passagemath-schemes 10.6.40__cp314-cp314-macosx_13_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-schemes might be problematic. Click here for more details.
- passagemath_schemes/.dylibs/libflint.22.0.dylib +0 -0
- passagemath_schemes/.dylibs/libgmp.10.dylib +0 -0
- passagemath_schemes/.dylibs/libgmpxx.4.dylib +0 -0
- passagemath_schemes/.dylibs/libmpfr.6.dylib +0 -0
- passagemath_schemes/__init__.py +3 -0
- passagemath_schemes-10.6.40.dist-info/METADATA +204 -0
- passagemath_schemes-10.6.40.dist-info/METADATA.bak +205 -0
- passagemath_schemes-10.6.40.dist-info/RECORD +314 -0
- passagemath_schemes-10.6.40.dist-info/WHEEL +6 -0
- passagemath_schemes-10.6.40.dist-info/top_level.txt +3 -0
- sage/all__sagemath_schemes.py +23 -0
- sage/databases/all__sagemath_schemes.py +7 -0
- sage/databases/cremona.py +1723 -0
- sage/dynamics/all__sagemath_schemes.py +2 -0
- sage/dynamics/arithmetic_dynamics/affine_ds.py +1083 -0
- sage/dynamics/arithmetic_dynamics/all.py +14 -0
- sage/dynamics/arithmetic_dynamics/berkovich_ds.py +1101 -0
- sage/dynamics/arithmetic_dynamics/dynamical_semigroup.py +1543 -0
- sage/dynamics/arithmetic_dynamics/endPN_automorphism_group.py +2426 -0
- sage/dynamics/arithmetic_dynamics/endPN_minimal_model.py +1169 -0
- sage/dynamics/arithmetic_dynamics/generic_ds.py +663 -0
- sage/dynamics/arithmetic_dynamics/product_projective_ds.py +339 -0
- sage/dynamics/arithmetic_dynamics/projective_ds.py +9558 -0
- sage/dynamics/arithmetic_dynamics/projective_ds_helper.cpython-314-darwin.so +0 -0
- sage/dynamics/arithmetic_dynamics/projective_ds_helper.pyx +301 -0
- sage/dynamics/arithmetic_dynamics/wehlerK3.py +2576 -0
- sage/lfunctions/all.py +18 -0
- sage/lfunctions/dokchitser.py +745 -0
- sage/lfunctions/pari.py +818 -0
- sage/lfunctions/zero_sums.cpython-314-darwin.so +0 -0
- sage/lfunctions/zero_sums.pyx +1847 -0
- sage/modular/abvar/abvar.py +5135 -0
- sage/modular/abvar/abvar_ambient_jacobian.py +413 -0
- sage/modular/abvar/abvar_newform.py +244 -0
- sage/modular/abvar/all.py +8 -0
- sage/modular/abvar/constructor.py +186 -0
- sage/modular/abvar/cuspidal_subgroup.py +371 -0
- sage/modular/abvar/finite_subgroup.py +896 -0
- sage/modular/abvar/homology.py +720 -0
- sage/modular/abvar/homspace.py +998 -0
- sage/modular/abvar/lseries.py +415 -0
- sage/modular/abvar/morphism.py +935 -0
- sage/modular/abvar/torsion_point.py +274 -0
- sage/modular/abvar/torsion_subgroup.py +740 -0
- sage/modular/all.py +43 -0
- sage/modular/arithgroup/all.py +20 -0
- sage/modular/arithgroup/arithgroup_element.cpython-314-darwin.so +0 -0
- sage/modular/arithgroup/arithgroup_element.pyx +474 -0
- sage/modular/arithgroup/arithgroup_generic.py +1402 -0
- sage/modular/arithgroup/arithgroup_perm.py +2692 -0
- sage/modular/arithgroup/congroup.cpython-314-darwin.so +0 -0
- sage/modular/arithgroup/congroup.pyx +334 -0
- sage/modular/arithgroup/congroup_gamma.py +363 -0
- sage/modular/arithgroup/congroup_gamma0.py +692 -0
- sage/modular/arithgroup/congroup_gamma1.py +653 -0
- sage/modular/arithgroup/congroup_gammaH.py +1469 -0
- sage/modular/arithgroup/congroup_generic.py +628 -0
- sage/modular/arithgroup/congroup_sl2z.py +267 -0
- sage/modular/arithgroup/farey_symbol.cpython-314-darwin.so +0 -0
- sage/modular/arithgroup/farey_symbol.pyx +1066 -0
- sage/modular/arithgroup/tests.py +418 -0
- sage/modular/btquotients/all.py +4 -0
- sage/modular/btquotients/btquotient.py +3753 -0
- sage/modular/btquotients/pautomorphicform.py +2570 -0
- sage/modular/buzzard.py +100 -0
- sage/modular/congroup.py +29 -0
- sage/modular/congroup_element.py +13 -0
- sage/modular/cusps.py +1109 -0
- sage/modular/cusps_nf.py +1270 -0
- sage/modular/dims.py +569 -0
- sage/modular/dirichlet.py +3310 -0
- sage/modular/drinfeld_modform/all.py +2 -0
- sage/modular/drinfeld_modform/element.py +446 -0
- sage/modular/drinfeld_modform/ring.py +773 -0
- sage/modular/drinfeld_modform/tutorial.py +236 -0
- sage/modular/etaproducts.py +1065 -0
- sage/modular/hecke/algebra.py +746 -0
- sage/modular/hecke/all.py +20 -0
- sage/modular/hecke/ambient_module.py +1019 -0
- sage/modular/hecke/degenmap.py +119 -0
- sage/modular/hecke/element.py +325 -0
- sage/modular/hecke/hecke_operator.py +780 -0
- sage/modular/hecke/homspace.py +206 -0
- sage/modular/hecke/module.py +1767 -0
- sage/modular/hecke/morphism.py +174 -0
- sage/modular/hecke/submodule.py +989 -0
- sage/modular/hypergeometric_misc.cpython-314-darwin.so +0 -0
- sage/modular/hypergeometric_misc.pxd +4 -0
- sage/modular/hypergeometric_misc.pyx +166 -0
- sage/modular/hypergeometric_motive.py +2017 -0
- sage/modular/local_comp/all.py +2 -0
- sage/modular/local_comp/liftings.py +292 -0
- sage/modular/local_comp/local_comp.py +1071 -0
- sage/modular/local_comp/smoothchar.py +1825 -0
- sage/modular/local_comp/type_space.py +748 -0
- sage/modular/modform/all.py +30 -0
- sage/modular/modform/ambient.py +815 -0
- sage/modular/modform/ambient_R.py +177 -0
- sage/modular/modform/ambient_eps.py +306 -0
- sage/modular/modform/ambient_g0.py +124 -0
- sage/modular/modform/ambient_g1.py +204 -0
- sage/modular/modform/constructor.py +545 -0
- sage/modular/modform/cuspidal_submodule.py +708 -0
- sage/modular/modform/defaults.py +14 -0
- sage/modular/modform/eis_series.py +505 -0
- sage/modular/modform/eisenstein_submodule.py +663 -0
- sage/modular/modform/element.py +4131 -0
- sage/modular/modform/find_generators.py +59 -0
- sage/modular/modform/half_integral.py +154 -0
- sage/modular/modform/hecke_operator_on_qexp.py +247 -0
- sage/modular/modform/j_invariant.py +47 -0
- sage/modular/modform/l_series_gross_zagier.py +133 -0
- sage/modular/modform/l_series_gross_zagier_coeffs.cpython-314-darwin.so +0 -0
- sage/modular/modform/l_series_gross_zagier_coeffs.pyx +177 -0
- sage/modular/modform/notes.py +45 -0
- sage/modular/modform/numerical.py +514 -0
- sage/modular/modform/periods.py +14 -0
- sage/modular/modform/ring.py +1257 -0
- sage/modular/modform/space.py +1860 -0
- sage/modular/modform/submodule.py +118 -0
- sage/modular/modform/tests.py +64 -0
- sage/modular/modform/theta.py +110 -0
- sage/modular/modform/vm_basis.py +381 -0
- sage/modular/modform/weight1.py +220 -0
- sage/modular/modform_hecketriangle/abstract_ring.py +1932 -0
- sage/modular/modform_hecketriangle/abstract_space.py +2528 -0
- sage/modular/modform_hecketriangle/all.py +30 -0
- sage/modular/modform_hecketriangle/analytic_type.py +590 -0
- sage/modular/modform_hecketriangle/constructor.py +416 -0
- sage/modular/modform_hecketriangle/element.py +351 -0
- sage/modular/modform_hecketriangle/functors.py +752 -0
- sage/modular/modform_hecketriangle/graded_ring.py +541 -0
- sage/modular/modform_hecketriangle/graded_ring_element.py +2225 -0
- sage/modular/modform_hecketriangle/hecke_triangle_group_element.py +3352 -0
- sage/modular/modform_hecketriangle/hecke_triangle_groups.py +1432 -0
- sage/modular/modform_hecketriangle/readme.py +1214 -0
- sage/modular/modform_hecketriangle/series_constructor.py +580 -0
- sage/modular/modform_hecketriangle/space.py +1037 -0
- sage/modular/modform_hecketriangle/subspace.py +423 -0
- sage/modular/modsym/all.py +17 -0
- sage/modular/modsym/ambient.py +3846 -0
- sage/modular/modsym/boundary.py +1420 -0
- sage/modular/modsym/element.py +336 -0
- sage/modular/modsym/g1list.py +178 -0
- sage/modular/modsym/ghlist.py +182 -0
- sage/modular/modsym/hecke_operator.py +73 -0
- sage/modular/modsym/manin_symbol.cpython-314-darwin.so +0 -0
- sage/modular/modsym/manin_symbol.pxd +5 -0
- sage/modular/modsym/manin_symbol.pyx +497 -0
- sage/modular/modsym/manin_symbol_list.py +1295 -0
- sage/modular/modsym/modsym.py +400 -0
- sage/modular/modsym/modular_symbols.py +384 -0
- sage/modular/modsym/p1list.cpython-314-darwin.so +0 -0
- sage/modular/modsym/p1list.pxd +29 -0
- sage/modular/modsym/p1list.pyx +1372 -0
- sage/modular/modsym/p1list_nf.py +1241 -0
- sage/modular/modsym/relation_matrix.py +591 -0
- sage/modular/modsym/relation_matrix_pyx.cpython-314-darwin.so +0 -0
- sage/modular/modsym/relation_matrix_pyx.pyx +108 -0
- sage/modular/modsym/space.py +2468 -0
- sage/modular/modsym/subspace.py +455 -0
- sage/modular/modsym/tests.py +375 -0
- sage/modular/multiple_zeta.py +2632 -0
- sage/modular/multiple_zeta_F_algebra.py +786 -0
- sage/modular/overconvergent/all.py +6 -0
- sage/modular/overconvergent/genus0.py +1878 -0
- sage/modular/overconvergent/hecke_series.py +1187 -0
- sage/modular/overconvergent/weightspace.py +778 -0
- sage/modular/pollack_stevens/all.py +4 -0
- sage/modular/pollack_stevens/distributions.py +874 -0
- sage/modular/pollack_stevens/fund_domain.py +1572 -0
- sage/modular/pollack_stevens/manin_map.py +859 -0
- sage/modular/pollack_stevens/modsym.py +1593 -0
- sage/modular/pollack_stevens/padic_lseries.py +417 -0
- sage/modular/pollack_stevens/sigma0.py +534 -0
- sage/modular/pollack_stevens/space.py +1076 -0
- sage/modular/quasimodform/all.py +3 -0
- sage/modular/quasimodform/element.py +845 -0
- sage/modular/quasimodform/ring.py +828 -0
- sage/modular/quatalg/all.py +3 -0
- sage/modular/quatalg/brandt.py +1642 -0
- sage/modular/ssmod/all.py +8 -0
- sage/modular/ssmod/ssmod.py +827 -0
- sage/rings/all__sagemath_schemes.py +1 -0
- sage/rings/polynomial/all__sagemath_schemes.py +1 -0
- sage/rings/polynomial/binary_form_reduce.py +585 -0
- sage/schemes/all.py +41 -0
- sage/schemes/berkovich/all.py +6 -0
- sage/schemes/berkovich/berkovich_cp_element.py +2582 -0
- sage/schemes/berkovich/berkovich_space.py +748 -0
- sage/schemes/curves/affine_curve.py +2928 -0
- sage/schemes/curves/all.py +33 -0
- sage/schemes/curves/closed_point.py +434 -0
- sage/schemes/curves/constructor.py +381 -0
- sage/schemes/curves/curve.py +542 -0
- sage/schemes/curves/plane_curve_arrangement.py +1283 -0
- sage/schemes/curves/point.py +463 -0
- sage/schemes/curves/projective_curve.py +3026 -0
- sage/schemes/curves/zariski_vankampen.py +1932 -0
- sage/schemes/cyclic_covers/all.py +2 -0
- sage/schemes/cyclic_covers/charpoly_frobenius.py +320 -0
- sage/schemes/cyclic_covers/constructor.py +137 -0
- sage/schemes/cyclic_covers/cycliccover_finite_field.py +1309 -0
- sage/schemes/cyclic_covers/cycliccover_generic.py +310 -0
- sage/schemes/elliptic_curves/BSD.py +1036 -0
- sage/schemes/elliptic_curves/Qcurves.py +592 -0
- sage/schemes/elliptic_curves/addition_formulas_ring.py +94 -0
- sage/schemes/elliptic_curves/all.py +49 -0
- sage/schemes/elliptic_curves/cardinality.py +609 -0
- sage/schemes/elliptic_curves/cm.py +1102 -0
- sage/schemes/elliptic_curves/constructor.py +1552 -0
- sage/schemes/elliptic_curves/ec_database.py +175 -0
- sage/schemes/elliptic_curves/ell_curve_isogeny.py +3972 -0
- sage/schemes/elliptic_curves/ell_egros.py +459 -0
- sage/schemes/elliptic_curves/ell_field.py +2836 -0
- sage/schemes/elliptic_curves/ell_finite_field.py +3359 -0
- sage/schemes/elliptic_curves/ell_generic.py +3760 -0
- sage/schemes/elliptic_curves/ell_local_data.py +1207 -0
- sage/schemes/elliptic_curves/ell_modular_symbols.py +775 -0
- sage/schemes/elliptic_curves/ell_number_field.py +4220 -0
- sage/schemes/elliptic_curves/ell_padic_field.py +107 -0
- sage/schemes/elliptic_curves/ell_point.py +4787 -0
- sage/schemes/elliptic_curves/ell_rational_field.py +7368 -0
- sage/schemes/elliptic_curves/ell_tate_curve.py +671 -0
- sage/schemes/elliptic_curves/ell_torsion.py +436 -0
- sage/schemes/elliptic_curves/ell_wp.py +352 -0
- sage/schemes/elliptic_curves/formal_group.py +760 -0
- sage/schemes/elliptic_curves/gal_reps.py +1459 -0
- sage/schemes/elliptic_curves/gal_reps_number_field.py +1669 -0
- sage/schemes/elliptic_curves/gp_simon.py +152 -0
- sage/schemes/elliptic_curves/heegner.py +7335 -0
- sage/schemes/elliptic_curves/height.py +2109 -0
- sage/schemes/elliptic_curves/hom.py +1406 -0
- sage/schemes/elliptic_curves/hom_composite.py +934 -0
- sage/schemes/elliptic_curves/hom_frobenius.py +522 -0
- sage/schemes/elliptic_curves/hom_scalar.py +531 -0
- sage/schemes/elliptic_curves/hom_sum.py +682 -0
- sage/schemes/elliptic_curves/hom_velusqrt.py +1290 -0
- sage/schemes/elliptic_curves/homset.py +271 -0
- sage/schemes/elliptic_curves/isogeny_class.py +1521 -0
- sage/schemes/elliptic_curves/isogeny_small_degree.py +2797 -0
- sage/schemes/elliptic_curves/jacobian.py +237 -0
- sage/schemes/elliptic_curves/kodaira_symbol.py +344 -0
- sage/schemes/elliptic_curves/kraus.py +1014 -0
- sage/schemes/elliptic_curves/lseries_ell.py +943 -0
- sage/schemes/elliptic_curves/mod5family.py +105 -0
- sage/schemes/elliptic_curves/mod_poly.py +197 -0
- sage/schemes/elliptic_curves/mod_sym_num.cpython-314-darwin.so +0 -0
- sage/schemes/elliptic_curves/mod_sym_num.pyx +3796 -0
- sage/schemes/elliptic_curves/modular_parametrization.py +305 -0
- sage/schemes/elliptic_curves/padic_lseries.py +1793 -0
- sage/schemes/elliptic_curves/padics.py +1816 -0
- sage/schemes/elliptic_curves/period_lattice.py +2234 -0
- sage/schemes/elliptic_curves/period_lattice_region.cpython-314-darwin.so +0 -0
- sage/schemes/elliptic_curves/period_lattice_region.pyx +722 -0
- sage/schemes/elliptic_curves/saturation.py +715 -0
- sage/schemes/elliptic_curves/sha_tate.py +1158 -0
- sage/schemes/elliptic_curves/weierstrass_morphism.py +1117 -0
- sage/schemes/elliptic_curves/weierstrass_transform.py +200 -0
- sage/schemes/hyperelliptic_curves/all.py +6 -0
- sage/schemes/hyperelliptic_curves/constructor.py +291 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_finite_field.py +1914 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_g2.py +192 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_generic.py +954 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_padic_field.py +1332 -0
- sage/schemes/hyperelliptic_curves/hyperelliptic_rational_field.py +84 -0
- sage/schemes/hyperelliptic_curves/invariants.py +410 -0
- sage/schemes/hyperelliptic_curves/jacobian_endomorphism_utils.py +315 -0
- sage/schemes/hyperelliptic_curves/jacobian_g2.py +32 -0
- sage/schemes/hyperelliptic_curves/jacobian_generic.py +419 -0
- sage/schemes/hyperelliptic_curves/jacobian_homset.py +186 -0
- sage/schemes/hyperelliptic_curves/jacobian_morphism.py +875 -0
- sage/schemes/hyperelliptic_curves/kummer_surface.py +99 -0
- sage/schemes/hyperelliptic_curves/mestre.py +302 -0
- sage/schemes/hyperelliptic_curves/monsky_washnitzer.py +3871 -0
- sage/schemes/jacobians/abstract_jacobian.py +277 -0
- sage/schemes/jacobians/all.py +2 -0
- sage/schemes/overview.py +161 -0
- sage/schemes/plane_conics/all.py +22 -0
- sage/schemes/plane_conics/con_field.py +1296 -0
- sage/schemes/plane_conics/con_finite_field.py +158 -0
- sage/schemes/plane_conics/con_number_field.py +456 -0
- sage/schemes/plane_conics/con_rational_field.py +406 -0
- sage/schemes/plane_conics/con_rational_function_field.py +580 -0
- sage/schemes/plane_conics/constructor.py +249 -0
- sage/schemes/plane_quartics/all.py +2 -0
- sage/schemes/plane_quartics/quartic_constructor.py +71 -0
- sage/schemes/plane_quartics/quartic_generic.py +73 -0
- sage/schemes/riemann_surfaces/all.py +1 -0
- sage/schemes/riemann_surfaces/riemann_surface.py +4117 -0
- sage_wheels/share/cremona/cremona_mini.db +0 -0
- sage_wheels/share/ellcurves/rank0 +30427 -0
- sage_wheels/share/ellcurves/rank1 +31871 -0
- sage_wheels/share/ellcurves/rank10 +6 -0
- sage_wheels/share/ellcurves/rank11 +6 -0
- sage_wheels/share/ellcurves/rank12 +1 -0
- sage_wheels/share/ellcurves/rank14 +1 -0
- sage_wheels/share/ellcurves/rank15 +1 -0
- sage_wheels/share/ellcurves/rank17 +1 -0
- sage_wheels/share/ellcurves/rank19 +1 -0
- sage_wheels/share/ellcurves/rank2 +2388 -0
- sage_wheels/share/ellcurves/rank20 +1 -0
- sage_wheels/share/ellcurves/rank21 +1 -0
- sage_wheels/share/ellcurves/rank22 +1 -0
- sage_wheels/share/ellcurves/rank23 +1 -0
- sage_wheels/share/ellcurves/rank24 +1 -0
- sage_wheels/share/ellcurves/rank28 +1 -0
- sage_wheels/share/ellcurves/rank3 +836 -0
- sage_wheels/share/ellcurves/rank4 +10 -0
- sage_wheels/share/ellcurves/rank5 +5 -0
- sage_wheels/share/ellcurves/rank6 +5 -0
- sage_wheels/share/ellcurves/rank7 +5 -0
- sage_wheels/share/ellcurves/rank8 +6 -0
- sage_wheels/share/ellcurves/rank9 +7 -0
|
@@ -0,0 +1,4220 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-schemes
|
|
2
|
+
# sage.doctest: needs sage.rings.number_field
|
|
3
|
+
r"""
|
|
4
|
+
Elliptic curves over number fields
|
|
5
|
+
|
|
6
|
+
An elliptic curve `E` over a number field `K` can be given
|
|
7
|
+
by a Weierstrass equation whose coefficients lie in `K` or by
|
|
8
|
+
using ``base_extend`` on an elliptic curve defined over a subfield.
|
|
9
|
+
|
|
10
|
+
One major difference to elliptic curves over `\QQ` is that there
|
|
11
|
+
might not exist a global minimal equation over `K`, when `K` does
|
|
12
|
+
not have class number one.
|
|
13
|
+
Another difference is the lack of understanding of modularity for
|
|
14
|
+
general elliptic curves over general number fields.
|
|
15
|
+
|
|
16
|
+
Currently Sage can obtain local information about `E/K_v` for finite places
|
|
17
|
+
`v`, it has an interface to Denis Simon's script for 2-descent, it can compute
|
|
18
|
+
the torsion subgroup of the Mordell-Weil group `E(K)`, and it can work with
|
|
19
|
+
isogenies defined over `K`.
|
|
20
|
+
|
|
21
|
+
EXAMPLES::
|
|
22
|
+
|
|
23
|
+
sage: x = polygen(QQ)
|
|
24
|
+
sage: K.<i> = NumberField(x^2 + 1)
|
|
25
|
+
sage: E = EllipticCurve([0, 4+i])
|
|
26
|
+
sage: E.discriminant()
|
|
27
|
+
-3456*i - 6480
|
|
28
|
+
sage: P= E([i,2])
|
|
29
|
+
sage: P+P
|
|
30
|
+
(-2*i + 9/16 : -9/4*i - 101/64 : 1)
|
|
31
|
+
|
|
32
|
+
::
|
|
33
|
+
|
|
34
|
+
sage: E.has_good_reduction(2 + i)
|
|
35
|
+
True
|
|
36
|
+
sage: E.local_data(4+i)
|
|
37
|
+
Local data at Fractional ideal (i + 4):
|
|
38
|
+
Reduction type: bad additive
|
|
39
|
+
Local minimal model: Elliptic Curve defined by y^2 = x^3 + (i+4)
|
|
40
|
+
over Number Field in i with defining polynomial x^2 + 1
|
|
41
|
+
Minimal discriminant valuation: 2
|
|
42
|
+
Conductor exponent: 2
|
|
43
|
+
Kodaira Symbol: II
|
|
44
|
+
Tamagawa Number: 1
|
|
45
|
+
sage: E.tamagawa_product_bsd()
|
|
46
|
+
1
|
|
47
|
+
|
|
48
|
+
::
|
|
49
|
+
|
|
50
|
+
sage: E.simon_two_descent()
|
|
51
|
+
(1, 1, [(i : 2 : 1)])
|
|
52
|
+
|
|
53
|
+
::
|
|
54
|
+
|
|
55
|
+
sage: E.torsion_order()
|
|
56
|
+
1
|
|
57
|
+
|
|
58
|
+
::
|
|
59
|
+
|
|
60
|
+
sage: E.isogenies_prime_degree(3)
|
|
61
|
+
[Isogeny of degree 3
|
|
62
|
+
from Elliptic Curve defined by y^2 = x^3 + (i+4)
|
|
63
|
+
over Number Field in i with defining polynomial x^2 + 1
|
|
64
|
+
to Elliptic Curve defined by y^2 = x^3 + (-27*i-108)
|
|
65
|
+
over Number Field in i with defining polynomial x^2 + 1]
|
|
66
|
+
|
|
67
|
+
AUTHORS:
|
|
68
|
+
|
|
69
|
+
- Robert Bradshaw 2007
|
|
70
|
+
|
|
71
|
+
- John Cremona
|
|
72
|
+
|
|
73
|
+
- Chris Wuthrich
|
|
74
|
+
|
|
75
|
+
REFERENCE:
|
|
76
|
+
|
|
77
|
+
- [Sil] Silverman, Joseph H. The arithmetic of elliptic curves. Second edition. Graduate Texts in
|
|
78
|
+
Mathematics, 106. Springer, 2009.
|
|
79
|
+
|
|
80
|
+
- [Sil2] Silverman, Joseph H. Advanced topics in the arithmetic of elliptic curves. Graduate Texts in
|
|
81
|
+
Mathematics, 151. Springer, 1994.
|
|
82
|
+
"""
|
|
83
|
+
|
|
84
|
+
# ****************************************************************************
|
|
85
|
+
# Copyright (C) 2007 Robert Bradshaw <robertwb@math.washington.edu>
|
|
86
|
+
# William Stein <wstein@gmail.com>
|
|
87
|
+
#
|
|
88
|
+
# This program is free software: you can redistribute it and/or modify
|
|
89
|
+
# it under the terms of the GNU General Public License as published by
|
|
90
|
+
# the Free Software Foundation, either version 2 of the License, or
|
|
91
|
+
# (at your option) any later version.
|
|
92
|
+
# https://www.gnu.org/licenses/
|
|
93
|
+
# ****************************************************************************
|
|
94
|
+
|
|
95
|
+
import sage.rings.abc
|
|
96
|
+
from .ell_field import EllipticCurve_field
|
|
97
|
+
from .ell_generic import EllipticCurve_generic
|
|
98
|
+
from .ell_point import EllipticCurvePoint_number_field
|
|
99
|
+
from .constructor import EllipticCurve
|
|
100
|
+
from sage.rings.integer_ring import ZZ
|
|
101
|
+
from sage.rings.rational_field import QQ
|
|
102
|
+
from sage.rings.real_mpfr import RealField
|
|
103
|
+
from sage.rings.integer import Integer
|
|
104
|
+
from sage.misc.cachefunc import cached_method
|
|
105
|
+
from sage.misc.misc_c import prod
|
|
106
|
+
|
|
107
|
+
|
|
108
|
+
class EllipticCurve_number_field(EllipticCurve_field):
|
|
109
|
+
r"""
|
|
110
|
+
Elliptic curve over a number field.
|
|
111
|
+
|
|
112
|
+
EXAMPLES::
|
|
113
|
+
|
|
114
|
+
sage: x = polygen(QQ)
|
|
115
|
+
sage: K.<i> = NumberField(x^2 + 1)
|
|
116
|
+
sage: EllipticCurve([i, i - 1, i + 1, 24*i + 15, 14*i + 35])
|
|
117
|
+
Elliptic Curve defined by
|
|
118
|
+
y^2 + i*x*y + (i+1)*y = x^3 + (i-1)*x^2 + (24*i+15)*x + (14*i+35)
|
|
119
|
+
over Number Field in i with defining polynomial x^2 + 1
|
|
120
|
+
"""
|
|
121
|
+
def __init__(self, K, ainvs):
|
|
122
|
+
r"""
|
|
123
|
+
EXAMPLES:
|
|
124
|
+
|
|
125
|
+
A curve from the database of curves over `\QQ`, but over a larger field::
|
|
126
|
+
|
|
127
|
+
sage: x = polygen(QQ)
|
|
128
|
+
sage: K.<i> = NumberField(x^2 + 1)
|
|
129
|
+
sage: EllipticCurve(K,'389a1')
|
|
130
|
+
Elliptic Curve defined by y^2 + y = x^3 + x^2 + (-2)*x
|
|
131
|
+
over Number Field in i with defining polynomial x^2 + 1
|
|
132
|
+
|
|
133
|
+
Making the field of definition explicitly larger::
|
|
134
|
+
|
|
135
|
+
sage: EllipticCurve(K,[0,-1,1,0,0])
|
|
136
|
+
Elliptic Curve defined by y^2 + y = x^3 + (-1)*x^2
|
|
137
|
+
over Number Field in i with defining polynomial x^2 + 1
|
|
138
|
+
"""
|
|
139
|
+
self._known_points = []
|
|
140
|
+
EllipticCurve_field.__init__(self, K, ainvs)
|
|
141
|
+
|
|
142
|
+
_point = EllipticCurvePoint_number_field
|
|
143
|
+
|
|
144
|
+
def base_extend(self, R):
|
|
145
|
+
"""
|
|
146
|
+
Return the base extension of ``self`` to `R`.
|
|
147
|
+
|
|
148
|
+
EXAMPLES::
|
|
149
|
+
|
|
150
|
+
sage: E = EllipticCurve('11a3')
|
|
151
|
+
sage: K = QuadraticField(-5, 'a')
|
|
152
|
+
sage: E.base_extend(K)
|
|
153
|
+
Elliptic Curve defined by y^2 + y = x^3 + (-1)*x^2 over Number Field in a
|
|
154
|
+
with defining polynomial x^2 + 5 with a = 2.236067977499790?*I
|
|
155
|
+
|
|
156
|
+
Check that non-torsion points are remembered when extending
|
|
157
|
+
the base field (see :issue:`16034`)::
|
|
158
|
+
|
|
159
|
+
sage: E = EllipticCurve([1, 0, 1, -1751, -31352])
|
|
160
|
+
sage: K.<d> = QuadraticField(5)
|
|
161
|
+
sage: E.gens() # needs eclib
|
|
162
|
+
[(52 : 111 : 1)]
|
|
163
|
+
sage: EK = E.base_extend(K)
|
|
164
|
+
sage: EK.gens() # needs eclib
|
|
165
|
+
((52 : 111 : 1),)
|
|
166
|
+
"""
|
|
167
|
+
E = super().base_extend(R)
|
|
168
|
+
if isinstance(E, EllipticCurve_number_field):
|
|
169
|
+
E._known_points = [E([R(_) for _ in P.xy()]) for P in self._known_points if not P.is_zero()]
|
|
170
|
+
return E
|
|
171
|
+
|
|
172
|
+
def simon_two_descent(self, verbose=0, lim1=2, lim3=4, limtriv=2,
|
|
173
|
+
maxprob=20, limbigprime=30, known_points=None):
|
|
174
|
+
r"""
|
|
175
|
+
Return lower and upper bounds on the rank of the Mordell-Weil
|
|
176
|
+
group `E(K)` and a list of points.
|
|
177
|
+
|
|
178
|
+
This method is used internally by the :meth:`~rank`,
|
|
179
|
+
:meth:`~rank_bounds` and :meth:`~gens` methods.
|
|
180
|
+
|
|
181
|
+
INPUT:
|
|
182
|
+
|
|
183
|
+
- ``self`` -- an elliptic curve `E` over a number field `K`
|
|
184
|
+
|
|
185
|
+
- ``verbose`` -- 0, 1, 2, or 3 (default: 0); the verbosity level
|
|
186
|
+
|
|
187
|
+
- ``lim1`` -- (default: 2) limit on trivial points on quartics
|
|
188
|
+
|
|
189
|
+
- ``lim3`` -- (default: 4) limit on points on ELS quartics
|
|
190
|
+
|
|
191
|
+
- ``limtriv`` -- (default: 2) limit on trivial points on `E`
|
|
192
|
+
|
|
193
|
+
- ``maxprob`` -- (default: 20)
|
|
194
|
+
|
|
195
|
+
- ``limbigprime`` -- (default: 30) to distinguish between
|
|
196
|
+
small and large prime numbers. Use probabilistic tests for
|
|
197
|
+
large primes. If 0, do not use probabilistic tests.
|
|
198
|
+
|
|
199
|
+
- ``known_points`` -- (default: ``None``) list of known points on
|
|
200
|
+
the curve
|
|
201
|
+
|
|
202
|
+
OUTPUT: a triple ``(lower, upper, list)`` consisting of
|
|
203
|
+
|
|
204
|
+
- ``lower`` -- integer; lower bound on the rank
|
|
205
|
+
|
|
206
|
+
- ``upper`` -- integer; upper bound on the rank
|
|
207
|
+
|
|
208
|
+
- ``list`` -- list of points in `E(K)`
|
|
209
|
+
|
|
210
|
+
The integer ``upper`` is in fact an upper bound on the
|
|
211
|
+
dimension of the 2-Selmer group, hence on the dimension of
|
|
212
|
+
`E(K)/2E(K)`. It is equal to the dimension of the 2-Selmer
|
|
213
|
+
group except possibly if `E(K)[2]` has dimension 1. In that
|
|
214
|
+
case, ``upper`` may exceed the dimension of the 2-Selmer group
|
|
215
|
+
by an even number, due to the fact that the algorithm does not
|
|
216
|
+
perform a second descent.
|
|
217
|
+
|
|
218
|
+
.. NOTE::
|
|
219
|
+
|
|
220
|
+
For non-quadratic number fields, this code does return, but
|
|
221
|
+
it takes a long time.
|
|
222
|
+
|
|
223
|
+
ALGORITHM:
|
|
224
|
+
|
|
225
|
+
Uses Denis Simon's PARI/GP scripts from
|
|
226
|
+
https://simond.users.lmno.cnrs.fr/.
|
|
227
|
+
|
|
228
|
+
EXAMPLES::
|
|
229
|
+
|
|
230
|
+
sage: x = polygen(ZZ, 'x')
|
|
231
|
+
sage: K.<a> = NumberField(x^2 + 23, 'a')
|
|
232
|
+
sage: E = EllipticCurve(K, '37')
|
|
233
|
+
sage: E == loads(dumps(E))
|
|
234
|
+
True
|
|
235
|
+
sage: E.simon_two_descent()
|
|
236
|
+
(2, 2, [(0 : 0 : 1), (1/8*a + 5/8 : -3/16*a - 7/16 : 1)])
|
|
237
|
+
sage: E.simon_two_descent(lim1=5, lim3=5, limtriv=10, maxprob=7, limbigprime=10)
|
|
238
|
+
(2, 2, [(-1 : 0 : 1), (1/2*a - 5/2 : -1/2*a - 13/2 : 1)])
|
|
239
|
+
|
|
240
|
+
::
|
|
241
|
+
|
|
242
|
+
sage: K.<a> = NumberField(x^2 + 7, 'a')
|
|
243
|
+
sage: E = EllipticCurve(K, [0,0,0,1,a]); E
|
|
244
|
+
Elliptic Curve defined by y^2 = x^3 + x + a
|
|
245
|
+
over Number Field in a with defining polynomial x^2 + 7
|
|
246
|
+
|
|
247
|
+
sage: v = E.simon_two_descent(verbose=1); v
|
|
248
|
+
elliptic curve: Y^2 = x^3 + Mod(1, y^2 + 7)*x + Mod(y, y^2 + 7)
|
|
249
|
+
Trivial points on the curve = [[1, 1, 0], [Mod(1/2*y + 3/2, y^2 + 7), Mod(-y - 2, y^2 + 7), 1]]
|
|
250
|
+
#S(E/K)[2] = 2
|
|
251
|
+
#E(K)/2E(K) = 2
|
|
252
|
+
#III(E/K)[2] = 1
|
|
253
|
+
rank(E/K) = 1
|
|
254
|
+
listpoints = [[Mod(1/2*y + 3/2, y^2 + 7), Mod(-y - 2, y^2 + 7), 1]]
|
|
255
|
+
(1, 1, [(1/2*a + 3/2 : -a - 2 : 1)])
|
|
256
|
+
|
|
257
|
+
A curve with 2-torsion::
|
|
258
|
+
|
|
259
|
+
sage: K.<a> = NumberField(x^2 + 7)
|
|
260
|
+
sage: E = EllipticCurve(K, '15a')
|
|
261
|
+
sage: E.simon_two_descent() # long time (3s on sage.math, 2013), points can vary
|
|
262
|
+
(1, 3, [...])
