/modsym/manin_symbol_list.py +1295 -0
- sage/modular/modsym/modsym.py +400 -0
- sage/modular/modsym/modular_symbols.py +384 -0
- sage/modular/modsym/p1list.cpython-314-darwin.so +0 -0
- sage/modular/modsym/p1list.pxd +29 -0
- sage/modular/modsym/p1list.pyx +1372 -0
- sage/modular/modsym/p1list_nf.py +1241 -0
- sage/modular/modsym/relation_matrix.py +591 -0
- sage/modular/modsym/relation_matrix_pyx.cpython-314-darwin.so +0 -0
- sage/modular/modsym/relation_matrix_pyx.pyx +108 -0
- sage/modular/modsym/space.py +2468 -0
- sage/modular/modsym/subspace.py +455 -0
- sage/modular/modsym/tests.py +375 -0
- sage/modular/multiple_zeta.py +2632 -0
- sage/modular/multiple_zeta_F_algebra.py +786 -0
- sage/modular/overconvergent/all.py +6 -0
- sage/modular/overconvergent/genus0.py +1878 -0
- sage/modular/overconvergent/hecke_series.py +1187 -0
- sage/modular/overconvergent/weightspace.py +778 -0
- sage/modular/pollack_stevens/all.py +4 -0
- sage/modular/pollack_stevens/distributions.py +874 -0
- sage/modular/pollack_stevens/fund_domain.py +1572 -0
- sage/modular/pollack_stevens/manin_map.py +859 -0
- sage/modular/pollack_stevens/modsym.py +1593 -0
- sage/modular/pollack_stevens/padic_lseries.py +417 -0
- sage/modular/pollack_stevens/sigma0.py +534 -0
- sage/modular/pollack_stevens/space.py +1076 -0
- sage/modular/quasimodform/all.py +3 -0
- sage/modular/quasimodform/element.py +845 -0
- sage/modular/quasimodform/ring.py +828 -0
- sage/modular/quatalg/all.py +3 -0
- sage/modular/quatalg/brandt.py +1642 -0
- sage/modular/ssmod/all.py +8 -0
- sage/modular/ssmod/ssmod.py +827 -0
- sage/rings/all__sagemath_schemes.py +1 -0
- sage/rings/polynomial/all__sagemath_schemes.py +1 -0
- sage/rings/polynomial/binary_form_reduce.py +585 -0
- sage/schemes/all.py +41 -0
- sage/schemes/berkovich/all.py +6 -0
- sage/schemes/berkovich/berkovich_cp_element.py +2582 -0
- sage/schemes/berkovich/berkovich_space.py +748 -0
- sage/schemes/curves/affine_curve.py +2928 -0
- sage/schemes/curves/all.py +33 -0
- sage/schemes/curves/closed_point.py +434 -0
- sage/schemes/curves/constructor.py +381 -0
- sage/schemes/curves/curve.py +542 -0
- sage/schemes/curves/plane_curve_arrangement.py +1283 -0
- sage/schemes/curves/point.py +463 -0
- sage/schemes/curves/projective_curve.py +3026 -0
- sage/schemes/curves/zariski_vankampen.py +1932 -0
- sage/schemes/cyclic_covers/all.py +2 -0
- sage/schemes/cyclic_covers/charpoly_frobenius.py +320 -0
- sage/schemes/cyclic_covers/constructor.py +137 -0
- sage/schemes/cyclic_covers/cycliccover_finite_field.py +1309 -0
- sage/schemes/cyclic_covers/cycliccover_generic.py +310 -0
- sage/schemes/elliptic_curves/BSD.py +1036 -0
- sage/schemes/elliptic_curves/Qcurves.py +592 -0
- sage/schemes/elliptic_curves/addition_formulas_ring.py +94 -0
- sage/schemes/elliptic_curves/all.py +49 -0
- sage/schemes/elliptic_curves/cardinality.py +609 -0
- sage/schemes/elliptic_curves/cm.py +1102 -0
- sage/schemes/elliptic_curves/constructor.py +1552 -0
- sage/schemes/elliptic_curves/ec_database.py +175 -0
- sage/schemes/elliptic_curves/ell_curve_isogeny.py +3972 -0
- sage/schemes/elliptic_curves/ell_egros.py +459 -0
- sage/schemes/elliptic_curves/ell_field.py +2836 -0
- sage/schemes/elliptic_curves/ell_finite_field.py +3359 -0
- sage/schemes/elliptic_curves/ell_generic.py +3760 -0
- sage/schemes/elliptic_curves/ell_local_data.py +1207 -0
- sage/schemes/elliptic_curves/ell_modular_symbols.py +775 -0
- sage/schemes/elliptic_curves/ell_number_field.py +4220 -0
- sage/schemes/elliptic_curves/ell_padic_field.py +107 -0
