passagemath-schemes 10.6.40__cp314-cp314-macosx_13_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-schemes might be problematic. Click here for more details.
- passagemath_schemes/.dylibs/libflint.22.0.dylib +0 -0
- passagemath_schemes/.dylibs/libgmp.10.dylib +0 -0
- passagemath_schemes/.dylibs/libgmpxx.4.dylib +0 -0
- passagemath_schemes/.dylibs/libmpfr.6.dylib +0 -0
- passagemath_schemes/__init__.py +3 -0
- passagemath_schemes-10.6.40.dist-info/METADATA +204 -0
- passagemath_schemes-10.6.40.dist-info/METADATA.bak +205 -0
- passagemath_schemes-10.6.40.dist-info/RECORD +314 -0
- passagemath_schemes-10.6.40.dist-info/WHEEL +6 -0
- passagemath_schemes-10.6.40.dist-info/top_level.txt +3 -0
- sage/all__sagemath_schemes.py +23 -0
- sage/databases/all__sagemath_schemes.py +7 -0
- sage/databases/cremona.py +1723 -0
- sage/dynamics/all__sagemath_schemes.py +2 -0
- sage/dynamics/arithmetic_dynamics/affine_ds.py +1083 -0
- sage/dynamics/arithmetic_dynamics/all.py +14 -0
- sage/dynamics/arithmetic_dynamics/berkovich_ds.py +1101 -0
- sage/dynamics/arithmetic_dynamics/dynamical_semigroup.py +1543 -0
- sage/dynamics/arithmetic_dynamics/endPN_automorphism_group.py +2426 -0
- sage/dynamics/arithmetic_dynamics/endPN_minimal_model.py +1169 -0
- sage/dynamics/arithmetic_dynamics/generic_ds.py +663 -0
- sage/dynamics/arithmetic_dynamics/product_projective_ds.py +339 -0
- sage/dynamics/arithmetic_dynamics/projective_ds.py +9558 -0
- sage/dynamics/arithmetic_dynamics/projective_ds_helper.cpython-314-darwin.so +0 -0
- sage/dynamics/arithmetic_dynamics/projective_ds_helper.pyx +301 -0
- sage/dynamics/arithmetic_dynamics/wehlerK3.py +2576 -0
- sage/lfunctions/all.py +18 -0
- sage/lfunctions/dokchitser.py +745 -0
- sage/lfunctions/pari.py +818 -0
- sage/lfunctions/zero_sums.cpython-314-darwin.so +0 -0
- sage/lfunctions/zero_sums.pyx +1847 -0
- sage/modular/abvar/abvar.py +5135 -0
- sage/modular/abvar/abvar_ambient_jacobian.py +413 -0
- sage/modular/abvar/abvar_newform.py +244 -0
- sage/modular/abvar/all.py +8 -0
- sage/modular/abvar/constructor.py +186 -0
- sage/modular/abvar/cuspidal_subgroup.py +371 -0
- sage/modular/abvar/finite_subgroup.py +896 -0
- sage/modular/abvar/homology.py +720 -0
- sage/modular/abvar/homspace.py +998 -0
- sage/modular/abvar/lseries.py +415 -0
- sage/modular/abvar/morphism.py +935 -0
- sage/modular/abvar/torsion_point.py +274 -0
- sage/modular/abvar/torsion_subgroup.py +740 -0
- sage/modular/all.py +43 -0
- sage/modular/arithgroup/all.py +20 -0
- sage/modular/arithgroup/arithgroup_element.cpython-314-darwin.so +0 -0
- sage/modular/arithgroup/arithgroup_element.pyx +474 -0
- sage/modular/arithgroup/arithgroup_generic.py +1402 -0
- sage/modular/arithgroup/arithgroup_perm.py +2692 -0
- sage/modular/arithgroup/congroup.cpython-314-darwin.so +0 -0
- sage/modular/arithgroup/congroup.pyx +334 -0
- sage/modular/arithgroup/congroup_gamma.py +363 -0
- sage/modular/arithgroup/congroup_gamma0.py +692 -0
- sage/modular/arithgroup/congroup_gamma1.py +653 -0
- sage/modular/arithgroup/congroup_gammaH.py +1469 -0
- sage/modular/arithgroup/congroup_generic.py +628 -0
- sage/modular/arithgroup/congroup_sl2z.py +267 -0
- sage/modular/arithgroup/farey_symbol.cpython-314-darwin.so +0 -0
- sage/modular/arithgroup/farey_symbol.pyx +1066 -0
- sage/modular/arithgroup/tests.py +418 -0
- sage/modular/btquotients/all.py +4 -0
- sage/modular/btquotients/btquotient.py +3753 -0
- sage/modular/btquotients/pautomorphicform.py +2570 -0
- sage/modular/buzzard.py +100 -0
- sage/modular/congroup.py +29 -0
- sage/modular/congroup_element.py +13 -0
- sage/modular/cusps.py +1109 -0
- sage/modular/cusps_nf.py +1270 -0
- sage/modular/dims.py +569 -0
- sage/modular/dirichlet.py +3310 -0
- sage/modular/drinfeld_modform/all.py +2 -0
- sage/modular/drinfeld_modform/element.py +446 -0
- sage/modular/drinfeld_modform/ring.py +773 -0
- sage/modular/drinfeld_modform/tutorial.py +236 -0
- sage/modular/etaproducts.py +1065 -0
- sage/modular/hecke/algebra.py +746 -0
- sage/modular/hecke/all.py +20 -0
- sage/modular/hecke/ambient_module.py +1019 -0