|
|
263
|
+
|
|
264
|
+
Check that the bug reported in :issue:`15483` is fixed::
|
|
265
|
+
|
|
266
|
+
sage: K.<s> = QuadraticField(229)
|
|
267
|
+
sage: c4 = 2173 - 235*(1 - s)/2
|
|
268
|
+
sage: c6 = -124369 + 15988*(1 - s)/2
|
|
269
|
+
sage: E = EllipticCurve([-c4/48, -c6/864])
|
|
270
|
+
sage: E.simon_two_descent()
|
|
271
|
+
(0, 0, [])
|
|
272
|
+
|
|
273
|
+
sage: R.<t> = QQ[]
|
|
274
|
+
sage: L.<g> = NumberField(t^3 - 9*t^2 + 13*t - 4)
|
|
275
|
+
sage: E1 = EllipticCurve(L, [1-g*(g-1), -g^2*(g-1), -g^2*(g-1), 0, 0])
|
|
276
|
+
sage: E1.rank() # long time (about 5 s)
|
|
277
|
+
0
|
|
278
|
+
|
|
279
|
+
sage: K = CyclotomicField(43).subfields(3)[0][0]
|
|
280
|
+
sage: E = EllipticCurve(K, '37')
|
|
281
|
+
sage: E.simon_two_descent() # long time (4s on sage.math, 2013)
|
|
282
|
+
(3,
|
|
283
|
+
3,
|
|
284
|
+
[(-1/2*zeta43_0^2 - 1/2*zeta43_0 + 7 : -3/2*zeta43_0^2 - 5/2*zeta43_0 + 18 : 1),
|
|
285
|
+
(0 : 0 : 1)])
|
|
286
|
+
"""
|
|
287
|
+
verbose = int(verbose)
|
|
288
|
+
if known_points is None:
|
|
289
|
+
known_points = self._known_points
|
|
290
|
+
known_points = [self(P) for P in known_points]
|
|
291
|
+
|
|
292
|
+
# We deliberately do not use known_points as a key in the
|
|
293
|
+
# following caching code, so that calling E.gens() a second
|
|
294
|
+
# time (when known_points may have increased) will not cause
|
|
295
|
+
# another execution of simon_two_descent.
|
|
296
|
+
try:
|
|
297
|
+
result = self._simon_two_descent_data[lim1, lim3, limtriv,
|
|
298
|
+
maxprob, limbigprime]
|
|
299
|
+
if verbose == 0:
|
|
300
|
+
return result
|
|
301
|
+
except AttributeError:
|
|
302
|
+
self._simon_two_descent_data = {}
|
|
303
|
+
except KeyError:
|
|
304
|
+
pass
|
|
305
|
+
|
|
306
|
+
from .gp_simon import simon_two_descent
|
|
307
|
+
t = simon_two_descent(self, verbose=verbose,
|
|
308
|
+
lim1=lim1, lim3=lim3, limtriv=limtriv,
|
|
309
|
+
maxprob=maxprob, limbigprime=limbigprime,
|
|
310
|
+
known_points=known_points)
|
|
311
|
+
self._simon_two_descent_data[lim1,lim3,limtriv,maxprob,limbigprime] = t
|
|
312
|
+
self._known_points.extend([P for P in t[2]
|
|
313
|
+
if P not in self._known_points])
|
|
314
|
+
return t
|
|
315
|
+
|
|
316
|
+
def height_pairing_matrix(self, points=None, precision=None, normalised=True):
|
|
317
|
+
r"""
|
|
318
|
+
Return the height pairing matrix of the given points.
|
|
319
|
+
|
|
320
|
+
INPUT:
|
|
321
|
+
|
|
322
|
+
- ``points`` -- list or ``None`` (default); list of points
|
|
323
|
+
on this curve, or ``None``, in which case ``self.gens()`` will
|
|
324
|
+
be used
|
|
325
|
+
|
|
326
|
+
- ``precision`` -- integer or ``None`` (default); number of bits
|
|
327
|
+
of precision of result, or ``None``, for default RealField precision
|
|
328
|
+
|
|
329
|
+
- ``normalised`` -- boolean (default: ``True``); if ``True``, use
|
|
330
|
+
normalised heights which are independent of base change.
|
|
331
|
+
Otherwise use the non-normalised Néron-Tate height, as
|
|
332
|
+
required for the regulator in the BSD conjecture.
|
|
333
|
+
|
|
334
|
+
EXAMPLES::
|
|
335
|
+
|
|
336
|
+
sage: E = EllipticCurve([0, 0, 1, -1, 0])
|
|
337
|
+
sage: E.height_pairing_matrix() # needs eclib
|
|
338
|
+
[0.0511114082399688]
|
|
339
|
+
|
|
340
|
+
For rank 0 curves, the result is a valid 0x0 matrix::
|
|
341
|
+
|
|
342
|
+
sage: # needs eclib
|
|
343
|
+
sage: EllipticCurve('11a').height_pairing_matrix()
|
|
344
|
+
[]
|
|
345
|
+
sage: E = EllipticCurve('5077a1')
|
|
346
|
+
sage: E.height_pairing_matrix([E.lift_x(x) for x in [-2,-7/4,1]], precision=100)
|
|
347
|
+
[ 1.3685725053539301120518194471 -1.3095767070865761992624519454 -0.63486715783715592064475542573]
|
|
348
|
+
[ -1.3095767070865761992624519454 2.7173593928122930896610589220 1.0998184305667292139777571432]
|
|
349
|
+
[-0.63486715783715592064475542573 1.0998184305667292139777571432 0.66820516565192793503314205089]
|
|
350
|
+
|
|
351
|
+
sage: E = EllipticCurve('389a1')
|
|
352
|
+
sage: E = EllipticCurve('389a1')
|
|
353
|
+
sage: P, Q = E.point([-1,1,1]), E.point([0,-1,1])
|
|
354
|
+
sage: E.height_pairing_matrix([P,Q]) # needs eclib
|
|
355
|
+
[0.686667083305587 0.268478098806726]
|
|
356
|
+
[0.268478098806726 0.327000773651605]
|
|
357
|
+
|
|
358
|
+
Over a number field::
|
|
359
|
+
|
|
360
|
+
sage: x = polygen(QQ)
|
|
361
|
+
sage: K.<t> = NumberField(x^2 + 47)
|
|
362
|
+
sage: EK = E.base_extend(K)
|
|
363
|
+
sage: EK.height_pairing_matrix([EK(P),EK(Q)]) # needs eclib
|
|
364
|
+
[0.686667083305587 0.268478098806726]
|
|
365
|
+
[0.268478098806726 0.327000773651605]
|
|
366
|
+
|
|
367
|
+
::
|
|
368
|
+
|
|
369
|
+
sage: K.<i> = QuadraticField(-1)
|
|
370
|
+
sage: E = EllipticCurve([0,0,0,i,i])
|
|
371
|
+
sage: P = E(-9+4*i, -18-25*i)
|
|
372
|
+
sage: Q = E(i,-i)
|
|
373
|
+
sage: E.height_pairing_matrix([P,Q]) # needs eclib
|
|
374
|
+
[ 2.16941934493768 -0.870059380421505]
|
|
375
|
+
[-0.870059380421505 0.424585837470709]
|
|
376
|
+
sage: E.regulator_of_points([P,Q]) # needs eclib
|
|
377
|
+
0.164101403936070
|
|
378
|
+
|
|
379
|
+
When the parameter ``normalised`` is set to ``False``, each
|
|
380
|
+
height is multiplied by the degree `d` of the base field, and
|
|
381
|
+
the regulator of `r` points is multiplied by `d^r`::
|
|
382
|
+
|
|
383
|
+
sage: E.height_pairing_matrix([P,Q], normalised=False)
|
|
384
|
+
[ 4.33883868987537 -1.74011876084301]
|
|
385
|
+
[-1.74011876084301 0.849171674941418]
|
|
386
|
+
sage: E.regulator_of_points([P,Q], normalised=False)
|
|
387
|
+
0.656405615744281
|
|
388
|
+
"""
|
|
389
|
+
if points is None:
|
|
390
|
+
points = self.gens()
|
|
391
|
+
else:
|
|
392
|
+
for P in points:
|
|
393
|
+
assert P.curve() == self
|
|
394
|
+
|
|
395
|
+
r = len(points)
|
|
396
|
+
if precision is None:
|
|
397
|
+
RR = RealField()
|
|
398
|
+
else:
|
|
399
|
+
RR = RealField(precision)
|
|
400
|
+
from sage.matrix.matrix_space import MatrixSpace
|
|
401
|
+
M = MatrixSpace(RR, r)
|
|
402
|
+
mat = M()
|
|
403
|
+
for j in range(r):
|
|
404
|
+
mat[j, j] = points[j].height(precision=precision, normalised=normalised)
|
|
405
|
+
for j in range(r):
|
|
406
|
+
for k in range(j + 1, r):
|
|
407
|
+
mat[j, k] = ((points[j] + points[k]).height(precision=precision, normalised=normalised) - mat[j, j] - mat[k, k]) / 2
|
|
408
|
+
mat[k, j] = mat[j, k]
|
|
409
|
+
return mat
|
|
410
|
+
|
|
411
|
+
def regulator_of_points(self, points=[], precision=None, normalised=True):
|
|
412
|
+
"""Return the regulator of the given points on this curve.
|
|
413
|
+
|
|
414
|
+
INPUT:
|
|
415
|
+
|
|
416
|
+
- ``points`` -- (default: empty list) a list of points on this curve
|
|
417
|
+
|
|
418
|
+
- ``precision`` -- integer or ``None`` (default); the
|
|
419
|
+
precision in bits of the result (default: real precision if ``None``)
|
|
420
|
+
|
|
421
|
+
- ``normalised`` -- boolean (default: ``True``); if ``True``, use
|
|
422
|
+
normalised heights which are independent of base change.
|
|
423
|
+
Otherwise use the non-normalised Néron-Tate height, as
|
|
424
|
+
required for the regulator in the BSD conjecture
|
|
425
|
+
|
|
426
|
+
EXAMPLES::
|
|
427
|
+
|
|
428
|
+
sage: E = EllipticCurve('37a1')
|
|
429
|
+
sage: P = E(0,0)
|
|
430
|
+
sage: Q = E(1,0)
|
|
431
|
+
sage: E.regulator_of_points([P,Q])
|
|
432
|
+
0.000000000000000
|
|
433
|
+
sage: 2*P == Q
|
|
434
|
+
True
|
|
435
|
+
|
|
436
|
+
::
|
|
437
|
+
|
|
438
|
+
sage: E = EllipticCurve('5077a1')
|
|
439
|
+
sage: points = [E.lift_x(x) for x in [-2,-7/4,1]]
|
|
440
|
+
sage: E.regulator_of_points(points)
|
|
441
|
+
0.417143558758384
|
|
442
|
+
sage: E.regulator_of_points(points, precision=100)
|
|
443
|
+
0.41714355875838396981711954462
|
|
444
|
+
|
|
445
|
+
::
|
|
446
|
+
|
|
447
|
+
sage: E = EllipticCurve('389a')
|
|
448
|
+
sage: E.regulator_of_points()
|
|
449
|
+
1.00000000000000
|
|
450
|
+
sage: points = [P,Q] = [E(-1,1), E(0,-1)]
|
|
451
|
+
sage: E.regulator_of_points(points)
|
|
452
|
+
0.152460177943144
|
|
453
|
+
sage: E.regulator_of_points(points, precision=100)
|
|
454
|
+
0.15246017794314375162432475705
|
|
455
|
+
sage: E.regulator_of_points(points, precision=200)
|
|
456
|
+
0.15246017794314375162432475704945582324372707748663081784028
|
|
457
|
+
sage: E.regulator_of_points(points, precision=300)
|
|
458
|
+
0.152460177943143751624324757049455823243727077486630817840280980046053225683562463604114816
|
|
459
|
+
|
|
460
|
+
Examples over number fields::
|
|
461
|
+
|
|
462
|
+
sage: K.<a> = QuadraticField(97)
|
|
463
|
+
sage: E = EllipticCurve(K, [1,1])
|
|
464
|
+
sage: P = E(0,1)
|
|
465
|
+
sage: P.height()
|
|
466
|
+
0.476223106404866
|
|
467
|
+
sage: E.regulator_of_points([P])
|
|
468
|
+
0.476223106404866
|
|
469
|
+
|
|
470
|
+
When the parameter ``normalised`` is set to ``False``, each
|
|
471
|
+
height is multiplied by the degree `d` of the base field, and
|
|
472
|
+
the regulator of `r` points is multiplied by `d^r`::
|
|
473
|
+
|
|
474
|
+
sage: P.height(normalised=False)
|
|
475
|
+
0.952446212809731
|
|
476
|
+
sage: E.regulator_of_points([P], normalised=False)
|
|
477
|
+
0.952446212809731
|
|
478
|
+
|
|
479
|
+
::
|
|
480
|
+
|
|
481
|
+
sage: E = EllipticCurve('11a1')
|
|
482
|
+
sage: x = polygen(QQ)
|
|
483
|
+
sage: K.<t> = NumberField(x^2 + 47)
|
|
484
|
+
sage: EK = E.base_extend(K)
|
|
485
|
+
sage: T = EK(5, 5)
|
|
486
|
+
sage: T.order()
|
|
487
|
+
5
|
|
488
|
+
sage: P = EK(-2, -1/2*t - 1/2)
|
|
489
|
+
sage: P.order()
|
|
490
|
+
+Infinity
|
|
491
|
+
sage: EK.regulator_of_points([P,T]) # random very small output
|
|
492
|
+
-1.23259516440783e-32
|
|
493
|
+
sage: EK.regulator_of_points([P,T]).abs() < 1e-30
|
|
494
|
+
True
|
|
495
|
+
|
|
496
|
+
::
|
|
497
|
+
|
|
498
|
+
sage: # needs eclib
|
|
499
|
+
sage: E = EllipticCurve('389a1')
|
|
500
|
+
sage: P,Q = E.gens()
|
|
501
|
+
sage: E.regulator_of_points([P,Q])
|
|
502
|
+
0.152460177943144
|
|
503
|
+
sage: K.<t> = NumberField(x^2 + 47)
|
|
504
|
+
sage: EK = E.base_extend(K)
|
|
505
|
+
sage: EK.regulator_of_points([EK(P),EK(Q)])
|
|
506
|
+
0.152460177943144
|
|
507
|
+
|
|
508
|
+
::
|
|
509
|
+
|
|
510
|
+
sage: K.<i> = QuadraticField(-1)
|
|
511
|
+
sage: E = EllipticCurve([0,0,0,i,i])
|
|
512
|
+
sage: P = E(-9+4*i, -18-25*i)
|
|
513
|
+
sage: Q = E(i, -i)
|
|
514
|
+
sage: E.height_pairing_matrix([P,Q])
|
|
515
|
+
[ 2.16941934493768 -0.870059380421505]
|
|
516
|
+
[-0.870059380421505 0.424585837470709]
|
|
517
|
+
sage: E.regulator_of_points([P,Q])
|
|
518
|
+
0.164101403936070
|
|
519
|
+
"""
|
|
520
|
+
if points is None:
|
|
521
|
+
points = []
|
|
522
|
+
mat = self.height_pairing_matrix(points=points, precision=precision, normalised=normalised)
|
|
523
|
+
return mat.det(algorithm='hessenberg')
|
|
524
|
+
|
|
525
|
+
def is_local_integral_model(self, *P):
|
|
526
|
+
r"""
|
|
527
|
+
Test if ``self`` is integral at the prime ideal `P`, or at all the
|
|
528
|
+
primes if `P` is a list or tuple.
|
|
529
|
+
|
|
530
|
+
INPUT:
|
|
531
|
+
|
|
532
|
+
- ``*P`` -- a prime ideal, or a list or tuple of primes
|
|
533
|
+
|
|
534
|
+
EXAMPLES::
|
|
535
|
+
|
|
536
|
+
sage: x = polygen(QQ)
|
|
537
|
+
sage: K.<i> = NumberField(x^2 + 1)
|
|
538
|
+
sage: P1, P2 = K.primes_above(5)
|
|
539
|
+
sage: E = EllipticCurve([i/5,i/5,i/5,i/5,i/5])
|
|
540
|
+
sage: E.is_local_integral_model(P1, P2)
|
|
541
|
+
False
|
|
542
|
+
sage: Emin = E.local_integral_model(P1, P2)
|
|
543
|
+
sage: Emin.is_local_integral_model(P1, P2)
|
|
544
|
+
True
|
|
545
|
+
"""
|
|
546
|
+
if len(P) == 1:
|
|
547
|
+
P = P[0]
|
|
548
|
+
if isinstance(P, (tuple, list)):
|
|
549
|
+
return all(self.is_local_integral_model(x) for x in P)
|
|
550
|
+
return all(x.valuation(P) >= 0 for x in self.ainvs())
|
|
551
|
+
|
|
552
|
+
def local_integral_model(self, *P):
|
|
553
|
+
r"""
|
|
554
|
+
Return a model of ``self`` which is integral at the prime ideal `P`.
|
|
555
|
+
|
|
556
|
+
.. NOTE::
|
|
557
|
+
|
|
558
|
+
The integrality at other primes is not affected, even if
|
|
559
|
+
`P` is non-principal.
|
|
560
|
+
|
|
561
|
+
INPUT:
|
|
562
|
+
|
|
563
|
+
- ``*P`` -- a prime ideal, or a list or tuple of primes
|
|
564
|
+
|
|
565
|
+
EXAMPLES::
|
|
566
|
+
|
|
567
|
+
sage: x = polygen(QQ)
|
|
568
|
+
sage: K.<i> = NumberField(x^2 + 1)
|
|
569
|
+
sage: P1, P2 = K.primes_above(5)
|
|
570
|
+
sage: E = EllipticCurve([i/5,i/5,i/5,i/5,i/5])
|
|
571
|
+
sage: E.local_integral_model((P1,P2))
|
|
572
|
+
Elliptic Curve defined by
|
|
573
|
+
y^2 + (-i)*x*y + (-25*i)*y = x^3 + 5*i*x^2 + 125*i*x + 3125*i
|
|
574
|
+
over Number Field in i with defining polynomial x^2 + 1
|
|
575
|
+
"""
|
|
576
|
+
if len(P) == 1:
|
|
577
|
+
P = P[0]
|
|
578
|
+
if isinstance(P, (tuple, list)):
|
|
579
|
+
E = self
|
|
580
|
+
for Pi in P:
|
|
581
|
+
E = E.local_integral_model(Pi)
|
|
582
|
+
return E
|
|
583
|
+
ai = self.a_invariants()
|
|
584
|
+
e = min((ai[i].valuation(P) / [1, 2, 3, 4, 6][i])
|
|
585
|
+
for i in range(5)).floor()
|
|
586
|
+
pi = self.base_field().uniformizer(P, 'negative')
|
|
587
|
+
return EllipticCurve([ai[i]/pi**(e*[1,2,3,4,6][i]) for i in range(5)])
|
|
588
|
+
|
|
589
|
+
def is_global_integral_model(self):
|
|
590
|
+
r"""
|
|
591
|
+
Return whether ``self`` is integral at all primes.
|
|
592
|
+
|
|
593
|
+
EXAMPLES::
|
|
594
|
+
|
|
595
|
+
sage: x = polygen(QQ)
|
|
596
|
+
sage: K.<i> = NumberField(x^2 + 1)
|
|
597
|
+
sage: E = EllipticCurve([i/5,i/5,i/5,i/5,i/5])
|
|
598
|
+
sage: P1, P2 = K.primes_above(5)
|
|
599
|
+
sage: Emin = E.global_integral_model()
|
|
600
|
+
sage: Emin.is_global_integral_model()
|
|
601
|
+
True
|
|
602
|
+
"""
|
|
603
|
+
return all(x.is_integral() for x in self.a_invariants())
|
|
604
|
+
|
|
605
|
+
def global_integral_model(self):
|
|
606
|
+
r"""
|
|
607
|
+
Return a model of ``self`` which is integral at all primes.
|
|
608
|
+
|
|
609
|
+
EXAMPLES::
|
|
610
|
+
|
|
611
|
+
sage: x = polygen(QQ)
|
|
612
|
+
sage: K.<i> = NumberField(x^2 + 1)
|
|
613
|
+
sage: E = EllipticCurve([i/5,i/5,i/5,i/5,i/5])
|
|
614
|
+
sage: P1, P2 = K.primes_above(5)
|
|
615
|
+
sage: E.global_integral_model()
|
|
616
|
+
Elliptic Curve defined by
|
|
617
|
+
y^2 + (-i)*x*y + (-25*i)*y = x^3 + 5*i*x^2 + 125*i*x + 3125*i
|
|
618
|
+
over Number Field in i with defining polynomial x^2 + 1
|
|
619
|
+
|
|
620
|
+
:issue:`7935`::
|
|
621
|
+
|
|
622
|
+
sage: x = polygen(QQ)
|
|
623
|
+
sage: K.<a> = NumberField(x^2 - 38)
|
|
624
|
+
sage: E = EllipticCurve([a,1/2])
|
|
625
|
+
sage: E.global_integral_model()
|
|
626
|
+
Elliptic Curve defined by y^2 = x^3 + 1444*a*x + 27436
|
|
627
|
+
over Number Field in a with defining polynomial x^2 - 38
|
|
628
|
+
|
|
629
|
+
:issue:`9266`::
|
|
630
|
+
|
|
631
|
+
sage: x = polygen(QQ)
|
|
632
|
+
sage: K.<s> = NumberField(x^2 - 5)
|
|
633
|
+
sage: w = (1+s)/2
|
|
634
|
+
sage: E = EllipticCurve(K, [2,w])
|
|
635
|
+
sage: E.global_integral_model()
|
|
636
|
+
Elliptic Curve defined by y^2 = x^3 + 2*x + (1/2*s+1/2)
|
|
637
|
+
over Number Field in s with defining polynomial x^2 - 5
|
|
638
|
+
|
|
639
|
+
:issue:`12151`::
|
|
640
|
+
|
|
641
|
+
sage: x = polygen(QQ)
|
|
642
|
+
sage: K.<v> = NumberField(x^2 + 161*x - 150)
|
|
643
|
+
sage: E = EllipticCurve([25105/216*v - 3839/36, 634768555/7776*v - 98002625/1296, 634768555/7776*v - 98002625/1296, 0, 0])
|
|
644
|
+
sage: M = E.global_integral_model(); M # choice varies, not tested
|
|
645
|
+
Elliptic Curve defined by
|
|
646
|
+
y^2 + (2094779518028859*v-1940492905300351)*x*y + (477997268472544193101178234454165304071127500*v-442791377441346852919930773849502871958097500)*y = x^3 + (26519784690047674853185542622500*v-24566525306469707225840460652500)*x^2
|
|
647
|
+
over Number Field in v with defining polynomial x^2 + 161*x - 150
|
|
648
|
+
|
|
649
|
+
:issue:`14476`::
|
|
650
|
+
|
|
651
|
+
sage: R.<t> = QQ[]
|
|
652
|
+
sage: K.<g> = NumberField(t^4 - t^3 - 3*t^2 - t + 1)
|
|
653
|
+
sage: E = EllipticCurve([ -43/625*g^3 + 14/625*g^2 - 4/625*g + 706/625, -4862/78125*g^3 - 4074/78125*g^2 - 711/78125*g + 10304/78125, -4862/78125*g^3 - 4074/78125*g^2 - 711/78125*g + 10304/78125, 0,0])
|
|
654
|
+
sage: E.global_integral_model()
|
|
655
|
+
Elliptic Curve defined by
|
|
656
|
+
y^2 + (15*g^3-48*g-42)*x*y + (-111510*g^3-162162*g^2-44145*g+37638)*y = x^3 + (-954*g^3-1134*g^2+81*g+576)*x^2
|
|
657
|
+
over Number Field in g with defining polynomial t^4 - t^3 - 3*t^2 - t + 1
|
|
658
|
+
|
|
659
|
+
TESTS:
|
|
660
|
+
|
|
661
|
+
Check the skipped test from above::
|
|
662
|
+
|
|
663
|
+
sage: x = polygen(QQ)
|
|
664
|
+
sage: K.<v> = NumberField(x^2 + 161*x - 150)
|
|
665
|
+
sage: E = EllipticCurve([25105/216*v - 3839/36, 634768555/7776*v - 98002625/1296, 634768555/7776*v - 98002625/1296, 0, 0])
|
|
666
|
+
sage: M = E.global_integral_model()
|
|
667
|
+
sage: b = M.ainvs()
|
|
668
|
+
sage: b[0] in (2094779518028859*v-1940492905300351, 33872485050625*v - 31078224284250)
|
|
669
|
+
True
|
|
670
|
+
sage: b[1] in (26519784690047674853185542622500*v - 24566525306469707225840460652500,
|
|
671
|
+
....: 6933305282258321342920781250*v - 6422644400723486559914062500)
|
|
672
|
+
True
|
|
673
|
+
sage: b[2] in (477997268472544193101178234454165304071127500*v -442791377441346852919930773849502871958097500,
|
|
674
|
+
....: 2020602604156076340058146664245468750000*v - 1871778534673615560803175189398437500000)
|
|
675
|
+
True
|
|
676
|
+
sage: b[3:]
|
|
677
|
+
(0, 0)
|
|
678
|
+
"""
|
|
679
|
+
K = self.base_field()
|
|
680
|
+
ai = self.a_invariants()
|
|
681
|
+
Ps = {ff[0] for a in ai if not a.is_integral()
|
|
682
|
+
for ff in a.denominator_ideal().factor()}
|
|
683
|
+
for P in Ps:
|
|
684
|
+
pi = K.uniformizer(P, 'positive')
|
|
685
|
+
e = min((ai[i].valuation(P)/[1,2,3,4,6][i])
|
|
686
|
+
for i in range(5)).floor()
|
|
687
|
+
if e < 0:
|
|
688
|
+
ai = [ai[i]/pi**(e*[1,2,3,4,6][i]) for i in range(5)]
|
|
689
|
+
if all(a.is_integral() for a in ai):
|
|
690
|
+
break
|
|
691
|
+
for z in ai:
|
|
692
|
+
assert z.is_integral(), "bug in global_integral_model: %s" % list(ai)
|
|
693
|
+
return EllipticCurve(list(ai))
|
|
694
|
+
|
|
695
|
+
integral_model = global_integral_model
|
|
696
|
+
|
|
697
|
+
def _reduce_model(self):
|
|
698
|
+
r"""
|
|
699
|
+
Return a reduced model for this elliptic curve.
|
|
700
|
+
|
|
701
|
+
Transforms the elliptic curve to a model which is optimally scaled
|
|
702
|
+
with respect to units and in which `a_1`, `a_2`, `a_3` are
|
|
703
|
+
reduced modulo 2, 3, 2 respectively.
|
|
704
|
+
|
|
705
|
+
.. NOTE::
|
|
706
|
+
|
|
707
|
+
This only works on integral models, i.e. it requires that
|
|
708
|
+
`a_1`, `a_2` and `a_3` lie in the ring of integers of the base
|
|
709
|
+
field.
|
|
710
|
+
|
|
711
|
+
EXAMPLES::
|
|
712
|
+
|
|
713
|
+
sage: x = polygen(ZZ, 'x')
|
|
714
|
+
sage: K.<a> = NumberField(x^2 - 38)
|
|
715
|
+
sage: E = EllipticCurve([a, -5*a + 19, -39*a + 237, 368258520200522046806318224*a - 2270097978636731786720858047, 8456608930180227786550494643437985949781*a - 52130038506835491453281450568107193773505])
|
|
716
|
+
sage: E.ainvs()
|
|
717
|
+
(a,
|
|
718
|
+
-5*a + 19,
|
|
719
|
+
-39*a + 237,
|
|
720
|
+
368258520200522046806318224*a - 2270097978636731786720858047,
|
|
721
|
+
8456608930180227786550494643437985949781*a - 52130038506835491453281450568107193773505)
|
|
722
|
+
sage: E._reduce_model().ainvs()
|
|
723
|
+
(a,
|
|
724
|
+
a + 1,
|
|
725
|
+
a + 1,
|
|
726
|
+
368258520200522046806318444*a - 2270097978636731786720859345,
|
|
727
|
+
8456608930173478039472018047583706316424*a - 52130038506793883217874390501829588391299)
|
|
728
|
+
sage: EllipticCurve([101,202,303,404,505])._reduce_model().ainvs()
|
|
729
|
+
(1, 1, 0, -2509254, 1528863051)
|
|
730
|
+
sage: EllipticCurve([-101,-202,-303,-404,-505])._reduce_model().ainvs()
|
|
731
|
+
(1, -1, 0, -1823195, 947995262)
|
|
732
|
+
|
|
733
|
+
sage: E = EllipticCurve([a/4, 1])
|
|
734
|
+
sage: E._reduce_model()
|
|
735
|
+
Traceback (most recent call last):
|
|
736
|
+
...
|
|
737
|
+
TypeError: _reduce_model() requires an integral model.
|
|
738
|
+
"""
|
|
739
|
+
K = self.base_ring()
|
|
740
|
+
ZK = K.maximal_order()
|
|
741
|
+
try:
|
|
742
|
+
a1, a2, a3, a4, a6 = (ZK(a) for a in self.a_invariants())
|
|
743
|
+
except TypeError:
|
|
744
|
+
raise TypeError("_reduce_model() requires an integral model.")
|
|
745
|
+
|
|
746
|
+
# N.B. Must define s, r, t in the right order.
|
|
747
|
+
if ZK.absolute_degree() == 1:
|
|
748
|
+
s = ((-a1) / 2).round('up')
|
|
749
|
+
r = ((-a2 + s * a1 + s * s) / 3).round()
|
|
750
|
+
t = ((-a3 - r * a1) / 2).round('up')
|
|
751
|
+
else:
|
|
752
|
+
pariK = K.__pari__()
|
|
753
|
+
s = K(pariK.nfeltdiveuc(-a1, 2))
|
|
754
|
+
r = K(pariK.nfeltdiveuc(-a2 + s * a1 + s * s, 3))
|
|
755
|
+
t = K(pariK.nfeltdiveuc(-a3 - r * a1, 2))
|
|
756
|
+
|
|
757
|
+
return self.rst_transform(r, s, t)
|
|
758
|
+
|
|
759
|
+
def _scale_by_units(self):
|
|
760
|
+
r"""
|
|
761
|
+
Return a model reduced with respect to scaling by units.
|
|
762
|
+
|
|
763
|
+
OUTPUT:
|
|
764
|
+
|
|
765
|
+
A model for this elliptic curve, optimally scaled with respect
|
|
766
|
+
to scaling by units, with respect to the logarithmic embedding
|
|
767
|
+
of `|c4|^(1/4)+|c6|^(1/6)`. No scaling by roots of unity is
|
|
768
|
+
carried out, so there is no change when the unit rank is 0.
|
|
769
|
+
|
|
770
|
+
EXAMPLES::
|
|
771
|
+
|
|
772
|
+
sage: x = polygen(ZZ, 'x')
|
|
773
|
+
sage: K.<a> = NumberField(x^2 - 10)
|
|
774
|
+
sage: u = a + 3
|
|
775
|
+
sage: u.is_unit()
|
|
776
|
+
True
|
|
777
|
+
sage: E = EllipticCurve([0, 0, 0, 4536*a + 14148, -163728*a - 474336])
|
|
778
|
+
sage: E1 = E.scale_curve(u^5)
|
|
779
|
+
sage: E1.ainvs()
|
|
780
|
+
(0,
|
|
781
|
+
0,
|
|
782
|
+
0,
|
|
783
|
+
28087920796764302856*a + 88821804456186580548,
|
|
784
|
+
-77225139016967233228487820912*a - 244207331916752959911655344864)
|
|
785
|
+
sage: E1._scale_by_units().ainvs()
|
|
786
|
+
(0, 0, 0, 4536*a + 14148, -163728*a - 474336)
|
|
787
|
+
|
|
788
|
+
A totally real cubic example::
|
|
789
|
+
|
|
790
|
+
sage: K.<a> = NumberField(x^3-x^2-6*x+5)
|
|
791
|
+
sage: E = EllipticCurve([a + 1, a^2 + a - 1, a + 1, 44*a^2 + a - 258, -215*a^2 + 53*a + 1340])
|
|
792
|
+
sage: u1, u2 = K.units()
|
|
793
|
+
sage: u = u1^2/u2^3
|
|
794
|
+
sage: E1 = E.scale_curve(u)
|
|
795
|
+
sage: E1._scale_by_units().ainvs() == E.ainvs()
|
|
796
|
+
True
|
|
797
|
+
|
|
798
|
+
A complex quartic example::
|
|
799
|
+
|
|
800
|
+
sage: K.<a> = CyclotomicField(5)
|
|
801
|
+
sage: E = EllipticCurve([a + 1, a^2 + a - 1, a + 1, 44*a^2 + a - 258, -215*a^2 + 53*a + 1340])
|
|
802
|
+
sage: u = K.units()[0]
|
|
803
|
+
sage: E1 = E.scale_curve(u^5)
|
|
804
|
+
sage: E1._scale_by_units().ainvs() == E.ainvs()
|
|
805
|
+
True
|
|
806
|
+
|
|
807
|
+
TESTS:
|
|
808
|
+
|
|
809
|
+
See :issue:`34174`. This used to raise an error due to insufficient precision::
|
|
810
|
+
|
|
811
|
+
sage: K.<a> = QuadraticField(4569)
|
|
812
|
+
sage: j = 46969655/32768
|
|
813
|
+
sage: E = EllipticCurve(j=K(j))
|
|
814
|
+
sage: C = E.isogeny_class() # long time (9.5s)
|
|
815
|
+
"""
|
|
816
|
+
K = self.base_field()
|
|
817
|
+
r1, r2 = K.signature()
|
|
818
|
+
if r1 + r2 == 1: # unit rank is 0
|
|
819
|
+
return self
|
|
820
|
+
|
|
821
|
+
degs = [1]*r1 + [2]*r2
|
|
822
|
+
fu = K.units()
|
|
823
|
+
c4, c6 = self.c_invariants()
|
|
824
|
+
|
|
825
|
+
from sage.matrix.constructor import Matrix
|
|
826
|
+
from sage.modules.free_module_element import vector
|
|
827
|
+
|
|
828
|
+
prec = 1000 # initial value, will be increased if necessary
|
|
829
|
+
ok = False
|
|
830
|
+
while not ok:
|
|
831
|
+
embs = K.places(prec=prec)
|
|
832
|
+
c4s = [e(c4) for e in embs]
|
|
833
|
+
c6s = [e(c6) for e in embs]
|
|
834
|
+
|
|
835
|
+
U = Matrix([[e(u).abs().log()*d for d,e in zip(degs,embs)] for u in fu])
|
|
836
|
+
v = vector([(x4.abs().nth_root(4)+x6.abs().nth_root(6)).log()*d for x4,x6,d in zip(c4s,c6s,degs)])
|
|
837
|
+
w = -(U*U.transpose()).inverse()*U*v
|
|
838
|
+
try:
|
|
839
|
+
es = [e.round() for e in w]
|
|
840
|
+
ok = True
|
|
841
|
+
except ValueError:
|
|
842
|
+
prec *= 2
|
|
843
|
+
|
|
844
|
+
u = prod([uj**ej for uj,ej in zip(fu,es)])
|
|
845
|
+
return self.scale_curve(u)
|
|
846
|
+
|
|
847
|
+
def local_data(self, P=None, proof=None, algorithm='pari', globally=False):
|
|
848
|
+
r"""
|
|
849
|
+
Local data for this elliptic curve at the prime `P`.