- sage/schemes/elliptic_curves/ell_point.py +4787 -0
- sage/schemes/elliptic_curves/ell_rational_field.py +7368 -0
- sage/schemes/elliptic_curves/ell_tate_curve.py +671 -0
- sage/schemes/elliptic_curves/ell_torsion.py +436 -0
- sage/schemes/elliptic_curves/ell_wp.py +352 -0
- sage/schemes/elliptic_curves/formal_group.py +760 -0
- sage/schemes/elliptic_curves/gal_reps.py +1459 -0
- sage/schemes/elliptic_curves/gal_reps_number_field.py +1669 -0
- sage/schemes/elliptic_curves/gp_simon.py +152 -0
- sage/schemes/elliptic_curves/heegner.py +7335 -0
- sage/schemes/elliptic_curves/height.py +2109 -0
- sage/schemes/elliptic_curves/hom.py +1406 -0
- sage/schemes/elliptic_curves/hom_composite.py +934 -0
- sage/schemes/elliptic_curves/hom_frobenius.py +522 -0
- sage/schemes/elliptic_curves/hom_scalar.py +531 -0
- sage/schemes/elliptic_curves/hom_sum.py +682 -0
- sage/schemes/elliptic_curves/hom_velusqrt.py +1290 -0
- sage/schemes/elliptic_curves/homset.py +271 -0
- sage/schemes/elliptic_curves/isogeny_class.py +1521 -0
- sage/schemes/elliptic_curves/isogeny_small_degree.py +2797 -0
- sage/schemes/elliptic_curves/jacobian.py +237 -0
- sage/schemes/elliptic_curves/kodaira_symbol.py +344 -0
- sage/schemes/elliptic_curves/kraus.py +1014 -0
- sage/schemes/elliptic_curves/lseries_ell.py +943 -0
- sage/schemes/elliptic_curves/mod5family.py +105 -0
- sage/schemes/elliptic_curves/mod_poly.py +197 -0
- sage/schemes/elliptic_curves/mod_sym_num.cpython-314-darwin.so +0 -0
- sage/schemes/elliptic_curves/mod_sym_num.pyx +3796 -0
- sage/schemes/elliptic_curves/modular_parametrization.py +305 -0
- sage/schemes/elliptic_curves/padic_lseries.py +1793 -0
- sage/schemes/elliptic_curves/padics.py +1816 -0
- sage/schemes/elliptic_curves/period_lattice.py +2234 -0
- sage/schemes/elliptic_curves/period_lattice_region.cpython-314-darwin.so +0 -0
- sage/schemes/elliptic_curves/period_lattice_region.pyx +722 -0
- sage/schemes/elliptic_curves/saturation.py +715 -0
- sage/schemes/elliptic_curves/sha_tate.py +1158 -0
- sage/schemes/elliptic_curves/weierstrass_morphism.py +1117 -0
- sage/schemes/elliptic_curves/weierstrass_transform.py +200 -0
- sage/schemes/hyperelliptic_curves/all.py +6 -0
- sage/schemes/hyperelliptic_curves/constructor.py +291 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_finite_field.py +1914 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_g2.py +192 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_generic.py +954 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_padic_field.py +1332 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_rational_field.py +84 -0
- sage/schemes/hyperelliptic_curves/invariants.py +410 -0
- sage/schemes/hyperelliptic_curves/jacobian_endomorphism_utils.py +315 -0
- sage/schemes/hyperelliptic_curves/jacobian_g2.py +32 -0
- sage/schemes/hyperelliptic_curves/jacobian_generic.py +419 -0
- sage/schemes/hyperelliptic_curves/jacobian_homset.py +186 -0
- sage/schemes/hyperelliptic_curves/jacobian_morphism.py +875 -0
- sage/schemes/hyperelliptic_curves/kummer_surface.py +99 -0
- sage/schemes/hyperelliptic_curves/mestre.py +302 -0
- sage/schemes/hyperelliptic_curves/monsky_washnitzer.py +3871 -0
- sage/schemes/jacobians/abstract_jacobian.py +277 -0
- sage/schemes/jacobians/all.py +2 -0
- sage/schemes/overview.py +161 -0
- sage/schemes/plane_conics/all.py +22 -0
- sage/schemes/plane_conics/con_field.py +1296 -0
- sage/schemes/plane_conics/con_finite_field.py +158 -0
- sage/schemes/plane_conics/con_number_field.py +456 -0