- sage/modular/hecke/degenmap.py +119 -0
- sage/modular/hecke/element.py +325 -0
- sage/modular/hecke/hecke_operator.py +780 -0
- sage/modular/hecke/homspace.py +206 -0
- sage/modular/hecke/module.py +1767 -0
- sage/modular/hecke/morphism.py +174 -0
- sage/modular/hecke/submodule.py +989 -0
- sage/modular/hypergeometric_misc.cpython-314-darwin.so +0 -0
- sage/modular/hypergeometric_misc.pxd +4 -0
- sage/modular/hypergeometric_misc.pyx +166 -0
- sage/modular/hypergeometric_motive.py +2017 -0
- sage/modular/local_comp/all.py +2 -0
- sage/modular/local_comp/liftings.py +292 -0
- sage/modular/local_comp/local_comp.py +1071 -0
- sage/modular/local_comp/smoothchar.py +1825 -0
- sage/modular/local_comp/type_space.py +748 -0
- sage/modular/modform/all.py +30 -0
- sage/modular/modform/ambient.py +815 -0
- sage/modular/modform/ambient_R.py +177 -0
- sage/modular/modform/ambient_eps.py +306 -0
- sage/modular/modform/ambient_g0.py +124 -0
- sage/modular/modform/ambient_g1.py +204 -0
- sage/modular/modform/constructor.py +545 -0
- sage/modular/modform/cuspidal_submodule.py +708 -0
- sage/modular/modform/defaults.py +14 -0
- sage/modular/modform/eis_series.py +505 -0
- sage/modular/modform/eisenstein_submodule.py +663 -0
- sage/modular/modform/element.py +4131 -0
- sage/modular/modform/find_generators.py +59 -0
- sage/modular/modform/half_integral.py +154 -0
- sage/modular/modform/hecke_operator_on_qexp.py +247 -0
- sage/modular/modform/j_invariant.py +47 -0
- sage/modular/modform/l_series_gross_zagier.py +133 -0
- sage/modular/modform/l_series_gross_zagier_coeffs.cpython-314-darwin.so +0 -0
- sage/modular/modform/l_series_gross_zagier_coeffs.pyx +177 -0
- sage/modular/modform/notes.py +45 -0
- sage/modular/modform/numerical.py +514 -0
- sage/modular/modform/periods.py +14 -0
- sage/modular/modform/ring.py +1257 -0
- sage/modular/modform/space.py +1860 -0
- sage/modular/modform/submodule.py +118 -0
- sage/modular/modform/tests.py +64 -0
- sage/modular/modform/theta.py +110 -0
- sage/modular/modform/vm_basis.py +381 -0
- sage/modular/modform/weight1.py +220 -0
- sage/modular/modform_hecketriangle/abstract_ring.py +1932 -0
- sage/modular/modform_hecketriangle/abstract_space.py +2528 -0
- sage/modular/modform_hecketriangle/all.py +30 -0
- sage/modular/modform_hecketriangle/analytic_type.py +590 -0
- sage/modular/modform_hecketriangle/constructor.py +416 -0
- sage/modular/modform_hecketriangle/element.py +351 -0
- sage/modular/modform_hecketriangle/functors.py +752 -0
- sage/modular/modform_hecketriangle/graded_ring.py +541 -0
- sage/modular/modform_hecketriangle/graded_ring_element.py +2225 -0
- sage/modular/modform_hecketriangle/hecke_triangle_group_element.py +3352 -0
- sage/modular/modform_hecketriangle/hecke_triangle_groups.py +1432 -0
- sage/modular/modform_hecketriangle/readme.py +1214 -0
- sage/modular/modform_hecketriangle/series_constructor.py +580 -0
- sage/modular/modform_hecketriangle/space.py +1037 -0
- sage/modular/modform_hecketriangle/subspace.py +423 -0
- sage/modular/modsym/all.py +17 -0
- sage/modular/modsym/ambient.py +3846 -0
- sage/modular/modsym/boundary.py +1420 -0
- sage/modular/modsym/element.py +336 -0
- sage/modular/modsym/g1list.py +178 -0
- sage/modular/modsym/ghlist.py +182 -0
- sage/modular/modsym/hecke_operator.py +73 -0
- sage/modular/modsym/manin_symbol.cpython-314-darwin.so +0 -0
- sage/modular/modsym/manin_symbol.pxd +5 -0
- sage/modular/modsym/manin_symbol.pyx +497 -0
- sage/modular/modsym/manin_symbol_list.py +1295 -0
- sage/modular/modsym/modsym.py +400 -0
- sage/modular/modsym/modular_symbols.py +384 -0
- sage/modular/modsym/p1list.cpython-314-darwin.so +0 -0
- sage/modular/modsym/p1list.pxd +29 -0
- sage/modular/modsym/p1list.pyx +1372 -0
- sage/modular/modsym/p1list_nf.py +1241 -0
- sage/modular/modsym/relation_matrix.py +591 -0
- sage/modular/modsym/relation_matrix_pyx.cpython-314-darwin.so +0 -0
- sage/modular/modsym/relation_matrix_pyx.pyx +108 -0
- sage/modular/modsym/space.py +2468 -0
- sage/modular/modsym/subspace.py +455 -0
- sage/modular/modsym/tests.py +375 -0
- sage/modular/multiple_zeta.py +2632 -0