|
|
850
|
+
|
|
851
|
+
INPUT:
|
|
852
|
+
|
|
853
|
+
- ``P`` -- either ``None``, a prime ideal of the base field of ``self``,
|
|
854
|
+
or an element of the base field that generates a prime ideal
|
|
855
|
+
|
|
856
|
+
- ``proof`` -- whether to only use provably correct methods
|
|
857
|
+
(default controlled by global proof module). Note that the
|
|
858
|
+
proof module is number_field, not elliptic_curves, since the
|
|
859
|
+
functions that actually need the flag are in number fields.
|
|
860
|
+
|
|
861
|
+
- ``algorithm`` -- string (default: ``'pari'``); ignored unless the
|
|
862
|
+
base field is `\QQ`. If ``'pari'``, use the PARI C-library
|
|
863
|
+
:pari:`ellglobalred` implementation of Tate's algorithm over
|
|
864
|
+
`\QQ`. If ``'generic'``, use the general number field
|
|
865
|
+
implementation.
|
|
866
|
+
|
|
867
|
+
- ``globally`` -- whether the local algorithm uses global generators
|
|
868
|
+
for the prime ideals. Default is False, which will not require any
|
|
869
|
+
information about the class group. If ``True``, a generator for `P`
|
|
870
|
+
will be used if `P` is principal. Otherwise, or if ``globally``
|
|
871
|
+
is False, the minimal model returned will preserve integrality
|
|
872
|
+
at other primes, but not minimality.
|
|
873
|
+
|
|
874
|
+
OUTPUT:
|
|
875
|
+
|
|
876
|
+
If `P` is specified, returns the ``EllipticCurveLocalData``
|
|
877
|
+
object associated to the prime `P` for this curve. Otherwise,
|
|
878
|
+
returns a list of such objects, one for each prime `P` in the
|
|
879
|
+
support of the discriminant of this model.
|
|
880
|
+
|
|
881
|
+
.. NOTE::
|
|
882
|
+
|
|
883
|
+
The model is not required to be integral on input.
|
|
884
|
+
|
|
885
|
+
EXAMPLES::
|
|
886
|
+
|
|
887
|
+
sage: x = polygen(QQ)
|
|
888
|
+
sage: K.<i> = NumberField(x^2 + 1)
|
|
889
|
+
sage: E = EllipticCurve([1 + i, 0, 1, 0, 0])
|
|
890
|
+
sage: E.local_data()
|
|
891
|
+
[Local data at Fractional ideal (-2*i - 1):
|
|
892
|
+
Reduction type: bad non-split multiplicative
|
|
893
|
+
Local minimal model: Elliptic Curve defined by y^2 + (i+1)*x*y + y = x^3
|
|
894
|
+
over Number Field in i with defining polynomial x^2 + 1
|
|
895
|
+
Minimal discriminant valuation: 1
|
|
896
|
+
Conductor exponent: 1
|
|
897
|
+
Kodaira Symbol: I1
|
|
898
|
+
Tamagawa Number: 1,
|
|
899
|
+
Local data at Fractional ideal (3*i + 2):
|
|
900
|
+
Reduction type: bad split multiplicative
|
|
901
|
+
Local minimal model: Elliptic Curve defined by y^2 + (i+1)*x*y + y = x^3
|
|
902
|
+
over Number Field in i with defining polynomial x^2 + 1
|
|
903
|
+
Minimal discriminant valuation: 2
|
|
904
|
+
Conductor exponent: 1
|
|
905
|
+
Kodaira Symbol: I2
|
|
906
|
+
Tamagawa Number: 2]
|
|
907
|
+
sage: E.local_data(K.ideal(3))
|
|
908
|
+
Local data at Fractional ideal (3):
|
|
909
|
+
Reduction type: good
|
|
910
|
+
Local minimal model: Elliptic Curve defined by y^2 + (i+1)*x*y + y = x^3
|
|
911
|
+
over Number Field in i with defining polynomial x^2 + 1
|
|
912
|
+
Minimal discriminant valuation: 0
|
|
913
|
+
Conductor exponent: 0
|
|
914
|
+
Kodaira Symbol: I0
|
|
915
|
+
Tamagawa Number: 1
|
|
916
|
+
sage: E.local_data(2*i + 1)
|
|
917
|
+
Local data at Fractional ideal (-2*i - 1):
|
|
918
|
+
Reduction type: bad non-split multiplicative
|
|
919
|
+
Local minimal model: Elliptic Curve defined by y^2 + (i+1)*x*y + y = x^3
|
|
920
|
+
over Number Field in i with defining polynomial x^2 + 1
|
|
921
|
+
Minimal discriminant valuation: 1
|
|
922
|
+
Conductor exponent: 1
|
|
923
|
+
Kodaira Symbol: I1
|
|
924
|
+
Tamagawa Number: 1
|
|
925
|
+
|
|
926
|
+
An example raised in :issue:`3897`::
|
|
927
|
+
|
|
928
|
+
sage: E = EllipticCurve([1,1])
|
|
929
|
+
sage: E.local_data(3)
|
|
930
|
+
Local data at Principal ideal (3) of Integer Ring:
|
|
931
|
+
Reduction type: good
|
|
932
|
+
Local minimal model: Elliptic Curve defined by y^2 = x^3 + x + 1
|
|
933
|
+
over Rational Field
|
|
934
|
+
Minimal discriminant valuation: 0
|
|
935
|
+
Conductor exponent: 0
|
|
936
|
+
Kodaira Symbol: I0
|
|
937
|
+
Tamagawa Number: 1
|
|
938
|
+
"""
|
|
939
|
+
if proof is None:
|
|
940
|
+
import sage.structure.proof.proof
|
|
941
|
+
# We use the "number_field" flag because the actual proof dependence is in PARI's number field functions.
|
|
942
|
+
proof = sage.structure.proof.proof.get_flag(None, "number_field")
|
|
943
|
+
|
|
944
|
+
if P is None:
|
|
945
|
+
primes = self.base_ring()(self.integral_model().discriminant()).support()
|
|
946
|
+
return [self._get_local_data(pr, proof) for pr in primes]
|
|
947
|
+
|
|
948
|
+
from sage.schemes.elliptic_curves.ell_local_data import check_prime
|
|
949
|
+
P = check_prime(self.base_field(),P)
|
|
950
|
+
|
|
951
|
+
return self._get_local_data(P,proof,algorithm,globally)
|
|
952
|
+
|
|
953
|
+
def _get_local_data(self, P, proof, algorithm='pari', globally=False):
|
|
954
|
+
r"""
|
|
955
|
+
Internal function to create data for this elliptic curve at the prime `P`.
|
|
956
|
+
|
|
957
|
+
This function handles the caching of local data. It is called
|
|
958
|
+
by local_data() which is the user interface and which parses
|
|
959
|
+
the input parameters `P` and proof.
|
|
960
|
+
|
|
961
|
+
INPUT:
|
|
962
|
+
|
|
963
|
+
- ``P`` -- either ``None`` or a prime ideal of the base field of ``self``
|
|
964
|
+
|
|
965
|
+
- ``proof`` -- whether to only use provably correct methods
|
|
966
|
+
(default controlled by global proof module). Note that the
|
|
967
|
+
proof module is number_field, not elliptic_curves, since the
|
|
968
|
+
functions that actually need the flag are in number fields.
|
|
969
|
+
|
|
970
|
+
- ``algorithm`` -- string (default: ``'pari'``); ignored unless the
|
|
971
|
+
base field is `\QQ`. If ``'pari'``, use the PARI C-library
|
|
972
|
+
:pari:`ellglobalred` implementation of Tate's algorithm over
|
|
973
|
+
`\QQ`. If ``'generic'``, use the general number field
|
|
974
|
+
implementation.
|
|
975
|
+
|
|
976
|
+
- ``globally`` -- whether the local algorithm uses global generators
|
|
977
|
+
for the prime ideals. Default is False, which will not require any
|
|
978
|
+
information about the class group. If ``True``, a generator for `P`
|
|
979
|
+
will be used if `P` is principal. Otherwise, or if ``globally``
|
|
980
|
+
is False, the minimal model returned will preserve integrality
|
|
981
|
+
at other primes, but not minimality.
|
|
982
|
+
|
|
983
|
+
EXAMPLES::
|
|
984
|
+
|
|
985
|
+
sage: x = polygen(QQ)
|
|
986
|
+
sage: K.<i> = NumberField(x^2 + 1)
|
|
987
|
+
sage: E = EllipticCurve(K, [0,1,0,-160,308])
|
|
988
|
+
sage: p = K.ideal(i + 1)
|
|
989
|
+
sage: E._get_local_data(p, False)
|
|
990
|
+
Local data at Fractional ideal (i + 1):
|
|
991
|
+
Reduction type: good
|
|
992
|
+
Local minimal model: Elliptic Curve defined by
|
|
993
|
+
y^2 + x*y + y = x^3 + x^2 + (-10)*x + (-10)
|
|
994
|
+
over Number Field in i with defining polynomial x^2 + 1
|
|
995
|
+
Minimal discriminant valuation: 0
|
|
996
|
+
Conductor exponent: 0
|
|
997
|
+
Kodaira Symbol: I0
|
|
998
|
+
Tamagawa Number: 1
|
|
999
|
+
|
|
1000
|
+
Verify that we cache based on the proof value and the algorithm choice::
|
|
1001
|
+
|
|
1002
|
+
sage: E._get_local_data(p, False) is E._get_local_data(p, True)
|
|
1003
|
+
False
|
|
1004
|
+
|
|
1005
|
+
sage: E._get_local_data(p, None, "pari") is E._get_local_data(p, None, "generic")
|
|
1006
|
+
False
|
|
1007
|
+
"""
|
|
1008
|
+
try:
|
|
1009
|
+
return self._local_data[P, proof, algorithm, globally]
|
|
1010
|
+
except AttributeError:
|
|
1011
|
+
self._local_data = {}
|
|
1012
|
+
except KeyError:
|
|
1013
|
+
pass
|
|
1014
|
+
from sage.schemes.elliptic_curves.ell_local_data import EllipticCurveLocalData
|
|
1015
|
+
self._local_data[P, proof, algorithm, globally] = EllipticCurveLocalData(self, P, proof, algorithm, globally)
|
|
1016
|
+
return self._local_data[P, proof, algorithm, globally]
|
|
1017
|
+
|
|
1018
|
+
def local_minimal_model(self, P, proof=None, algorithm='pari'):
|
|
1019
|
+
r"""
|
|
1020
|
+
Return a model which is integral at all primes and minimal at `P`.
|
|
1021
|
+
|
|
1022
|
+
INPUT:
|
|
1023
|
+
|
|
1024
|
+
- ``P`` -- either ``None`` or a prime ideal of the base field of ``self``
|
|
1025
|
+
|
|
1026
|
+
- ``proof`` -- whether to only use provably correct methods
|
|
1027
|
+
(default controlled by global proof module). Note that the
|
|
1028
|
+
proof module is number_field, not elliptic_curves, since the
|
|
1029
|
+
functions that actually need the flag are in number fields.
|
|
1030
|
+
|
|
1031
|
+
- ``algorithm`` -- string (default: ``'pari'``); ignored unless the
|
|
1032
|
+
base field is `\QQ`. If ``'pari'``, use the PARI C-library
|
|
1033
|
+
:pari:`ellglobalred` implementation of Tate's algorithm over
|
|
1034
|
+
`\QQ`. If ``'generic'``, use the general number field
|
|
1035
|
+
implementation.
|
|
1036
|
+
|
|
1037
|
+
OUTPUT:
|
|
1038
|
+
|
|
1039
|
+
A model of the curve which is minimal (and integral) at `P`.
|
|
1040
|
+
|
|
1041
|
+
.. NOTE::
|
|
1042
|
+
|
|
1043
|
+
The model is not required to be integral on input.
|
|
1044
|
+
|
|
1045
|
+
For principal `P`, a generator is used as a uniformizer,
|
|
1046
|
+
and integrality or minimality at other primes is not
|
|
1047
|
+
affected. For non-principal `P`, the minimal model
|
|
1048
|
+
returned will preserve integrality at other primes, but not
|
|
1049
|
+
minimality.
|
|
1050
|
+
|
|
1051
|
+
EXAMPLES::
|
|
1052
|
+
|
|
1053
|
+
sage: x = polygen(QQ)
|
|
1054
|
+
sage: K.<a> = NumberField(x^2 - 5)
|
|
1055
|
+
sage: E = EllipticCurve([20, 225, 750, 1250*a + 6250, 62500*a + 15625])
|
|
1056
|
+
sage: P = K.ideal(a)
|
|
1057
|
+
sage: E.local_minimal_model(P).ainvs()
|
|
1058
|
+
(0, 1, 0, 2*a - 34, -4*a + 66)
|
|
1059
|
+
"""
|
|
1060
|
+
if proof is None:
|
|
1061
|
+
import sage.structure.proof.proof
|
|
1062
|
+
# We use the "number_field" flag because the actual proof dependence is in PARI's number field functions.
|
|
1063
|
+
proof = sage.structure.proof.proof.get_flag(None, "number_field")
|
|
1064
|
+
|
|
1065
|
+
return self.local_data(P, proof, algorithm).minimal_model()
|
|
1066
|
+
|
|
1067
|
+
def has_good_reduction(self, P) -> bool:
|
|
1068
|
+
r"""
|
|
1069
|
+
Return ``True`` if this elliptic curve has good reduction at the prime `P`.
|
|
1070
|
+
|
|
1071
|
+
INPUT:
|
|
1072
|
+
|
|
1073
|
+
- ``P`` -- a prime ideal of the base field of ``self``, or a field
|
|
1074
|
+
element generating such an ideal
|
|
1075
|
+
|
|
1076
|
+
OUTPUT:
|
|
1077
|
+
|
|
1078
|
+
boolean; ``True`` if the curve has good reduction at `P`, else ``False``.
|
|
1079
|
+
|
|
1080
|
+
.. NOTE::
|
|
1081
|
+
|
|
1082
|
+
This requires determining a local integral minimal model;
|
|
1083
|
+
we do not just check that the discriminant of the current
|
|
1084
|
+
model has valuation zero.
|
|
1085
|
+
|
|
1086
|
+
EXAMPLES::
|
|
1087
|
+
|
|
1088
|
+
sage: E = EllipticCurve('14a1')
|
|
1089
|
+
sage: [(p, E.has_good_reduction(p)) for p in prime_range(15)]
|
|
1090
|
+
[(2, False), (3, True), (5, True), (7, False), (11, True), (13, True)]
|
|
1091
|
+
|
|
1092
|
+
sage: x = polygen(QQ)
|
|
1093
|
+
sage: K.<a> = NumberField(x^3 - 2)
|
|
1094
|
+
sage: P17a, P17b = [P for P,e in K.factor(17)]
|
|
1095
|
+
sage: E = EllipticCurve([0,0,0,0,2*a+1])
|
|
1096
|
+
sage: [(p, E.has_good_reduction(p)) for p in [P17a,P17b]]
|
|
1097
|
+
[(Fractional ideal (4*a^2 - 2*a + 1), True),
|
|
1098
|
+
(Fractional ideal (2*a + 1), False)]
|
|
1099
|
+
"""
|
|
1100
|
+
return self.local_data(P).has_good_reduction()
|
|
1101
|
+
|
|
1102
|
+
def has_bad_reduction(self, P) -> bool:
|
|
1103
|
+
r"""
|
|
1104
|
+
Return ``True`` if this elliptic curve has bad reduction at the prime `P`.
|
|
1105
|
+
|
|
1106
|
+
INPUT:
|
|
1107
|
+
|
|
1108
|
+
- ``P`` -- a prime ideal of the base field of ``self``, or a field
|
|
1109
|
+
element generating such an ideal
|
|
1110
|
+
|
|
1111
|
+
OUTPUT:
|
|
1112
|
+
|
|
1113
|
+
boolean; ``True`` if the curve has bad reduction at `P`, else ``False``.
|
|
1114
|
+
|
|
1115
|
+
.. NOTE::
|
|
1116
|
+
|
|
1117
|
+
This requires determining a local integral minimal model;
|
|
1118
|
+
we do not just check that the discriminant of the current
|
|
1119
|
+
model has valuation zero.
|
|
1120
|
+
|
|
1121
|
+
EXAMPLES::
|
|
1122
|
+
|
|
1123
|
+
sage: E = EllipticCurve('14a1')
|
|
1124
|
+
sage: [(p, E.has_bad_reduction(p)) for p in prime_range(15)]
|
|
1125
|
+
[(2, True), (3, False), (5, False), (7, True), (11, False), (13, False)]
|
|
1126
|
+
|
|
1127
|
+
sage: x = polygen(QQ)
|
|
1128
|
+
sage: K.<a> = NumberField(x^3 - 2)
|
|
1129
|
+
sage: P17a, P17b = [P for P,e in K.factor(17)]
|
|
1130
|
+
sage: E = EllipticCurve([0,0,0,0,2*a+1])
|
|
1131
|
+
sage: [(p, E.has_bad_reduction(p)) for p in [P17a,P17b]]
|
|
1132
|
+
[(Fractional ideal (4*a^2 - 2*a + 1), False),
|
|
1133
|
+
(Fractional ideal (2*a + 1), True)]
|
|
1134
|
+
"""
|
|
1135
|
+
return self.local_data(P).has_bad_reduction()
|
|
1136
|
+
|
|
1137
|
+
def has_multiplicative_reduction(self, P) -> bool:
|
|
1138
|
+
r"""
|
|
1139
|
+
Return ``True`` if this elliptic curve has (bad) multiplicative
|
|
1140
|
+
reduction at the prime `P`.
|
|
1141
|
+
|
|
1142
|
+
.. NOTE::
|
|
1143
|
+
|
|
1144
|
+
See also ``has_split_multiplicative_reduction()`` and
|
|
1145
|
+
``has_nonsplit_multiplicative_reduction()``.
|
|
1146
|
+
|
|
1147
|
+
INPUT:
|
|
1148
|
+
|
|
1149
|
+
- ``P`` -- a prime ideal of the base field of ``self``, or a field
|
|
1150
|
+
element generating such an ideal
|
|
1151
|
+
|
|
1152
|
+
OUTPUT:
|
|
1153
|
+
|
|
1154
|
+
boolean; ``True`` if the curve has multiplicative reduction at `P`,
|
|
1155
|
+
else ``False``.
|
|
1156
|
+
|
|
1157
|
+
EXAMPLES::
|
|
1158
|
+
|
|
1159
|
+
sage: E = EllipticCurve('14a1')
|
|
1160
|
+
sage: [(p, E.has_multiplicative_reduction(p)) for p in prime_range(15)]
|
|
1161
|
+
[(2, True), (3, False), (5, False), (7, True), (11, False), (13, False)]
|
|
1162
|
+
|
|
1163
|
+
sage: x = polygen(QQ)
|
|
1164
|
+
sage: K.<a> = NumberField(x^3 - 2)
|
|
1165
|
+
sage: P17a, P17b = [P for P,e in K.factor(17)]
|
|
1166
|
+
sage: E = EllipticCurve([0,0,0,0,2*a+1])
|
|
1167
|
+
sage: [(p, E.has_multiplicative_reduction(p)) for p in [P17a,P17b]]
|
|
1168
|
+
[(Fractional ideal (4*a^2 - 2*a + 1), False),
|
|
1169
|
+
(Fractional ideal (2*a + 1), False)]
|
|
1170
|
+
"""
|
|
1171
|
+
return self.local_data(P).has_multiplicative_reduction()
|
|
1172
|
+
|
|
1173
|
+
def has_split_multiplicative_reduction(self, P) -> bool:
|
|
1174
|
+
r"""
|
|
1175
|
+
Return ``True`` if this elliptic curve has (bad) split multiplicative reduction at the prime `P`.
|
|
1176
|
+
|
|
1177
|
+
INPUT:
|
|
1178
|
+
|
|
1179
|
+
- ``P`` -- a prime ideal of the base field of ``self``, or a field
|
|
1180
|
+
element generating such an ideal
|
|
1181
|
+
|
|
1182
|
+
OUTPUT:
|
|
1183
|
+
|
|
1184
|
+
boolean; ``True`` if the curve has split multiplicative reduction at
|
|
1185
|
+
`P`, else ``False``.
|
|
1186
|
+
|
|
1187
|
+
EXAMPLES::
|
|
1188
|
+
|
|
1189
|
+
sage: E = EllipticCurve('14a1')
|
|
1190
|
+
sage: [(p, E.has_split_multiplicative_reduction(p)) for p in prime_range(15)]
|
|
1191
|
+
[(2, False), (3, False), (5, False), (7, True), (11, False), (13, False)]
|
|
1192
|
+
|
|
1193
|
+
sage: x = polygen(QQ)
|
|
1194
|
+
sage: K.<a> = NumberField(x^3 - 2)
|
|
1195
|
+
sage: P17a, P17b = [P for P,e in K.factor(17)]
|
|
1196
|
+
sage: E = EllipticCurve([0,0,0,0,2*a+1])
|
|
1197
|
+
sage: [(p, E.has_split_multiplicative_reduction(p)) for p in [P17a,P17b]]
|
|
1198
|
+
[(Fractional ideal (4*a^2 - 2*a + 1), False),
|
|
1199
|
+
(Fractional ideal (2*a + 1), False)]
|
|
1200
|
+
"""
|
|
1201
|
+
return self.local_data(P).has_split_multiplicative_reduction()
|
|
1202
|
+
|
|
1203
|
+
def has_nonsplit_multiplicative_reduction(self, P) -> bool:
|
|
1204
|
+
r"""
|
|
1205
|
+
Return ``True`` if this elliptic curve has (bad) non-split
|
|
1206
|
+
multiplicative reduction at the prime `P`.
|
|
1207
|
+
|
|
1208
|
+
INPUT:
|
|
1209
|
+
|
|
1210
|
+
- ``P`` -- a prime ideal of the base field of ``self``, or a field
|
|
1211
|
+
element generating such an ideal
|
|
1212
|
+
|
|
1213
|
+
OUTPUT:
|
|
1214
|
+
|
|
1215
|
+
boolean; ``True`` if the curve has non-split multiplicative
|
|
1216
|
+
reduction at `P`, else ``False``.
|
|
1217
|
+
|
|
1218
|
+
EXAMPLES::
|
|
1219
|
+
|
|
1220
|
+
sage: E = EllipticCurve('14a1')
|
|
1221
|
+
sage: [(p, E.has_nonsplit_multiplicative_reduction(p)) for p in prime_range(15)]
|
|
1222
|
+
[(2, True), (3, False), (5, False), (7, False), (11, False), (13, False)]
|
|
1223
|
+
|
|
1224
|
+
sage: x = polygen(QQ)
|
|
1225
|
+
sage: K.<a> = NumberField(x^3 - 2)
|
|
1226
|
+
sage: P17a, P17b = [P for P,e in K.factor(17)]
|
|
1227
|
+
sage: E = EllipticCurve([0,0,0,0,2*a+1])
|
|
1228
|
+
sage: [(p, E.has_nonsplit_multiplicative_reduction(p)) for p in [P17a,P17b]]
|
|
1229
|
+
[(Fractional ideal (4*a^2 - 2*a + 1), False),
|
|
1230
|
+
(Fractional ideal (2*a + 1), False)]
|
|
1231
|
+
"""
|
|
1232
|
+
return self.local_data(P).has_nonsplit_multiplicative_reduction()
|
|
1233
|
+
|
|
1234
|
+
def has_additive_reduction(self, P) -> bool:
|
|
1235
|
+
r"""
|
|
1236
|
+
Return ``True`` if this elliptic curve has (bad) additive reduction at
|
|
1237
|
+
the prime `P`.
|
|
1238
|
+
|
|
1239
|
+
INPUT:
|
|
1240
|
+
|
|
1241
|
+
- ``P`` -- a prime ideal of the base field of ``self``, or a field
|
|
1242
|
+
element generating such an ideal
|
|
1243
|
+
|
|
1244
|
+
OUTPUT:
|
|
1245
|
+
|
|
1246
|
+
boolean; ``True`` if the curve has additive reduction at `P`, else
|
|
1247
|
+
``False``.
|
|
1248
|
+
|
|
1249
|
+
EXAMPLES::
|
|
1250
|
+
|
|
1251
|
+
sage: E = EllipticCurve('27a1')
|
|
1252
|
+
sage: [(p, E.has_additive_reduction(p)) for p in prime_range(15)]
|
|
1253
|
+
[(2, False), (3, True), (5, False), (7, False), (11, False), (13, False)]
|
|
1254
|
+
|
|
1255
|
+
sage: x = polygen(QQ)
|
|
1256
|
+
sage: K.<a> = NumberField(x^3 - 2)
|
|
1257
|
+
sage: P17a, P17b = [P for P,e in K.factor(17)]
|
|
1258
|
+
sage: E = EllipticCurve([0,0,0,0,2*a+1])
|
|
1259
|
+
sage: [(p, E.has_additive_reduction(p)) for p in [P17a,P17b]]
|
|
1260
|
+
[(Fractional ideal (4*a^2 - 2*a + 1), False),
|
|
1261
|
+
(Fractional ideal (2*a + 1), True)]
|
|
1262
|
+
"""
|
|
1263
|
+
return self.local_data(P).has_additive_reduction()
|
|
1264
|
+
|
|
1265
|
+
def tamagawa_number(self, P, proof=None):
|
|
1266
|
+
r"""
|
|
1267
|
+
Return the Tamagawa number of this elliptic curve at the prime `P`.
|
|
1268
|
+
|
|
1269
|
+
INPUT:
|
|
1270
|
+
|
|
1271
|
+
- ``P`` -- either ``None`` or a prime ideal of the base field of ``self``
|
|
1272
|
+
|
|
1273
|
+
- ``proof`` -- whether to only use provably correct methods
|
|
1274
|
+
(default controlled by global proof module). Note that the
|
|
1275
|
+
proof module is number_field, not elliptic_curves, since the
|
|
1276
|
+
functions that actually need the flag are in number fields.
|
|
1277
|
+
|
|
1278
|
+
OUTPUT: positive integer; the Tamagawa number of the curve at `P`
|
|
1279
|
+
|
|
1280
|
+
EXAMPLES::
|
|
1281
|
+
|
|
1282
|
+
sage: x = polygen(ZZ, 'x')
|
|
1283
|
+
sage: K.<a> = NumberField(x^2 - 5)
|
|
1284
|
+
sage: E = EllipticCurve([20, 225, 750, 625*a + 6875, 31250*a + 46875])
|
|
1285
|
+
sage: [E.tamagawa_number(P) for P in E.discriminant().support()]
|
|
1286
|
+
[1, 1, 1, 1]
|
|
1287
|
+
sage: K.<a> = QuadraticField(-11)
|
|
1288
|
+
sage: E = EllipticCurve('11a1').change_ring(K)
|
|
1289
|
+
sage: [E.tamagawa_number(P) for P in K(11).support()]
|
|
1290
|
+
[10]
|
|
1291
|
+
"""
|
|
1292
|
+
if proof is None:
|
|
1293
|
+
import sage.structure.proof.proof
|
|
1294
|
+
# We use the "number_field" flag because the actual proof dependence is in PARI's number field functions.
|
|
1295
|
+
proof = sage.structure.proof.proof.get_flag(None, "number_field")
|
|
1296
|
+
|
|
1297
|
+
return self.local_data(P, proof).tamagawa_number()
|
|
1298
|
+
|
|
1299
|
+
def tamagawa_numbers(self) -> list:
|
|
1300
|
+
"""
|
|
1301
|
+
Return a list of all Tamagawa numbers for all prime divisors of the
|
|
1302
|
+
conductor (in order).
|
|
1303
|
+
|
|
1304
|
+
EXAMPLES::
|
|
1305
|
+
|
|
1306
|
+
sage: e = EllipticCurve('30a1')
|
|
1307
|
+
sage: e.tamagawa_numbers()
|
|
1308
|
+
[2, 3, 1]
|
|
1309
|
+
sage: vector(e.tamagawa_numbers())
|
|
1310
|
+
(2, 3, 1)
|
|
1311
|
+
sage: x = polygen(QQ)
|
|
1312
|
+
sage: K.<a> = NumberField(x^2 + 3)
|
|
1313
|
+
sage: eK = e.base_extend(K)
|
|
1314
|
+
sage: eK.tamagawa_numbers()
|
|
1315
|
+
[4, 6, 1]
|
|
1316
|
+
"""
|
|
1317
|
+
return [self.tamagawa_number(p)
|
|
1318
|
+
for p in self.conductor().prime_factors()]
|
|
1319
|
+
|
|
1320
|
+
def tamagawa_exponent(self, P, proof=None):
|
|
1321
|
+
r"""
|
|
1322
|
+
Return the Tamagawa index of this elliptic curve at the prime `P`.
|
|
1323
|
+
|
|
1324
|
+
INPUT:
|
|
1325
|
+
|
|
1326
|
+
- ``P`` -- either ``None`` or a prime ideal of the base field of ``self``
|
|
1327
|
+
|
|
1328
|
+
- ``proof`` -- whether to only use provably correct methods
|
|
1329
|
+
(default controlled by global proof module). Note that the
|
|
1330
|
+
proof module is number_field, not elliptic_curves, since the
|
|
1331
|
+
functions that actually need the flag are in number fields.
|
|
1332
|
+
|
|
1333
|
+
OUTPUT: positive integer; the Tamagawa index of the curve at P
|
|
1334
|
+
|
|
1335
|
+
EXAMPLES::
|
|
1336
|
+
|
|
1337
|
+
sage: x = polygen(QQ)
|
|
1338
|
+
sage: K.<a> = NumberField(x^2 - 5)
|
|
1339
|
+
sage: E = EllipticCurve([20, 225, 750, 625*a + 6875, 31250*a + 46875])
|
|
1340
|
+
sage: [E.tamagawa_exponent(P) for P in E.discriminant().support()]
|
|
1341
|
+
[1, 1, 1, 1]
|
|
1342
|
+
sage: K.<a> = QuadraticField(-11)
|
|
1343
|
+
sage: E = EllipticCurve('11a1').change_ring(K)
|
|
1344
|
+
sage: [E.tamagawa_exponent(P) for P in K(11).support()]
|
|
1345
|
+
[10]
|
|
1346
|
+
"""
|
|
1347
|
+
if proof is None:
|
|
1348
|
+
import sage.structure.proof.proof
|
|
1349
|
+
# We use the "number_field" flag because the actual proof dependence is in PARI's number field functions.
|
|
1350
|
+
proof = sage.structure.proof.proof.get_flag(None, "number_field")
|
|
1351
|
+
|
|
1352
|
+
return self.local_data(P, proof).tamagawa_exponent()
|
|
1353
|
+
|
|
1354
|
+
def tamagawa_product(self):
|
|
1355
|
+
r"""Return the product of the Tamagawa numbers `c_v` where `v` runs
|
|
1356
|
+
over all prime ideals of `K`.
|
|
1357
|
+
|
|
1358
|
+
.. NOTE::
|
|
1359
|
+
|
|
1360
|
+
See also tamagawa_product_bsd(), which includes an
|
|
1361
|
+
additional factor when the model is not globally minimal,
|
|
1362
|
+
as required by the BSD formula.
|
|
1363
|
+
|
|
1364
|
+
OUTPUT: a positive integer
|
|
1365
|
+
|
|
1366
|
+
EXAMPLES::
|
|
1367
|
+
|
|
1368
|
+
sage: x = polygen(QQ)
|
|
1369
|
+
sage: K.<i> = NumberField(x^2 + 1)
|
|
1370
|
+
sage: E = EllipticCurve([0, 2+i])
|
|
1371
|
+
sage: E.tamagawa_product()
|
|
1372
|
+
1
|
|
1373
|
+
|
|
1374
|
+
sage: E = EllipticCurve([(2*i+1)^2, i*(2*i+1)^7])
|
|
1375
|
+
sage: E.tamagawa_product()
|
|
1376
|
+
4
|
|
1377
|
+
|
|
1378
|
+
An example over `\QQ`::
|
|
1379
|
+
|
|
1380
|
+
sage: E = EllipticCurve('30a')
|
|
1381
|
+
sage: E.tamagawa_product()
|
|
1382
|
+
6
|
|
1383
|
+
|
|
1384
|
+
An example with everywhere good reduction, where the product
|
|
1385
|
+
is empty::
|
|
1386
|
+
|
|
1387
|
+
sage: x = polygen(QQ)
|
|
1388
|
+
sage: K.<a> = NumberField(x^2 - 38)
|
|
1389
|
+
sage: E = EllipticCurve( [a, -a + 1, a + 1, -5*a + 15, -5*a + 21])
|
|
1390
|
+
sage: E.tamagawa_numbers()
|
|
1391
|
+
[]
|
|
1392
|
+
sage: E.tamagawa_product()
|
|
1393
|
+
1
|
|
1394
|
+
"""
|
|
1395
|
+
return prod([ld.tamagawa_number() for ld in self.local_data()], Integer(1))
|
|
1396
|
+
|
|
1397
|
+
def tamagawa_product_bsd(self):
|
|
1398
|
+
r"""Given an elliptic curve `E` over a number field `K`, this function
|
|
1399
|
+
returns the integer `C(E/K)` that appears in the Birch and
|
|
1400
|
+
Swinnerton-Dyer conjecture accounting for the local
|
|
1401
|
+
information at finite places. If the model is a global minimal
|
|
1402
|
+
model then `C(E/K)` is simply the product of the Tamagawa
|
|
1403
|
+
numbers `c_v` where `v` runs over all prime ideals of
|
|
1404
|
+
`K`. Otherwise, if the model has to be changed at a place `v`
|
|
1405
|
+
a correction factor appears. The definition is such that
|
|
1406
|
+
`C(E/K)` times the periods at the infinite places is invariant
|
|
1407
|
+
under change of the Weierstrass model. See [Tate1966]_ and
|
|
1408
|
+
[DD2010]_ for details.
|
|
1409
|
+
|
|
1410
|
+
.. NOTE::
|
|
1411
|
+
|
|
1412
|
+
This definition differs from the definition of
|
|
1413
|
+
``tamagawa_product`` for curves defined over `\QQ`. Over
|
|
1414
|
+
the rational number it is always defined to be the product
|
|
1415
|
+
of the Tamagawa numbers, so the two definitions only agree
|
|
1416
|
+
when the model is global minimal.