- sage/schemes/plane_conics/con_rational_field.py +406 -0
- sage/schemes/plane_conics/con_rational_function_field.py +580 -0
- sage/schemes/plane_conics/constructor.py +249 -0
- sage/schemes/plane_quartics/all.py +2 -0
- sage/schemes/plane_quartics/quartic_constructor.py +71 -0
- sage/schemes/plane_quartics/quartic_generic.py +73 -0
- sage/schemes/riemann_surfaces/all.py +1 -0
- sage/schemes/riemann_surfaces/riemann_surface.py +4117 -0
- sage_wheels/share/cremona/cremona_mini.db +0 -0
- sage_wheels/share/ellcurves/rank0 +30427 -0
- sage_wheels/share/ellcurves/rank1 +31871 -0
- sage_wheels/share/ellcurves/rank10 +6 -0
- sage_wheels/share/ellcurves/rank11 +6 -0
- sage_wheels/share/ellcurves/rank12 +1 -0
- sage_wheels/share/ellcurves/rank14 +1 -0
- sage_wheels/share/ellcurves/rank15 +1 -0
- sage_wheels/share/ellcurves/rank17 +1 -0
- sage_wheels/share/ellcurves/rank19 +1 -0
- sage_wheels/share/ellcurves/rank2 +2388 -0
- sage_wheels/share/ellcurves/rank20 +1 -0
- sage_wheels/share/ellcurves/rank21 +1 -0
- sage_wheels/share/ellcurves/rank22 +1 -0
- sage_wheels/share/ellcurves/rank23 +1 -0
- sage_wheels/share/ellcurves/rank24 +1 -0
- sage_wheels/share/ellcurves/rank28 +1 -0
- sage_wheels/share/ellcurves/rank3 +836 -0
- sage_wheels/share/ellcurves/rank4 +10 -0
- sage_wheels/share/ellcurves/rank5 +5 -0
- sage_wheels/share/ellcurves/rank6 +5 -0
- sage_wheels/share/ellcurves/rank7 +5 -0
- sage_wheels/share/ellcurves/rank8 +6 -0
- sage_wheels/share/ellcurves/rank9 +7 -0
|
@@ -0,0 +1,459 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-schemes
|
|
2
|
+
r"""
|
|
3
|
+
Elliptic curves with prescribed good reduction
|
|
4
|
+
|
|
5
|
+
Construction of elliptic curves with good reduction outside a finite
|
|
6
|
+
set of primes
|
|
7
|
+
|
|
8
|
+
A theorem of Shafarevich states that, over a number field `K`, given
|
|
9
|
+
any finite set `S` of primes of `K`, there are (up to isomorphism)
|
|
10
|
+
only a finite set of elliptic curves defined over `K` with good
|
|
11
|
+
reduction at all primes outside `S`. An explicit form of the theorem
|
|
12
|
+
with an algorithm for finding this finite set was given in "Finding
|
|
13
|
+
all elliptic curves with good reduction outside a given set of primes"
|
|
14
|
+
by John Cremona and Mark Lingham, Experimental Mathematics 16 No.3
|
|
15
|
+
(2007), 303-312. The method requires computation of the class and
|
|
16
|
+
unit groups of `K` as well as all the `S`-integral points on a
|
|
17
|
+
collection of auxiliary elliptic curves defined over `K`.
|
|
18
|
+
|
|
19
|
+
This implementation (April 2009) is only for the case `K=\QQ`, where in
|
|
20
|
+
many cases the determination of the necessary sets of `S`-integral
|
|
21
|
+
points is possible. The main user-level function is
|
|
22
|
+
:func:`EllipticCurves_with_good_reduction_outside_S`, defined in
|
|
23
|
+
constructor.py. Users should note carefully the following points:
|
|
24
|
+
|
|
25
|
+
(1) the number of auxiliary curves to be considered is exponential in
|
|
26
|
+
the size of `S` (specifically, `2.6^s` where `s=|S|`).
|
|
27
|
+
|
|
28
|
+
(2) For some of the auxiliary curves it is impossible at present to
|
|
29
|
+
provably find all the `S`-integral points using the current
|
|
30
|
+
algorithms, which rely on first finding a basis for their Mordell-Weil
|
|
31
|
+
groups using 2-descent. A warning is output in cases where the set of
|
|
32
|
+
points (and hence the final output) is not guaranteed to be complete.
|
|
33
|
+
Using the ``proof=False`` flag suppresses these warnings.