- sage/modular/multiple_zeta_F_algebra.py +786 -0
- sage/modular/overconvergent/all.py +6 -0
- sage/modular/overconvergent/genus0.py +1878 -0
- sage/modular/overconvergent/hecke_series.py +1187 -0
- sage/modular/overconvergent/weightspace.py +778 -0
- sage/modular/pollack_stevens/all.py +4 -0
- sage/modular/pollack_stevens/distributions.py +874 -0
- sage/modular/pollack_stevens/fund_domain.py +1572 -0
- sage/modular/pollack_stevens/manin_map.py +859 -0
- sage/modular/pollack_stevens/modsym.py +1593 -0
- sage/modular/pollack_stevens/padic_lseries.py +417 -0
- sage/modular/pollack_stevens/sigma0.py +534 -0
- sage/modular/pollack_stevens/space.py +1076 -0
- sage/modular/quasimodform/all.py +3 -0
- sage/modular/quasimodform/element.py +845 -0
- sage/modular/quasimodform/ring.py +828 -0
- sage/modular/quatalg/all.py +3 -0
- sage/modular/quatalg/brandt.py +1642 -0
- sage/modular/ssmod/all.py +8 -0
- sage/modular/ssmod/ssmod.py +827 -0
- sage/rings/all__sagemath_schemes.py +1 -0
- sage/rings/polynomial/all__sagemath_schemes.py +1 -0
- sage/rings/polynomial/binary_form_reduce.py +585 -0
- sage/schemes/all.py +41 -0
- sage/schemes/berkovich/all.py +6 -0
- sage/schemes/berkovich/berkovich_cp_element.py +2582 -0
- sage/schemes/berkovich/berkovich_space.py +748 -0
- sage/schemes/curves/affine_curve.py +2928 -0
- sage/schemes/curves/all.py +33 -0
- sage/schemes/curves/closed_point.py +434 -0
- sage/schemes/curves/constructor.py +381 -0
- sage/schemes/curves/curve.py +542 -0
- sage/schemes/curves/plane_curve_arrangement.py +1283 -0
- sage/schemes/curves/point.py +463 -0
- sage/schemes/curves/projective_curve.py +3026 -0
- sage/schemes/curves/zariski_vankampen.py +1932 -0
- sage/schemes/cyclic_covers/all.py +2 -0
- sage/schemes/cyclic_covers/charpoly_frobenius.py +320 -0
- sage/schemes/cyclic_covers/constructor.py +137 -0
- sage/schemes/cyclic_covers/cycliccover_finite_field.py +1309 -0
- sage/schemes/cyclic_covers/cycliccover_generic.py +310 -0
- sage/schemes/elliptic_curves/BSD.py +1036 -0
- sage/schemes/elliptic_curves/Qcurves.py +592 -0
- sage/schemes/elliptic_curves/addition_formulas_ring.py +94 -0
- sage/schemes/elliptic_curves/all.py +49 -0
- sage/schemes/elliptic_curves/cardinality.py +609 -0
- sage/schemes/elliptic_curves/cm.py +1102 -0
- sage/schemes/elliptic_curves/constructor.py +1552 -0
- sage/schemes/elliptic_curves/ec_database.py +175 -0
- sage/schemes/elliptic_curves/ell_curve_isogeny.py +3972 -0
- sage/schemes/elliptic_curves/ell_egros.py +459 -0
- sage/schemes/elliptic_curves/ell_field.py +2836 -0
- sage/schemes/elliptic_curves/ell_finite_field.py +3359 -0
- sage/schemes/elliptic_curves/ell_generic.py +3760 -0
- sage/schemes/elliptic_curves/ell_local_data.py +1207 -0
- sage/schemes/elliptic_curves/ell_modular_symbols.py +775 -0
- sage/schemes/elliptic_curves/ell_number_field.py +4220 -0
- sage/schemes/elliptic_curves/ell_padic_field.py +107 -0
- sage/schemes/elliptic_curves/ell_point.py +4787 -0
- sage/schemes/elliptic_curves/ell_rational_field.py +7368 -0
- sage/schemes/elliptic_curves/ell_tate_curve.py +671 -0
- sage/schemes/elliptic_curves/ell_torsion.py +436 -0
- sage/schemes/elliptic_curves/ell_wp.py +352 -0
- sage/schemes/elliptic_curves/formal_group.py +760 -0
- sage/schemes/elliptic_curves/gal_reps.py +1459 -0
- sage/schemes/elliptic_curves/gal_reps_number_field.py +1669 -0
- sage/schemes/elliptic_curves/gp_simon.py +152 -0
- sage/schemes/elliptic_curves/heegner.py +7335 -0
- sage/schemes/elliptic_curves/height.py +2109 -0
- sage/schemes/elliptic_curves/hom.py +1406 -0
- sage/schemes/elliptic_curves/hom_composite.py +934 -0
- sage/schemes/elliptic_curves/hom_frobenius.py +522 -0
- sage/schemes/elliptic_curves/hom_scalar.py +531 -0
- sage/schemes/elliptic_curves/hom_sum.py +682 -0
- sage/schemes/elliptic_curves/hom_velusqrt.py +1290 -0
- sage/schemes/elliptic_curves/homset.py +271 -0
- sage/schemes/elliptic_curves/isogeny_class.py +1521 -0
- sage/schemes/elliptic_curves/isogeny_small_degree.py +2797 -0
- sage/schemes/elliptic_curves/jacobian.py +237 -0
- sage/schemes/elliptic_curves/kodaira_symbol.py +344 -0