|
|
1417
|
+
|
|
1418
|
+
OUTPUT: a rational number
|
|
1419
|
+
|
|
1420
|
+
EXAMPLES::
|
|
1421
|
+
|
|
1422
|
+
sage: x = polygen(QQ)
|
|
1423
|
+
sage: K.<i> = NumberField(x^2 + 1)
|
|
1424
|
+
sage: E = EllipticCurve([0, 2+i])
|
|
1425
|
+
sage: E.tamagawa_product_bsd()
|
|
1426
|
+
1
|
|
1427
|
+
|
|
1428
|
+
sage: E = EllipticCurve([(2*i+1)^2, i*(2*i+1)^7])
|
|
1429
|
+
sage: E.tamagawa_product_bsd()
|
|
1430
|
+
4
|
|
1431
|
+
|
|
1432
|
+
An example where the Neron model changes over K::
|
|
1433
|
+
|
|
1434
|
+
sage: K.<t> = NumberField(x^5 - 10*x^3 + 5*x^2 + 10*x + 1)
|
|
1435
|
+
sage: E = EllipticCurve(K, '75a1')
|
|
1436
|
+
sage: E.tamagawa_product_bsd()
|
|
1437
|
+
5
|
|
1438
|
+
sage: da = E.local_data()
|
|
1439
|
+
sage: [dav.tamagawa_number() for dav in da]
|
|
1440
|
+
[1, 1]
|
|
1441
|
+
|
|
1442
|
+
An example over `\QQ` (:issue:`9413`)::
|
|
1443
|
+
|
|
1444
|
+
sage: E = EllipticCurve('30a')
|
|
1445
|
+
sage: E.tamagawa_product_bsd()
|
|
1446
|
+
6
|
|
1447
|
+
"""
|
|
1448
|
+
pr = QQ(1)
|
|
1449
|
+
for v in self.local_data():
|
|
1450
|
+
pp = v.prime()
|
|
1451
|
+
cv = v.tamagawa_number()
|
|
1452
|
+
# uu is the quotient of the Neron differential at pp divided by
|
|
1453
|
+
# the differential associated to this particular model of E
|
|
1454
|
+
uu = self.isomorphism_to(v.minimal_model()).u
|
|
1455
|
+
if self.base_field().absolute_degree() == 1:
|
|
1456
|
+
p = pp.gens_reduced()[0]
|
|
1457
|
+
f = 1
|
|
1458
|
+
v = ZZ(uu).valuation(p)
|
|
1459
|
+
else:
|
|
1460
|
+
p = pp.smallest_integer()
|
|
1461
|
+
f = pp.residue_class_degree()
|
|
1462
|
+
v = uu.valuation(pp)
|
|
1463
|
+
uu_abs_val = p**(f*v)
|
|
1464
|
+
pr *= cv * uu_abs_val
|
|
1465
|
+
return pr
|
|
1466
|
+
|
|
1467
|
+
def kodaira_symbol(self, P, proof=None):
|
|
1468
|
+
r"""
|
|
1469
|
+
Return the Kodaira Symbol of this elliptic curve at the prime `P`.
|
|
1470
|
+
|
|
1471
|
+
INPUT:
|
|
1472
|
+
|
|
1473
|
+
- ``P`` -- either ``None`` or a prime ideal of the base field of ``self``
|
|
1474
|
+
|
|
1475
|
+
- ``proof`` -- whether to only use provably correct methods
|
|
1476
|
+
(default controlled by global proof module). Note that the
|
|
1477
|
+
proof module is number_field, not elliptic_curves, since the
|
|
1478
|
+
functions that actually need the flag are in number fields.
|
|
1479
|
+
|
|
1480
|
+
OUTPUT: the Kodaira Symbol of the curve at ``P``, represented as a string
|
|
1481
|
+
|
|
1482
|
+
EXAMPLES::
|
|
1483
|
+
|
|
1484
|
+
sage: x = polygen(QQ)
|
|
1485
|
+
sage: K.<a> = NumberField(x^2 - 5)
|
|
1486
|
+
sage: E = EllipticCurve([20, 225, 750, 625*a + 6875, 31250*a + 46875])
|
|
1487
|
+
sage: bad_primes = E.discriminant().support(); bad_primes
|
|
1488
|
+
[Fractional ideal (-a),
|
|
1489
|
+
Fractional ideal (-7/2*a + 81/2),
|
|
1490
|
+
Fractional ideal (-a - 52),
|
|
1491
|
+
Fractional ideal (2)]
|
|
1492
|
+
sage: [E.kodaira_symbol(P) for P in bad_primes]
|
|
1493
|
+
[I0, I1, I1, II]
|
|
1494
|
+
sage: K.<a> = QuadraticField(-11)
|
|
1495
|
+
sage: E = EllipticCurve('11a1').change_ring(K)
|
|
1496
|
+
sage: [E.kodaira_symbol(P) for P in K(11).support()]
|
|
1497
|
+
[I10]
|
|
1498
|
+
"""
|
|
1499
|
+
if proof is None:
|
|
1500
|
+
import sage.structure.proof.proof
|
|
1501
|
+
# We use the "number_field" flag because the actual proof dependence is in PARI's number field functions.
|
|
1502
|
+
proof = sage.structure.proof.proof.get_flag(None, "number_field")
|
|
1503
|
+
|
|
1504
|
+
return self.local_data(P, proof).kodaira_symbol()
|
|
1505
|
+
|
|
1506
|
+
def conductor(self):
|
|
1507
|
+
r"""
|
|
1508
|
+
Return the conductor of this elliptic curve as a fractional
|
|
1509
|
+
ideal of the base field.
|
|
1510
|
+
|
|
1511
|
+
OUTPUT: fractional ideal; the conductor of the curve
|
|
1512
|
+
|
|
1513
|
+
EXAMPLES::
|
|
1514
|
+
|
|
1515
|
+
sage: x = polygen(QQ)
|
|
1516
|
+
sage: K.<i> = NumberField(x^2 + 1)
|
|
1517
|
+
sage: EllipticCurve([i, i - 1, i + 1, 24*i + 15, 14*i + 35]).conductor()
|
|
1518
|
+
Fractional ideal (3*i + 21)
|
|
1519
|
+
sage: K.<a> = NumberField(x^2 - x + 3)
|
|
1520
|
+
sage: EllipticCurve([1 + a, -1 + a, 1 + a, -11 + a, 5 - 9*a]).conductor()
|
|
1521
|
+
Fractional ideal (6*a)
|
|
1522
|
+
|
|
1523
|
+
A not so well known curve with everywhere good reduction::
|
|
1524
|
+
|
|
1525
|
+
sage: x = polygen(QQ)
|
|
1526
|
+
sage: K.<a> = NumberField(x^2 - 38)
|
|
1527
|
+
sage: E = EllipticCurve([0,0,0, 21796814856932765568243810*a - 134364590724198567128296995, 121774567239345229314269094644186997594*a - 750668847495706904791115375024037711300])
|
|
1528
|
+
sage: E.conductor()
|
|
1529
|
+
Fractional ideal (1)
|
|
1530
|
+
|
|
1531
|
+
An example which used to fail (see :issue:`5307`)::
|
|
1532
|
+
|
|
1533
|
+
sage: x = polygen(QQ)
|
|
1534
|
+
sage: K.<w> = NumberField(x^2 + x + 6)
|
|
1535
|
+
sage: E = EllipticCurve([w, -1, 0, -w-6, 0])
|
|
1536
|
+
sage: E.conductor()
|
|
1537
|
+
Fractional ideal (86304, w + 5898)
|
|
1538
|
+
|
|
1539
|
+
An example raised in :issue:`11346`::
|
|
1540
|
+
|
|
1541
|
+
sage: x = polygen(QQ)
|
|
1542
|
+
sage: K.<g> = NumberField(x^2 - x - 1)
|
|
1543
|
+
sage: E1 = EllipticCurve(K, [0, 0, 0, -1/48, -161/864])
|
|
1544
|
+
sage: [(p.smallest_integer(), e) for p,e in E1.conductor().factor()]
|
|
1545
|
+
[(2, 4), (3, 1), (5, 1)]
|
|
1546
|
+
"""
|
|
1547
|
+
try:
|
|
1548
|
+
return self._conductor
|
|
1549
|
+
except AttributeError:
|
|
1550
|
+
pass
|
|
1551
|
+
|
|
1552
|
+
# Note: for number fields other than QQ we could initialize
|
|
1553
|
+
# N=K.ideal(1) or N=OK.ideal(1), which are the same, but for
|
|
1554
|
+
# K == QQ it has to be ZZ.ideal(1).
|
|
1555
|
+
K = self.base_field()
|
|
1556
|
+
N = ZZ.ideal(1) if K is QQ else K.fractional_ideal(1)
|
|
1557
|
+
self._conductor = prod([d.prime()**d.conductor_valuation()
|
|
1558
|
+
for d in self.local_data()],
|
|
1559
|
+
N)
|
|
1560
|
+
return self._conductor
|
|
1561
|
+
|
|
1562
|
+
def minimal_discriminant_ideal(self):
|
|
1563
|
+
r"""
|
|
1564
|
+
Return the minimal discriminant ideal of this elliptic curve.
|
|
1565
|
+
|
|
1566
|
+
OUTPUT:
|
|
1567
|
+
|
|
1568
|
+
The integral ideal `D` whose valuation at every prime `P` is
|
|
1569
|
+
that of the local minimal model for `E` at `P`. If `E` has a
|
|
1570
|
+
global minimal model, this will be the principal ideal
|
|
1571
|
+
generated by the discriminant of any such model, but otherwise
|
|
1572
|
+
it can be a proper divisor of the discriminant of any model.
|
|
1573
|
+
|
|
1574
|
+
EXAMPLES::
|
|
1575
|
+
|
|
1576
|
+
sage: x = polygen(QQ)
|
|
1577
|
+
sage: K.<a> = NumberField(x^2 - x - 57)
|
|
1578
|
+
sage: K.class_number()
|
|
1579
|
+
3
|
|
1580
|
+
sage: E = EllipticCurve([a, -a, a, -5692-820*a, -259213-36720*a])
|
|
1581
|
+
sage: K.ideal(E.discriminant())
|
|
1582
|
+
Fractional ideal (90118662980*a + 636812084644)
|
|
1583
|
+
sage: K.ideal(E.discriminant()).factor()
|
|
1584
|
+
(Fractional ideal (2))^2 * (Fractional ideal (3, a + 2))^12
|
|
1585
|
+
|
|
1586
|
+
Here the minimal discriminant ideal is principal but there is
|
|
1587
|
+
no global minimal model since the quotient is the 12th power
|
|
1588
|
+
of a non-principal ideal::
|
|
1589
|
+
|
|
1590
|
+
sage: E.minimal_discriminant_ideal()
|
|
1591
|
+
Fractional ideal (4)
|
|
1592
|
+
sage: E.minimal_discriminant_ideal().factor()
|
|
1593
|
+
(Fractional ideal (2))^2
|
|
1594
|
+
|
|
1595
|
+
If (and only if) the curve has everywhere good reduction the
|
|
1596
|
+
result is the unit ideal::
|
|
1597
|
+
|
|
1598
|
+
sage: x = polygen(QQ)
|
|
1599
|
+
sage: K.<a> = NumberField(x^2 - 26)
|
|
1600
|
+
sage: E = EllipticCurve([a, a-1, a+1, 4*a+10, 2*a+6])
|
|
1601
|
+
sage: E.conductor()
|
|
1602
|
+
Fractional ideal (1)
|
|
1603
|
+
sage: E.discriminant()
|
|
1604
|
+
-104030*a - 530451
|
|
1605
|
+
sage: E.minimal_discriminant_ideal()
|
|
1606
|
+
Fractional ideal (1)
|
|
1607
|
+
|
|
1608
|
+
Over `\QQ`, the result returned is an ideal of `\ZZ` rather
|
|
1609
|
+
than a fractional ideal of `\QQ`::
|
|
1610
|
+
|
|
1611
|
+
sage: E = EllipticCurve([1,2,3,4,5])
|
|
1612
|
+
sage: E.minimal_discriminant_ideal()
|
|
1613
|
+
Principal ideal (10351) of Integer Ring
|
|
1614
|
+
"""
|
|
1615
|
+
dat = self.local_data()
|
|
1616
|
+
# we treat separately the case where there are no bad primes,
|
|
1617
|
+
# which cannot happen over QQ, since ideals of QQ behave
|
|
1618
|
+
# differently to (fractional) ideals of other number fields.
|
|
1619
|
+
if not dat:
|
|
1620
|
+
return self.base_field().ideal(1)
|
|
1621
|
+
return prod([d.prime()**d.discriminant_valuation() for d in dat])
|
|
1622
|
+
|
|
1623
|
+
def non_minimal_primes(self):
|
|
1624
|
+
r"""
|
|
1625
|
+
Return a list of primes at which this elliptic curve is not minimal.
|
|
1626
|
+
|
|
1627
|
+
OUTPUT:
|
|
1628
|
+
|
|
1629
|
+
A list of prime ideals (or prime numbers when the base field
|
|
1630
|
+
is `\QQ`, empty if this is a global minimal model.
|
|
1631
|
+
|
|
1632
|
+
EXAMPLES::
|
|
1633
|
+
|
|
1634
|
+
sage: x = polygen(QQ)
|
|
1635
|
+
sage: K.<a> = NumberField(x^2 - 10)
|
|
1636
|
+
sage: E = EllipticCurve([0, 0, 0, -22500, 750000*a])
|
|
1637
|
+
sage: E.non_minimal_primes()
|
|
1638
|
+
[Fractional ideal (2, a), Fractional ideal (5, a)]
|
|
1639
|
+
sage: K.ideal(E.discriminant()).factor()
|
|
1640
|
+
(Fractional ideal (2, a))^24 * (Fractional ideal (3, a + 1))^5 * (Fractional ideal (3, a + 2))^5 * (Fractional ideal (5, a))^24 * (Fractional ideal (7))
|
|
1641
|
+
sage: E.minimal_discriminant_ideal().factor()
|
|
1642
|
+
(Fractional ideal (2, a))^12 * (Fractional ideal (3, a + 1))^5 * (Fractional ideal (3, a + 2))^5 * (Fractional ideal (7))
|
|
1643
|
+
|
|
1644
|
+
Over `\QQ`, the primes returned are integers, not ideals::
|
|
1645
|
+
|
|
1646
|
+
sage: E = EllipticCurve([0, 0, 0, -3024, 46224])
|
|
1647
|
+
sage: E.non_minimal_primes()
|
|
1648
|
+
[2, 3]
|
|
1649
|
+
sage: Emin = E.global_minimal_model()
|
|
1650
|
+
sage: Emin.non_minimal_primes()
|
|
1651
|
+
[]
|
|
1652
|
+
|
|
1653
|
+
If the model is not globally integral, a :exc:`ValueError` is
|
|
1654
|
+
raised::
|
|
1655
|
+
|
|
1656
|
+
sage: E = EllipticCurve([0, 0, 0, 1/2, 1/3])
|
|
1657
|
+
sage: E.non_minimal_primes()
|
|
1658
|
+
Traceback (most recent call last):
|
|
1659
|
+
...
|
|
1660
|
+
ValueError: non_minimal_primes only defined for integral models
|
|
1661
|
+
"""
|
|
1662
|
+
if not self.is_global_integral_model():
|
|
1663
|
+
raise ValueError("non_minimal_primes only defined for integral models")
|
|
1664
|
+
dat = self.local_data()
|
|
1665
|
+
D = self.discriminant()
|
|
1666
|
+
primes = [d.prime() for d in dat]
|
|
1667
|
+
if self.base_field() is QQ:
|
|
1668
|
+
primes = [P.gen() for P in primes]
|
|
1669
|
+
vals = [d.discriminant_valuation() for d in dat]
|
|
1670
|
+
return [P for P,v in zip(primes,vals) if D.valuation(P) > v]
|
|
1671
|
+
|
|
1672
|
+
def is_global_minimal_model(self):
|
|
1673
|
+
r"""
|
|
1674
|
+
Return whether this elliptic curve is a global minimal model.
|
|
1675
|
+
|
|
1676
|
+
OUTPUT:
|
|
1677
|
+
|
|
1678
|
+
Boolean, False if E is not integral, or if E is non-minimal at
|
|
1679
|
+
some prime, else True.
|
|
1680
|
+
|
|
1681
|
+
EXAMPLES::
|
|
1682
|
+
|
|
1683
|
+
sage: x = polygen(QQ)
|
|
1684
|
+
sage: K.<a> = NumberField(x^2 - 10)
|
|
1685
|
+
sage: E = EllipticCurve([0, 0, 0, -22500, 750000*a])
|
|
1686
|
+
sage: E.is_global_minimal_model()
|
|
1687
|
+
False
|
|
1688
|
+
sage: E.non_minimal_primes()
|
|
1689
|
+
[Fractional ideal (2, a), Fractional ideal (5, a)]
|
|
1690
|
+
|
|
1691
|
+
sage: E = EllipticCurve([0, 0, 0, -3024, 46224])
|
|
1692
|
+
sage: E.is_global_minimal_model()
|
|
1693
|
+
False
|
|
1694
|
+
sage: E.non_minimal_primes()
|
|
1695
|
+
[2, 3]
|
|
1696
|
+
sage: Emin = E.global_minimal_model()
|
|
1697
|
+
sage: Emin.is_global_minimal_model()
|
|
1698
|
+
True
|
|
1699
|
+
|
|
1700
|
+
A necessary condition to be a global minimal model is that the
|
|
1701
|
+
model must be globally integral::
|
|
1702
|
+
|
|
1703
|
+
sage: E = EllipticCurve([0,0,0,1/2,1/3])
|
|
1704
|
+
sage: E.is_global_minimal_model()
|
|
1705
|
+
False
|
|
1706
|
+
sage: Emin.is_global_minimal_model()
|
|
1707
|
+
True
|
|
1708
|
+
sage: Emin.ainvs()
|
|
1709
|
+
(0, 1, 1, -2, 0)
|
|
1710
|
+
"""
|
|
1711
|
+
if not self.is_global_integral_model():
|
|
1712
|
+
return False
|
|
1713
|
+
return self.non_minimal_primes() == []
|
|
1714
|
+
|
|
1715
|
+
def global_minimality_class(self):
|
|
1716
|
+
r"""
|
|
1717
|
+
Return the obstruction to this curve having a global minimal model.
|
|
1718
|
+
|
|
1719
|
+
OUTPUT:
|
|
1720
|
+
|
|
1721
|
+
An ideal class of the base number field, which is trivial if
|
|
1722
|
+
and only if the elliptic curve has a global minimal model, and
|
|
1723
|
+
which can be used to find global and semi-global minimal
|
|
1724
|
+
models.
|
|
1725
|
+
|
|
1726
|
+
EXAMPLES:
|
|
1727
|
+
|
|
1728
|
+
A curve defined over a field of class number 2 with no global
|
|
1729
|
+
minimal model was a nontrivial minimality class::
|
|
1730
|
+
|
|
1731
|
+
sage: x = polygen(QQ)
|
|
1732
|
+
sage: K.<a> = NumberField(x^2 - 10)
|
|
1733
|
+
sage: K.class_number()
|
|
1734
|
+
2
|
|
1735
|
+
sage: E = EllipticCurve([0, 0, 0, -22500, 750000*a])
|
|
1736
|
+
sage: E.global_minimality_class()
|
|
1737
|
+
Fractional ideal class (10, 5*a)
|
|
1738
|
+
sage: E.global_minimality_class().order()
|
|
1739
|
+
2
|
|
1740
|
+
|
|
1741
|
+
Over the same field, a curve defined by a non-minimal model
|
|
1742
|
+
has trivial class, showing that a global minimal model does
|
|
1743
|
+
exist::
|
|
1744
|
+
|
|
1745
|
+
sage: K.<a> = NumberField(x^2 - 10)
|
|
1746
|
+
sage: E = EllipticCurve([0, 0, 0, 4536*a+14148, -163728*a-474336])
|
|
1747
|
+
sage: E.is_global_minimal_model()
|
|
1748
|
+
False
|
|
1749
|
+
sage: E.global_minimality_class()
|
|
1750
|
+
Trivial principal fractional ideal class
|
|
1751
|
+
|
|
1752
|
+
Over a field of class number 1 the result is always the
|
|
1753
|
+
trivial class::
|
|
1754
|
+
|
|
1755
|
+
sage: K.<a> = NumberField(x^2 - 5)
|
|
1756
|
+
sage: E = EllipticCurve([0, 0, 0, K(16), K(64)])
|
|
1757
|
+
sage: E.global_minimality_class()
|
|
1758
|
+
Trivial principal fractional ideal class
|
|
1759
|
+
|
|
1760
|
+
sage: E = EllipticCurve([0, 0, 0, 16, 64])
|
|
1761
|
+
sage: E.base_field()
|
|
1762
|
+
Rational Field
|
|
1763
|
+
sage: E.global_minimality_class()
|
|
1764
|
+
1
|
|
1765
|
+
"""
|
|
1766
|
+
K = self.base_field()
|
|
1767
|
+
Cl = K.class_group()
|
|
1768
|
+
if K.class_number() == 1:
|
|
1769
|
+
return Cl(1)
|
|
1770
|
+
D = self.discriminant()
|
|
1771
|
+
dat = self.local_data()
|
|
1772
|
+
primes = [d.prime() for d in dat]
|
|
1773
|
+
vals = [d.discriminant_valuation() for d in dat]
|
|
1774
|
+
I = prod([P**((D.valuation(P)-v)//12) for P,v in zip(primes,vals)],
|
|
1775
|
+
K.ideal(1))
|
|
1776
|
+
return Cl(I)
|
|
1777
|
+
|
|
1778
|
+
def has_global_minimal_model(self) -> bool:
|
|
1779
|
+
r"""
|
|
1780
|
+
Return whether this elliptic curve has a global minimal model.
|
|
1781
|
+
|
|
1782
|
+
OUTPUT:
|
|
1783
|
+
|
|
1784
|
+
boolean; ``True`` iff a global minimal model exists, i.e. an
|
|
1785
|
+
integral model which is minimal at every prime.
|
|
1786
|
+
|
|
1787
|
+
EXAMPLES::
|
|
1788
|
+
|
|
1789
|
+
sage: x = polygen(QQ)
|
|
1790
|
+
sage: K.<a> = NumberField(x^2 - 10)
|
|
1791
|
+
sage: E = EllipticCurve([0, 0, 0, 4536*a+14148, -163728*a-474336])
|
|
1792
|
+
sage: E.is_global_minimal_model()
|
|
1793
|
+
False
|
|
1794
|
+
sage: E.has_global_minimal_model()
|
|
1795
|
+
True
|
|
1796
|
+
"""
|
|
1797
|
+
return self.global_minimality_class().is_one()
|
|
1798
|
+
|
|
1799
|
+
def global_minimal_model(self, proof=None, semi_global=False):
|
|
1800
|
+
r"""
|
|
1801
|
+
Return a model of ``self`` that is integral, and minimal.
|
|
1802
|
+
|
|
1803
|
+
.. NOTE::
|
|
1804
|
+
|
|
1805
|
+
Over fields of class number greater than 1, a global
|
|
1806
|
+
minimal model may not exist. If it does not, set the
|
|
1807
|
+
parameter ``semi_global`` to ``True`` to obtain a model
|
|
1808
|
+
minimal at all but one prime.
|
|
1809
|
+
|
|
1810
|
+
INPUT:
|
|
1811
|
+
|
|
1812
|
+
- ``proof`` -- whether to only use provably correct methods
|
|
1813
|
+
(default controlled by global proof module). Note that the
|
|
1814
|
+
proof module is number_field, not elliptic_curves, since the
|
|
1815
|
+
functions that actually need the flag are in number fields.
|
|
1816
|
+
|
|
1817
|
+
- ``semi_global``-- boolean (default: ``False``); if there is no
|
|
1818
|
+
global minimal mode, return a semi-global minimal model
|
|
1819
|
+
(minimal at all but one prime) instead, if True; raise an
|
|
1820
|
+
error if False. No effect if a global minimal model exists.
|
|
1821
|
+
|
|
1822
|
+
OUTPUT:
|
|
1823
|
+
|
|
1824
|
+
A global integral and minimal model, or an integral model
|
|
1825
|
+
minimal at all but one prime of there is no global minimal
|
|
1826
|
+
model and the flag ``semi_global`` is True.
|
|
1827
|
+
|
|
1828
|
+
EXAMPLES::
|
|
1829
|
+
|
|
1830
|
+
sage: x = polygen(QQ)
|
|
1831
|
+
sage: K.<a> = NumberField(x^2 - 38)
|
|
1832
|
+
sage: E = EllipticCurve([0,0,0, 21796814856932765568243810*a - 134364590724198567128296995, 121774567239345229314269094644186997594*a - 750668847495706904791115375024037711300])
|
|
1833
|
+
sage: E2 = E.global_minimal_model()
|
|
1834
|
+
sage: E2
|
|
1835
|
+
Elliptic Curve defined by
|
|
1836
|
+
y^2 + a*x*y + (a+1)*y = x^3 + (a+1)*x^2 + (4*a+15)*x + (4*a+21)
|
|
1837
|
+
over Number Field in a with defining polynomial x^2 - 38
|
|
1838
|
+
sage: E2.local_data()
|
|
1839
|
+
[]
|
|
1840
|
+
|
|
1841
|
+
See :issue:`11347`::
|
|
1842
|
+
|
|
1843
|
+
sage: x = polygen(QQ)
|
|
1844
|
+
sage: K.<g> = NumberField(x^2 - x - 1)
|
|
1845
|
+
sage: E = EllipticCurve(K, [0, 0, 0, -1/48, 161/864])
|
|
1846
|
+
sage: E2 = E.integral_model().global_minimal_model(); E2
|
|
1847
|
+
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2
|
|
1848
|
+
over Number Field in g with defining polynomial x^2 - x - 1
|
|
1849
|
+
sage: [(p.norm(), e) for p, e in E2.conductor().factor()]
|
|
1850
|
+
[(9, 1), (5, 1)]
|
|
1851
|
+
sage: [(p.norm(), e) for p, e in E2.discriminant().factor()]
|
|
1852
|
+
[(-5, 2), (9, 1)]
|
|
1853
|
+
|
|
1854
|
+
See :issue:`14472`, this used not to work over a relative extension::
|
|
1855
|
+
|
|
1856
|
+
sage: x = polygen(QQ)
|
|
1857
|
+
sage: K1.<w> = NumberField(x^2 + x + 1)
|
|
1858
|
+
sage: m = polygen(K1)
|
|
1859
|
+
sage: K2.<v> = K1.extension(m^2 - w + 1)
|
|
1860
|
+
sage: E = EllipticCurve([0*v, -432])
|
|
1861
|
+
sage: E.global_minimal_model()
|
|
1862
|
+
Elliptic Curve defined by y^2 + y = x^3
|
|
1863
|
+
over Number Field in v with defining polynomial x^2 - w + 1 over its base field
|
|
1864
|
+
|
|
1865
|
+
See :issue:`18662`: for fields of class number greater than 1,
|
|
1866
|
+
even when global minimal models did exist, their computation
|
|
1867
|
+
was not implemented. Now it is::
|
|
1868
|
+
|
|
1869
|
+
sage: x = polygen(QQ)
|
|
1870
|
+
sage: K.<a> = NumberField(x^2 - 10)
|
|
1871
|
+
sage: K.class_number()
|
|
1872
|
+
2
|
|
1873
|
+
sage: E = EllipticCurve([0, 0, 0, -186408*a - 589491, 78055704*a + 246833838])
|
|
1874
|
+
sage: E.discriminant().norm()
|
|
1875
|
+
16375845905239507992576
|
|
1876
|
+
sage: E.discriminant().norm().factor()
|
|
1877
|
+
2^31 * 3^27
|
|
1878
|
+
sage: E.has_global_minimal_model()
|
|
1879
|
+
True
|
|
1880
|
+
sage: Emin = E.global_minimal_model(); Emin
|
|
1881
|
+
Elliptic Curve defined by
|
|
1882
|
+
y^2 + (a+1)*x*y + (a+1)*y = x^3 + (-a)*x^2 + (a-12)*x + (-2*a+2)
|
|
1883
|
+
over Number Field in a with defining polynomial x^2 - 10
|
|
1884
|
+
sage: Emin.discriminant().norm()
|
|
1885
|
+
3456
|
|
1886
|
+
sage: Emin.discriminant().norm().factor()
|
|
1887
|
+
2^7 * 3^3
|
|
1888
|
+
|
|
1889
|
+
If there is no global minimal model, this method will raise an
|
|
1890
|
+
error unless you set the parameter ``semi_global`` to ``True``::
|
|
1891
|
+
|
|
1892
|
+
sage: K.<a> = NumberField(x^2 - 10)
|
|
1893
|
+
sage: K.class_number()
|
|
1894
|
+
2
|
|
1895
|
+
sage: E = EllipticCurve([a, a, 0, 3*a+8, 4*a+3])
|
|
1896
|
+
sage: E.has_global_minimal_model()
|
|
1897
|
+
False
|
|
1898
|
+
sage: E.global_minimal_model()
|
|
1899
|
+
Traceback (most recent call last):
|
|
1900
|
+
...
|
|
1901
|
+
ValueError: Elliptic Curve defined by
|
|
1902
|
+
y^2 + a*x*y = x^3 + a*x^2 + (3*a+8)*x + (4*a+3) over Number Field
|
|
1903
|
+
in a with defining polynomial x^2 - 10 has no global minimal model!
|
|
1904
|
+
For a semi-global minimal model use semi_global=True
|
|
1905
|
+
sage: E.global_minimal_model(semi_global=True) # needs sage.symbolic
|
|
1906
|
+
Elliptic Curve defined by
|
|
1907
|
+
y^2 + a*x*y = x^3 + a*x^2 + (3*a+8)*x + (4*a+3) over Number Field in a
|
|
1908
|
+
with defining polynomial x^2 - 10
|
|
1909
|
+
|
|
1910
|
+
An example of a curve with everywhere good reduction but which
|
|
1911
|
+
has no model with unit discriminant::
|
|
1912
|
+
|
|
1913
|
+
sage: # needs sage.symbolic
|
|
1914
|
+
sage: x = polygen(QQ)
|
|
1915
|
+
sage: K.<a> = NumberField(x^2 - x - 16)
|
|
1916
|
+
sage: K.class_number()
|
|
1917
|
+
2
|
|
1918
|
+
sage: E = EllipticCurve([0,0,0,-15221331*a - 53748576, -79617688290*a - 281140318368])
|
|
1919
|
+
sage: Emin = E.global_minimal_model(semi_global=True)
|
|
1920
|
+
sage: Emin.ainvs()
|
|
1921
|
+
(a, a - 1, a, 605*a - 2728, 15887*a - 71972)
|
|
1922
|
+
sage: Emin.discriminant()
|
|
1923
|
+
-17*a - 16
|
|
1924
|
+
sage: Emin.discriminant().norm()
|
|
1925
|
+
-4096
|
|
1926
|
+
sage: Emin.minimal_discriminant_ideal()
|
|
1927
|
+
Fractional ideal (1)
|
|
1928
|
+
sage: E.conductor()
|
|
1929
|
+
Fractional ideal (1)
|
|
1930
|
+
"""
|
|
1931
|
+
if proof is None:
|
|
1932
|
+
import sage.structure.proof.proof
|
|
1933
|
+
# We use the "number_field" flag because the actual proof dependence is in PARI's number field functions.
|
|
1934
|
+
proof = sage.structure.proof.proof.get_flag(None, "number_field")
|
|
1935
|
+
|
|
1936
|
+
if self.has_global_minimal_model() or semi_global:
|
|
1937
|
+
if self.base_ring().class_number() == 1:
|
|
1938
|
+
E = self.global_integral_model()
|
|
1939
|
+
for P in E.base_ring()(E.discriminant()).support():
|
|
1940
|
+
E = E.local_data(P,proof, globally=True).minimal_model()
|
|
1941
|
+
else:
|
|
1942
|
+
from .kraus import semi_global_minimal_model
|
|
1943
|
+
E, P = semi_global_minimal_model(self)
|
|
1944
|
+
return E._scale_by_units()._reduce_model()
|
|
1945
|
+
|
|
1946
|
+
raise ValueError("%s has no global minimal model! For a semi-global minimal model use semi_global=True" % self)
|
|
1947
|
+
|
|
1948
|
+
def reduction(self, place):
|
|
1949
|
+
r"""
|
|
1950
|
+
Return the reduction of the elliptic curve at a place of good reduction.
|
|
1951
|
+
|
|
1952
|
+
INPUT:
|
|
1953
|
+
|
|
1954
|
+
- ``place`` -- a prime ideal in the base field of the curve
|
|
1955
|
+
|
|
1956
|
+
OUTPUT: an elliptic curve over a finite field, the residue field of the place
|
|
1957
|
+
|
|
1958
|
+
EXAMPLES::
|
|
1959
|
+
|
|
1960
|
+
sage: K.<i> = QuadraticField(-1)
|
|
1961
|
+
sage: EK = EllipticCurve([0, 0, 0, i, i+3])
|
|
1962
|
+
sage: v = K.fractional_ideal(2*i+3)
|
|
1963
|
+
sage: EK.reduction(v)
|
|
1964
|
+
Elliptic Curve defined by y^2 = x^3 + 5*x + 8
|
|
1965
|
+
over Residue field of Fractional ideal (2*i + 3)
|
|
1966
|
+
sage: EK.reduction(K.ideal(1+i))
|
|
1967
|
+
Traceback (most recent call last):
|
|
1968
|
+
...
|
|
1969
|
+
ValueError: The curve must have good reduction at the place.
|
|
1970
|
+
sage: EK.reduction(K.ideal(2))
|
|
1971
|
+
Traceback (most recent call last):
|
|
1972
|
+
...
|
|
1973
|
+
ValueError: The ideal must be prime.
|
|
1974
|
+
|
|
1975
|
+
sage: x = polygen(QQ)
|
|
1976
|
+
sage: K = QQ.extension(x^2 + x + 1, "a")
|
|
1977
|
+
sage: E = EllipticCurve([1024*K.0, 1024*K.0])
|
|
1978
|
+
sage: E.reduction(2*K)
|
|
1979
|
+
Elliptic Curve defined by y^2 + (abar+1)*y = x^3
|
|
1980
|
+
over Residue field in abar of Fractional ideal (2)
|
|
1981
|
+
"""
|
|
1982
|
+
K = self.base_field()
|
|
1983
|
+
OK = K.ring_of_integers()
|
|
1984
|
+
try:
|
|
1985
|
+
place = K.ideal(place)
|
|
1986
|
+
except TypeError:
|
|
1987
|
+
raise TypeError("The parameter must be an ideal of the base field of the elliptic curve")
|
|
1988
|
+
if not place.is_prime():
|
|
1989
|
+
raise ValueError("The ideal must be prime.")
|
|
1990
|
+
disc = self.discriminant()
|
|
1991
|
+
if not K.ideal(disc).valuation(place) == 0:
|
|
1992
|
+
local_data = self.local_data(place)
|
|
1993
|
+
if local_data.has_good_reduction():
|
|
1994
|
+
Fv = OK.residue_field(place)
|
|
1995
|
+
return local_data.minimal_model().change_ring(Fv)
|
|
1996
|
+
raise ValueError("The curve must have good reduction at the place.")
|
|
1997
|
+
Fv = OK.residue_field(place)
|
|
1998
|
+
return self.change_ring(Fv)
|
|
1999
|
+
|
|
2000
|
+
@cached_method
|
|
2001
|
+
def torsion_subgroup(self):
|
|
2002
|
+
r"""
|
|
2003
|
+
Return the torsion subgroup of this elliptic curve.
|
|
2004
|
+
|
|
2005
|
+
OUTPUT: the :class:`EllipticCurveTorsionSubgroup` associated to this elliptic
|
|
2006
|
+
curve.