|
|
34
|
+
|
|
35
|
+
EXAMPLES: We find all elliptic curves with good reduction outside 2,
|
|
36
|
+
listing the label of each::
|
|
37
|
+
|
|
38
|
+
sage: [e.label() for e in EllipticCurves_with_good_reduction_outside_S([2])] # long time (5s on sage.math, 2013)
|
|
39
|
+
['32a1',
|
|
40
|
+
'32a2',
|
|
41
|
+
'32a3',
|
|
42
|
+
'32a4',
|
|
43
|
+
'64a1',
|
|
44
|
+
'64a2',
|
|
45
|
+
'64a3',
|
|
46
|
+
'64a4',
|
|
47
|
+
'128a1',
|
|
48
|
+
'128a2',
|
|
49
|
+
'128b1',
|
|
50
|
+
'128b2',
|
|
51
|
+
'128c1',
|
|
52
|
+
'128c2',
|
|
53
|
+
'128d1',
|
|
54
|
+
'128d2',
|
|
55
|
+
'256a1',
|
|
56
|
+
'256a2',
|
|
57
|
+
'256b1',
|
|
58
|
+
'256b2',
|
|
59
|
+
'256c1',
|
|
60
|
+
'256c2',
|
|
61
|
+
'256d1',
|
|
62
|
+
'256d2']
|
|
63
|
+
|
|
64
|
+
Secondly we try the same with `S={11}`; note that warning messages are
|
|
65
|
+
printed without ``proof=False`` (unless the optional database is
|
|
66
|
+
installed: two of the auxiliary curves whose Mordell-Weil bases are
|
|
67
|
+
required have conductors 13068 and 52272 so are in the database)::
|
|
68
|
+
|
|
69
|
+
sage: [e.label() for e in EllipticCurves_with_good_reduction_outside_S([11], proof=False)] # long time (13s on sage.math, 2011)
|
|
70
|
+
['11a1', '11a2', '11a3', '121a1', '121a2', '121b1', '121b2', '121c1', '121c2', '121d1', '121d2', '121d3']
|
|
71
|
+
|
|
72
|
+
AUTHORS:
|
|
73
|
+
|
|
74
|
+
- John Cremona (6 April 2009): initial version (over `\QQ` only).
|
|
75
|
+
"""
|
|
76
|
+
|
|
77
|
+
# ****************************************************************************
|
|
78
|
+
# Copyright (C) 2009 John Cremona <john.cremona@gmail.com>
|
|
79
|
+
#
|
|
80
|
+
# Distributed under the terms of the GNU General Public License (GPL)
|
|
81
|
+
#
|
|
82
|
+
# This code is distributed in the hope that it will be useful,
|
|
83
|
+
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
84
|
+
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
85
|
+
# General Public License for more details.
|
|
86
|
+
#
|
|
87
|
+
# The full text of the GPL is available at:
|
|
88
|
+
#
|
|
89
|
+
# https://www.gnu.org/licenses/
|
|
90
|
+
# ****************************************************************************
|
|
91
|
+
|
|
92
|
+
from sage.misc.mrange import xmrange
|
|
93
|
+
from sage.rings.rational_field import QQ
|
|
94
|
+
from .constructor import EllipticCurve, EllipticCurve_from_j
|
|
95
|
+
|
|
96
|
+
|
|
97
|
+
def is_possible_j(j, S=[]):
|
|
98
|
+
r"""
|
|
99
|
+
Test if the rational `j` is a possible `j`-invariant of an
|
|
100
|
+
elliptic curve with good reduction outside `S`.
|
|
101
|
+
|
|
102
|
+
.. NOTE::
|
|
103
|
+
|
|
104
|
+
The condition used is necessary but not sufficient unless S
|
|
105
|
+
contains both 2 and 3.
|
|
106
|
+
|
|
107
|
+
EXAMPLES::
|
|
108
|
+
|
|
109
|
+
sage: from sage.schemes.elliptic_curves.ell_egros import is_possible_j
|
|
110
|
+
sage: is_possible_j(0,[])
|
|
111
|
+
False
|
|
112
|
+
sage: is_possible_j(1728,[])
|
|
113
|
+
True
|
|
114
|
+
sage: is_possible_j(-4096/11,[11])
|
|
115
|
+
True
|
|
116
|
+
"""
|
|
117
|
+
j = QQ(j)
|
|
118
|
+
return (j.is_zero() and 3 in S) or (j == 1728) \
|
|
119
|
+
or (j.is_S_integral(S) and j.prime_to_S_part(S).is_nth_power(3)
|
|
120
|
+
and (j - 1728).prime_to_S_part(S).abs().is_square())
|
|
121
|
+
|
|
122
|
+
|
|
123
|
+
def curve_key(E1):
|
|
124
|
+
r"""
|
|
125
|
+
Comparison key for elliptic curves over `\QQ`.