- sage/schemes/elliptic_curves/kraus.py +1014 -0
- sage/schemes/elliptic_curves/lseries_ell.py +943 -0
- sage/schemes/elliptic_curves/mod5family.py +105 -0
- sage/schemes/elliptic_curves/mod_poly.py +197 -0
- sage/schemes/elliptic_curves/mod_sym_num.cpython-314-darwin.so +0 -0
- sage/schemes/elliptic_curves/mod_sym_num.pyx +3796 -0
- sage/schemes/elliptic_curves/modular_parametrization.py +305 -0
- sage/schemes/elliptic_curves/padic_lseries.py +1793 -0
- sage/schemes/elliptic_curves/padics.py +1816 -0
- sage/schemes/elliptic_curves/period_lattice.py +2234 -0
- sage/schemes/elliptic_curves/period_lattice_region.cpython-314-darwin.so +0 -0
- sage/schemes/elliptic_curves/period_lattice_region.pyx +722 -0
- sage/schemes/elliptic_curves/saturation.py +715 -0
- sage/schemes/elliptic_curves/sha_tate.py +1158 -0
- sage/schemes/elliptic_curves/weierstrass_morphism.py +1117 -0
- sage/schemes/elliptic_curves/weierstrass_transform.py +200 -0
- sage/schemes/hyperelliptic_curves/all.py +6 -0
- sage/schemes/hyperelliptic_curves/constructor.py +291 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_finite_field.py +1914 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_g2.py +192 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_generic.py +954 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_padic_field.py +1332 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_rational_field.py +84 -0
- sage/schemes/hyperelliptic_curves/invariants.py +410 -0
- sage/schemes/hyperelliptic_curves/jacobian_endomorphism_utils.py +315 -0
- sage/schemes/hyperelliptic_curves/jacobian_g2.py +32 -0
- sage/schemes/hyperelliptic_curves/jacobian_generic.py +419 -0
- sage/schemes/hyperelliptic_curves/jacobian_homset.py +186 -0
- sage/schemes/hyperelliptic_curves/jacobian_morphism.py +875 -0
- sage/schemes/hyperelliptic_curves/kummer_surface.py +99 -0
- sage/schemes/hyperelliptic_curves/mestre.py +302 -0
- sage/schemes/hyperelliptic_curves/monsky_washnitzer.py +3871 -0
- sage/schemes/jacobians/abstract_jacobian.py +277 -0
- sage/schemes/jacobians/all.py +2 -0
- sage/schemes/overview.py +161 -0
- sage/schemes/plane_conics/all.py +22 -0
- sage/schemes/plane_conics/con_field.py +1296 -0
- sage/schemes/plane_conics/con_finite_field.py +158 -0
- sage/schemes/plane_conics/con_number_field.py +456 -0
- sage/schemes/plane_conics/con_rational_field.py +406 -0
- sage/schemes/plane_conics/con_rational_function_field.py +580 -0
- sage/schemes/plane_conics/constructor.py +249 -0
- sage/schemes/plane_quartics/all.py +2 -0
- sage/schemes/plane_quartics/quartic_constructor.py +71 -0
- sage/schemes/plane_quartics/quartic_generic.py +73 -0
- sage/schemes/riemann_surfaces/all.py +1 -0
- sage/schemes/riemann_surfaces/riemann_surface.py +4117 -0
- sage_wheels/share/cremona/cremona_mini.db +0 -0
- sage_wheels/share/ellcurves/rank0 +30427 -0
- sage_wheels/share/ellcurves/rank1 +31871 -0
- sage_wheels/share/ellcurves/rank10 +6 -0
- sage_wheels/share/ellcurves/rank11 +6 -0
- sage_wheels/share/ellcurves/rank12 +1 -0
- sage_wheels/share/ellcurves/rank14 +1 -0
- sage_wheels/share/ellcurves/rank15 +1 -0
- sage_wheels/share/ellcurves/rank17 +1 -0
- sage_wheels/share/ellcurves/rank19 +1 -0
- sage_wheels/share/ellcurves/rank2 +2388 -0
- sage_wheels/share/ellcurves/rank20 +1 -0
- sage_wheels/share/ellcurves/rank21 +1 -0
- sage_wheels/share/ellcurves/rank22 +1 -0
- sage_wheels/share/ellcurves/rank23 +1 -0
- sage_wheels/share/ellcurves/rank24 +1 -0
- sage_wheels/share/ellcurves/rank28 +1 -0
- sage_wheels/share/ellcurves/rank3 +836 -0
- sage_wheels/share/ellcurves/rank4 +10 -0
- sage_wheels/share/ellcurves/rank5 +5 -0
- sage_wheels/share/ellcurves/rank6 +5 -0
- sage_wheels/share/ellcurves/rank7 +5 -0
- sage_wheels/share/ellcurves/rank8 +6 -0
- sage_wheels/share/ellcurves/rank9 +7 -0
|
@@ -0,0 +1,384 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-schemes
|
|
2
|
+
# sage.doctest: needs sage.libs.flint
|
|
3
|
+
r"""
|
|
4
|
+
Modular symbols `\{\alpha`, `\beta\}`
|
|
5
|
+
|
|
6
|
+
The ModularSymbol class represents a single modular symbol `X^i Y^{k-2-i} \{\alpha, \beta\}`.