|
|
2007
|
+
|
|
2008
|
+
EXAMPLES::
|
|
2009
|
+
|
|
2010
|
+
sage: E = EllipticCurve('11a1')
|
|
2011
|
+
sage: x = polygen(ZZ, 'x')
|
|
2012
|
+
sage: K.<t> = NumberField(x^4 + x^3 + 11*x^2 + 41*x + 101)
|
|
2013
|
+
sage: EK = E.base_extend(K)
|
|
2014
|
+
sage: tor = EK.torsion_subgroup() # long time (2s on sage.math, 2014)
|
|
2015
|
+
sage: tor # long time
|
|
2016
|
+
Torsion Subgroup isomorphic to Z/5 + Z/5 associated to the Elliptic Curve
|
|
2017
|
+
defined by y^2 + y = x^3 + (-1)*x^2 + (-10)*x + (-20) over Number Field
|
|
2018
|
+
in t with defining polynomial x^4 + x^3 + 11*x^2 + 41*x + 101
|
|
2019
|
+
sage: tor.gens() # long time
|
|
2020
|
+
((16 : 60 : 1), (t : 1/11*t^3 + 6/11*t^2 + 19/11*t + 48/11 : 1))
|
|
2021
|
+
|
|
2022
|
+
::
|
|
2023
|
+
|
|
2024
|
+
sage: E = EllipticCurve('15a1')
|
|
2025
|
+
sage: K.<t> = NumberField(x^2 + 2*x + 10)
|
|
2026
|
+
sage: EK = E.base_extend(K)
|
|
2027
|
+
sage: EK.torsion_subgroup()
|
|
2028
|
+
Torsion Subgroup isomorphic to Z/4 + Z/4 associated to the
|
|
2029
|
+
Elliptic Curve defined by y^2 + x*y + y = x^3 + x^2 + (-10)*x + (-10)
|
|
2030
|
+
over Number Field in t with defining polynomial x^2 + 2*x + 10
|
|
2031
|
+
|
|
2032
|
+
::
|
|
2033
|
+
|
|
2034
|
+
sage: E = EllipticCurve('19a1')
|
|
2035
|
+
sage: K.<t> = NumberField(x^9-3*x^8-4*x^7+16*x^6-3*x^5-21*x^4+5*x^3+7*x^2-7*x+1)
|
|
2036
|
+
sage: EK = E.base_extend(K)
|
|
2037
|
+
sage: EK.torsion_subgroup()
|
|
2038
|
+
Torsion Subgroup isomorphic to Z/9 associated to the Elliptic Curve defined
|
|
2039
|
+
by y^2 + y = x^3 + x^2 + (-9)*x + (-15) over Number Field in t with defining
|
|
2040
|
+
polynomial x^9 - 3*x^8 - 4*x^7 + 16*x^6 - 3*x^5 - 21*x^4 + 5*x^3 + 7*x^2 - 7*x + 1
|
|
2041
|
+
|
|
2042
|
+
::
|
|
2043
|
+
|
|
2044
|
+
sage: K.<i> = QuadraticField(-1)
|
|
2045
|
+
sage: EK = EllipticCurve([0, 0, 0, i, i+3])
|
|
2046
|
+
sage: EK.torsion_subgroup ()
|
|
2047
|
+
Torsion Subgroup isomorphic to Trivial group associated to the
|
|
2048
|
+
Elliptic Curve defined by y^2 = x^3 + i*x + (i+3)
|
|
2049
|
+
over Number Field in i with defining polynomial x^2 + 1 with i = 1*I
|
|
2050
|
+
|
|
2051
|
+
.. SEEALSO::
|
|
2052
|
+
|
|
2053
|
+
Use :meth:`~sage.schemes.elliptic_curves.ell_field.EllipticCurve_field.division_field`
|
|
2054
|
+
to determine the field of definition of the `\ell`-torsion subgroup.
|
|
2055
|
+
"""
|
|
2056
|
+
from .ell_torsion import EllipticCurveTorsionSubgroup
|
|
2057
|
+
return EllipticCurveTorsionSubgroup(self)
|
|
2058
|
+
|
|
2059
|
+
@cached_method
|
|
2060
|
+
def torsion_order(self):
|
|
2061
|
+
r"""
|
|
2062
|
+
Return the order of the torsion subgroup of this elliptic curve.
|
|
2063
|
+
|
|
2064
|
+
OUTPUT: integer
|
|
2065
|
+
|
|
2066
|
+
EXAMPLES::
|
|
2067
|
+
|
|
2068
|
+
sage: E = EllipticCurve('11a1')
|
|
2069
|
+
sage: x = polygen(ZZ, 'x')
|
|
2070
|
+
sage: K.<t> = NumberField(x^4 + x^3 + 11*x^2 + 41*x + 101)
|
|
2071
|
+
sage: EK = E.base_extend(K)
|
|
2072
|
+
sage: EK.torsion_order() # long time (2s on sage.math, 2014)
|
|
2073
|
+
25
|
|
2074
|
+
|
|
2075
|
+
::
|
|
2076
|
+
|
|
2077
|
+
sage: E = EllipticCurve('15a1')
|
|
2078
|
+
sage: K.<t> = NumberField(x^2 + 2*x + 10)
|
|
2079
|
+
sage: EK = E.base_extend(K)
|
|
2080
|
+
sage: EK.torsion_order()
|
|
2081
|
+
16
|
|
2082
|
+
|
|
2083
|
+
::
|
|
2084
|
+
|
|
2085
|
+
sage: E = EllipticCurve('19a1')
|
|
2086
|
+
sage: K.<t> = NumberField(x^9 - 3*x^8 - 4*x^7 + 16*x^6 - 3*x^5 - 21*x^4 + 5*x^3 + 7*x^2 - 7*x + 1)
|
|
2087
|
+
sage: EK = E.base_extend(K)
|
|
2088
|
+
sage: EK.torsion_order()
|
|
2089
|
+
9
|
|
2090
|
+
|
|
2091
|
+
::
|
|
2092
|
+
|
|
2093
|
+
sage: K.<i> = QuadraticField(-1)
|
|
2094
|
+
sage: EK = EllipticCurve([0, 0, 0, i, i + 3])
|
|
2095
|
+
sage: EK.torsion_order()
|
|
2096
|
+
1
|
|
2097
|
+
"""
|
|
2098
|
+
return self.torsion_subgroup().order()
|
|
2099
|
+
|
|
2100
|
+
def torsion_points(self):
|
|
2101
|
+
r"""
|
|
2102
|
+
Return a list of the torsion points of this elliptic curve.
|
|
2103
|
+
|
|
2104
|
+
OUTPUT: sorted list of the torsion points
|
|
2105
|
+
|
|
2106
|
+
EXAMPLES::
|
|
2107
|
+
|
|
2108
|
+
sage: E = EllipticCurve('11a1')
|
|
2109
|
+
sage: E.torsion_points()
|
|
2110
|
+
[(0 : 1 : 0), (5 : -6 : 1), (5 : 5 : 1), (16 : -61 : 1), (16 : 60 : 1)]
|
|
2111
|
+
sage: x = polygen(ZZ, 'x')
|
|
2112
|
+
sage: K.<t> = NumberField(x^4 + x^3 + 11*x^2 + 41*x + 101)
|
|
2113
|
+
sage: EK = E.base_extend(K)
|
|
2114
|
+
sage: EK.torsion_points() # long time (1s on sage.math, 2014)
|
|
2115
|
+
[(0 : 1 : 0),
|
|
2116
|
+
(t : 1/11*t^3 + 6/11*t^2 + 19/11*t + 48/11 : 1),
|
|
2117
|
+
(1/11*t^3 - 5/11*t^2 + 19/11*t - 40/11 : -6/11*t^3 - 3/11*t^2 - 26/11*t - 321/11 : 1),
|
|
2118
|
+
(1/11*t^3 - 5/11*t^2 + 19/11*t - 40/11 : 6/11*t^3 + 3/11*t^2 + 26/11*t + 310/11 : 1),
|
|
2119
|
+
(t : -1/11*t^3 - 6/11*t^2 - 19/11*t - 59/11 : 1),
|
|
2120
|
+
(16 : 60 : 1),
|
|
2121
|
+
(-3/55*t^3 - 7/55*t^2 - 2/55*t - 133/55 : 6/55*t^3 + 3/55*t^2 + 25/11*t + 156/55 : 1),
|
|
2122
|
+
(14/121*t^3 - 15/121*t^2 + 90/121*t + 232/121 : 16/121*t^3 - 69/121*t^2 + 293/121*t - 46/121 : 1),
|
|
2123
|
+
(-26/121*t^3 + 20/121*t^2 - 219/121*t - 995/121 : -15/121*t^3 - 156/121*t^2 + 232/121*t - 2887/121 : 1),
|
|
2124
|
+
(10/121*t^3 + 49/121*t^2 + 168/121*t + 73/121 : -32/121*t^3 - 60/121*t^2 + 261/121*t + 686/121 : 1),
|
|
2125
|
+
(5 : 5 : 1),
|
|
2126
|
+
(-9/121*t^3 - 21/121*t^2 - 127/121*t - 377/121 : -7/121*t^3 + 24/121*t^2 + 197/121*t + 16/121 : 1),
|
|
2127
|
+
(3/55*t^3 + 7/55*t^2 + 2/55*t + 78/55 : 7/55*t^3 - 24/55*t^2 + 9/11*t + 17/55 : 1),
|
|
2128
|
+
(-5/121*t^3 + 36/121*t^2 - 84/121*t + 24/121 : -34/121*t^3 + 27/121*t^2 - 305/121*t - 829/121 : 1),
|
|
2129
|
+
(5/121*t^3 - 14/121*t^2 - 158/121*t - 453/121 : 49/121*t^3 + 129/121*t^2 + 315/121*t + 86/121 : 1),
|
|
2130
|
+
(5 : -6 : 1),
|
|
2131
|
+
(5/121*t^3 - 14/121*t^2 - 158/121*t - 453/121 : -49/121*t^3 - 129/121*t^2 - 315/121*t - 207/121 : 1),
|
|
2132
|
+
(-5/121*t^3 + 36/121*t^2 - 84/121*t + 24/121 : 34/121*t^3 - 27/121*t^2 + 305/121*t + 708/121 : 1),
|
|
2133
|
+
(3/55*t^3 + 7/55*t^2 + 2/55*t + 78/55 : -7/55*t^3 + 24/55*t^2 - 9/11*t - 72/55 : 1),
|
|
2134
|
+
(-9/121*t^3 - 21/121*t^2 - 127/121*t - 377/121 : 7/121*t^3 - 24/121*t^2 - 197/121*t - 137/121 : 1),
|
|
2135
|
+
(16 : -61 : 1),
|
|
2136
|
+
(10/121*t^3 + 49/121*t^2 + 168/121*t + 73/121 : 32/121*t^3 + 60/121*t^2 - 261/121*t - 807/121 : 1),
|
|
2137
|
+
(-26/121*t^3 + 20/121*t^2 - 219/121*t - 995/121 : 15/121*t^3 + 156/121*t^2 - 232/121*t + 2766/121 : 1),
|
|
2138
|
+
(14/121*t^3 - 15/121*t^2 + 90/121*t + 232/121 : -16/121*t^3 + 69/121*t^2 - 293/121*t - 75/121 : 1),
|
|
2139
|
+
(-3/55*t^3 - 7/55*t^2 - 2/55*t - 133/55 : -6/55*t^3 - 3/55*t^2 - 25/11*t - 211/55 : 1)]
|
|
2140
|
+
|
|
2141
|
+
::
|
|
2142
|
+
|
|
2143
|
+
sage: E = EllipticCurve('15a1')
|
|
2144
|
+
sage: K.<t> = NumberField(x^2 + 2*x + 10)
|
|
2145
|
+
sage: EK = E.base_extend(K)
|
|
2146
|
+
sage: EK.torsion_points()
|
|
2147
|
+
[(0 : 1 : 0),
|
|
2148
|
+
(-7 : -5*t - 2 : 1),
|
|
2149
|
+
(-7 : 5*t + 8 : 1),
|
|
2150
|
+
(-13/4 : 9/8 : 1),
|
|
2151
|
+
(-2 : -2 : 1),
|
|
2152
|
+
(-2 : 3 : 1),
|
|
2153
|
+
(-t - 2 : -t - 7 : 1),
|
|
2154
|
+
(-t - 2 : 2*t + 8 : 1),
|
|
2155
|
+
(-1 : 0 : 1),
|
|
2156
|
+
(t : t - 5 : 1),
|
|
2157
|
+
(t : -2*t + 4 : 1),
|
|
2158
|
+
(1/2 : -5/4*t - 2 : 1),
|
|
2159
|
+
(1/2 : 5/4*t + 1/2 : 1),
|
|
2160
|
+
(3 : -2 : 1),
|
|
2161
|
+
(8 : -27 : 1),
|
|
2162
|
+
(8 : 18 : 1)]
|
|
2163
|
+
|
|
2164
|
+
::
|
|
2165
|
+
|
|
2166
|
+
sage: K.<i> = QuadraticField(-1)
|
|
2167
|
+
sage: EK = EllipticCurve(K, [0,0,0,0,-1])
|
|
2168
|
+
sage: EK.torsion_points()
|
|
2169
|
+
[(0 : 1 : 0),
|
|
2170
|
+
(-2 : -3*i : 1),
|
|
2171
|
+
(-2 : 3*i : 1),
|
|
2172
|
+
(0 : -i : 1),
|
|
2173
|
+
(0 : i : 1),
|
|
2174
|
+
(1 : 0 : 1)]
|
|
2175
|
+
"""
|
|
2176
|
+
T = self.torsion_subgroup() # cached
|
|
2177
|
+
return sorted(T.points()) # these are also cached in T
|
|
2178
|
+
|
|
2179
|
+
def rank_bounds(self, **kwds):
|
|
2180
|
+
r"""
|
|
2181
|
+
Return the lower and upper bounds using :meth:`~simon_two_descent`.
|
|
2182
|
+
The results of :meth:`~simon_two_descent` are cached.
|
|
2183
|
+
|
|
2184
|
+
.. NOTE::
|
|
2185
|
+
|
|
2186
|
+
The optional parameters control the Simon two descent algorithm;
|
|
2187
|
+
see the documentation of :meth:`~simon_two_descent` for more
|
|
2188
|
+
details.
|
|
2189
|
+
|
|
2190
|
+
INPUT:
|
|
2191
|
+
|
|
2192
|
+
- ``verbose`` -- 0, 1, 2, or 3 (default: 0); the verbosity level
|
|
2193
|
+
|
|
2194
|
+
- ``lim1`` -- (default: 2) limit on trivial points on quartics
|
|
2195
|
+
|
|
2196
|
+
- ``lim3`` -- (default: 4) limit on points on ELS quartics
|
|
2197
|
+
|
|
2198
|
+
- ``limtriv`` -- (default: 2) limit on trivial points on elliptic curve
|
|
2199
|
+
|
|
2200
|
+
- ``maxprob`` -- (default: 20)
|
|
2201
|
+
|
|
2202
|
+
- ``limbigprime`` -- (default: 30) to distinguish between
|
|
2203
|
+
small and large prime numbers. Use probabilistic tests for
|
|
2204
|
+
large primes. If 0, do not use probabilistic tests.
|
|
2205
|
+
|
|
2206
|
+
- ``known_points`` -- (default: ``None``) list of known points on
|
|
2207
|
+
the curve
|
|
2208
|
+
|
|
2209
|
+
OUTPUT: lower and upper bounds for the rank of the Mordell-Weil group
|
|
2210
|
+
|
|
2211
|
+
.. NOTE::
|
|
2212
|
+
|
|
2213
|
+
For non-quadratic number fields, this code does
|
|
2214
|
+
return, but it takes a long time.
|
|
2215
|
+
|
|
2216
|
+
EXAMPLES::
|
|
2217
|
+
|
|
2218
|
+
sage: x = polygen(ZZ, 'x')
|
|
2219
|
+
sage: K.<a> = NumberField(x^2 + 23, 'a')
|
|
2220
|
+
sage: E = EllipticCurve(K, '37')
|
|
2221
|
+
sage: E == loads(dumps(E))
|
|
2222
|
+
True
|
|
2223
|
+
sage: E.rank_bounds()
|
|
2224
|
+
(2, 2)
|
|
2225
|
+
|
|
2226
|
+
Here is a curve with two-torsion, again the bounds coincide::
|
|
2227
|
+
|
|
2228
|
+
sage: Qrt5.<rt5> = NumberField(x^2 - 5)
|
|
2229
|
+
sage: E = EllipticCurve([0, 5-rt5, 0, rt5, 0])
|
|
2230
|
+
sage: E.rank_bounds()
|
|
2231
|
+
(1, 1)
|
|
2232
|
+
|
|
2233
|
+
Finally an example with non-trivial 2-torsion in Sha. So the
|
|
2234
|
+
2-descent will not be able to determine the rank, but can only
|
|
2235
|
+
give bounds::
|
|
2236
|
+
|
|
2237
|
+
sage: E = EllipticCurve("15a5")
|
|
2238
|
+
sage: K.<t> = NumberField(x^2 - 6)
|
|
2239
|
+
sage: EK = E.base_extend(K)
|
|
2240
|
+
sage: EK.rank_bounds(lim1=1, lim3=1, limtriv=1)
|
|
2241
|
+
(0, 2)
|
|
2242
|
+
|
|
2243
|
+
IMPLEMENTATION:
|
|
2244
|
+
|
|
2245
|
+
Uses Denis Simon's PARI/GP scripts from
|
|
2246
|
+
http://www.math.unicaen.fr/~simon/.
|
|
2247
|
+
"""
|
|
2248
|
+
lower, upper, gens = self.simon_two_descent(**kwds)
|
|
2249
|
+
# this was corrected in trac 13593. upper is the dimension
|
|
2250
|
+
# of the 2-selmer group, so we can certainly remove the
|
|
2251
|
+
# 2-torsion of the Mordell-Weil group.
|
|
2252
|
+
upper -= self.two_torsion_rank()
|
|
2253
|
+
return lower, upper
|
|
2254
|
+
|
|
2255
|
+
def rank(self, **kwds):
|
|
2256
|
+
r"""
|
|
2257
|
+
Return the rank of this elliptic curve, if it can be determined.
|
|
2258
|
+
|
|
2259
|
+
.. NOTE::
|
|
2260
|
+
|
|
2261
|
+
The optional parameters control the Simon two descent algorithm;
|
|
2262
|
+
see the documentation of :meth:`~simon_two_descent` for more
|
|
2263
|
+
details.
|
|
2264
|
+
|
|
2265
|
+
INPUT:
|
|
2266
|
+
|
|
2267
|
+
- ``verbose`` -- 0, 1, 2, or 3 (default: 0); the verbosity level
|
|
2268
|
+
|
|
2269
|
+
- ``lim1`` -- (default: 2) limit on trivial points on quartics
|
|
2270
|
+
|
|
2271
|
+
- ``lim3`` -- (default: 4) limit on points on ELS quartics
|
|
2272
|
+
|
|
2273
|
+
- ``limtriv`` -- (default: 2) limit on trivial points on elliptic curve
|
|
2274
|
+
|
|
2275
|
+
- ``maxprob`` -- (default: 20)
|
|
2276
|
+
|
|
2277
|
+
- ``limbigprime`` -- (default: 30) to distinguish between
|
|
2278
|
+
small and large prime numbers. Use probabilistic tests for
|
|
2279
|
+
large primes. If 0, do not use probabilistic tests.
|
|
2280
|
+
|
|
2281
|
+
- ``known_points`` -- (default: ``None``) list of known points on
|
|
2282
|
+
the curve
|
|
2283
|
+
|
|
2284
|
+
OUTPUT:
|
|
2285
|
+
|
|
2286
|
+
If the upper and lower bounds given by Simon two-descent are
|
|
2287
|
+
the same, then the rank has been uniquely identified and we
|
|
2288
|
+
return this. Otherwise, we raise a :exc:`ValueError` with an error
|
|
2289
|
+
message specifying the upper and lower bounds.
|
|
2290
|
+
|
|
2291
|
+
.. NOTE::
|
|
2292
|
+
|
|
2293
|
+
For non-quadratic number fields, this code does return, but it takes
|
|
2294
|
+
a long time.
|
|
2295
|
+
|
|
2296
|
+
EXAMPLES::
|
|
2297
|
+
|
|
2298
|
+
sage: x = polygen(ZZ, 'x')
|
|
2299
|
+
sage: K.<a> = NumberField(x^2 + 23, 'a')
|
|
2300
|
+
sage: E = EllipticCurve(K, '37')
|
|
2301
|
+
sage: E == loads(dumps(E))
|
|
2302
|
+
True
|
|
2303
|
+
sage: E.rank()
|
|
2304
|
+
2
|
|
2305
|
+
|
|
2306
|
+
Here is a curve with two-torsion in the Tate-Shafarevich group,
|
|
2307
|
+
so here the bounds given by the algorithm do not uniquely
|
|
2308
|
+
determine the rank::
|
|
2309
|
+
|
|
2310
|
+
sage: E = EllipticCurve("15a5")
|
|
2311
|
+
sage: K.<t> = NumberField(x^2 - 6)
|
|
2312
|
+
sage: EK = E.base_extend(K)
|
|
2313
|
+
sage: EK.rank(lim1=1, lim3=1, limtriv=1)
|
|
2314
|
+
Traceback (most recent call last):
|
|
2315
|
+
...
|
|
2316
|
+
ValueError: There is insufficient data to determine the rank -
|
|
2317
|
+
2-descent gave lower bound 0 and upper bound 2
|
|
2318
|
+
|
|
2319
|
+
IMPLEMENTATION:
|
|
2320
|
+
|
|
2321
|
+
Uses Denis Simon's PARI/GP scripts from
|
|
2322
|
+
http://www.math.unicaen.fr/~simon/.
|
|
2323
|
+
"""
|
|
2324
|
+
lower, upper = self.rank_bounds(**kwds)
|
|
2325
|
+
if lower == upper:
|
|
2326
|
+
return lower
|
|
2327
|
+
else:
|
|
2328
|
+
raise ValueError('There is insufficient data to determine the rank - 2-descent gave lower bound %s and upper bound %s' % (lower, upper))
|
|
2329
|
+
|
|
2330
|
+
def gens(self, **kwds):
|
|
2331
|
+
r"""
|
|
2332
|
+
Return some points of infinite order on this elliptic curve.
|
|
2333
|
+
|
|
2334
|
+
Contrary to what the name of this method suggests, the points
|
|
2335
|
+
it returns do not always generate a subgroup of full rank in
|
|
2336
|
+
the Mordell-Weil group, nor are they necessarily linearly
|
|
2337
|
+
independent. Moreover, the number of points can be smaller or
|
|
2338
|
+
larger than what one could expect after calling :meth:`~rank`
|
|
2339
|
+
or :meth:`~rank_bounds`.
|
|
2340
|
+
|
|
2341
|
+
.. NOTE::
|
|
2342
|
+
|
|
2343
|
+
The optional parameters control the Simon two descent algorithm;
|
|
2344
|
+
see the documentation of :meth:`~simon_two_descent` for more
|
|
2345
|
+
details.
|
|
2346
|
+
|
|
2347
|
+
INPUT:
|
|
2348
|
+
|
|
2349
|
+
- ``verbose`` -- 0, 1, 2, or 3 (default: 0); the verbosity level
|
|
2350
|
+
|
|
2351
|
+
- ``lim1`` -- (default: 2) limit on trivial points on quartics
|
|
2352
|
+
|
|
2353
|
+
- ``lim3`` -- (default: 4) limit on points on ELS quartics
|
|
2354
|
+
|
|
2355
|
+
- ``limtriv`` -- (default: 2) limit on trivial points on elliptic curve
|
|
2356
|
+
|
|
2357
|
+
- ``maxprob`` -- (default: 20)
|
|
2358
|
+
|
|
2359
|
+
- ``limbigprime`` -- (default: 30) to distinguish between
|
|
2360
|
+
small and large prime numbers. Use probabilistic tests for
|
|
2361
|
+
large primes. If 0, do not use probabilistic tests.
|
|
2362
|
+
|
|
2363
|
+
- ``known_points`` -- (default: ``None``) list of known points on
|
|
2364
|
+
the curve
|
|
2365
|
+
|
|
2366
|
+
OUTPUT: a set of points of infinite order given by the Simon two-descent
|
|
2367
|
+
|
|
2368
|
+
.. NOTE::
|
|
2369
|
+
|
|
2370
|
+
For non-quadratic number fields, this code does return, but it takes
|
|
2371
|
+
a long time.
|
|
2372
|
+
|
|
2373
|
+
EXAMPLES::
|
|
2374
|
+
|
|
2375
|
+
sage: x = polygen(ZZ, 'x')
|
|
2376
|
+
sage: K.<a> = NumberField(x^2 + 23, 'a')
|
|
2377
|
+
sage: E = EllipticCurve(K,[0,0,0,101,0])
|
|
2378
|
+
sage: E.gens() # needs eclib
|
|
2379
|
+
((23831509/8669448*a - 2867471/8669448 : 76507317707/18049790736*a - 424166479633/18049790736 : 1),
|
|
2380
|
+
(-2031032029/969232392*a + 58813561/969232392 : -15575984630401/21336681877488*a + 451041199309/21336681877488 : 1),
|
|
2381
|
+
(-186948623/4656964 : 549438861195/10049728312*a : 1))
|
|
2382
|
+
|
|
2383
|
+
It can happen that no points are found if the height bounds
|
|
2384
|
+
used in the search are too small (see :issue:`10745`)::
|
|
2385
|
+
|
|
2386
|
+
sage: # needs eclib
|
|
2387
|
+
sage: K.<t> = NumberField(x^4 + x^2 - 7)
|
|
2388
|
+
sage: E = EllipticCurve(K, [1, 0, 5*t^2 + 16, 0, 0])
|
|
2389
|
+
sage: E.gens(lim1=1, lim3=1)
|
|
2390
|
+
()
|
|
2391
|
+
sage: E.rank()
|
|
2392
|
+
1
|
|
2393
|
+
sage: gg = E.gens(lim3=13); gg # long time (about 4s)
|
|
2394
|
+
((... : 1),)
|
|
2395
|
+
|
|
2396
|
+
Check that the point found has infinite order, and that it is on the curve::
|
|
2397
|
+
|
|
2398
|
+
sage: # needs eclib
|
|
2399
|
+
sage: P = gg[0]; P.order() # long time
|
|
2400
|
+
+Infinity
|
|
2401
|
+
sage: E.defining_polynomial()(*P) # long time
|
|
2402
|
+
0
|
|
2403
|
+
|
|
2404
|
+
Here is a curve of rank 2::
|
|
2405
|
+
|
|
2406
|
+
sage: K.<t> = NumberField(x^2 - 17)
|
|
2407
|
+
sage: E = EllipticCurve(K, [-4, 0])
|
|
2408
|
+
sage: E.gens() # needs eclib
|
|
2409
|
+
((-1/2*t + 1/2 : -1/2*t + 1/2 : 1), (-t + 3 : -2*t + 10 : 1))
|
|
2410
|
+
sage: E.rank()
|
|
2411
|
+
2
|
|
2412
|
+
|
|
2413
|
+
Test that points of finite order are not included (see :issue:`13593`)::
|
|
2414
|
+
|
|
2415
|
+
sage: E = EllipticCurve("17a3")
|
|
2416
|
+
sage: K.<t> = NumberField(x^2 + 3)
|
|
2417
|
+
sage: EK = E.base_extend(K)
|
|
2418
|
+
sage: EK.rank()
|
|
2419
|
+
0
|
|
2420
|
+
sage: EK.gens() # needs eclib
|
|
2421
|
+
()
|
|
2422
|
+
|
|
2423
|
+
IMPLEMENTATION:
|
|
2424
|
+
|
|
2425
|
+
For curves over quadratic fields which are base-changes from
|
|
2426
|
+
`\QQ`, we delegate the work to :meth:`gens_quadratic` where
|
|
2427
|
+
methods over `\QQ` suffice. Otherwise, we use Denis Simon's
|
|
2428
|
+
PARI/GP scripts from http://www.math.unicaen.fr/~simon/.
|
|
2429
|
+
"""
|
|
2430
|
+
try:
|
|
2431
|
+
return tuple(self.gens_quadratic(**kwds))
|
|
2432
|
+
except ValueError:
|
|
2433
|
+
self.simon_two_descent(**kwds)
|
|
2434
|
+
return tuple(self._known_points)
|
|
2435
|
+
|
|
2436
|
+
def period_lattice(self, embedding):
|
|
2437
|
+
r"""
|
|
2438
|
+
Return the period lattice of the elliptic curve for the given
|
|
2439
|
+
embedding of its base field with respect to the differential
|
|
2440
|
+
`dx/(2y + a_1x + a_3)`.
|
|
2441
|
+
|
|
2442
|
+
INPUT:
|
|
2443
|
+
|
|
2444
|
+
- ``embedding`` -- an embedding of the base number field into `\RR` or `\CC`
|
|
2445
|
+
|
|
2446
|
+
.. NOTE::
|
|
2447
|
+
|
|
2448
|
+
The precision of the embedding is ignored: we only use the
|
|
2449
|
+
given embedding to determine which embedding into ``QQbar``
|
|
2450
|
+
to use. Once the lattice has been initialized, periods can
|
|
2451
|
+
be computed to arbitrary precision.
|
|
2452
|
+
|
|
2453
|
+
EXAMPLES:
|
|
2454
|
+
|
|
2455
|
+
First define a field with two real embeddings::
|
|
2456
|
+
|
|
2457
|
+
sage: x = polygen(QQ)
|
|
2458
|
+
sage: K.<a> = NumberField(x^3 - 2)
|
|
2459
|
+
sage: E = EllipticCurve([0,0,0,a,2])
|
|
2460
|
+
sage: embs = K.embeddings(CC); len(embs)
|
|
2461
|
+
3
|
|
2462
|
+
|
|
2463
|
+
For each embedding we have a different period lattice::
|
|
2464
|
+
|
|
2465
|
+
sage: E.period_lattice(embs[0])
|
|
2466
|
+
Period lattice associated to Elliptic Curve defined by y^2 = x^3 + a*x + 2
|
|
2467
|
+
over Number Field in a with defining polynomial x^3 - 2
|
|
2468
|
+
with respect to the embedding Ring morphism:
|
|
2469
|
+
From: Number Field in a with defining polynomial x^3 - 2
|
|
2470
|
+
To: Algebraic Field
|
|
2471
|
+
Defn: a |--> -0.6299605249474365? - 1.091123635971722?*I
|
|
2472
|
+
|
|
2473
|
+
sage: E.period_lattice(embs[1])
|
|
2474
|
+
Period lattice associated to Elliptic Curve defined by y^2 = x^3 + a*x + 2
|
|
2475
|
+
over Number Field in a with defining polynomial x^3 - 2
|
|
2476
|
+
with respect to the embedding Ring morphism:
|
|
2477
|
+
From: Number Field in a with defining polynomial x^3 - 2
|
|
2478
|
+
To: Algebraic Field
|
|
2479
|
+
Defn: a |--> -0.6299605249474365? + 1.091123635971722?*I
|
|
2480
|
+
|
|
2481
|
+
sage: E.period_lattice(embs[2])
|
|
2482
|
+
Period lattice associated to Elliptic Curve defined by y^2 = x^3 + a*x + 2
|
|
2483
|
+
over Number Field in a with defining polynomial x^3 - 2
|
|
2484
|
+
with respect to the embedding Ring morphism:
|
|
2485
|
+
From: Number Field in a with defining polynomial x^3 - 2
|
|
2486
|
+
To: Algebraic Field
|
|
2487
|
+
Defn: a |--> 1.259921049894873?
|
|
2488
|
+
|
|
2489
|
+
Although the original embeddings have only the default
|
|
2490
|
+
precision, we can obtain the basis with higher precision
|
|
2491
|
+
later::
|
|
2492
|
+
|
|
2493
|
+
sage: L = E.period_lattice(embs[0])
|
|
2494
|
+
sage: L.basis()
|
|
2495
|
+
(1.86405007647981 - 0.903761485143226*I, -0.149344633143919 - 2.06619546272945*I)
|
|
2496
|
+
|
|
2497
|
+
sage: L.basis(prec=100)
|
|
2498
|
+
(1.8640500764798108425920506200 - 0.90376148514322594749786960975*I,
|
|
2499
|
+
-0.14934463314391922099120107422 - 2.0661954627294548995621225062*I)
|
|
2500
|
+
"""
|
|
2501
|
+
from sage.schemes.elliptic_curves.period_lattice import PeriodLattice_ell
|
|
2502
|
+
return PeriodLattice_ell(self, embedding)
|
|
2503
|
+
|
|
2504
|
+
def real_components(self, embedding):
|
|
2505
|
+
"""
|
|
2506
|
+
Return the number of real components with respect to a real embedding of the base field.
|
|
2507
|
+
|
|
2508
|
+
EXAMPLES::
|
|
2509
|
+
|
|
2510
|
+
sage: K.<a> = QuadraticField(5)
|
|
2511
|
+
sage: embs = K.real_embeddings()
|
|
2512
|
+
sage: E = EllipticCurve([0,1,1,a,a])
|
|
2513
|
+
sage: [e(E.discriminant()) > 0 for e in embs]
|
|
2514
|
+
[True, False]
|
|
2515
|
+
sage: [E.real_components(e) for e in embs]
|
|
2516
|
+
[2, 1]
|
|
2517
|
+
|
|
2518
|
+
TESTS::
|
|
2519
|
+
|
|
2520
|
+
sage: K.<a> = QuadraticField(-1)
|
|
2521
|
+
sage: e = K.complex_embeddings()[0]
|
|
2522
|
+
sage: E = EllipticCurve([0,1,1,a,a])
|
|
2523
|
+
sage: E.real_components(e)
|
|
2524
|
+
Traceback (most recent call last):
|
|
2525
|
+
...
|
|
2526
|
+
ValueError: invalid embedding specified: should be real
|
|
2527
|
+
|
|
2528
|
+
sage: E.real_components('banana')
|
|
2529
|
+
Traceback (most recent call last):
|
|
2530
|
+
...
|
|
2531
|
+
ValueError: invalid embedding
|
|
2532
|
+
|
|
2533
|
+
sage: K.<a> = QuadraticField(-1)
|
|
2534
|
+
sage: E = EllipticCurve([0,1,1,a,a])
|
|
2535
|
+
sage: K1.<a> = QuadraticField(5)
|
|
2536
|
+
sage: e = K1.real_embeddings()[0]
|
|
2537
|
+
sage: E.real_components(e)
|
|
2538
|
+
Traceback (most recent call last):
|
|
2539
|
+
...
|
|
2540
|
+
ValueError: invalid embedding specified: should have domain ...
|
|
2541
|
+
"""
|
|
2542
|
+
try:
|
|
2543
|
+
if embedding.domain() is not self.base_field():
|
|
2544
|
+
raise ValueError("invalid embedding specified: should have domain {}".format(self.base_field()))
|
|
2545
|
+
if not isinstance(embedding.codomain(), sage.rings.abc.RealField):
|
|
2546
|
+
raise ValueError("invalid embedding specified: should be real")
|
|
2547
|
+
except AttributeError:
|
|
2548
|
+
raise ValueError("invalid embedding")
|
|
2549
|
+
|
|
2550
|
+
from sage.rings.number_field.number_field import refine_embedding
|
|
2551
|
+
from sage.rings.infinity import Infinity
|
|
2552
|
+
e = refine_embedding(embedding,Infinity)
|
|
2553
|
+
|
|
2554
|
+
return 2 if e(self.discriminant()) > 0 else 1
|
|
2555
|
+
|
|
2556
|
+
def height_function(self):
|
|
2557
|
+
"""
|
|
2558
|
+
Return the canonical height function attached to ``self``.