|
|
126
|
+
|
|
127
|
+
The key is a tuple:
|
|
128
|
+
|
|
129
|
+
- if the curve is in the database: (conductor, 0, label, number)
|
|
130
|
+
|
|
131
|
+
- otherwise: (conductor, 1, a_invariants)
|
|
132
|
+
|
|
133
|
+
EXAMPLES::
|
|
134
|
+
|
|
135
|
+
sage: from sage.schemes.elliptic_curves.ell_egros import curve_key
|
|
136
|
+
sage: E = EllipticCurve_from_j(1728)
|
|
137
|
+
sage: curve_key(E)
|
|
138
|
+
(32, 0, 0, 2)
|
|
139
|
+
sage: E = EllipticCurve_from_j(1729)
|
|
140
|
+
sage: curve_key(E)
|
|
141
|
+
(2989441, 1, (1, 0, 0, -36, -1))
|
|
142
|
+
"""
|
|
143
|
+
try:
|
|
144
|
+
from sage.databases.cremona import parse_cremona_label, class_to_int
|
|
145
|
+
N, l, k = parse_cremona_label(E1.label())
|
|
146
|
+
return (N, 0, class_to_int(l), k)
|
|
147
|
+
except LookupError:
|
|
148
|
+
return (E1.conductor(), 1, E1.ainvs())
|
|
149
|
+
|
|
150
|
+
|
|
151
|
+
def egros_from_j_1728(S=[]):
|
|
152
|
+
r"""
|
|
153
|
+
Given a list of primes S, returns a list of elliptic curves over `\QQ`
|
|
154
|
+
with j-invariant 1728 and good reduction outside S, by checking
|
|
155
|
+
all relevant quartic twists.
|
|
156
|
+
|
|
157
|
+
INPUT:
|
|
158
|
+
|
|
159
|
+
- ``S`` -- list of primes (default: empty list)
|
|
160
|
+
|
|
161
|
+
.. NOTE::
|
|
162
|
+
|
|
163
|
+
Primality of elements of S is not checked, and the output
|
|
164
|
+
is undefined if S is not a list or contains non-primes.
|
|
165
|
+
|
|
166
|
+
OUTPUT:
|
|
167
|
+
|
|
168
|
+
A sorted list of all elliptic curves defined over `\QQ` with
|
|
169
|
+
`j`-invariant equal to `1728` and with good reduction at
|
|
170
|
+
all primes outside the list ``S``.
|
|
171
|
+
|
|
172
|
+
EXAMPLES::
|
|
173
|
+
|
|
174
|
+
sage: from sage.schemes.elliptic_curves.ell_egros import egros_from_j_1728
|
|
175
|
+
sage: egros_from_j_1728([])
|
|
176
|
+
[]
|
|
177
|
+
sage: egros_from_j_1728([3])
|
|
178
|
+
[]
|
|
179
|
+
sage: [e.cremona_label() for e in egros_from_j_1728([2])]
|
|
180
|
+
['32a1', '32a2', '64a1', '64a4', '256b1', '256b2', '256c1', '256c2']
|
|
181
|
+
"""
|
|
182
|
+
Elist = []
|
|
183
|
+
no2 = 2 not in S
|
|
184
|
+
for ei in xmrange([2] + [4] * len(S)):
|
|
185
|
+
u = QQ.prod(p**e for p, e in zip([-1] + S, ei))
|
|
186
|
+
if no2:
|
|
187
|
+
u *= 4 # make sure 12|val(D,2)
|
|
188
|
+
Eu = EllipticCurve([0, 0, 0, u, 0]).minimal_model()
|
|
189
|
+
if Eu.has_good_reduction_outside_S(S):
|
|
190
|
+
Elist += [Eu]
|
|
191
|
+
Elist.sort(key=curve_key)
|
|
192
|
+
return Elist
|
|
193
|
+
|
|
194
|
+
|
|
195
|
+
def egros_from_j_0(S=[]):
|
|
196
|
+
r"""
|
|
197
|
+
Given a list of primes S, returns a list of elliptic curves over `\QQ`
|
|
198
|
+
with j-invariant 0 and good reduction outside S, by checking all
|
|
199
|
+
relevant sextic twists.
|
|
200
|
+
|
|
201
|
+
INPUT:
|
|
202
|
+
|
|
203
|
+
- ``S`` -- list of primes (default: empty list)
|
|
204
|
+
|
|
205
|
+
.. NOTE::
|
|
206
|
+
|
|
207
|
+
Primality of elements of S is not checked, and the output
|
|
208
|
+
is undefined if S is not a list or contains non-primes.
|
|
209
|
+
|
|
210
|
+
OUTPUT:
|
|
211
|
+
|
|
212
|
+
A sorted list of all elliptic curves defined over `\QQ` with
|
|
213
|
+
`j`-invariant equal to `0` and with good reduction at
|
|
214
|
+
all primes outside the list ``S``.