|
|
7
|
+
|
|
8
|
+
AUTHOR:
|
|
9
|
+
|
|
10
|
+
- William Stein (2005, 2009)
|
|
11
|
+
|
|
12
|
+
TESTS::
|
|
13
|
+
|
|
14
|
+
sage: s = ModularSymbols(11).2.modular_symbol_rep()[0][1]; s
|
|
15
|
+
{-1/9, 0}
|
|
16
|
+
sage: loads(dumps(s)) == s
|
|
17
|
+
True
|
|
18
|
+
"""
|
|
19
|
+
# ****************************************************************************
|
|
20
|
+
# Sage: Open Source Mathematical Software
|
|
21
|
+
#
|
|
22
|
+
# Copyright (C) 2005, 2009 William Stein <wstein@gmail.com>
|
|
23
|
+
#
|
|
24
|
+
# Distributed under the terms of the GNU General Public License (GPL)
|
|
25
|
+
#
|
|
26
|
+
# This code is distributed in the hope that it will be useful,
|
|
27
|
+
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
28
|
+
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
29
|
+
# General Public License for more details.
|
|
30
|
+
#
|
|
31
|
+
# The full text of the GPL is available at:
|
|
32
|
+
#
|
|
33
|
+
# https://www.gnu.org/licenses/
|
|
34
|
+
# ****************************************************************************
|
|
35
|
+
import sage.modular.cusps as cusps
|
|
36
|
+
from sage.modular.modsym.apply import apply_to_monomial
|
|
37
|
+
from sage.modular.modsym.manin_symbol import ManinSymbol
|
|
38
|
+
from sage.structure.sage_object import SageObject
|
|
39
|
+
import sage.structure.formal_sum as formal_sum
|
|
40
|
+
from sage.structure.richcmp import richcmp_method, richcmp
|
|
41
|
+
from sage.rings.integer_ring import ZZ
|
|
42
|
+
from sage.misc.latex import latex
|
|
43
|
+
|
|
44
|
+
_C = cusps.Cusps
|
|
45
|
+
|
|
46
|
+
X, Y = ZZ['X,Y'].gens()
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
@richcmp_method
|
|
50
|
+
class ModularSymbol(SageObject):
|
|
51
|
+
r"""
|
|
52
|
+
The modular symbol `X^i\cdot Y^{k-2-i}\cdot \{\alpha, \beta\}`.
|
|
53
|
+
"""
|
|
54
|
+
def __init__(self, space, i, alpha, beta):
|
|
55
|
+
"""
|
|
56
|
+
Initialise a modular symbol.
|
|
57
|
+
|
|
58
|
+
INPUT:
|
|
59
|
+
|
|
60
|
+
- ``space`` -- space of Manin symbols
|
|
61
|
+
|
|
62
|
+
- ``i`` -- integer
|
|
63
|
+
|
|
64
|
+
- ``alpha`` -- cusp
|
|
65
|
+
|
|
66
|
+
- ``beta`` -- cusp
|
|
67
|
+
|
|
68
|
+
EXAMPLES::
|
|
69
|
+
|
|
70
|
+
sage: s = ModularSymbols(11).2.modular_symbol_rep()[0][1]; s
|
|
71
|
+
{-1/9, 0}
|
|
72
|
+
sage: type(s)
|
|
73
|
+
<class 'sage.modular.modsym.modular_symbols.ModularSymbol'>
|
|
74
|
+
sage: s = ModularSymbols(11,4).2.modular_symbol_rep()[0][1]; s
|
|
75
|
+
X^2*{-1/7, 0}
|
|
76
|
+
"""
|
|
77
|
+
self.__space = space
|
|
78
|
+
self.__i = i
|
|
79
|
+
self.__alpha = _C(alpha)
|
|
80
|
+
self.__beta = _C(beta)
|
|
81
|
+
|
|
82
|
+
def _repr_(self):
|
|
83
|
+
"""
|
|
84
|
+
String representation of this modular symbol.
|
|
85
|
+
|
|
86
|
+
EXAMPLES::
|
|
87
|
+
|
|
88
|
+
sage: s = ModularSymbols(11,4).2.modular_symbol_rep()[0][1]; s
|
|
89
|
+
X^2*{-1/7, 0}
|
|
90
|
+
sage: s._repr_()
|
|
91
|
+
'X^2*{-1/7, 0}'
|
|
92
|
+
sage: s.rename('sym')
|
|
93
|
+
sage: s
|
|
94
|
+
sym
|
|
95
|
+
"""
|
|
96
|
+
if self.weight() == 2:
|
|
97
|
+
polypart = ''
|
|
98
|
+
else:
|
|
99
|
+
polypart = str(self.polynomial_part()) + '*'
|
|
100
|
+
return "%s{%s, %s}" % (polypart, self.__alpha, self.__beta)
|
|
101
|
+
|
|
102
|
+
def __getitem__(self, j):
|
|
103
|
+
r"""
|
|
104
|
+
Given a modular symbols `s = X^i Y^{k-2-i}\{\alpha, \beta\}`, ``s[0]`` is `\alpha`
|
|
105
|
+
and ``s[1]`` is `\beta`.
|
|
106
|
+
|
|
107
|
+
EXAMPLES::
|
|
108
|
+
|
|
109
|
+
sage: s = ModularSymbols(11).2.modular_symbol_rep()[0][1]; s
|
|
110
|
+
{-1/9, 0}
|
|
111
|
+
sage: s[0]
|
|
112
|
+
-1/9
|
|
113
|
+
sage: s[1]
|
|
114
|
+
0
|
|
115
|
+
sage: s[2]
|
|
116
|
+
Traceback (most recent call last):
|
|
117
|
+
...
|
|
118
|
+
IndexError: list index out of range
|
|
119
|
+
"""
|
|
120
|
+
return [self.__alpha, self.__beta][j]
|
|
121
|
+
|
|
122
|
+
def _latex_(self):
|
|
123
|
+
r"""
|
|
124
|
+
Return Latex representation of this modular symbol.