|
|
2559
|
+
|
|
2560
|
+
EXAMPLES::
|
|
2561
|
+
|
|
2562
|
+
sage: x = polygen(ZZ, 'x')
|
|
2563
|
+
sage: K.<a> = NumberField(x^2 - 5)
|
|
2564
|
+
sage: E = EllipticCurve(K, '11a3')
|
|
2565
|
+
sage: E.height_function()
|
|
2566
|
+
EllipticCurveCanonicalHeight object associated to
|
|
2567
|
+
Elliptic Curve defined by y^2 + y = x^3 + (-1)*x^2
|
|
2568
|
+
over Number Field in a with defining polynomial x^2 - 5
|
|
2569
|
+
"""
|
|
2570
|
+
if not hasattr(self, '_height_function'):
|
|
2571
|
+
from sage.schemes.elliptic_curves.height import EllipticCurveCanonicalHeight
|
|
2572
|
+
self._height_function = EllipticCurveCanonicalHeight(self)
|
|
2573
|
+
return self._height_function
|
|
2574
|
+
|
|
2575
|
+
##########################################################
|
|
2576
|
+
# Isogeny class
|
|
2577
|
+
##########################################################
|
|
2578
|
+
def isogeny_class(self, reducible_primes=None, algorithm='Billerey', minimal_models=True):
|
|
2579
|
+
r"""
|
|
2580
|
+
Return the isogeny class of this elliptic curve.
|
|
2581
|
+
|
|
2582
|
+
INPUT:
|
|
2583
|
+
|
|
2584
|
+
- ``reducible_primes`` -- list of integers or ``None`` (default)); if
|
|
2585
|
+
not ``None`` then this should be a list of primes; in computing
|
|
2586
|
+
the isogeny class, only composites isogenies of these
|
|
2587
|
+
degrees will be used.
|
|
2588
|
+
|
|
2589
|
+
- ``algorithm`` -- string (default: ``'Billerey'``); the algorithm
|
|
2590
|
+
to use to compute the reducible primes. Ignored for CM
|
|
2591
|
+
curves or if ``reducible_primes`` is provided. Values are
|
|
2592
|
+
``'Billerey'`` (default), ``'Larson'``, and ``'heuristic'``.
|
|
2593
|
+
|
|
2594
|
+
- ``minimal_models`` -- boolean (default: ``True``); if ``True``,
|
|
2595
|
+
all curves in the class will be minimal or semi-minimal
|
|
2596
|
+
models. Over fields of larger degree it can be expensive to
|
|
2597
|
+
compute these so set to ``False``.
|
|
2598
|
+
|
|
2599
|
+
OUTPUT:
|
|
2600
|
+
|
|
2601
|
+
An instance of the class
|
|
2602
|
+
:class:`sage.schemes.elliptic_curves.isogeny_class.IsogenyClass_EC_NumberField`.
|
|
2603
|
+
From this object may be obtained a list of curves in the
|
|
2604
|
+
class, a matrix of the degrees of the isogenies between them,
|
|
2605
|
+
and the isogenies themselves.
|
|
2606
|
+
|
|
2607
|
+
.. NOTE::
|
|
2608
|
+
|
|
2609
|
+
If using the algorithm ``'heuristic'`` for non-CM curves, the
|
|
2610
|
+
result is not guaranteed to be the complete isogeny class,
|
|
2611
|
+
since only reducible primes up to the default bound in
|
|
2612
|
+
:meth:`reducible_primes_naive` (currently 1000) are
|
|
2613
|
+
tested. However, no examples of non-CM elliptic curves
|
|
2614
|
+
with reducible primes greater than 100 have yet been
|
|
2615
|
+
computed so the output is likely to be correct.
|
|
2616
|
+
|
|
2617
|
+
.. NOTE::
|
|
2618
|
+
|
|
2619
|
+
By default, the curves in the isogeny class will all be
|
|
2620
|
+
minimal models if these exist (for example, when the class
|
|
2621
|
+
number is `1`); otherwise they will be minimal at all but
|
|
2622
|
+
one prime. This behaviour can be switched off if desired,
|
|
2623
|
+
for example over fields where the computation of the class
|
|
2624
|
+
group would be too expensive.
|
|
2625
|
+
|
|
2626
|
+
EXAMPLES::
|
|
2627
|
+
|
|
2628
|
+
sage: K.<i> = QuadraticField(-1)
|
|
2629
|
+
sage: E = EllipticCurve(K, [0,0,0,0,1])
|
|
2630
|
+
sage: C = E.isogeny_class(); C
|
|
2631
|
+
Isogeny class of Elliptic Curve defined by y^2 = x^3 + 1
|
|
2632
|
+
over Number Field in i with defining polynomial x^2 + 1 with i = 1*I
|
|
2633
|
+
|
|
2634
|
+
The curves in the class (sorted)::
|
|
2635
|
+
|
|
2636
|
+
sage: [E1.ainvs() for E1 in C]
|
|
2637
|
+
[(0, 0, 0, 0, -27),
|
|
2638
|
+
(0, 0, 0, 0, 1),
|
|
2639
|
+
(i + 1, i, 0, 3, -i),
|
|
2640
|
+
(i + 1, i, 0, 33, 91*i)]
|
|
2641
|
+
|
|
2642
|
+
The matrix of degrees of cyclic isogenies between curves::
|
|
2643
|
+
|
|
2644
|
+
sage: C.matrix()
|
|
2645
|
+
[1 3 6 2]
|
|
2646
|
+
[3 1 2 6]
|
|
2647
|
+
[6 2 1 3]
|
|
2648
|
+
[2 6 3 1]
|
|
2649
|
+
|
|
2650
|
+
The array of isogenies themselves is not filled out but only
|
|
2651
|
+
contains those used to construct the class, the other entries
|
|
2652
|
+
containing the integer 0. This will be changed when the
|
|
2653
|
+
class :class:`EllipticCurveIsogeny` allowed composition. In
|
|
2654
|
+
this case we used `2`-isogenies to go from 0 to 2 and from 1
|
|
2655
|
+
to 3, and `3`-isogenies to go from 0 to 1 and from 2 to 3::
|
|
2656
|
+
|
|
2657
|
+
sage: isogs = C.isogenies()
|
|
2658
|
+
sage: [((i,j), isogs[i][j].degree())
|
|
2659
|
+
....: for i in range(4) for j in range(4) if isogs[i][j] != 0]
|
|
2660
|
+
[((0, 1), 3),
|
|
2661
|
+
((0, 3), 2),
|
|
2662
|
+
((1, 0), 3),
|
|
2663
|
+
((1, 2), 2),
|
|
2664
|
+
((2, 1), 2),
|
|
2665
|
+
((2, 3), 3),
|
|
2666
|
+
((3, 0), 2),
|
|
2667
|
+
((3, 2), 3)]
|
|
2668
|
+
sage: [((i,j), isogs[i][j].x_rational_map())
|
|
2669
|
+
....: for i in range(4) for j in range(4) if isogs[i][j] != 0]
|
|
2670
|
+
[((0, 1), (1/9*x^3 - 12)/x^2),
|
|
2671
|
+
((0, 3), (1/2*i*x^2 - 2*i*x + 15*i)/(x - 3)),
|
|
2672
|
+
((1, 0), (x^3 + 4)/x^2),
|
|
2673
|
+
((1, 2), (1/2*i*x^2 + i)/(x + 1)),
|
|
2674
|
+
((2, 1), (-1/2*i*x^2 - 1/2*i)/(x - 1/2*i)),
|
|
2675
|
+
((2, 3), (x^3 - 2*i*x^2 - 7*x + 4*i)/(x^2 - 2*i*x - 1)),
|
|
2676
|
+
((3, 0), (-1/2*i*x^2 + 2*x - 5/2*i)/(x + 7/2*i)),
|
|
2677
|
+
((3, 2), (1/9*x^3 + 2/3*i*x^2 - 13/3*x - 116/9*i)/(x^2 + 10*i*x - 25))]
|
|
2678
|
+
|
|
2679
|
+
The isogeny class may be visualized by obtaining its graph and
|
|
2680
|
+
plotting it::
|
|
2681
|
+
|
|
2682
|
+
sage: G = C.graph() # needs sage.graphs
|
|
2683
|
+
sage: G.show(edge_labels=True) # long time # needs sage.graphs
|
|
2684
|
+
|
|
2685
|
+
sage: K.<i> = QuadraticField(-1)
|
|
2686
|
+
sage: E = EllipticCurve([1+i, -i, i, 1, 0])
|
|
2687
|
+
sage: C = E.isogeny_class(); C # long time
|
|
2688
|
+
Isogeny class of
|
|
2689
|
+
Elliptic Curve defined by y^2 + (i+1)*x*y + i*y = x^3 + (-i)*x^2 + x
|
|
2690
|
+
over Number Field in i with defining polynomial x^2 + 1 with i = 1*I
|
|
2691
|
+
sage: len(C) # long time
|
|
2692
|
+
6
|
|
2693
|
+
sage: C.matrix() # long time
|
|
2694
|
+
[ 1 3 9 18 6 2]
|
|
2695
|
+
[ 3 1 3 6 2 6]
|
|
2696
|
+
[ 9 3 1 2 6 18]
|
|
2697
|
+
[18 6 2 1 3 9]
|
|
2698
|
+
[ 6 2 6 3 1 3]
|
|
2699
|
+
[ 2 6 18 9 3 1]
|
|
2700
|
+
sage: [E1.ainvs() for E1 in C] # long time
|
|
2701
|
+
[(i + 1, i - 1, i, -i - 1, -i + 1),
|
|
2702
|
+
(i + 1, i - 1, i, 14*i + 4, 7*i + 14),
|
|
2703
|
+
(i + 1, i - 1, i, 59*i + 99, 372*i - 410),
|
|
2704
|
+
(i + 1, -i, i, -240*i - 399, 2869*i + 2627),
|
|
2705
|
+
(i + 1, -i, i, -5*i - 4, 2*i + 5),
|
|
2706
|
+
(i + 1, -i, i, 1, 0)]
|
|
2707
|
+
|
|
2708
|
+
An example with CM by `\sqrt{-5}`::
|
|
2709
|
+
|
|
2710
|
+
sage: pol = PolynomialRing(QQ,'x')([1,0,3,0,1])
|
|
2711
|
+
sage: K.<c> = NumberField(pol)
|
|
2712
|
+
sage: j = 1480640 + 565760*c^2
|
|
2713
|
+
sage: E = EllipticCurve(j=j)
|
|
2714
|
+
sage: E.has_cm()
|
|
2715
|
+
True
|
|
2716
|
+
sage: E.has_rational_cm()
|
|
2717
|
+
True
|
|
2718
|
+
sage: E.cm_discriminant()
|
|
2719
|
+
-20
|
|
2720
|
+
sage: C = E.isogeny_class()
|
|
2721
|
+
sage: len(C)
|
|
2722
|
+
2
|
|
2723
|
+
sage: C.matrix()
|
|
2724
|
+
[1 2]
|
|
2725
|
+
[2 1]
|
|
2726
|
+
sage: [E.ainvs() for E in C]
|
|
2727
|
+
[(0, 0, 0, 83490*c^2 - 147015, -64739840*c^2 - 84465260),
|
|
2728
|
+
(0, 0, 0, -161535*c^2 + 70785, -62264180*c^3 + 6229080*c)]
|
|
2729
|
+
sage: C.isogenies()[0][1]
|
|
2730
|
+
Isogeny of degree 2
|
|
2731
|
+
from Elliptic Curve defined by
|
|
2732
|
+
y^2 = x^3 + (83490*c^2-147015)*x + (-64739840*c^2-84465260)
|
|
2733
|
+
over Number Field in c with defining polynomial x^4 + 3*x^2 + 1
|
|
2734
|
+
to Elliptic Curve defined by
|
|
2735
|
+
y^2 = x^3 + (-161535*c^2+70785)*x + (-62264180*c^3+6229080*c)
|
|
2736
|
+
over Number Field in c with defining polynomial x^4 + 3*x^2 + 1
|
|
2737
|
+
|
|
2738
|
+
An example with CM by `\sqrt{-23}` (class number `3`)::
|
|
2739
|
+
|
|
2740
|
+
sage: pol = PolynomialRing(QQ,'x')([1,-3,5,-5,5,-3,1])
|
|
2741
|
+
sage: L.<a> = NumberField(pol)
|
|
2742
|
+
sage: js = hilbert_class_polynomial(-23).roots(L,multiplicities=False); len(js)
|
|
2743
|
+
3
|
|
2744
|
+
sage: E = EllipticCurve(j=js[0])
|
|
2745
|
+
sage: E.has_rational_cm()
|
|
2746
|
+
True
|
|
2747
|
+
sage: len(E.isogenies_prime_degree()) # long time
|
|
2748
|
+
3
|
|
2749
|
+
sage: C = E.isogeny_class(); len(C) # long time
|
|
2750
|
+
6
|
|
2751
|
+
|
|
2752
|
+
The reason for the isogeny class having size six while the
|
|
2753
|
+
class number is only `3` is that the class also contains three
|
|
2754
|
+
curves with CM by the order of discriminant `-92=4\cdot(-23)`,
|
|
2755
|
+
which also has class number `3`. The curves in the class are
|
|
2756
|
+
sorted first by CM discriminant (then lexicographically using
|
|
2757
|
+
a-invariants)::
|
|
2758
|
+
|
|
2759
|
+
sage: [F.cm_discriminant() for F in C] # long time
|
|
2760
|
+
[-23, -23, -23, -92, -92, -92]
|
|
2761
|
+
|
|
2762
|
+
`2` splits in the order with discriminant `-23`, into two
|
|
2763
|
+
primes of order `3` in the class group, each of which induces
|
|
2764
|
+
a `2`-isogeny to a curve with the same endomorphism ring; the
|
|
2765
|
+
third `2`-isogeny is to a curve with the smaller endomorphism
|
|
2766
|
+
ring::
|
|
2767
|
+
|
|
2768
|
+
sage: [phi.codomain().cm_discriminant() for phi in E.isogenies_prime_degree()] # long time
|
|
2769
|
+
[-92, -23, -23]
|
|
2770
|
+
|
|
2771
|
+
sage: C.matrix() # long time # random
|
|
2772
|
+
[1 2 2 4 4 2]
|
|
2773
|
+
[2 1 2 4 2 4]
|
|
2774
|
+
[2 2 1 2 4 4]
|
|
2775
|
+
[4 4 2 1 3 3]
|
|
2776
|
+
[4 2 4 3 1 3]
|
|
2777
|
+
[2 4 4 3 3 1]
|
|
2778
|
+
|
|
2779
|
+
The graph of this isogeny class has a shape which does not
|
|
2780
|
+
occur over `\QQ`: a triangular prism. Note that for curves
|
|
2781
|
+
without CM, the graph has an edge between two curves if and
|
|
2782
|
+
only if they are connected by an isogeny of prime degree, and
|
|
2783
|
+
this degree is uniquely determined by the two curves, but in
|
|
2784
|
+
the CM case this property does not hold, since for pairs of
|
|
2785
|
+
curves in the class with the same endomorphism ring `O`, the
|
|
2786
|
+
set of degrees of isogenies between them is the set of
|
|
2787
|
+
integers represented by a primitive integral binary quadratic
|
|
2788
|
+
form of discriminant `\text{disc}(O)`, and this form
|
|
2789
|
+
represents infinitely many primes. In the matrix we give a
|
|
2790
|
+
small prime represented by the appropriate form. In this
|
|
2791
|
+
example, the matrix is formed by four `3\times3` blocks. The
|
|
2792
|
+
isogenies of degree `2` indicated by the upper left `3\times3`
|
|
2793
|
+
block of the matrix could be replaced by isogenies of any
|
|
2794
|
+
degree represented by the quadratic form `2x^2+xy+3y^2` of
|
|
2795
|
+
discriminant `-23`. Similarly in the lower right block, the
|
|
2796
|
+
entries of `3` could be represented by any integers
|
|
2797
|
+
represented by the quadratic form `3x^2+2xy+8y^2` of
|
|
2798
|
+
discriminant `-92`. In the top right block and lower left
|
|
2799
|
+
blocks, by contrast, the prime entries `2` are unique
|
|
2800
|
+
determined::
|
|
2801
|
+
|
|
2802
|
+
sage: # needs sage.graphs
|
|
2803
|
+
sage: G = C.graph() # long time
|
|
2804
|
+
sage: G.adjacency_matrix() # long time # random
|
|
2805
|
+
[0 1 1 0 0 1]
|
|
2806
|
+
[1 0 1 0 1 0]
|
|
2807
|
+
[1 1 0 1 0 0]
|
|
2808
|
+
[0 0 1 0 1 1]
|
|
2809
|
+
[0 1 0 1 0 1]
|
|
2810
|
+
[1 0 0 1 1 0]
|
|
2811
|
+
sage: Graph(polytopes.simplex(2).prism().adjacency_matrix()).is_isomorphic(G) # long time
|
|
2812
|
+
True
|
|
2813
|
+
|
|
2814
|
+
To display the graph without any edge labels::
|
|
2815
|
+
|
|
2816
|
+
sage: G.show() # not tested # needs sage.graphs
|
|
2817
|
+
|
|
2818
|
+
To display the graph with edge labels: by default, for curves
|
|
2819
|
+
with rational CM, the labels are the coefficients of the
|
|
2820
|
+
associated quadratic forms::
|
|
2821
|
+
|
|
2822
|
+
sage: G.show(edge_labels=True) # not tested # needs sage.graphs
|
|
2823
|
+
|
|
2824
|
+
For an alternative view, first relabel the edges using only 2
|
|
2825
|
+
labels to distinguish between isogenies between curves with
|
|
2826
|
+
the same endomorphism ring and isogenies between curves with
|
|
2827
|
+
different endomorphism rings, then use a 3-dimensional plot
|
|
2828
|
+
which can be rotated::
|
|
2829
|
+
|
|
2830
|
+
sage: for i, j, l in G.edge_iterator(): # long time # needs sage.graphs
|
|
2831
|
+
....: G.set_edge_label(i, j, l.count(','))
|
|
2832
|
+
sage: G.show3d(color_by_label=True) # long time # needs sage.graphs sage.plot
|
|
2833
|
+
|
|
2834
|
+
A class number `6` example. First we set up the fields: ``pol``
|
|
2835
|
+
defines the same field as ``pol26`` but is simpler::
|
|
2836
|
+
|
|
2837
|
+
sage: pol26 = hilbert_class_polynomial(-4*26)
|
|
2838
|
+
sage: x = polygen(QQ, 'x')
|
|
2839
|
+
sage: pol = x^6 - x^5 + 2*x^4 + x^3 - 2*x^2 - x - 1
|
|
2840
|
+
sage: K.<a> = NumberField(pol)
|
|
2841
|
+
sage: L.<b> = K.extension(x^2 + 26)
|
|
2842
|
+
|
|
2843
|
+
Only `2` of the `j`-invariants with discriminant -104 are in
|
|
2844
|
+
`K`, though all are in `L`::
|
|
2845
|
+
|
|
2846
|
+
sage: len(pol26.roots(K))
|
|
2847
|
+
2
|
|
2848
|
+
sage: len(pol26.roots(L))
|
|
2849
|
+
6
|
|
2850
|
+
|
|
2851
|
+
We create an elliptic curve defined over `K` with one of the
|
|
2852
|
+
`j`-invariants in `K`::
|
|
2853
|
+
|
|
2854
|
+
sage: j1 = pol26.roots(K)[0][0]
|
|
2855
|
+
sage: E = EllipticCurve(j=j1)
|
|
2856
|
+
sage: E.has_cm()
|
|
2857
|
+
True
|
|
2858
|
+
sage: E.has_rational_cm()
|
|
2859
|
+
False
|
|
2860
|
+
sage: E.has_rational_cm(L)
|
|
2861
|
+
True
|
|
2862
|
+
|
|
2863
|
+
Over `K` the isogeny class has size `4`, with `2` curves for
|
|
2864
|
+
each of the `2` `K`-rational `j`-invariants::
|
|
2865
|
+
|
|
2866
|
+
sage: C = E.isogeny_class(); len(C) # long time (~11s)
|
|
2867
|
+
4
|
|
2868
|
+
sage: C.matrix() # long time
|
|
2869
|
+
[ 1 13 2 26]
|
|
2870
|
+
[13 1 26 2]
|
|
2871
|
+
[ 2 26 1 13]
|
|
2872
|
+
[26 2 13 1]
|
|
2873
|
+
sage: len(Set([EE.j_invariant() for EE in C.curves])) # long time
|
|
2874
|
+
2
|
|
2875
|
+
|
|
2876
|
+
Over `L`, the isogeny class grows to size `6` (the class
|
|
2877
|
+
number)::
|
|
2878
|
+
|
|
2879
|
+
sage: EL = E.change_ring(L)
|
|
2880
|
+
sage: CL = EL.isogeny_class(minimal_models=False) # long time
|
|
2881
|
+
sage: len(CL) # long time
|
|
2882
|
+
6
|
|
2883
|
+
sage: s1 = Set([EE.j_invariant() for EE in CL.curves]) # long time
|
|
2884
|
+
sage: s2 = Set(pol26.roots(L, multiplicities=False)) # long time
|
|
2885
|
+
sage: s1 == s2 # long time
|
|
2886
|
+
True
|
|
2887
|
+
|
|
2888
|
+
In each position in the matrix of degrees, we see primes (or
|
|
2889
|
+
`1`). In fact the set of degrees of cyclic isogenies from
|
|
2890
|
+
curve `i` to curve `j` is infinite, and is the set of all
|
|
2891
|
+
integers represented by one of the primitive binary quadratic
|
|
2892
|
+
forms of discriminant `-104`, from which we have selected a
|
|
2893
|
+
small prime::
|
|
2894
|
+
|
|
2895
|
+
sage: CL.matrix() # long time # random (see :issue:`19229`)
|
|
2896
|
+
[1 2 3 3 5 5]
|
|
2897
|
+
[2 1 5 5 3 3]
|
|
2898
|
+
[3 5 1 3 2 5]
|
|
2899
|
+
[3 5 3 1 5 2]
|
|
2900
|
+
[5 3 2 5 1 3]
|
|
2901
|
+
[5 3 5 2 3 1]
|
|
2902
|
+
|
|
2903
|
+
To see the array of binary quadratic forms::
|
|
2904
|
+
|
|
2905
|
+
sage: CL.qf_matrix() # long time # random (see :issue:`19229`)
|
|
2906
|
+
[[[1], [2, 0, 13], [3, -2, 9], [3, -2, 9], [5, -4, 6], [5, -4, 6]],
|
|
2907
|
+
[[2, 0, 13], [1], [5, -4, 6], [5, -4, 6], [3, -2, 9], [3, -2, 9]],
|
|
2908
|
+
[[3, -2, 9], [5, -4, 6], [1], [3, -2, 9], [2, 0, 13], [5, -4, 6]],
|
|
2909
|
+
[[3, -2, 9], [5, -4, 6], [3, -2, 9], [1], [5, -4, 6], [2, 0, 13]],
|
|
2910
|
+
[[5, -4, 6], [3, -2, 9], [2, 0, 13], [5, -4, 6], [1], [3, -2, 9]],
|
|
2911
|
+
[[5, -4, 6], [3, -2, 9], [5, -4, 6], [2, 0, 13], [3, -2, 9], [1]]]
|
|
2912
|
+
|
|
2913
|
+
As in the non-CM case, the isogeny class may be visualized by
|
|
2914
|
+
obtaining its graph and plotting it. Since there are more
|
|
2915
|
+
edges than in the non-CM case, it may be preferable to omit
|
|
2916
|
+
the edge_labels::
|
|
2917
|
+
|
|
2918
|
+
sage: G = C.graph() # needs sage.graphs
|
|
2919
|
+
sage: G.show(edge_labels=False) # long time # needs sage.graphs sage.plot
|
|
2920
|
+
|
|
2921
|
+
It is possible to display a 3-dimensional plot, with colours
|
|
2922
|
+
to represent the different edge labels, in a form which can be
|
|
2923
|
+
rotated!::
|
|
2924
|
+
|
|
2925
|
+
sage: G.show3d(color_by_label=True) # long time # needs sage.graphs sage.plot
|
|
2926
|
+
|
|
2927
|
+
Over larger number fields several options make computations
|
|
2928
|
+
tractable. Here we use algorithm 'heuristic' which avoids a
|
|
2929
|
+
rigorous computation of the reducible primes, only testing
|
|
2930
|
+
those less than 1000, and setting ``minimal_models`` to
|
|
2931
|
+
``False`` avoid having to compute the class group of `K`. To
|
|
2932
|
+
obtain minimal models set proof.number_field(False); the class
|
|
2933
|
+
group computation takes an additional 10s::
|
|
2934
|
+
|
|
2935
|
+
sage: K.<z> = CyclotomicField(53)
|
|
2936
|
+
sage: E = EllipticCurve(K,[0,6,0,2,0])
|
|
2937
|
+
sage: C = E.isogeny_class(algorithm='heuristic', minimal_models=False); C # long time (10s)
|
|
2938
|
+
Isogeny class of Elliptic Curve defined by y^2 = x^3 + 6*x^2 + 2*x
|
|
2939
|
+
over Cyclotomic Field of order 53 and degree 52
|
|
2940
|
+
sage: C.curves # long time
|
|
2941
|
+
[Elliptic Curve defined by y^2 = x^3 + 6*x^2 + (-8)*x + (-48)
|
|
2942
|
+
over Cyclotomic Field of order 53 and degree 52,
|
|
2943
|
+
Elliptic Curve defined by y^2 = x^3 + 6*x^2 + 2*x
|
|
2944
|
+
over Cyclotomic Field of order 53 and degree 52]
|
|
2945
|
+
|
|
2946
|
+
TESTS:
|
|
2947
|
+
|
|
2948
|
+
An example which failed until fixed at :issue:`19229`::
|
|
2949
|
+
|
|
2950
|
+
sage: K.<a> = NumberField(x^2 - x + 1)
|
|
2951
|
+
sage: E = EllipticCurve([a+1, 1, 1, 0, 0])
|
|
2952
|
+
sage: C = E.isogeny_class(); len(C) # long time
|
|
2953
|
+
4
|
|
2954
|
+
|
|
2955
|
+
Check that :issue:`36780` is fixed::
|
|
2956
|
+
|
|
2957
|
+
sage: L5.<r5> = NumberField(x^2-5)
|
|
2958
|
+
sage: F = EllipticCurve(L5,[0,-4325477943600 *r5-4195572876000])
|
|
2959
|
+
sage: F.isogeny_class().matrix()
|
|
2960
|
+
[ 1 25 75 3 5 15]
|
|
2961
|
+
[25 1 3 75 5 15]
|
|
2962
|
+
[75 3 1 25 15 5]
|
|
2963
|
+
[ 3 75 25 1 15 5]
|
|
2964
|
+
[ 5 5 15 15 1 3]
|
|
2965
|
+
[15 15 5 5 3 1]
|
|
2966
|
+
"""
|
|
2967
|
+
try:
|
|
2968
|
+
return self._isoclass
|
|
2969
|
+
except AttributeError:
|
|
2970
|
+
from sage.schemes.elliptic_curves.isogeny_class import IsogenyClass_EC_NumberField
|
|
2971
|
+
self._isoclass = IsogenyClass_EC_NumberField(self, reducible_primes=reducible_primes, algorithm=algorithm, minimal_models=minimal_models)
|
|
2972
|
+
return self._isoclass
|
|
2973
|
+
|
|
2974
|
+
def isogenies_prime_degree(self, l=None, algorithm='Billerey', minimal_models=True):
|
|
2975
|
+
r"""
|
|
2976
|
+
Return a list of `\ell`-isogenies from ``self``, where `\ell` is a
|
|
2977
|
+
prime.
|
|
2978
|
+
|
|
2979
|
+
INPUT:
|
|
2980
|
+
|
|
2981
|
+
- ``l`` -- either ``None`` or a prime or a list of primes
|
|
2982
|
+
|
|
2983
|
+
- ``algorithm`` -- string (default: ``'Billerey'``); the algorithm
|
|
2984
|
+
to use to compute the reducible primes when ``l`` is ``None``.
|
|
2985
|
+
Ignored for CM curves or if ``l`` is provided. Values are
|
|
2986
|
+
'Billerey' (default), 'Larson', and 'heuristic'.
|
|
2987
|
+
|
|
2988
|
+
- ``minimal_models`` -- boolean (default: ``True``); if ``True``,
|
|
2989
|
+
all curves computed will be minimal or semi-minimal models.
|
|
2990
|
+
Over fields of larger degree it can be expensive to compute
|
|
2991
|
+
these so set to ``False``.
|
|
2992
|
+
|
|
2993
|
+
OUTPUT: list; `\ell`-isogenies for the given `\ell` or if `\ell` is
|
|
2994
|
+
``None``, all isogenies of prime degree (see below for the CM case)
|
|
2995
|
+
|
|
2996
|
+
.. NOTE::
|
|
2997
|
+
|
|
2998
|
+
Over `\QQ`, the codomains of the isogenies returned are
|
|
2999
|
+
standard minimal models. Over other number fields they are
|
|
3000
|
+
global minimal models if these exist, otherwise models
|
|
3001
|
+
which are minimal at all but one prime.
|
|
3002
|
+
|
|
3003
|
+
.. NOTE::
|
|
3004
|
+
|
|
3005
|
+
For curves with rational CM, isogenies of primes degree
|
|
3006
|
+
exist for infinitely many primes `\ell`, though there are
|
|
3007
|
+
only finitely many isogenous curves up to isomorphism. The
|
|
3008
|
+
list returned only includes one isogeny of prime degree for
|
|
3009
|
+
each codomain.
|
|
3010
|
+
|
|
3011
|
+
EXAMPLES::
|
|
3012
|
+
|
|
3013
|
+
sage: K.<i> = QuadraticField(-1)
|
|
3014
|
+
sage: E = EllipticCurve(K, [0,0,0,0,1])
|
|
3015
|
+
sage: isogs = E.isogenies_prime_degree()
|
|
3016
|
+
sage: [phi.degree() for phi in isogs]
|
|
3017
|
+
[2, 3]
|
|
3018
|
+
|
|
3019
|
+
sage: pol = PolynomialRing(QQ,'x')([1,-3,5,-5,5,-3,1])
|
|
3020
|
+
sage: L.<a> = NumberField(pol)
|
|
3021
|
+
sage: js = hilbert_class_polynomial(-23).roots(L, multiplicities=False); len(js)
|
|
3022
|
+
3
|
|
3023
|
+
sage: E = EllipticCurve(j=js[0])
|
|
3024
|
+
sage: len(E.isogenies_prime_degree()) # long time
|
|
3025
|
+
3
|
|
3026
|
+
|
|
3027
|
+
Set ``minimal_models`` to False to avoid computing minimal
|
|
3028
|
+
models of the isogenous curves, since that can be
|
|
3029
|
+
time-consuming since it requires computation of the class
|
|
3030
|
+
group::
|
|
3031
|
+
|
|
3032
|
+
sage: proof.number_field(False)
|
|
3033
|
+
sage: K.<z> = CyclotomicField(53)
|
|
3034
|
+
sage: E = EllipticCurve(K, [0,6,0,2,0])
|
|
3035
|
+
sage: E.isogenies_prime_degree(2, minimal_models=False)
|
|
3036
|
+
[Isogeny of degree 2
|
|
3037
|
+
from Elliptic Curve defined by y^2 = x^3 + 6*x^2 + 2*x
|
|
3038
|
+
over Cyclotomic Field of order 53 and degree 52
|
|
3039
|
+
to Elliptic Curve defined by y^2 = x^3 + 6*x^2 + (-8)*x + (-48)
|
|
3040
|
+
over Cyclotomic Field of order 53 and degree 52]
|
|
3041
|
+
sage: E.isogenies_prime_degree(2, minimal_models=True) # not tested (10s)
|
|
3042
|
+
[Isogeny of degree 2
|
|
3043
|
+
from Elliptic Curve defined by y^2 = x^3 + 6*x^2 + 2*x
|
|
3044
|
+
over Cyclotomic Field of order 53 and degree 52
|
|
3045
|
+
to Elliptic Curve defined by y^2 = x^3 + (-20)*x + (-16)
|
|
3046
|
+
over Cyclotomic Field of order 53 and degree 52]
|
|
3047
|
+
|
|
3048
|
+
TESTS::
|
|
3049
|
+
|
|
3050
|
+
sage: E.isogenies_prime_degree(4)
|
|
3051
|
+
Traceback (most recent call last):
|
|
3052
|
+
...
|
|
3053
|
+
ValueError: 4 is not prime.
|
|
3054
|
+
"""
|
|
3055
|
+
from .isogeny_small_degree import isogenies_prime_degree
|
|
3056
|
+
|
|
3057
|
+
if l is not None and not isinstance(l, list):
|
|
3058
|
+
try:
|
|
3059
|
+
l = ZZ(l)
|
|
3060
|
+
except TypeError:
|
|
3061
|
+
raise ValueError("%s is not a prime integer" % l)
|
|
3062
|
+
try:
|
|
3063
|
+
if l.is_prime(proof=False):
|
|
3064
|
+
return isogenies_prime_degree(self, l, minimal_models=minimal_models)
|
|
3065
|
+
else:
|
|
3066
|
+
raise ValueError("%s is not prime." % l)
|
|
3067
|
+
except AttributeError:
|
|
3068
|
+
raise ValueError("%s is not prime." % l)
|
|
3069
|
+
|
|
3070
|
+
if l is None:
|
|
3071
|
+
from .isogeny_class import possible_isogeny_degrees
|
|
3072
|
+
L = possible_isogeny_degrees(self)
|
|
3073
|
+
return self.isogenies_prime_degree(L, minimal_models=minimal_models)
|
|
3074
|
+
|
|
3075
|
+
isogs = sum([self.isogenies_prime_degree(p, minimal_models=minimal_models) for p in l],
|
|
3076
|
+
[])
|
|
3077
|
+
|
|
3078
|
+
if self.has_rational_cm():
|
|
3079
|
+
# eliminate any endomorphisms and repeated codomains
|
|
3080
|
+
isogs = [phi for phi in isogs if not self.is_isomorphic(phi.codomain())]
|
|
3081
|
+
codoms = [phi.codomain() for phi in isogs]
|
|
3082
|
+
isogs = [phi for i, phi in enumerate(isogs)
|
|
3083
|
+
if not any(E.is_isomorphic(codoms[i])
|
|
3084
|
+
for E in codoms[:i])]
|
|
3085
|
+
return isogs
|
|
3086
|
+
|
|
3087
|
+
def is_isogenous(self, other, proof=True, maxnorm=100):
|
|
3088
|
+
"""
|
|
3089
|
+
Return whether or not ``self`` is isogenous to ``other``.
|
|
3090
|
+
|
|
3091
|
+
INPUT:
|
|
3092
|
+
|
|
3093
|
+
- ``other`` -- another elliptic curve
|
|
3094
|
+
|
|
3095
|
+
- ``proof`` -- boolean (default: ``True``); if ``False``, the function
|
|
3096
|
+
will return ``True`` whenever the two curves have the same
|
|
3097
|
+
conductor and are isogenous modulo `p` for all primes `p` of
|
|
3098
|
+
norm up to ``maxnorm``. If ``True``, the function returns
|
|
3099
|
+
False when the previous condition does not hold, and if it
|
|
3100
|
+
does hold we compute the complete isogeny class to see if
|
|
3101
|
+
the curves are indeed isogenous.