|
|
215
|
+
|
|
216
|
+
EXAMPLES::
|
|
217
|
+
|
|
218
|
+
sage: from sage.schemes.elliptic_curves.ell_egros import egros_from_j_0
|
|
219
|
+
sage: egros_from_j_0([])
|
|
220
|
+
[]
|
|
221
|
+
sage: egros_from_j_0([2])
|
|
222
|
+
[]
|
|
223
|
+
sage: [e.label() for e in egros_from_j_0([3])]
|
|
224
|
+
['27a1', '27a3', '243a1', '243a2', '243b1', '243b2']
|
|
225
|
+
sage: len(egros_from_j_0([2,3,5])) # long time (8s on sage.math, 2013)
|
|
226
|
+
432
|
|
227
|
+
"""
|
|
228
|
+
Elist = []
|
|
229
|
+
if 3 not in S:
|
|
230
|
+
return Elist
|
|
231
|
+
no2 = 2 not in S
|
|
232
|
+
for ei in xmrange([2] + [6] * len(S)):
|
|
233
|
+
u = QQ.prod(p**e for p, e in zip([-1] + S, ei))
|
|
234
|
+
if no2:
|
|
235
|
+
u *= 16 # make sure 12|val(D,2)
|
|
236
|
+
Eu = EllipticCurve([0, 0, 0, 0, u]).minimal_model()
|
|
237
|
+
if Eu.has_good_reduction_outside_S(S):
|
|
238
|
+
Elist += [Eu]
|
|
239
|
+
Elist.sort(key=curve_key)
|
|
240
|
+
return Elist
|
|
241
|
+
|
|
242
|
+
|
|
243
|
+
def egros_from_j(j, S=[]):
|
|
244
|
+
r"""
|
|
245
|
+
Given a rational j and a list of primes S, returns a list of
|
|
246
|
+
elliptic curves over `\QQ` with j-invariant j and good reduction
|
|
247
|
+
outside S, by checking all relevant quadratic twists.
|
|
248
|
+
|
|
249
|
+
INPUT:
|
|
250
|
+
|
|
251
|
+
- ``j`` -- a rational number
|
|
252
|
+
|
|
253
|
+
- ``S`` -- list of primes (default: empty list)
|
|
254
|
+
|
|
255
|
+
.. NOTE::
|
|
256
|
+
|
|
257
|
+
Primality of elements of S is not checked, and the output
|
|
258
|
+
is undefined if S is not a list or contains non-primes.
|
|
259
|
+
|
|
260
|
+
OUTPUT:
|
|
261
|
+
|
|
262
|
+
A sorted list of all elliptic curves defined over `\QQ` with
|
|
263
|
+
`j`-invariant equal to `j` and with good reduction at
|
|
264
|
+
all primes outside the list ``S``.
|
|
265
|
+
|
|
266
|
+
EXAMPLES::
|
|
267
|
+
|
|
268
|
+
sage: from sage.schemes.elliptic_curves.ell_egros import egros_from_j
|
|
269
|
+
sage: [e.label() for e in egros_from_j(0,[3])]
|
|
270
|
+
['27a1', '27a3', '243a1', '243a2', '243b1', '243b2']
|
|
271
|
+
sage: [e.label() for e in egros_from_j(1728,[2])]
|
|
272
|
+
['32a1', '32a2', '64a1', '64a4', '256b1', '256b2', '256c1', '256c2']
|
|
273
|
+
sage: elist=egros_from_j(-4096/11,[11])
|
|
274
|
+
sage: [e.label() for e in elist]
|
|
275
|
+
['11a3', '121d1']
|
|
276
|
+
"""
|
|
277
|
+
if j == 1728:
|
|
278
|
+
return egros_from_j_1728(S)
|
|
279
|
+
|
|
280
|
+
if j == 0:
|
|
281
|
+
return egros_from_j_0(S)
|
|
282
|
+
|
|
283
|
+
# Now j != 0, 1728
|
|
284
|
+
|
|
285
|
+
E = EllipticCurve_from_j(j)
|
|
286
|
+
Elist = []
|
|
287
|
+
|
|
288
|
+
for ei in xmrange([2] * (1 + len(S))):
|
|
289
|
+
u = QQ.prod(p**e for p, e in zip(reversed([-1] + S), ei))
|
|
290
|
+
Eu = E.quadratic_twist(u).minimal_model()
|
|
291
|
+
if Eu.has_good_reduction_outside_S(S):
|
|
292
|
+
Elist += [Eu]
|
|
293
|
+
|
|
294
|
+
Elist.sort(key=curve_key)
|
|
295
|
+
return Elist
|
|
296
|
+
|
|
297
|
+
|
|
298
|
+
def egros_from_jlist(jlist, S=[]):
|
|
299
|
+
r"""
|
|
300
|
+
Given a list of rational j and a list of primes S, returns a list
|
|
301
|
+
of elliptic curves over `\QQ` with j-invariant in the list and good
|
|
302
|
+
reduction outside S.