|
|
125
|
+
|
|
126
|
+
EXAMPLES::
|
|
127
|
+
|
|
128
|
+
sage: s = ModularSymbols(11,4).2.modular_symbol_rep()[0][1]; s
|
|
129
|
+
X^2*{-1/7, 0}
|
|
130
|
+
sage: latex(s) # indirect doctest
|
|
131
|
+
X^{2}\left\{\frac{-1}{7}, 0\right\}
|
|
132
|
+
"""
|
|
133
|
+
if self.weight() == 2:
|
|
134
|
+
polypart = ''
|
|
135
|
+
else:
|
|
136
|
+
polypart = latex(self.polynomial_part())
|
|
137
|
+
return "%s\\left\\{%s, %s\\right\\}" % (polypart,
|
|
138
|
+
latex(self.__alpha),
|
|
139
|
+
latex(self.__beta))
|
|
140
|
+
|
|
141
|
+
def __richcmp__(self, other, op):
|
|
142
|
+
"""
|
|
143
|
+
Compare ``self`` to ``other``.
|
|
144
|
+
|
|
145
|
+
EXAMPLES::
|
|
146
|
+
|
|
147
|
+
sage: M = ModularSymbols(11)
|
|
148
|
+
sage: s = M.2.modular_symbol_rep()[0][1]
|
|
149
|
+
sage: t = M.0.modular_symbol_rep()[0][1]
|
|
150
|
+
sage: s, t
|
|
151
|
+
({-1/9, 0}, {Infinity, 0})
|
|
152
|
+
sage: s < t
|
|
153
|
+
True
|
|
154
|
+
sage: t > s
|
|
155
|
+
True
|
|
156
|
+
sage: s == s
|
|
157
|
+
True
|
|
158
|
+
sage: t == t
|
|
159
|
+
True
|
|
160
|
+
"""
|
|
161
|
+
if not isinstance(other, ModularSymbol):
|
|
162
|
+
return NotImplemented
|
|
163
|
+
return richcmp((self.__space, -self.__i, self.__alpha, self.__beta),
|
|
164
|
+
(other.__space,-other.__i,other.__alpha,other.__beta),
|
|
165
|
+
op)
|
|
166
|
+
|
|
167
|
+
def __hash__(self):
|
|
168
|
+
"""
|
|
169
|
+
EXAMPLES::
|
|
170
|
+
|
|
171
|
+
sage: s = ModularSymbols(11).2.modular_symbol_rep()[0][1]
|
|
172
|
+
sage: hash(s) # random
|
|
173
|
+
-7344656798833624820
|
|
174
|
+
"""
|
|
175
|
+
return hash((self.__space, self.__i, self.__alpha, self.__beta))
|
|
176
|
+
|
|
177
|
+
def space(self):
|
|
178
|
+
"""
|
|
179
|
+
The list of Manin symbols to which this symbol belongs.
|
|
180
|
+
|
|
181
|
+
EXAMPLES::
|
|
182
|
+
|
|
183
|
+
sage: s = ModularSymbols(11).2.modular_symbol_rep()[0][1]
|
|
184
|
+
sage: s.space()
|
|
185
|
+
Manin Symbol List of weight 2 for Gamma0(11)
|
|
186
|
+
"""
|
|
187
|
+
return self.__space
|
|
188
|
+
|
|
189
|
+
def polynomial_part(self):
|
|
190
|
+
r"""
|
|
191
|
+
Return the polynomial part of this symbol, i.e. for a symbol of the
|
|
192
|
+
form `X^i Y^{k-2-i}\{\alpha, \beta\}`, return `X^i Y^{k-2-i}`.
|
|
193
|
+
|
|
194
|
+
EXAMPLES::
|
|
195
|
+
|
|
196
|
+
sage: s = ModularSymbols(11).2.modular_symbol_rep()[0][1]
|
|
197
|
+
sage: s.polynomial_part()
|
|
198
|
+
1
|
|
199
|
+
sage: s = ModularSymbols(1,28).0.modular_symbol_rep()[0][1]; s
|
|
200
|
+
X^22*Y^4*{0, Infinity}
|
|
201
|
+
sage: s.polynomial_part()
|
|
202
|
+
X^22*Y^4
|
|
203
|
+
"""
|
|
204
|
+
i = self.__i
|
|
205
|
+
return X**i*Y**(self.weight()-2-i)
|
|
206
|
+
|
|
207
|
+
def i(self):
|
|
208
|
+
r"""
|
|
209
|
+
For a symbol of the form `X^i Y^{k-2-i}\{\alpha, \beta\}`, return `i`.
|
|
210
|
+
|
|
211
|
+
EXAMPLES::
|
|
212
|
+
|
|
213
|
+
sage: s = ModularSymbols(11).2.modular_symbol_rep()[0][1]
|
|
214
|
+
sage: s.i()
|
|
215
|
+
0
|
|
216
|
+
sage: s = ModularSymbols(1,28).0.modular_symbol_rep()[0][1]; s
|
|
217
|
+
X^22*Y^4*{0, Infinity}
|
|
218
|
+
sage: s.i()
|
|
219
|
+
22
|
|
220
|
+
"""
|
|
221
|
+
return self.__i
|
|
222
|
+
|
|
223
|
+
def weight(self):
|
|
224
|
+
r"""
|
|
225
|
+
Return the weight of the modular symbols space to which this symbol
|
|
226
|
+
belongs; i.e. for a symbol of the form `X^i Y^{k-2-i}\{\alpha,
|
|
227
|
+
\beta\}`, return `k`.