|
|
3102
|
+
|
|
3103
|
+
- ``maxnorm`` -- integer (default: 100); the maximum norm of
|
|
3104
|
+
primes `p` for which isogeny modulo `p` will be checked
|
|
3105
|
+
|
|
3106
|
+
OUTPUT:
|
|
3107
|
+
|
|
3108
|
+
boolean; ``True`` if there is an isogeny from curve ``self`` to
|
|
3109
|
+
curve ``other``.
|
|
3110
|
+
|
|
3111
|
+
EXAMPLES::
|
|
3112
|
+
|
|
3113
|
+
sage: x = polygen(QQ, 'x')
|
|
3114
|
+
sage: F = NumberField(x^2 - 2, 's'); F
|
|
3115
|
+
Number Field in s with defining polynomial x^2 - 2
|
|
3116
|
+
sage: E1 = EllipticCurve(F, [7,8])
|
|
3117
|
+
sage: E2 = EllipticCurve(F, [0,5,0,1,0])
|
|
3118
|
+
sage: E3 = EllipticCurve(F, [0,-10,0,21,0])
|
|
3119
|
+
sage: E1.is_isogenous(E2)
|
|
3120
|
+
False
|
|
3121
|
+
sage: E1.is_isogenous(E1)
|
|
3122
|
+
True
|
|
3123
|
+
sage: E2.is_isogenous(E2)
|
|
3124
|
+
True
|
|
3125
|
+
sage: E2.is_isogenous(E1)
|
|
3126
|
+
False
|
|
3127
|
+
sage: E2.is_isogenous(E3)
|
|
3128
|
+
True
|
|
3129
|
+
|
|
3130
|
+
::
|
|
3131
|
+
|
|
3132
|
+
sage: x = polygen(QQ, 'x')
|
|
3133
|
+
sage: F = NumberField(x^2 - 2, 's'); F
|
|
3134
|
+
Number Field in s with defining polynomial x^2 - 2
|
|
3135
|
+
sage: E = EllipticCurve('14a1')
|
|
3136
|
+
sage: EE = EllipticCurve('14a2')
|
|
3137
|
+
sage: E1 = E.change_ring(F)
|
|
3138
|
+
sage: E2 = EE.change_ring(F)
|
|
3139
|
+
sage: E1.is_isogenous(E2)
|
|
3140
|
+
True
|
|
3141
|
+
|
|
3142
|
+
::
|
|
3143
|
+
|
|
3144
|
+
sage: x = polygen(QQ, 'x')
|
|
3145
|
+
sage: F = NumberField(x^2 - 2, 's'); F
|
|
3146
|
+
Number Field in s with defining polynomial x^2 - 2
|
|
3147
|
+
sage: k.<a> = NumberField(x^3 + 7)
|
|
3148
|
+
sage: E = EllipticCurve(F, [7,8])
|
|
3149
|
+
sage: EE = EllipticCurve(k, [2, 2])
|
|
3150
|
+
sage: E.is_isogenous(EE)
|
|
3151
|
+
Traceback (most recent call last):
|
|
3152
|
+
...
|
|
3153
|
+
ValueError: Second argument must be defined over the same number field.
|
|
3154
|
+
|
|
3155
|
+
Some examples from Cremona's 1981 tables::
|
|
3156
|
+
|
|
3157
|
+
sage: K.<i> = QuadraticField(-1)
|
|
3158
|
+
sage: E1 = EllipticCurve([i + 1, 0, 1, -240*i - 400, -2869*i - 2627])
|
|
3159
|
+
sage: E1.conductor()
|
|
3160
|
+
Fractional ideal (4*i + 7)
|
|
3161
|
+
sage: E2 = EllipticCurve([1+i,0,1,0,0])
|
|
3162
|
+
sage: E2.conductor()
|
|
3163
|
+
Fractional ideal (4*i + 7)
|
|
3164
|
+
sage: E1.is_isogenous(E2) # long time
|
|
3165
|
+
True
|
|
3166
|
+
sage: E1.is_isogenous(E2, proof=False) # faster (~170ms)
|
|
3167
|
+
True
|
|
3168
|
+
|
|
3169
|
+
In this case E1 and E2 are in fact 9-isogenous, as may be
|
|
3170
|
+
deduced from the following::
|
|
3171
|
+
|
|
3172
|
+
sage: E3 = EllipticCurve([i + 1, 0, 1, -5*i - 5, -2*i - 5])
|
|
3173
|
+
sage: E3.is_isogenous(E1)
|
|
3174
|
+
True
|
|
3175
|
+
sage: E3.is_isogenous(E2)
|
|
3176
|
+
True
|
|
3177
|
+
sage: E1.isogeny_degree(E2) # long time
|
|
3178
|
+
9
|
|
3179
|
+
|
|
3180
|
+
TESTS:
|
|
3181
|
+
|
|
3182
|
+
Check that :issue:`15890` is fixed::
|
|
3183
|
+
|
|
3184
|
+
sage: K.<s> = QuadraticField(229)
|
|
3185
|
+
sage: c4 = 2173 - 235*(1 - s)/2
|
|
3186
|
+
sage: c6 = -124369 + 15988*(1 - s)/2
|
|
3187
|
+
sage: c4c = 2173 - 235*(1 + s)/2
|
|
3188
|
+
sage: c6c = -124369 + 15988*(1 + s)/2
|
|
3189
|
+
sage: E = EllipticCurve_from_c4c6(c4, c6)
|
|
3190
|
+
sage: Ec = EllipticCurve_from_c4c6(c4c, c6c)
|
|
3191
|
+
sage: E.is_isogenous(Ec) # needs sage.symbolic
|
|
3192
|
+
True
|
|
3193
|
+
|
|
3194
|
+
Check that :issue:`17295` is fixed::
|
|
3195
|
+
|
|
3196
|
+
sage: k.<s> = QuadraticField(2)
|
|
3197
|
+
sage: K.<b> = k.extension(x^2 - 3)
|
|
3198
|
+
sage: E = EllipticCurve(k, [-3*s*(4 + 5*s), 2*s*(2 + 14*s + 11*s^2)])
|
|
3199
|
+
sage: Ec = EllipticCurve(k, [3*s*(4 - 5*s), -2*s*(2 - 14*s + 11*s^2)])
|
|
3200
|
+
sage: EK = E.base_extend(K)
|
|
3201
|
+
sage: EcK = Ec.base_extend(K)
|
|
3202
|
+
sage: EK.is_isogenous(EcK) # long time (about 3.5 s) # needs sage.symbolic
|
|
3203
|
+
True
|
|
3204
|
+
"""
|
|
3205
|
+
if not isinstance(other, EllipticCurve_generic):
|
|
3206
|
+
raise ValueError("Second argument is not an Elliptic Curve.")
|
|
3207
|
+
if self.is_isomorphic(other):
|
|
3208
|
+
return True
|
|
3209
|
+
K = self.base_field()
|
|
3210
|
+
if K != other.base_field():
|
|
3211
|
+
raise ValueError("Second argument must be defined over the same number field.")
|
|
3212
|
+
|
|
3213
|
+
E1 = self.integral_model()
|
|
3214
|
+
E2 = other.integral_model()
|
|
3215
|
+
N = E1.conductor()
|
|
3216
|
+
if N != E2.conductor():
|
|
3217
|
+
return False
|
|
3218
|
+
|
|
3219
|
+
PI = K.primes_of_degree_one_iter()
|
|
3220
|
+
while True:
|
|
3221
|
+
P = next(PI)
|
|
3222
|
+
if P.absolute_norm() > maxnorm:
|
|
3223
|
+
break
|
|
3224
|
+
if not P.divides(N):
|
|
3225
|
+
if E1.reduction(P).cardinality() != E2.reduction(P).cardinality():
|
|
3226
|
+
return False
|
|
3227
|
+
|
|
3228
|
+
if not proof:
|
|
3229
|
+
return True
|
|
3230
|
+
|
|
3231
|
+
# We first try the easiest cases: primes for which X_0(l) has genus 0:
|
|
3232
|
+
|
|
3233
|
+
for l in [2, 3, 5, 7, 13]:
|
|
3234
|
+
if any(E2.is_isomorphic(f.codomain())
|
|
3235
|
+
for f in E1.isogenies_prime_degree(l)):
|
|
3236
|
+
return True
|
|
3237
|
+
|
|
3238
|
+
# Next we try the primes for which X_0^+(l) has genus 0 for
|
|
3239
|
+
# which isogeny-finding is faster than in general:
|
|
3240
|
+
|
|
3241
|
+
from .isogeny_small_degree import hyperelliptic_primes
|
|
3242
|
+
for l in hyperelliptic_primes:
|
|
3243
|
+
if any(E2.is_isomorphic(f.codomain())
|
|
3244
|
+
for f in E1.isogenies_prime_degree(l)):
|
|
3245
|
+
return True
|
|
3246
|
+
|
|
3247
|
+
# Next we try looking modulo some more primes:
|
|
3248
|
+
|
|
3249
|
+
while True:
|
|
3250
|
+
if P.absolute_norm() > 10 * maxnorm:
|
|
3251
|
+
break
|
|
3252
|
+
if not P.divides(N):
|
|
3253
|
+
OP = K.residue_field(P)
|
|
3254
|
+
if E1.change_ring(OP).cardinality() != E2.change_ring(OP).cardinality():
|
|
3255
|
+
return False
|
|
3256
|
+
P = next(PI)
|
|
3257
|
+
|
|
3258
|
+
# Finally we compute the full isogeny class of E1 and check if
|
|
3259
|
+
# E2 is isomorphic to any curve in the class:
|
|
3260
|
+
|
|
3261
|
+
return any(E2.is_isomorphic(E3) for E3 in E1.isogeny_class().curves)
|
|
3262
|
+
|
|
3263
|
+
raise NotImplementedError("Curves appear to be isogenous (same conductor, isogenous modulo all primes of norm up to %s), but no isogeny has been constructed." % (10*maxnorm))
|
|
3264
|
+
|
|
3265
|
+
def isogeny_degree(self, other):
|
|
3266
|
+
"""
|
|
3267
|
+
Return the minimal degree of an isogeny between ``self`` and
|
|
3268
|
+
``other``, or 0 if no isogeny exists.
|
|
3269
|
+
|
|
3270
|
+
INPUT:
|
|
3271
|
+
|
|
3272
|
+
- ``other`` -- another elliptic curve
|
|
3273
|
+
|
|
3274
|
+
OUTPUT: integer; the degree of an isogeny from ``self`` to ``other``, or 0
|
|
3275
|
+
|
|
3276
|
+
EXAMPLES::
|
|
3277
|
+
|
|
3278
|
+
sage: x = QQ['x'].0
|
|
3279
|
+
sage: F = NumberField(x^2 - 2, 's'); F
|
|
3280
|
+
Number Field in s with defining polynomial x^2 - 2
|
|
3281
|
+
sage: E = EllipticCurve('14a1')
|
|
3282
|
+
sage: EE = EllipticCurve('14a2')
|
|
3283
|
+
sage: E1 = E.change_ring(F)
|
|
3284
|
+
sage: E2 = EE.change_ring(F)
|
|
3285
|
+
sage: E1.isogeny_degree(E2) # long time
|
|
3286
|
+
2
|
|
3287
|
+
sage: E2.isogeny_degree(E2)
|
|
3288
|
+
1
|
|
3289
|
+
sage: E5 = EllipticCurve('14a5').change_ring(F)
|
|
3290
|
+
sage: E1.isogeny_degree(E5) # long time
|
|
3291
|
+
6
|
|
3292
|
+
|
|
3293
|
+
sage: E = EllipticCurve('11a1')
|
|
3294
|
+
sage: [E2.label() for E2 in cremona_curves([11..20]) if E.isogeny_degree(E2)]
|
|
3295
|
+
['11a1', '11a2', '11a3']
|
|
3296
|
+
|
|
3297
|
+
sage: K.<i> = QuadraticField(-1)
|
|
3298
|
+
sage: E = EllipticCurve([1+i, -i, i, 1, 0])
|
|
3299
|
+
sage: C = E.isogeny_class() # long time
|
|
3300
|
+
sage: [E.isogeny_degree(F) for F in C] # long time
|
|
3301
|
+
[2, 6, 18, 9, 3, 1]
|
|
3302
|
+
"""
|
|
3303
|
+
# First deal with some easy cases:
|
|
3304
|
+
if self.conductor() != other.conductor():
|
|
3305
|
+
return ZZ.zero()
|
|
3306
|
+
|
|
3307
|
+
if self.is_isomorphic(other):
|
|
3308
|
+
return ZZ.one()
|
|
3309
|
+
|
|
3310
|
+
C = self.isogeny_class()
|
|
3311
|
+
i = C.index(self) # may not be 0 since curves are sorted
|
|
3312
|
+
try:
|
|
3313
|
+
return C.matrix()[i][C.index(other)]
|
|
3314
|
+
except ValueError:
|
|
3315
|
+
return ZZ.zero()
|
|
3316
|
+
|
|
3317
|
+
def reducible_primes(self, algorithm='Billerey', max_l=None,
|
|
3318
|
+
num_l=None, verbose=False):
|
|
3319
|
+
r"""
|
|
3320
|
+
Return a finite set of primes `\ell` for which `E` has a
|
|
3321
|
+
K-rational `\ell`-isogeny.
|
|
3322
|
+
|
|
3323
|
+
For curves without CM the list returned is exactly the finite
|
|
3324
|
+
set of primes `\ell` for which the mod-`\ell` Galois
|
|
3325
|
+
representation is reducible. For curves with CM this set is
|
|
3326
|
+
infinite; we return a (not necessarily minimal) finite list
|
|
3327
|
+
of primes `\ell` such that every curve isogenous to this curve
|
|
3328
|
+
can be obtained by a finite sequence of isogenies of degree one
|
|
3329
|
+
of the primes in the list.
|
|
3330
|
+
|
|
3331
|
+
INPUT:
|
|
3332
|
+
|
|
3333
|
+
- ``algorithm`` -- string; only relevant for non-CM curves
|
|
3334
|
+
Either 'Billerey", to use the methods of [Bil2011]_,
|
|
3335
|
+
'Larson' to use Larson's implementation using Galois
|
|
3336
|
+
representations, or 'heuristic' (see below).
|
|
3337
|
+
|
|
3338
|
+
- ``max_l`` -- integer or ``None``; only relevant for non-CM
|
|
3339
|
+
curves and algorithms 'Billerey' and 'heuristic. Controls
|
|
3340
|
+
the maximum prime used in either algorithm. If ``None``,
|
|
3341
|
+
use the default for that algorithm.
|
|
3342
|
+
|
|
3343
|
+
- ``num_l`` -- integer or ``None``; only relevant for non-CM
|
|
3344
|
+
curves and algorithm 'Billerey'. Controls the maximum
|
|
3345
|
+
number of primes used in the algorithm. If ``None``, use
|
|
3346
|
+
the default for that algorithm.
|
|
3347
|
+
|
|
3348
|
+
.. NOTE::
|
|
3349
|
+
|
|
3350
|
+
The 'heuristic' algorithm only checks primes up to the
|
|
3351
|
+
bound ``max_l``. This is faster but not guaranteed to be
|
|
3352
|
+
complete. Both the Billerey and Larson algorithms are
|
|
3353
|
+
rigorous.
|
|
3354
|
+
|
|
3355
|
+
EXAMPLES::
|
|
3356
|
+
|
|
3357
|
+
sage: x = polygen(ZZ, 'x')
|
|
3358
|
+
sage: K = NumberField(x**2 - 29, 'a'); a = K.gen()
|
|
3359
|
+
sage: E = EllipticCurve([1, 0, ((5 + a)/2)**2, 0, 0])
|
|
3360
|
+
sage: rho = E.galois_representation()
|
|
3361
|
+
sage: rho.reducible_primes() # long time
|
|
3362
|
+
[3, 5]
|
|
3363
|
+
sage: E.reducible_primes() # long time
|
|
3364
|
+
[3, 5]
|
|
3365
|
+
sage: K = NumberField(x**2 + 1, 'a')
|
|
3366
|
+
sage: E = EllipticCurve_from_j(K(1728)) # CM over K
|
|
3367
|
+
sage: rho = E.galois_representation()
|
|
3368
|
+
sage: rho.reducible_primes() # CM curves always return [0]
|
|
3369
|
+
[0]
|
|
3370
|
+
sage: E.reducible_primes()
|
|
3371
|
+
[2, 5]
|
|
3372
|
+
sage: E = EllipticCurve_from_j(K(0)) # CM but NOT over K
|
|
3373
|
+
sage: rho = E.galois_representation()
|
|
3374
|
+
sage: rho.reducible_primes() # long time
|
|
3375
|
+
[2, 3]
|
|
3376
|
+
sage: E.reducible_primes()
|
|
3377
|
+
[2, 3]
|
|
3378
|
+
sage: E = EllipticCurve_from_j(K(2268945/128)).global_minimal_model() # c.f. [Sut2012]
|
|
3379
|
+
sage: rho = E.galois_representation()
|
|
3380
|
+
sage: rho.isogeny_bound() # ..but there is no 7-isogeny, long time
|
|
3381
|
+
[7]
|
|
3382
|
+
sage: rho.reducible_primes() # long time
|
|
3383
|
+
[]
|
|
3384
|
+
sage: E.reducible_primes() # long time
|
|
3385
|
+
[]
|
|
3386
|
+
"""
|
|
3387
|
+
from sage.schemes.elliptic_curves.isogeny_class import possible_isogeny_degrees
|
|
3388
|
+
return possible_isogeny_degrees(self, max_l=max_l, num_l=num_l, exact=True, verbose=verbose)
|
|
3389
|
+
|
|
3390
|
+
def lll_reduce(self, points, height_matrix=None, precision=None):
|
|
3391
|
+
r"""
|
|
3392
|
+
Return an LLL-reduced basis from a given basis, with transform
|
|
3393
|
+
matrix.
|
|
3394
|
+
|
|
3395
|
+
INPUT:
|
|
3396
|
+
|
|
3397
|
+
- ``points`` -- list of points on this elliptic
|
|
3398
|
+
curve, which should be independent
|
|
3399
|
+
|
|
3400
|
+
- ``height_matrix`` -- the height-pairing matrix of
|
|
3401
|
+
the points, or ``None``. If ``None``, it will be computed.
|
|
3402
|
+
|
|
3403
|
+
- ``precision`` -- number of bits of precision of intermediate
|
|
3404
|
+
computations (default: ``None``, for default RealField
|
|
3405
|
+
precision; ignored if ``height_matrix`` is supplied)
|
|
3406
|
+
|
|
3407
|
+
OUTPUT: a tuple (newpoints, U) where U is a unimodular integer
|
|
3408
|
+
matrix, new_points is the transform of points by U, such that
|
|
3409
|
+
new_points has LLL-reduced height pairing matrix
|
|
3410
|
+
|
|
3411
|
+
.. NOTE::
|
|
3412
|
+
|
|
3413
|
+
If the input points are not independent, the output
|
|
3414
|
+
depends on the undocumented behaviour of PARI's
|
|
3415
|
+
:pari:`qflllgram` function when applied to a Gram matrix which
|
|
3416
|
+
is not positive definite.
|
|
3417
|
+
|
|
3418
|
+
EXAMPLES:
|
|
3419
|
+
|
|
3420
|
+
Some examples over `\QQ`::
|
|
3421
|
+
|
|
3422
|
+
sage: # needs eclib
|
|
3423
|
+
sage: E = EllipticCurve([0, 1, 1, -2, 42])
|
|
3424
|
+
sage: Pi = E.gens(); Pi
|
|
3425
|
+
[(-4 : 1 : 1), (-3 : 5 : 1), (-11/4 : 43/8 : 1), (-2 : 6 : 1)]
|
|
3426
|
+
sage: Qi, U = E.lll_reduce(Pi)
|
|
3427
|
+
sage: all(sum(U[i,j]*Pi[i] for i in range(4)) == Qi[j] for j in range(4))
|
|
3428
|
+
True
|
|
3429
|
+
sage: sorted(Qi)
|
|
3430
|
+
[(-4 : 1 : 1), (-3 : 5 : 1), (-2 : 6 : 1), (0 : 6 : 1)]
|
|
3431
|
+
sage: U.det()
|
|
3432
|
+
1
|
|
3433
|
+
sage: E.regulator_of_points(Pi)
|
|
3434
|
+
4.59088036960573
|
|
3435
|
+
sage: E.regulator_of_points(Qi)
|
|
3436
|
+
4.59088036960574
|
|
3437
|
+
|
|
3438
|
+
::
|
|
3439
|
+
|
|
3440
|
+
sage: E = EllipticCurve([1,0,1,-120039822036992245303534619191166796374,504224992484910670010801799168082726759443756222911415116])
|
|
3441
|
+
sage: xi = [2005024558054813068,
|
|
3442
|
+
....: -4690836759490453344,
|
|
3443
|
+
....: 4700156326649806635,
|
|
3444
|
+
....: 6785546256295273860,
|
|
3445
|
+
....: 6823803569166584943,
|
|
3446
|
+
....: 7788809602110240789,
|
|
3447
|
+
....: 27385442304350994620556,
|
|
3448
|
+
....: 54284682060285253719/4,
|
|
3449
|
+
....: -94200235260395075139/25,
|
|
3450
|
+
....: -3463661055331841724647/576,
|
|
3451
|
+
....: -6684065934033506970637/676,
|
|
3452
|
+
....: -956077386192640344198/2209,
|
|
3453
|
+
....: -27067471797013364392578/2809,
|
|
3454
|
+
....: -25538866857137199063309/3721,
|
|
3455
|
+
....: -1026325011760259051894331/108241,
|
|
3456
|
+
....: 9351361230729481250627334/1366561,
|
|
3457
|
+
....: 10100878635879432897339615/1423249,
|
|
3458
|
+
....: 11499655868211022625340735/17522596,
|
|
3459
|
+
....: 110352253665081002517811734/21353641,
|
|
3460
|
+
....: 414280096426033094143668538257/285204544,
|
|
3461
|
+
....: 36101712290699828042930087436/4098432361,
|
|
3462
|
+
....: 45442463408503524215460183165/5424617104,
|
|
3463
|
+
....: 983886013344700707678587482584/141566320009,
|
|
3464
|
+
....: 1124614335716851053281176544216033/152487126016]
|
|
3465
|
+
sage: points = [E.lift_x(x) for x in xi]
|
|
3466
|
+
sage: newpoints, U = E.lll_reduce(points) # long time (35s on sage.math, 2011)
|
|
3467
|
+
sage: [P[0] for P in newpoints] # long time
|
|
3468
|
+
[6823803569166584943, 5949539878899294213, 2005024558054813068, 5864879778877955778, 23955263915878682727/4, 5922188321411938518, 5286988283823825378, 11465667352242779838, -11451575907286171572, 3502708072571012181, 1500143935183238709184/225, 27180522378120223419/4, -5811874164190604461581/625, 26807786527159569093, 7041412654828066743, 475656155255883588, 265757454726766017891/49, 7272142121019825303, 50628679173833693415/4, 6951643522366348968, 6842515151518070703, 111593750389650846885/16, 2607467890531740394315/9, -1829928525835506297]
|
|
3469
|
+
|
|
3470
|
+
An example to show the explicit use of the height pairing matrix::
|
|
3471
|
+
|
|
3472
|
+
sage: # needs eclib
|
|
3473
|
+
sage: E = EllipticCurve([0, 1, 1, -2, 42])
|
|
3474
|
+
sage: Pi = E.gens()
|
|
3475
|
+
sage: H = E.height_pairing_matrix(Pi,3)
|
|
3476
|
+
sage: E.lll_reduce(Pi,height_matrix=H)
|
|
3477
|
+
(
|
|
3478
|
+
[1 0 0 1]
|
|
3479
|
+
[0 1 0 1]
|
|
3480
|
+
[0 0 0 1]
|
|
3481
|
+
[(-4 : 1 : 1), (-3 : 5 : 1), (-2 : 6 : 1), (1 : -7 : 1)], [0 0 1 1]
|
|
3482
|
+
)
|
|
3483
|
+
|
|
3484
|
+
Some examples over number fields (see :issue:`9411`)::
|
|
3485
|
+
|
|
3486
|
+
sage: K.<a> = QuadraticField(-23, 'a')
|
|
3487
|
+
sage: E = EllipticCurve(K, [0,0,1,-1,0])
|
|
3488
|
+
sage: P = E(-2, -(a+1)/2)
|
|
3489
|
+
sage: Q = E(0,-1)
|
|
3490
|
+
sage: E.lll_reduce([P,Q])
|
|
3491
|
+
(
|
|
3492
|
+
[ 0 -1]
|
|
3493
|
+
[(0 : -1 : 1), (-2 : 1/2*a - 1/2 : 1)], [ 1 0]
|
|
3494
|
+
)
|
|
3495
|
+
|
|
3496
|
+
::
|
|
3497
|
+
|
|
3498
|
+
sage: K.<a> = QuadraticField(-5)
|
|
3499
|
+
sage: E = EllipticCurve(K, [0,a])
|
|
3500
|
+
sage: points = [E.point([-211/841*a - 6044/841,-209584/24389*a + 53634/24389]),
|
|
3501
|
+
....: E.point([-17/18*a - 1/9, -109/108*a - 277/108])]
|
|
3502
|
+
sage: E.lll_reduce(points)
|
|
3503
|
+
(
|
|
3504
|
+
[(-a + 4 : -3*a + 7 : 1), (-17/18*a - 1/9 : -109/108*a - 277/108 : 1)],
|
|
3505
|
+
<BLANKLINE>
|
|
3506
|
+
[1 0]
|
|
3507
|
+
[1 1]
|
|
3508
|
+
)
|
|
3509
|
+
"""
|
|
3510
|
+
r = len(points)
|
|
3511
|
+
if height_matrix is None:
|
|
3512
|
+
height_matrix = self.height_pairing_matrix(points, precision)
|
|
3513
|
+
U = height_matrix.__pari__().lllgram().sage()
|
|
3514
|
+
new_points = [sum([U[j, i]*points[j] for j in range(r)])
|
|
3515
|
+
for i in range(r)]
|
|
3516
|
+
return new_points, U
|
|
3517
|
+
|
|
3518
|
+
def galois_representation(self):
|
|
3519
|
+
r"""
|
|
3520
|
+
The compatible family of the Galois representation
|
|
3521
|
+
attached to this elliptic curve.
|
|
3522
|
+
|
|
3523
|
+
Given an elliptic curve `E` over a number field `K`
|
|
3524
|
+
and a rational prime number `p`, the `p^n`-torsion
|
|
3525
|
+
`E[p^n]` points of `E` is a representation of the
|
|
3526
|
+
absolute Galois group of `K`. As `n` varies
|
|
3527
|
+
we obtain the Tate module `T_p E` which is a
|
|
3528
|
+
a representation of `G_K` on a free `\ZZ_p`-module
|
|
3529
|
+
of rank `2`. As `p` varies the representations
|
|
3530
|
+
are compatible.
|
|
3531
|
+
|
|
3532
|
+
EXAMPLES::
|
|
3533
|
+
|
|
3534
|
+
sage: x = polygen(ZZ, 'x')
|
|
3535
|
+
sage: K = NumberField(x**2 + 1, 'a')
|
|
3536
|
+
sage: E = EllipticCurve('11a1').change_ring(K)
|
|
3537
|
+
sage: rho = E.galois_representation()
|
|
3538
|
+
sage: rho
|
|
3539
|
+
Compatible family of Galois representations associated to the
|
|
3540
|
+
Elliptic Curve defined by y^2 + y = x^3 + (-1)*x^2 + (-10)*x + (-20)
|
|
3541
|
+
over Number Field in a with defining polynomial x^2 + 1
|
|
3542
|
+
sage: rho.is_surjective(3)
|
|
3543
|
+
True
|
|
3544
|
+
sage: rho.is_surjective(5) # long time (4s on sage.math, 2014)
|
|
3545
|
+
False
|
|
3546
|
+
sage: rho.non_surjective()
|
|
3547
|
+
[5]
|
|
3548
|
+
"""
|
|
3549
|
+
from .gal_reps_number_field import GaloisRepresentation
|
|
3550
|
+
return GaloisRepresentation(self)
|
|
3551
|
+
|
|
3552
|
+
@cached_method
|
|
3553
|
+
def cm_discriminant(self):
|
|
3554
|
+
"""
|
|
3555
|
+
Return the CM discriminant of the `j`-invariant of this curve, or 0.
|
|
3556
|
+
|
|
3557
|
+
OUTPUT:
|
|
3558
|
+
|
|
3559
|
+
An integer `D` which is either `0` if this curve `E` does not
|
|
3560
|
+
have Complex Multiplication) (CM), or an imaginary quadratic
|
|
3561
|
+
discriminant if `j(E)` is the `j`-invariant of the order with
|
|
3562
|
+
discriminant `D`.
|
|
3563
|
+
|
|
3564
|
+
.. NOTE::
|
|
3565
|
+
|
|
3566
|
+
If `E` has CM but the discriminant `D` is not a square in
|
|
3567
|
+
the base field `K` then the extra endomorphisms will not be
|
|
3568
|
+
defined over `K`. See also :meth:`has_rational_cm`.
|
|
3569
|
+
|
|
3570
|
+
EXAMPLES::
|
|
3571
|
+
|
|
3572
|
+
sage: EllipticCurve(j=0).cm_discriminant()
|
|
3573
|
+
-3
|
|
3574
|
+
sage: EllipticCurve(j=1).cm_discriminant()
|
|
3575
|
+
Traceback (most recent call last):
|
|
3576
|
+
...
|
|
3577
|
+
ValueError: Elliptic Curve defined by y^2 + x*y = x^3 + 36*x + 3455
|
|
3578
|
+
over Rational Field does not have CM
|
|
3579
|
+
sage: EllipticCurve(j=1728).cm_discriminant()
|
|
3580
|
+
-4
|
|
3581
|
+
sage: EllipticCurve(j=8000).cm_discriminant() # needs database_cremona_mini_ellcurve
|
|
3582
|
+
-8
|
|
3583
|
+
sage: K.<a> = QuadraticField(5)
|
|
3584
|
+
sage: EllipticCurve(j=282880*a + 632000).cm_discriminant()
|
|
3585
|
+
-20
|
|
3586
|
+
sage: x = polygen(ZZ, 'x')
|
|
3587
|
+
sage: K.<a> = NumberField(x^3 - 2)
|
|
3588
|
+
sage: EllipticCurve(j=31710790944000*a^2 + 39953093016000*a + 50337742902000).cm_discriminant()
|
|
3589
|
+
-108
|
|
3590
|
+
"""
|
|
3591
|
+
from sage.schemes.elliptic_curves.cm import is_cm_j_invariant
|
|
3592
|
+
flag, df = is_cm_j_invariant(self.j_invariant())
|
|
3593
|
+
if flag:
|
|
3594
|
+
d, f = df
|
|
3595
|
+
return d*f**2
|
|
3596
|
+
else: # no CM
|
|
3597
|
+
return ZZ.zero()
|
|
3598
|
+
|
|
3599
|
+
@cached_method
|
|
3600
|
+
def has_cm(self) -> bool:
|
|
3601
|
+
"""
|
|
3602
|
+
Return whether or not this curve has a CM `j`-invariant.
|
|
3603
|
+
|
|
3604
|
+
OUTPUT:
|
|
3605
|
+
|
|
3606
|
+
``True`` if this curve has CM over the algebraic closure
|
|
3607
|
+
of the base field, otherwise ``False``. See also
|
|
3608
|
+
:meth:`cm_discriminant` and :meth:`has_rational_cm`.
|
|
3609
|
+
|
|
3610
|
+
.. NOTE::
|
|
3611
|
+
|
|
3612
|
+
Even if `E` has CM in this sense (that its `j`-invariant is
|
|
3613
|
+
a CM `j`-invariant), if the associated negative
|
|
3614
|
+
discriminant `D` is not a square in the base field `K`, the
|
|
3615
|
+
extra endomorphisms will not be defined over `K`. See also
|
|
3616
|
+
the method :meth:`has_rational_cm` which tests whether `E`
|
|
3617
|
+
has extra endomorphisms defined over `K` or a given
|
|
3618
|
+
extension of `K`.
|
|
3619
|
+
|
|
3620
|
+
EXAMPLES::
|
|
3621
|
+
|
|
3622
|
+
sage: EllipticCurve(j=0).has_cm()
|
|
3623
|
+
True
|
|
3624
|
+
sage: EllipticCurve(j=1).has_cm()
|
|
3625
|
+
False
|
|
3626
|
+
sage: EllipticCurve(j=1728).has_cm()
|
|
3627
|
+
True
|
|
3628
|
+
sage: EllipticCurve(j=8000).has_cm()
|
|
3629
|
+
True
|
|
3630
|
+
sage: K.<a> = QuadraticField(5)
|
|
3631
|
+
sage: EllipticCurve(j=282880*a + 632000).has_cm()
|
|
3632
|
+
True
|
|
3633
|
+
sage: x = polygen(ZZ, 'x')
|
|
3634
|
+
sage: K.<a> = NumberField(x^3 - 2)
|
|
3635
|
+
sage: EllipticCurve(j=31710790944000*a^2 + 39953093016000*a + 50337742902000).has_cm()
|
|
3636
|
+
True
|
|
3637
|
+
"""
|
|
3638
|
+
return not self.cm_discriminant().is_zero()
|
|
3639
|
+
|
|
3640
|
+
@cached_method
|
|
3641
|
+
def has_rational_cm(self, field=None) -> bool:
|
|
3642
|
+
r"""
|
|
3643
|
+
Return whether or not this curve has CM defined over its
|
|
3644
|
+
base field or a given extension.
|
|
3645
|
+
|
|
3646
|
+
INPUT:
|
|
3647
|
+
|
|
3648
|
+
- ``field`` -- a field, which should be an extension of the
|
|
3649
|
+
base field of the curve. If ``field`` is ``None`` (the
|
|
3650
|
+
default), it is taken to be the base field of the curve.
|
|
3651
|
+
|
|
3652
|
+
OUTPUT:
|
|
3653
|
+
|
|
3654
|
+
``True`` if the ring of endomorphisms of this curve over
|
|
3655
|
+
the given field is larger than `\ZZ`; otherwise ``False``.
|
|
3656
|
+
See also :meth:`cm_discriminant` and :meth:`has_cm`.
|
|
3657
|
+
|
|
3658
|
+
.. NOTE::
|
|
3659
|
+
|
|
3660
|
+
If `E` has CM but the discriminant `D` is not a square in
|
|
3661
|
+
the given field `K` then the extra endomorphisms will not
|
|
3662
|
+
be defined over `K`, and this function will return
|
|
3663
|
+
``False``. See also :meth:`has_cm`. To obtain the CM
|
|
3664
|
+
discriminant, use :meth:`cm_discriminant`.