|
|
303
|
+
|
|
304
|
+
INPUT:
|
|
305
|
+
|
|
306
|
+
- ``j`` -- list of rational numbers
|
|
307
|
+
|
|
308
|
+
- ``S`` -- list of primes (default: empty list)
|
|
309
|
+
|
|
310
|
+
.. NOTE::
|
|
311
|
+
|
|
312
|
+
Primality of elements of S is not checked, and the output
|
|
313
|
+
is undefined if S is not a list or contains non-primes.
|
|
314
|
+
|
|
315
|
+
OUTPUT:
|
|
316
|
+
|
|
317
|
+
A sorted list of all elliptic curves defined over `\QQ` with
|
|
318
|
+
`j`-invariant in the list ``jlist`` and with good reduction at
|
|
319
|
+
all primes outside the list ``S``.
|
|
320
|
+
|
|
321
|
+
EXAMPLES::
|
|
322
|
+
|
|
323
|
+
sage: # needs eclib sage.symbolic
|
|
324
|
+
sage: from sage.schemes.elliptic_curves.ell_egros import egros_get_j, egros_from_jlist
|
|
325
|
+
sage: jlist = egros_get_j([3])
|
|
326
|
+
sage: elist = egros_from_jlist(jlist,[3])
|
|
327
|
+
sage: [e.label() for e in elist]
|
|
328
|
+
['27a1', '27a2', '27a3', '27a4', '243a1', '243a2', '243b1', '243b2']
|
|
329
|
+
sage: [e.ainvs() for e in elist]
|
|
330
|
+
[(0, 0, 1, 0, -7),
|
|
331
|
+
(0, 0, 1, -270, -1708),
|
|
332
|
+
(0, 0, 1, 0, 0),
|
|
333
|
+
(0, 0, 1, -30, 63),
|
|
334
|
+
(0, 0, 1, 0, -1),
|
|
335
|
+
(0, 0, 1, 0, 20),
|
|
336
|
+
(0, 0, 1, 0, 2),
|
|
337
|
+
(0, 0, 1, 0, -61)]
|
|
338
|
+
"""
|
|
339
|
+
elist = [e for j in jlist for e in egros_from_j(j, S)]
|
|
340
|
+
elist.sort(key=curve_key)
|
|
341
|
+
return elist
|
|
342
|
+
|
|
343
|
+
|
|
344
|
+
def egros_get_j(S=[], proof=None, verbose=False):
|
|
345
|
+
r"""
|
|
346
|
+
Return a list of rational `j` such that all elliptic curves
|
|
347
|
+
defined over `\QQ` with good reduction outside `S` have
|
|
348
|
+
`j`-invariant in the list, sorted by height.
|
|
349
|
+
|
|
350
|
+
INPUT:
|
|
351
|
+
|
|
352
|
+
- ``S`` -- list of primes (default: empty list)
|
|
353
|
+
|
|
354
|
+
- ``proof`` -- boolean (default: ``True``); the MW basis for
|
|
355
|
+
auxiliary curves will be computed with this proof flag
|
|
356
|
+
|
|
357
|
+
- ``verbose`` -- boolean (default: ``False``); if ``True``, some
|
|
358
|
+
details of the computation will be output
|
|
359
|
+
|
|
360
|
+
.. NOTE::
|
|
361
|
+
|
|
362
|
+
Proof flag: The algorithm used requires determining all
|
|
363
|
+
S-integral points on several auxiliary curves, which in turn
|
|
364
|
+
requires the computation of their generators. This is not
|
|
365
|
+
always possible (even in theory) using current knowledge.
|
|
366
|
+
|
|
367
|
+
The value of this flag is passed to the function which
|
|
368
|
+
computes generators of various auxiliary elliptic curves, in
|
|
369
|
+
order to find their S-integral points. Set to ``False`` if the
|
|
370
|
+
default (``True``) causes warning messages, but note that you can
|
|
371
|
+
then not rely on the set of invariants returned being
|
|
372
|
+
complete.