|
|
228
|
+
|
|
229
|
+
EXAMPLES::
|
|
230
|
+
|
|
231
|
+
sage: s = ModularSymbols(1,28).0.modular_symbol_rep()[0][1]
|
|
232
|
+
sage: s.weight()
|
|
233
|
+
28
|
|
234
|
+
"""
|
|
235
|
+
return self.__space.weight()
|
|
236
|
+
|
|
237
|
+
def alpha(self):
|
|
238
|
+
r"""
|
|
239
|
+
For a symbol of the form `X^i Y^{k-2-i}\{\alpha, \beta\}`, return `\alpha`.
|
|
240
|
+
|
|
241
|
+
EXAMPLES::
|
|
242
|
+
|
|
243
|
+
sage: s = ModularSymbols(11,4).1.modular_symbol_rep()[0][1]; s
|
|
244
|
+
X^2*{-1/6, 0}
|
|
245
|
+
sage: s.alpha()
|
|
246
|
+
-1/6
|
|
247
|
+
sage: type(s.alpha())
|
|
248
|
+
<class 'sage.modular.cusps.Cusp'>
|
|
249
|
+
"""
|
|
250
|
+
return self.__alpha
|
|
251
|
+
|
|
252
|
+
def beta(self):
|
|
253
|
+
r"""
|
|
254
|
+
For a symbol of the form `X^i Y^{k-2-i}\{\alpha, \beta\}`, return `\beta`.
|
|
255
|
+
|
|
256
|
+
EXAMPLES::
|
|
257
|
+
|
|
258
|
+
sage: s = ModularSymbols(11,4).1.modular_symbol_rep()[0][1]; s
|
|
259
|
+
X^2*{-1/6, 0}
|
|
260
|
+
sage: s.beta()
|
|
261
|
+
0
|
|
262
|
+
sage: type(s.beta())
|
|
263
|
+
<class 'sage.modular.cusps.Cusp'>
|
|
264
|
+
"""
|
|
265
|
+
return self.__beta
|
|
266
|
+
|
|
267
|
+
def apply(self, g):
|
|
268
|
+
r"""
|
|
269
|
+
Act on this symbol by the element `g \in {\rm GL}_2(\QQ)`.
|
|
270
|
+
|
|
271
|
+
INPUT:
|
|
272
|
+
|
|
273
|
+
- ``g`` -- list ``[a,b,c,d]``, corresponding to the 2x2 matrix
|
|
274
|
+
`\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in {\rm GL}_2(\QQ)`
|
|
275
|
+
|
|
276
|
+
OUTPUT:
|
|
277
|
+
|
|
278
|
+
- ``FormalSum`` -- a formal sum `\sum_i c_i x_i`, where `c_i` are
|
|
279
|
+
scalars and `x_i` are ModularSymbol objects, such that the sum
|
|
280
|
+
`\sum_i c_i x_i` is the image of this symbol under the action of g.
|
|
281
|
+
No reduction is performed modulo the relations that hold in
|
|
282
|
+
self.space().
|
|
283
|
+
|
|
284
|
+
The action of `g` on symbols is by
|
|
285
|
+
|
|
286
|
+
.. MATH::
|
|
287
|
+
|
|
288
|
+
P(X,Y)\{\alpha, \beta\} \mapsto P(dX-bY, -cx+aY) \{g(\alpha), g(\beta)\}.
|
|
289
|
+
|
|
290
|
+
Note that for us we have `P=X^i Y^{k-2-i}`, which simplifies computation
|
|
291
|
+
of the polynomial part slightly.
|
|
292
|
+
|
|
293
|
+
EXAMPLES::
|
|
294
|
+
|
|
295
|
+
sage: s = ModularSymbols(11,2).1.modular_symbol_rep()[0][1]; s
|
|
296
|
+
{-1/8, 0}
|
|
297
|
+
sage: a = 1; b = 2; c = 3; d = 4; s.apply([a,b,c,d])
|
|
298
|
+
{15/29, 1/2}
|
|
299
|
+
sage: x = -1/8; (a*x+b)/(c*x+d)
|
|
300
|
+
15/29
|
|
301
|
+
sage: x = 0; (a*x+b)/(c*x+d)
|
|
302
|
+
1/2
|
|
303
|
+
sage: s = ModularSymbols(11,4).1.modular_symbol_rep()[0][1]; s
|
|
304
|
+
X^2*{-1/6, 0}
|
|
305
|
+
sage: s.apply([a,b,c,d])
|
|
306
|
+
16*X^2*{11/21, 1/2} - 16*X*Y*{11/21, 1/2} + 4*Y^2*{11/21, 1/2}
|
|
307
|
+
sage: P = s.polynomial_part()
|
|
308
|
+
sage: X, Y = P.parent().gens()
|
|
309
|
+
sage: P(d*X-b*Y, -c*X+a*Y)
|
|
310
|
+
16*X^2 - 16*X*Y + 4*Y^2
|
|
311
|
+
sage: x = -1/6; (a*x+b)/(c*x+d)
|
|
312
|
+
11/21
|
|
313
|
+
sage: x = 0; (a*x+b)/(c*x+d)
|
|
314
|
+
1/2
|
|
315
|
+
sage: type(s.apply([a,b,c,d]))
|
|
316
|
+
<class 'sage.structure.formal_sum.FormalSum'>
|
|
317
|
+
"""
|
|
318
|
+
space = self.__space
|
|
319
|
+
i = self.__i
|
|
320
|
+
k = space.weight()
|
|
321
|
+
a, b, c, d = tuple(g)
|
|
322
|
+
coeffs = apply_to_monomial(i, k - 2, d, -b, -c, a)
|
|
323
|
+
g_alpha = self.__alpha.apply(g)
|
|
324
|
+
g_beta = self.__beta.apply(g)
|
|
325
|
+
return formal_sum.FormalSum([(coeffs[j], ModularSymbol(space, j, g_alpha, g_beta))
|
|
326
|
+
for j in reversed(range(k-1)) if coeffs[j] != 0])
|
|
327
|
+
|
|
328
|
+
def __manin_symbol_rep(self, alpha):
|
|
329
|
+
"""
|
|
330
|
+
Return Manin symbol representation of X^i*Y^(k-2-i){0,alpha}.