|
|
3665
|
+
|
|
3666
|
+
EXAMPLES::
|
|
3667
|
+
|
|
3668
|
+
sage: E = EllipticCurve(j=0)
|
|
3669
|
+
sage: E.has_cm()
|
|
3670
|
+
True
|
|
3671
|
+
sage: E.has_rational_cm()
|
|
3672
|
+
False
|
|
3673
|
+
sage: D = E.cm_discriminant(); D
|
|
3674
|
+
-3
|
|
3675
|
+
sage: E.has_rational_cm(QuadraticField(D))
|
|
3676
|
+
True
|
|
3677
|
+
|
|
3678
|
+
sage: E = EllipticCurve(j=1728)
|
|
3679
|
+
sage: E.has_cm()
|
|
3680
|
+
True
|
|
3681
|
+
sage: E.has_rational_cm()
|
|
3682
|
+
False
|
|
3683
|
+
sage: D = E.cm_discriminant(); D
|
|
3684
|
+
-4
|
|
3685
|
+
sage: E.has_rational_cm(QuadraticField(D))
|
|
3686
|
+
True
|
|
3687
|
+
|
|
3688
|
+
Higher degree examples::
|
|
3689
|
+
|
|
3690
|
+
sage: K.<a> = QuadraticField(5)
|
|
3691
|
+
sage: E = EllipticCurve(j=282880*a + 632000)
|
|
3692
|
+
sage: E.has_cm()
|
|
3693
|
+
True
|
|
3694
|
+
sage: E.has_rational_cm()
|
|
3695
|
+
False
|
|
3696
|
+
sage: E.cm_discriminant()
|
|
3697
|
+
-20
|
|
3698
|
+
sage: x = polygen(QQ)
|
|
3699
|
+
sage: E.has_rational_cm(K.extension(x^2 + 5, 'b'))
|
|
3700
|
+
True
|
|
3701
|
+
|
|
3702
|
+
An error is raised if a field is given which is not an extension of the base field::
|
|
3703
|
+
|
|
3704
|
+
sage: E.has_rational_cm(QuadraticField(-20))
|
|
3705
|
+
Traceback (most recent call last):
|
|
3706
|
+
...
|
|
3707
|
+
ValueError: Error in has_rational_cm: Number Field in a
|
|
3708
|
+
with defining polynomial x^2 + 20 with a = 4.472135954999579?*I
|
|
3709
|
+
is not an extension field of Number Field in a
|
|
3710
|
+
with defining polynomial x^2 - 5 with a = 2.236067977499790?
|
|
3711
|
+
|
|
3712
|
+
sage: x = polygen(ZZ, 'x')
|
|
3713
|
+
sage: K.<a> = NumberField(x^3 - 2)
|
|
3714
|
+
sage: E = EllipticCurve(j=31710790944000*a^2 + 39953093016000*a + 50337742902000)
|
|
3715
|
+
sage: E.has_cm()
|
|
3716
|
+
True
|
|
3717
|
+
sage: E.has_rational_cm()
|
|
3718
|
+
False
|
|
3719
|
+
sage: D = E.cm_discriminant(); D
|
|
3720
|
+
-108
|
|
3721
|
+
sage: E.has_rational_cm(K.extension(x^2 + 108,'b'))
|
|
3722
|
+
True
|
|
3723
|
+
"""
|
|
3724
|
+
D = self.cm_discriminant()
|
|
3725
|
+
if D.is_zero():
|
|
3726
|
+
return False
|
|
3727
|
+
if field is None:
|
|
3728
|
+
return self.base_field()(D).is_square()
|
|
3729
|
+
if self.base_field().embeddings(field):
|
|
3730
|
+
D = field(D)
|
|
3731
|
+
return D.is_square()
|
|
3732
|
+
raise ValueError("Error in has_rational_cm: %s is not an extension field of %s"
|
|
3733
|
+
% (field,self.base_field()))
|
|
3734
|
+
|
|
3735
|
+
@cached_method
|
|
3736
|
+
def is_Q_curve(self, maxp=100, certificate=False, verbose=False):
|
|
3737
|
+
r"""
|
|
3738
|
+
Return ``True`` if this is a `\QQ`-curve, with optional certificate.
|
|
3739
|
+
|
|
3740
|
+
INPUT:
|
|
3741
|
+
|
|
3742
|
+
- ``maxp`` -- integer (default: 100); bound on primes used for
|
|
3743
|
+
checking necessary local conditions. The result will not
|
|
3744
|
+
depend on this, but using a larger value may return
|
|
3745
|
+
``False`` faster.
|
|
3746
|
+
|
|
3747
|
+
- ``certificate`` -- boolean (default: ``False``); if ``True`` then
|
|
3748
|
+
a second value is returned giving a certificate for the
|
|
3749
|
+
`\QQ`-curve property
|
|
3750
|
+
|
|
3751
|
+
OUTPUT:
|
|
3752
|
+
|
|
3753
|
+
If ``certificate`` is ``False``: either ``True`` (if `E` is a
|
|
3754
|
+
`\QQ`-curve), or ``False``.
|
|
3755
|
+
|
|
3756
|
+
If ``certificate`` is ``True``: a tuple consisting of a boolean
|
|
3757
|
+
flag as before and a certificate, defined as follows:
|
|
3758
|
+
|
|
3759
|
+
- when the flag is ``True``, so `E` is a `\QQ`-curve:
|
|
3760
|
+
|
|
3761
|
+
- either {'CM':`D`} where `D` is a negative discriminant, when
|
|
3762
|
+
`E` has potential CM with discriminant `D`;
|
|
3763
|
+
|
|
3764
|
+
- otherwise {'CM': `0`, 'core_poly': `f`, 'rho': `\rho`,
|
|
3765
|
+
'r': `r`, 'N': `N`}, when `E` is a non-CM `\QQ`-curve,
|
|
3766
|
+
where the core polynomial `f` is an irreducible monic
|
|
3767
|
+
polynomial over `QQ` of degree `2^\rho`, all of whose
|
|
3768
|
+
roots are `j`-invariants of curves isogenous to `E`, the
|
|
3769
|
+
core level `N` is a square-free integer with `r` prime
|
|
3770
|
+
factors which is the LCM of the degrees of the isogenies
|
|
3771
|
+
between these conjugates. For example, if there exists
|
|
3772
|
+
a curve `E'` isogenous to `E` with `j(E')=j\in\QQ`, then
|
|
3773
|
+
the certificate is {'CM':0, 'r':0, 'rho':0, 'core_poly':
|
|
3774
|
+
x-j, 'N':1}.
|
|
3775
|
+
|
|
3776
|
+
- when the flag is ``False``, so `E` is not a `\QQ`-curve, the
|
|
3777
|
+
certificate is a prime `p` such that the reductions of `E`
|
|
3778
|
+
at the primes dividing `p` are inconsistent with the
|
|
3779
|
+
property of being a `\QQ`-curve. See the documentation for
|
|
3780
|
+
:meth:`sage.src.schemes.elliptic_curves.Qcurves.is_Q_curve`
|
|
3781
|
+
for details.
|
|
3782
|
+
|
|
3783
|
+
ALGORITHM:
|
|
3784
|
+
|
|
3785
|
+
See the documentation for
|
|
3786
|
+
:meth:`sage.src.schemes.elliptic_curves.Qcurves.is_Q_curve`, and
|
|
3787
|
+
[CrNa2020]_ for details.
|
|
3788
|
+
|
|
3789
|
+
EXAMPLES:
|
|
3790
|
+
|
|
3791
|
+
A non-CM curve over `\QQ` and a CM curve over `\QQ` are both
|
|
3792
|
+
trivially `\QQ`-curves::
|
|
3793
|
+
|
|
3794
|
+
sage: E = EllipticCurve([1,2,3,4,5])
|
|
3795
|
+
sage: flag, cert = E.is_Q_curve(certificate=True)
|
|
3796
|
+
sage: flag
|
|
3797
|
+
True
|
|
3798
|
+
sage: cert
|
|
3799
|
+
{'CM': 0, 'N': 1, 'core_poly': x, 'r': 0, 'rho': 0}
|
|
3800
|
+
|
|
3801
|
+
sage: E = EllipticCurve(j=8000)
|
|
3802
|
+
sage: flag, cert = E.is_Q_curve(certificate=True)
|
|
3803
|
+
sage: flag
|
|
3804
|
+
True
|
|
3805
|
+
sage: cert
|
|
3806
|
+
{'CM': -8}
|
|
3807
|
+
|
|
3808
|
+
A non-`\QQ`-curve over a quartic field. The local data at bad
|
|
3809
|
+
primes above `3` is inconsistent::
|
|
3810
|
+
|
|
3811
|
+
sage: R.<x> = PolynomialRing(QQ)
|
|
3812
|
+
sage: K.<a> = NumberField(R([3, 0, -5, 0, 1]))
|
|
3813
|
+
sage: E = EllipticCurve([K([-3,-4,1,1]), K([4,-1,-1,0]), K([-2,0,1,0]), K([-621,778,138,-178]), K([9509,2046,-24728,10380])])
|
|
3814
|
+
sage: E.is_Q_curve(certificate=True, verbose=True)
|
|
3815
|
+
Checking whether Elliptic Curve defined by y^2 + (a^3+a^2-4*a-3)*x*y + (a^2-2)*y = x^3 + (-a^2-a+4)*x^2 + (-178*a^3+138*a^2+778*a-621)*x + (10380*a^3-24728*a^2+2046*a+9509) over Number Field in a with defining polynomial x^4 - 5*x^2 + 3 is a Q-curve
|
|
3816
|
+
No: inconsistency at the 2 primes dividing 3
|
|
3817
|
+
- potentially multiplicative: [True, False]
|
|
3818
|
+
(False, 3)
|
|
3819
|
+
|
|
3820
|
+
A non-`\QQ`-curve over a quadratic field. The local data at bad
|
|
3821
|
+
primes is consistent, but the local test at good primes above `13`
|
|
3822
|
+
is not::
|
|
3823
|
+
|
|
3824
|
+
sage: K.<a> = NumberField(R([-10, 0, 1]))
|
|
3825
|
+
sage: E = EllipticCurve([K([0,1]), K([-1,-1]), K([0,0]), K([-236,40]), K([-1840,464])])
|
|
3826
|
+
sage: E.is_Q_curve(certificate=True, verbose=True)
|
|
3827
|
+
Checking whether Elliptic Curve defined by y^2 + a*x*y = x^3 + (-a-1)*x^2 + (40*a-236)*x + (464*a-1840) over Number Field in a with defining polynomial x^2 - 10 is a Q-curve
|
|
3828
|
+
Applying local tests at good primes above p<=100
|
|
3829
|
+
No: inconsistency at the 2 ordinary primes dividing 13
|
|
3830
|
+
- Frobenius discriminants mod squares: [-1, -3]
|
|
3831
|
+
No: local test at p=13 failed
|
|
3832
|
+
(False, 13)
|
|
3833
|
+
|
|
3834
|
+
A quadratic `\QQ`-curve with CM discriminant `-15`
|
|
3835
|
+
(so the `j`-invariant is not in `\QQ`)::
|
|
3836
|
+
|
|
3837
|
+
sage: R.<x> = PolynomialRing(QQ)
|
|
3838
|
+
sage: K.<a> = NumberField(R([-1, -1, 1]))
|
|
3839
|
+
sage: E = EllipticCurve([K([1,0]), K([-1,0]), K([0,1]), K([0,-2]), K([0,1])])
|
|
3840
|
+
sage: E.is_Q_curve(certificate=True, verbose=True)
|
|
3841
|
+
Checking whether Elliptic Curve defined by y^2 + x*y + a*y = x^3 + (-1)*x^2 + (-2*a)*x + a over Number Field in a with defining polynomial x^2 - x - 1 is a Q-curve
|
|
3842
|
+
Yes: E is CM (discriminant -15)
|
|
3843
|
+
(True, {'CM': -15})
|
|
3844
|
+
|
|
3845
|
+
An example over `\QQ(\sqrt{2},\sqrt{3})`. The `j`-invariant
|
|
3846
|
+
is in `\QQ(\sqrt{6})`, so computations will be done over that
|
|
3847
|
+
field, and in fact there is an isogenous curve with rational
|
|
3848
|
+
`j`, so we have a so-called rational `\QQ`-curve::
|
|
3849
|
+
|
|
3850
|
+
sage: K.<a> = NumberField(R([1, 0, -4, 0, 1]))
|
|
3851
|
+
sage: E = EllipticCurve([K([-2,-4,1,1]), K([0,1,0,0]), K([0,1,0,0]), K([-4780,9170,1265,-2463]), K([163923,-316598,-43876,84852])])
|
|
3852
|
+
sage: flag, cert = E.is_Q_curve(certificate=True) # long time
|
|
3853
|
+
sage: flag # long time
|
|
3854
|
+
True
|
|
3855
|
+
sage: cert # long time
|
|
3856
|
+
{'CM': 0, 'N': 1, 'core_degs': [1], 'core_poly': x - 85184/3, 'r': 0, 'rho': 0}
|
|
3857
|
+
|
|
3858
|
+
Over the same field, a so-called strict `\QQ`-curve which is
|
|
3859
|
+
not isogenous to one with rational `j`, but whose core field
|
|
3860
|
+
is quadratic. In fact the isogeny class over `K` consists of
|
|
3861
|
+
`6` curves, four with conjugate quartic `j`-invariants and `2`
|
|
3862
|
+
with quadratic conjugate `j`-invariants in `\QQ(\sqrt{3})`
|
|
3863
|
+
(but which are not base-changes from the quadratic subfield)::
|
|
3864
|
+
|
|
3865
|
+
sage: E = EllipticCurve([K([0,-3,0,1]), K([1,4,0,-1]), K([0,0,0,0]), K([-2,-16,0,4]), K([-19,-32,4,8])])
|
|
3866
|
+
sage: flag, cert = E.is_Q_curve(certificate=True) # long time
|
|
3867
|
+
sage: flag # long time
|
|
3868
|
+
True
|
|
3869
|
+
sage: cert # long time
|
|
3870
|
+
{'CM': 0,
|
|
3871
|
+
'N': 2,
|
|
3872
|
+
'core_degs': [1, 2],
|
|
3873
|
+
'core_poly': x^2 - 840064*x + 1593413632,
|
|
3874
|
+
'r': 1,
|
|
3875
|
+
'rho': 1}
|
|
3876
|
+
"""
|
|
3877
|
+
from sage.schemes.elliptic_curves.Qcurves import is_Q_curve as isQ
|
|
3878
|
+
return isQ(self, maxp, certificate, verbose)
|
|
3879
|
+
|
|
3880
|
+
def saturation(self, points, verbose=False,
|
|
3881
|
+
max_prime=0, one_prime=0, odd_primes_only=False,
|
|
3882
|
+
lower_ht_bound=None, reg=None, debug=False):
|
|
3883
|
+
r"""
|
|
3884
|
+
Given a list of rational points on `E` over `K`, compute the
|
|
3885
|
+
saturation in `E(K)` of the subgroup they generate.
|
|
3886
|
+
|
|
3887
|
+
INPUT:
|
|
3888
|
+
|
|
3889
|
+
- ``points (list)`` -- list of points on E. Points of finite
|
|
3890
|
+
order are ignored; the remaining points should be independent,
|
|
3891
|
+
or an error is raised.
|
|
3892
|
+
|
|
3893
|
+
- ``verbose`` -- boolean (default: ``False``); if ``True``, give
|
|
3894
|
+
verbose output
|
|
3895
|
+
|
|
3896
|
+
- ``max_prime`` -- integer (default: 0); saturation is performed
|
|
3897
|
+
for all primes up to ``max_prime``. If ``max_prime`` is 0,
|
|
3898
|
+
perform saturation at *all* primes, i.e., compute the true
|
|
3899
|
+
saturation.
|
|
3900
|
+
|
|
3901
|
+
- ``odd_primes_only`` -- boolean (default: ``False``); only do
|
|
3902
|
+
saturation at odd primes
|
|
3903
|
+
|
|
3904
|
+
- ``one_prime`` -- integer (default: 0); if nonzero, only do
|
|
3905
|
+
saturation at this prime
|
|
3906
|
+
|
|
3907
|
+
The following two inputs are optional, and may be provided to speed
|
|
3908
|
+
up the computation.
|
|
3909
|
+
|
|
3910
|
+
- ``lower_ht_bound`` -- real (default: ``None``); lower bound of
|
|
3911
|
+
the regulator `E(K)`, if known
|
|
3912
|
+
|
|
3913
|
+
- ``reg`` -- real (default: ``None``); regulator of the span of
|
|
3914
|
+
points, if known
|
|
3915
|
+
|
|
3916
|
+
- ``debug`` -- integer (default: 0); used for debugging and
|
|
3917
|
+
testing
|
|
3918
|
+
|
|
3919
|
+
OUTPUT:
|
|
3920
|
+
|
|
3921
|
+
- ``saturation`` -- list; points that form a basis for the
|
|
3922
|
+
saturation
|
|
3923
|
+
|
|
3924
|
+
- ``index`` -- integer; the index of the group generated by the
|
|
3925
|
+
input points in their saturation
|
|
3926
|
+
|
|
3927
|
+
- ``regulator`` -- real with default precision, or ``None``;
|
|
3928
|
+
regulator of saturated points
|
|
3929
|
+
|
|
3930
|
+
EXAMPLES::
|
|
3931
|
+
|
|
3932
|
+
sage: K.<i> = QuadraticField(-1)
|
|
3933
|
+
sage: E = EllipticCurve('389a1')
|
|
3934
|
+
sage: EK = E.change_ring(K)
|
|
3935
|
+
sage: P = EK(-1,1); Q = EK(0,-1)
|
|
3936
|
+
|
|
3937
|
+
sage: EK.saturation([2*P], max_prime=2)
|
|
3938
|
+
([(-1 : 1 : 1)], 2, 0.686667083305587)
|
|
3939
|
+
sage: EK.saturation([12*P], max_prime=2)
|
|
3940
|
+
([(26/361 : -5720/6859 : 1)], 4, 6.18000374975028)
|
|
3941
|
+
sage: EK.saturation([12*P], lower_ht_bound=0.1)
|
|
3942
|
+
([(-1 : 1 : 1)], 12, 0.686667083305587)
|
|
3943
|
+
sage: EK.saturation([2*P, Q], max_prime=2)
|
|
3944
|
+
([(-1 : 1 : 1), (0 : -1 : 1)], 2, 0.152460177943144)
|
|
3945
|
+
sage: EK.saturation([P + Q, P - Q], lower_ht_bound=.1, debug=2)
|
|
3946
|
+
([(-1 : 1 : 1), (1 : 0 : 1)], 2, 0.152460177943144)
|
|
3947
|
+
sage: EK.saturation([P + Q, 17*Q], lower_ht_bound=0.1) # long time
|
|
3948
|
+
([(4 : 8 : 1), (0 : -1 : 1)], 17, 0.152460177943143)
|
|
3949
|
+
|
|
3950
|
+
sage: R = EK(i-2,-i-3)
|
|
3951
|
+
sage: EK.saturation([P + R, P + Q, Q + R], lower_ht_bound=0.1)
|
|
3952
|
+
([(841/1369*i - 171/1369 : 41334/50653*i - 74525/50653 : 1),
|
|
3953
|
+
(4 : 8 : 1),
|
|
3954
|
+
(-1/25*i + 18/25 : -69/125*i - 58/125 : 1)],
|
|
3955
|
+
2,
|
|
3956
|
+
0.103174443217351)
|
|
3957
|
+
sage: EK.saturation([26*Q], lower_ht_bound=0.1)
|
|
3958
|
+
([(0 : -1 : 1)], 26, 0.327000773651605)
|
|
3959
|
+
|
|
3960
|
+
Another number field::
|
|
3961
|
+
|
|
3962
|
+
sage: E = EllipticCurve('389a1')
|
|
3963
|
+
sage: x = polygen(QQ)
|
|
3964
|
+
sage: K.<a> = NumberField(x^3 - x + 1)
|
|
3965
|
+
sage: EK = E.change_ring(K)
|
|
3966
|
+
sage: P = EK(-1,1); Q = EK(0,-1)
|
|
3967
|
+
sage: EK.saturation([P + Q, P - Q], lower_ht_bound=0.1)
|
|
3968
|
+
([(-1 : 1 : 1), (1 : 0 : 1)], 2, 0.152460177943144)
|
|
3969
|
+
sage: EK.saturation([3*P, P + 5*Q], lower_ht_bound=0.1)
|
|
3970
|
+
([(-185/2209 : -119510/103823 : 1), (80041/34225 : -26714961/6331625 : 1)],
|
|
3971
|
+
15,
|
|
3972
|
+
0.152460177943144)
|
|
3973
|
+
|
|
3974
|
+
A different curve::
|
|
3975
|
+
|
|
3976
|
+
sage: K.<a> = QuadraticField(3)
|
|
3977
|
+
sage: E = EllipticCurve('37a1')
|
|
3978
|
+
sage: EK = E.change_ring(K)
|
|
3979
|
+
sage: P = EK(0,0); Q = EK(2-a, 2*a-4)
|
|
3980
|
+
sage: EK.saturation([3*P - Q, 3*P + Q], lower_ht_bound=.01)
|
|
3981
|
+
([(0 : 0 : 1), (1/2*a : -1/4*a - 1/4 : 1)], 6, 0.0317814530725985)
|
|
3982
|
+
|
|
3983
|
+
The points must be linearly independent::
|
|
3984
|
+
|
|
3985
|
+
sage: EK.saturation([2*P, 3*Q, P-Q])
|
|
3986
|
+
Traceback (most recent call last):
|
|
3987
|
+
...
|
|
3988
|
+
ValueError: points not linearly independent in saturation()
|
|
3989
|
+
|
|
3990
|
+
Degenerate case::
|
|
3991
|
+
|
|
3992
|
+
sage: EK.saturation([])
|
|
3993
|
+
([], 1, 1.00000000000000)
|
|
3994
|
+
|
|
3995
|
+
ALGORITHM:
|
|
3996
|
+
|
|
3997
|
+
For rank 1 subgroups, simply do trial division up to the maximal
|
|
3998
|
+
prime divisor. For higher rank subgroups, perform trial division
|
|
3999
|
+
on all linear combinations for small primes, and look for
|
|
4000
|
+
projections `E(K) \rightarrow \oplus E(k) \otimes \mathbf{F}_p` which
|
|
4001
|
+
are either full rank or provide `p`-divisible linear combinations,
|
|
4002
|
+
where the `k` here are residue fields of `K`.
|
|
4003
|
+
|
|
4004
|
+
TESTS::
|
|
4005
|
+
|
|
4006
|
+
sage: K.<i> = QuadraticField(-1)
|
|
4007
|
+
sage: E = EllipticCurve('389a1')
|
|
4008
|
+
sage: EK = E.change_ring(K)
|
|
4009
|
+
sage: P = EK(-1,1); Q = EK(0,-1)
|
|
4010
|
+
|
|
4011
|
+
sage: EK.saturation([P+Q, P-Q], lower_ht_bound=.1, debug=2)
|
|
4012
|
+
([(-1 : 1 : 1), (1 : 0 : 1)], 2, 0.152460177943144)
|
|
4013
|
+
sage: EK.saturation([5*P + 6*Q, 5*P - 3*Q], lower_ht_bound=.1)
|
|
4014
|
+
([(-3/4 : -15/8 : 1), (159965/16129 : -67536260/2048383 : 1)],
|
|
4015
|
+
45,
|
|
4016
|
+
0.152460177943144)
|
|
4017
|
+
sage: EK.saturation([5*P + 6*Q, 5*P - 3*Q], lower_ht_bound=.1, debug=2)
|
|
4018
|
+
([(-3/4 : -15/8 : 1), (159965/16129 : -67536260/2048383 : 1)],
|
|
4019
|
+
45,
|
|
4020
|
+
0.152460177943144)
|
|
4021
|
+
|
|
4022
|
+
See :issue:`27387`::
|
|
4023
|
+
|
|
4024
|
+
sage: K.<a> = NumberField(x^2 - x - 26)
|
|
4025
|
+
sage: E = EllipticCurve([a, 1-a, 0, 93-16*a, 3150-560*a])
|
|
4026
|
+
sage: P = E([65-35*a/3, (959*a-5377)/9])
|
|
4027
|
+
sage: E.saturation([P], one_prime=2)
|
|
4028
|
+
([(-1/4*a + 3/4 : 59/8*a - 317/8 : 1)], 2, 0.344624259712631)
|
|
4029
|
+
"""
|
|
4030
|
+
full_saturation = (max_prime == 0) and (one_prime == 0)
|
|
4031
|
+
Plist = (self(P) for P in points)
|
|
4032
|
+
Plist = [P for P in Plist if P.has_infinite_order()]
|
|
4033
|
+
n = len(Plist)
|
|
4034
|
+
index = ZZ.one()
|
|
4035
|
+
|
|
4036
|
+
if n == 0:
|
|
4037
|
+
return Plist, index, RealField()(1)
|
|
4038
|
+
|
|
4039
|
+
# compute the list of primes p at which p-saturation is
|
|
4040
|
+
# required.
|
|
4041
|
+
|
|
4042
|
+
heights = [P.height() for P in Plist]
|
|
4043
|
+
if reg is None:
|
|
4044
|
+
reg = self.regulator_of_points(Plist)
|
|
4045
|
+
if reg / min(heights) < 1e-6:
|
|
4046
|
+
raise ValueError("points not linearly independent in saturation()")
|
|
4047
|
+
sat_reg = reg
|
|
4048
|
+
|
|
4049
|
+
from sage.rings.fast_arith import prime_range
|
|
4050
|
+
if full_saturation:
|
|
4051
|
+
if lower_ht_bound is None:
|
|
4052
|
+
# TODO (robertwb): verify this for rank > 1
|
|
4053
|
+
if verbose:
|
|
4054
|
+
print("Computing lower height bound..")
|
|
4055
|
+
lower_ht_bound = self.height_function().min(.1, 5) ** n
|
|
4056
|
+
if verbose:
|
|
4057
|
+
print("..done: %s" % lower_ht_bound)
|
|
4058
|
+
index_bound = (reg/lower_ht_bound).sqrt()
|
|
4059
|
+
if index_bound < 2:
|
|
4060
|
+
if verbose:
|
|
4061
|
+
print("Saturation index bound < 2, points are saturated already.")
|
|
4062
|
+
return Plist, index, RealField()(1)
|
|
4063
|
+
else:
|
|
4064
|
+
if verbose:
|
|
4065
|
+
print("p-saturating for primes p < {}".format(index_bound.ceil()))
|
|
4066
|
+
prime_list = prime_range(index_bound.ceil())
|
|
4067
|
+
else:
|
|
4068
|
+
if one_prime:
|
|
4069
|
+
prime_list = [one_prime]
|
|
4070
|
+
else:
|
|
4071
|
+
prime_list = prime_range(max_prime+1)
|
|
4072
|
+
if odd_primes_only and 2 in prime_list:
|
|
4073
|
+
prime_list.remove(2)
|
|
4074
|
+
|
|
4075
|
+
# Now saturate at each prime in prime_list. The dict
|
|
4076
|
+
# lin_combs keeps the values of linear combinations of the
|
|
4077
|
+
# points, indexed by coefficient tuples, for efficiency; it is
|
|
4078
|
+
# reset whenever the point list changes.
|
|
4079
|
+
|
|
4080
|
+
from sage.schemes.elliptic_curves.saturation import EllipticCurveSaturator
|
|
4081
|
+
saturator = EllipticCurveSaturator(self, verbose)
|
|
4082
|
+
for p in prime_list:
|
|
4083
|
+
if full_saturation and (p > index_bound):
|
|
4084
|
+
break
|
|
4085
|
+
if verbose:
|
|
4086
|
+
print("Saturating at p=%s" % p)
|
|
4087
|
+
newPlist, expo = saturator.full_p_saturation(Plist, p)
|
|
4088
|
+
if expo:
|
|
4089
|
+
if verbose:
|
|
4090
|
+
print(" --gaining index %s^%s" % (p, expo))
|
|
4091
|
+
pe = p**expo
|
|
4092
|
+
index *= pe
|
|
4093
|
+
if full_saturation:
|
|
4094
|
+
index_bound /= pe
|
|
4095
|
+
sat_reg /= pe**2
|
|
4096
|
+
Plist = newPlist
|
|
4097
|
+
else:
|
|
4098
|
+
if verbose:
|
|
4099
|
+
print(" --already %s-saturated" % p)
|
|
4100
|
+
|
|
4101
|
+
return Plist, index, sat_reg
|
|
4102
|
+
|
|
4103
|
+
def gens_quadratic(self, **kwds):
|
|
4104
|
+
r"""
|
|
4105
|
+
Return generators for the Mordell-Weil group modulo torsion, for a
|
|
4106
|
+
curve which is a base change from `\QQ` to a quadratic field.
|
|
4107
|
+
|
|
4108
|
+
EXAMPLES::
|
|
4109
|
+
|
|
4110
|
+
sage: E = EllipticCurve([1,2,3,40,50])
|
|
4111
|
+
sage: E.conductor()
|
|
4112
|
+
2123582
|
|
4113
|
+
sage: E.gens() # needs eclib
|
|
4114
|
+
[(5 : 17 : 1)]
|
|
4115
|
+
sage: K.<i> = QuadraticField(-1)
|
|
4116
|
+
sage: EK = E.change_ring(K)
|
|
4117
|
+
sage: EK.gens_quadratic() # needs eclib
|
|
4118
|
+
[(5 : 17 : 1), (-13 : 48*i + 5 : 1)]
|
|
4119
|
+
|
|
4120
|
+
sage: E.change_ring(QuadraticField(3, 'a')).gens_quadratic() # needs eclib
|
|
4121
|
+
[(5 : 17 : 1), (-1 : 2*a - 1 : 1), (11/4 : 33/4*a - 23/8 : 1)]
|
|
4122
|
+
|
|
4123
|
+
sage: K.<a> = QuadraticField(-7)
|
|
4124
|
+
sage: E = EllipticCurve([0,0,0,197,0])
|
|
4125
|
+
sage: E.conductor()
|
|
4126
|
+
2483776
|
|
4127
|
+
sage: E.gens() # needs eclib
|
|
4128
|
+
[(47995604297578081/7389879786648100 : -25038161802544048018837479/635266655830129794121000 : 1)]
|
|
4129
|
+
sage: K.<a> = QuadraticField(7)
|
|
4130
|
+
sage: E.change_ring(K).gens_quadratic() # needs eclib
|
|
4131
|
+
[(-1209642055/59583566*a + 1639995844/29791783 : -377240626321899/1720892553212*a + 138577803462855/245841793316 : 1),
|
|
4132
|
+
(1/28 : 393/392*a : 1),
|
|
4133
|
+
(-61*a + 162 : 1098*a - 2916 : 1)]
|
|
4134
|
+
|
|
4135
|
+
sage: E = EllipticCurve([1, a])
|
|
4136
|
+
sage: E.gens_quadratic() # needs eclib
|
|
4137
|
+
Traceback (most recent call last):
|
|
4138
|
+
...
|
|
4139
|
+
ValueError: gens_quadratic() requires the elliptic curve to be a base change from Q
|
|
4140
|
+
"""
|
|
4141
|
+
if not kwds:
|
|
4142
|
+
try:
|
|
4143
|
+
return list(self.__gens)
|
|
4144
|
+
except AttributeError:
|
|
4145
|
+
pass
|
|
4146
|
+
|
|
4147
|
+
K = self.base_ring()
|
|
4148
|
+
if K.absolute_degree() != 2:
|
|
4149
|
+
raise ValueError("gens_quadratic() requires the base field to be quadratic")
|
|
4150
|
+
|
|
4151
|
+
EE = self.descend_to(QQ)
|
|
4152
|
+
if not EE:
|
|
4153
|
+
raise ValueError("gens_quadratic() requires the elliptic curve to be a base change from Q")
|
|
4154
|
+
|
|
4155
|
+
# In all cases there are exactly two distinct curves /Q whose
|
|
4156
|
+
# base-change to K is the original. NB These need not be
|
|
4157
|
+
# quadratic twists of each other! For example, '32a1' and
|
|
4158
|
+
# '32a2' are not quadratic twists of each other (each is its
|
|
4159
|
+
# own twist by -1) but they become isomorphic over
|
|
4160
|
+
# Q(sqrt(-1)).
|
|
4161
|
+
|
|
4162
|
+
EQ1 = EE[0]
|
|
4163
|
+
EQ2 = EE[1]
|
|
4164
|
+
iso1 = EQ1.change_ring(K).isomorphism_to(self)
|
|
4165
|
+
iso2 = EQ2.change_ring(K).isomorphism_to(self)
|
|
4166
|
+
gens1 = [iso1(P) for P in EQ1.gens(**kwds)]
|
|
4167
|
+
gens2 = [iso2(P) for P in EQ2.gens(**kwds)]
|
|
4168
|
+
gens = self.saturation(gens1 + gens2, max_prime=2)[0]
|
|
4169
|
+
self.__gens = gens
|
|
4170
|
+
return gens
|
|
4171
|
+
|
|
4172
|
+
def rational_points(self, **kwds):
|
|
4173
|
+
r"""
|
|
4174
|
+
Find rational points on the elliptic curve, all arguments are passed
|
|
4175
|
+
on to :meth:`sage.schemes.generic.algebraic_scheme.rational_points`.
|
|
4176
|
+
|
|
4177
|
+
EXAMPLES::
|
|
4178
|
+
|
|
4179
|
+
sage: # needs database_cremona_mini_ellcurve
|
|
4180
|
+
sage: E = EllipticCurve('37a')
|
|
4181
|
+
sage: E.rational_points(bound=8) # long time
|
|
4182
|
+
[(-1 : -1 : 1),
|
|
4183
|
+
(-1 : 0 : 1),
|
|
4184
|
+
(0 : -1 : 1),
|
|
4185
|
+
(0 : 0 : 1),
|
|
4186
|
+
(0 : 1 : 0),
|
|
4187
|
+
(1/4 : -5/8 : 1),
|
|
4188
|
+
(1/4 : -3/8 : 1),
|
|
4189
|
+
(1 : -1 : 1),
|
|
4190
|
+
(1 : 0 : 1),
|
|
4191
|
+
(2 : -3 : 1),
|
|
4192
|
+
(2 : 2 : 1)]
|
|
4193
|
+
|
|
4194
|
+
Check that :issue:`26677` is fixed::
|
|
4195
|
+
|
|
4196
|
+
sage: # needs database_cremona_mini_ellcurve
|
|
4197
|
+
sage: E = EllipticCurve("11a1")
|
|
4198
|
+
sage: E.rational_points(bound=5) # needs sage.symbolic
|
|
4199
|
+
[(0 : 1 : 0), (5 : 5 : 1)]
|
|
4200
|
+
sage: E.rational_points(bound=6) # long time # needs sage.symbolic
|
|
4201
|
+
[(0 : 1 : 0), (5 : -6 : 1), (5 : 5 : 1)]
|
|
4202
|
+
|
|
4203
|
+
An example over a number field::
|
|
4204
|
+
|
|
4205
|
+
sage: E = EllipticCurve([1,0])
|
|
4206
|
+
sage: pts = E.rational_points(bound=2, F=QuadraticField(-1))
|
|
4207
|
+
sage: pts
|
|
4208
|
+
[(-a : 0 : 1), (0 : 0 : 1), (0 : 1 : 0), (a : 0 : 1)]
|
|
4209
|
+
sage: pts[0] + pts[1]
|
|
4210
|
+
(a : 0 : 1)
|
|
4211
|
+
"""
|
|
4212
|
+
from sage.schemes.curves.constructor import Curve
|
|
4213
|
+
# we change E to be a plain curve to allow the generic rational
|
|
4214
|
+
# points code to reduce mod any prime, whereas an EllipticCurve
|
|
4215
|
+
# can only be base changed to good primes.
|
|
4216
|
+
E = self
|
|
4217
|
+
if 'F' in kwds:
|
|
4218
|
+
E = E.change_ring(kwds['F'])
|
|
4219
|
+
|
|
4220
|
+
return [E(pt) for pt in Curve(self).rational_points(**kwds)]
|