|
|
373
|
+
|
|
374
|
+
EXAMPLES::
|
|
375
|
+
|
|
376
|
+
sage: # needs eclib
|
|
377
|
+
sage: from sage.schemes.elliptic_curves.ell_egros import egros_get_j
|
|
378
|
+
sage: egros_get_j([])
|
|
379
|
+
[1728]
|
|
380
|
+
sage: egros_get_j([2]) # long time (3s on sage.math, 2013)
|
|
381
|
+
[128, 432, -864, 1728, 3375/2, -3456, 6912, 8000, 10976, -35937/4, 287496, -784446336, -189613868625/128]
|
|
382
|
+
sage: egros_get_j([3]) # long time (3s on sage.math, 2013)
|
|
383
|
+
[0, -576, 1536, 1728, -5184, -13824, 21952/9, -41472, 140608/3, -12288000]
|
|
384
|
+
sage: jlist=egros_get_j([2,3]); len(jlist) # long time (30s)
|
|
385
|
+
83
|
|
386
|
+
"""
|
|
387
|
+
if not all(p.is_prime() for p in S):
|
|
388
|
+
raise ValueError("Elements of S must be prime.")
|
|
389
|
+
|
|
390
|
+
if proof is None:
|
|
391
|
+
from sage.structure.proof.proof import get_flag
|
|
392
|
+
proof = get_flag(proof, "elliptic_curve")
|
|
393
|
+
else:
|
|
394
|
+
proof = bool(proof)
|
|
395
|
+
|
|
396
|
+
if verbose:
|
|
397
|
+
import sys # so we can flush stdout for debugging
|
|
398
|
+
|
|
399
|
+
SS = [-1] + S
|
|
400
|
+
|
|
401
|
+
jlist = []
|
|
402
|
+
wcount = 0
|
|
403
|
+
nw = 6**len(S) * 2
|
|
404
|
+
|
|
405
|
+
if verbose:
|
|
406
|
+
print("Finding possible j invariants for S = ", S)
|
|
407
|
+
print("Using ", nw, " twists of base curve")
|
|
408
|
+
sys.stdout.flush()
|
|
409
|
+
|
|
410
|
+
for ei in xmrange([6] * len(S) + [2]):
|
|
411
|
+
w = QQ.prod(p**e for p, e in zip(reversed(SS), ei))
|
|
412
|
+
wcount += 1
|
|
413
|
+
if verbose:
|
|
414
|
+
print("Curve #", wcount, "/", nw, ":")
|
|
415
|
+
print("w = ", w, "=", w.factor())
|
|
416
|
+
sys.stdout.flush()
|
|
417
|
+
a6 = -1728 * w
|
|
418
|
+
E = EllipticCurve([0, 0, 0, 0, a6])
|
|
419
|
+
# This curve may not be minimal at 2 or 3, but the
|
|
420
|
+
# S-integral_points function requires minimality at primes in
|
|
421
|
+
# S, so we find a new model which is p-minimal at both 2 and 3
|
|
422
|
+
# if they are in S. Note that the isomorphism between models
|
|
423
|
+
# will preserve S-integrality of points.
|
|
424
|
+
E2 = E.local_minimal_model(2) if 2 in S else E
|
|
425
|
+
E23 = E2.local_minimal_model(3) if 3 in S else E2
|
|
426
|
+
urst = E23.isomorphism_to(E)
|
|
427
|
+
|
|
428
|
+
try:
|
|
429
|
+
pts = E23.S_integral_points(S, proof=proof)
|
|
430
|
+
except RuntimeError:
|
|
431
|
+
pts = []
|
|
432
|
+
print("Failed to find S-integral points on ", E23.ainvs())
|
|
433
|
+
if proof:
|
|
434
|
+
if verbose:
|
|
435
|
+
print("--trying again with proof=False")
|
|
436
|
+
sys.stdout.flush()
|
|
437
|
+
pts = E23.S_integral_points(S, proof=False)
|
|
438
|
+
if verbose:
|
|
439
|
+
print("--done")
|
|
440
|
+
if verbose:
|
|
441
|
+
print(len(pts), " S-integral points: ", pts)
|
|
442
|
+
sys.stdout.flush()
|
|
443
|
+
for P in pts:
|
|
444
|
+
P = urst(P)
|
|
445
|
+
x = P[0]
|
|
446
|
+
y = P[1]
|
|
447
|
+
j = x**3 / w
|
|
448
|
+
assert j - 1728 == y**2 / w
|
|
449
|
+
if is_possible_j(j, S):
|
|
450
|
+
if j not in jlist:
|
|
451
|
+
if verbose:
|
|
452
|
+
print("Adding possible j = ", j)
|
|
453
|
+
sys.stdout.flush()
|
|
454
|
+
jlist += [j]
|
|
455
|
+
else:
|
|
456
|
+
if verbose:
|
|
457
|
+
print("Discarding illegal j = ", j)
|
|
458
|
+
sys.stdout.flush()
|
|
459
|
+
return sorted(jlist, key=lambda j: j.height())
|