|
|
331
|
+
|
|
332
|
+
EXAMPLES::
|
|
333
|
+
|
|
334
|
+
sage: s = ModularSymbols(11,2).1.modular_symbol_rep()[0][1]; s
|
|
335
|
+
{-1/8, 0}
|
|
336
|
+
sage: s.manin_symbol_rep() # indirect doctest
|
|
337
|
+
-(1,1) - (-8,1)
|
|
338
|
+
sage: M = ModularSymbols(11,2)
|
|
339
|
+
sage: s = M( (1,9) ); s
|
|
340
|
+
(1,9)
|
|
341
|
+
sage: t = s.modular_symbol_rep()[0][1].manin_symbol_rep(); t
|
|
342
|
+
-(1,1) - (-9,1)
|
|
343
|
+
sage: M(t)
|
|
344
|
+
(1,9)
|
|
345
|
+
"""
|
|
346
|
+
space = self.__space
|
|
347
|
+
i = self.__i
|
|
348
|
+
k = space.weight()
|
|
349
|
+
v = [(0,1), (1,0)]
|
|
350
|
+
if not alpha.is_infinity():
|
|
351
|
+
cf = alpha._rational_().continued_fraction()
|
|
352
|
+
v.extend((cf.p(k),cf.q(k)) for k in range(len(cf)))
|
|
353
|
+
sign = 1
|
|
354
|
+
z = formal_sum.FormalSum(0)
|
|
355
|
+
for j in range(1,len(v)):
|
|
356
|
+
c = sign*v[j][1]
|
|
357
|
+
d = v[j-1][1]
|
|
358
|
+
coeffs = apply_to_monomial(i, k-2, sign*v[j][0], v[j-1][0],
|
|
359
|
+
sign*v[j][1], v[j-1][1])
|
|
360
|
+
w = [(coeffs[j], ManinSymbol(space, (j, c, d)))
|
|
361
|
+
for j in range(k-1) if coeffs[j] != 0]
|
|
362
|
+
z += formal_sum.FormalSum(w)
|
|
363
|
+
sign *= -1
|
|
364
|
+
return z
|
|
365
|
+
|
|
366
|
+
def manin_symbol_rep(self):
|
|
367
|
+
"""
|
|
368
|
+
Return a representation of ``self`` as a formal sum of Manin symbols.
|
|
369
|
+
|
|
370
|
+
The result is not cached.
|
|
371
|
+
|
|
372
|
+
EXAMPLES::
|
|
373
|
+
|
|
374
|
+
sage: M = ModularSymbols(11,4)
|
|
375
|
+
sage: s = M.1.modular_symbol_rep()[0][1]; s
|
|
376
|
+
X^2*{-1/6, 0}
|
|
377
|
+
sage: s.manin_symbol_rep()
|
|
378
|
+
-2*[X*Y,(-1,0)] - [X^2,(-1,0)] - [Y^2,(1,1)] - [X^2,(-6,1)]
|
|
379
|
+
sage: M(s.manin_symbol_rep()) == M([2,-1/6,0])
|
|
380
|
+
True
|
|
381
|
+
"""
|
|
382
|
+
alpha = self.__alpha
|
|
383
|
+
beta = self.__beta
|
|
384
|
+
return -1*self.__manin_symbol_rep(alpha) + self.__manin_symbol_rep(beta)
|
|
Binary file
|
|
@@ -0,0 +1,29 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-schemes
|
|
2
|
+
|
|
3
|
+
|
|
4
|
+
cdef class export:
|
|
5
|
+
cdef int c_p1_normalize_int(self, int N, int u, int v,
|
|
6
|
+
int* uu, int* vv, int* ss,
|
|
7
|
+
int compute_s) except -1
|
|
8
|
+
|
|
9
|
+
cdef int c_p1_normalize_llong(self, int N, int u, int v,
|
|
10
|
+
int* uu, int* vv, int* ss,
|
|
11
|
+
int compute_s) except -1
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
cdef class P1List:
|
|
15
|
+
cdef int __N
|
|
16
|
+
cdef object __list, __end_hash
|
|
17
|
+
|
|
18
|
+
cdef int *g
|
|
19
|
+
cdef int *s
|
|
20
|
+
cdef int *t # xgcd with N table.
|
|
21
|
+
|
|
22
|
+
# Here we use a pointer to a function, so the if logic
|
|
23
|
+
# for normalizing an element does not need to be used
|
|
24
|
+
# every time the user calls the normalize function.
|
|
25
|
+
cdef int (*_normalize)(int N, int u, int v,
|
|
26
|
+
int* uu, int* vv, int* ss,
|
|
27
|
+
int compute_s) except -1
|
|
28
|
+
cpdef index(self, int u, int v)
|
|
29
|
+
cdef index_and_scalar(self, int u, int v, int* i, int* s)
|