ai-edge-torch-nightly 0.2.0.dev20240714__py3-none-any.whl → 0.3.0.dev20240926__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (169) hide show
  1. ai_edge_torch/__init__.py +5 -4
  2. ai_edge_torch/_convert/conversion.py +112 -0
  3. ai_edge_torch/_convert/conversion_utils.py +64 -0
  4. ai_edge_torch/{convert → _convert}/converter.py +94 -48
  5. ai_edge_torch/_convert/fx_passes/__init__.py +22 -0
  6. ai_edge_torch/{convert → _convert}/fx_passes/build_aten_composite_pass.py +107 -44
  7. ai_edge_torch/{convert → _convert}/fx_passes/build_interpolate_composite_pass.py +23 -20
  8. ai_edge_torch/{convert → _convert}/fx_passes/inject_mlir_debuginfo_pass.py +5 -6
  9. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/__init__.py +1 -1
  10. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_check.py +39 -9
  11. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_mark.py +2 -0
  12. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +1 -0
  13. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +17 -8
  14. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +9 -8
  15. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +31 -18
  16. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +2 -2
  17. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/pass_body.py +34 -24
  18. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/utils.py +2 -0
  19. ai_edge_torch/_convert/signature.py +66 -0
  20. ai_edge_torch/_convert/test/test_convert.py +495 -0
  21. ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
  22. ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
  23. ai_edge_torch/{convert → _convert}/test/test_to_channel_last_io.py +5 -5
  24. ai_edge_torch/{convert → _convert}/to_channel_last_io.py +10 -3
  25. ai_edge_torch/config.py +27 -0
  26. ai_edge_torch/conftest.py +20 -0
  27. ai_edge_torch/debug/culprit.py +72 -40
  28. ai_edge_torch/debug/test/test_culprit.py +7 -5
  29. ai_edge_torch/debug/test/test_search_model.py +8 -7
  30. ai_edge_torch/debug/utils.py +14 -3
  31. ai_edge_torch/fx_pass_base.py +101 -0
  32. ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +68 -0
  33. ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +68 -0
  34. ai_edge_torch/generative/examples/gemma/{gemma.py → gemma1.py} +69 -55
  35. ai_edge_torch/generative/examples/gemma/gemma2.py +267 -0
  36. ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
  37. ai_edge_torch/generative/examples/gemma/verify_gemma2.py +57 -0
  38. ai_edge_torch/generative/examples/gemma/verify_util.py +143 -0
  39. ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +68 -0
  40. ai_edge_torch/generative/examples/openelm/openelm.py +206 -0
  41. ai_edge_torch/generative/examples/openelm/verify.py +64 -0
  42. ai_edge_torch/generative/examples/phi/__init__.py +14 -0
  43. ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +68 -0
  44. ai_edge_torch/generative/examples/phi/convert_to_tflite.py +68 -0
  45. ai_edge_torch/generative/examples/{phi2 → phi}/phi2.py +70 -51
  46. ai_edge_torch/generative/examples/phi/phi3.py +286 -0
  47. ai_edge_torch/generative/examples/phi/verify.py +65 -0
  48. ai_edge_torch/generative/examples/phi/verify_phi3.py +70 -0
  49. ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
  50. ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +68 -0
  51. ai_edge_torch/generative/examples/smollm/smollm.py +101 -0
  52. ai_edge_torch/generative/examples/smollm/verify.py +62 -0
  53. ai_edge_torch/generative/examples/stable_diffusion/attention.py +3 -1
  54. ai_edge_torch/generative/examples/stable_diffusion/clip.py +83 -13
  55. ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +27 -14
  56. ai_edge_torch/generative/examples/stable_diffusion/decoder.py +74 -9
  57. ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +179 -37
  58. ai_edge_torch/generative/examples/stable_diffusion/encoder.py +4 -3
  59. ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +83 -58
  60. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +4 -3
  61. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +4 -3
  62. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +4 -3
  63. ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +1 -0
  64. ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +4 -1
  65. ai_edge_torch/generative/examples/stable_diffusion/util.py +9 -3
  66. ai_edge_torch/generative/examples/t5/convert_to_tflite.py +28 -25
  67. ai_edge_torch/generative/examples/t5/t5.py +208 -159
  68. ai_edge_torch/generative/examples/t5/t5_attention.py +45 -30
  69. ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
  70. ai_edge_torch/generative/examples/test_models/toy_model.py +69 -41
  71. ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +50 -64
  72. ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
  73. ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +41 -39
  74. ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +67 -54
  75. ai_edge_torch/generative/examples/tiny_llama/verify.py +64 -0
  76. ai_edge_torch/generative/fx_passes/__init__.py +4 -5
  77. ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +10 -7
  78. ai_edge_torch/generative/layers/attention.py +141 -102
  79. ai_edge_torch/generative/layers/attention_utils.py +53 -12
  80. ai_edge_torch/generative/layers/builder.py +37 -7
  81. ai_edge_torch/generative/layers/feed_forward.py +39 -14
  82. ai_edge_torch/generative/layers/kv_cache.py +162 -50
  83. ai_edge_torch/generative/layers/model_config.py +84 -30
  84. ai_edge_torch/generative/layers/normalization.py +185 -7
  85. ai_edge_torch/generative/layers/rotary_position_embedding.py +6 -4
  86. ai_edge_torch/generative/layers/scaled_dot_product_attention.py +48 -21
  87. ai_edge_torch/generative/layers/unet/blocks_2d.py +136 -77
  88. ai_edge_torch/generative/layers/unet/builder.py +7 -4
  89. ai_edge_torch/generative/layers/unet/model_config.py +17 -15
  90. ai_edge_torch/generative/quantize/example.py +7 -8
  91. ai_edge_torch/generative/quantize/quant_recipe.py +10 -7
  92. ai_edge_torch/generative/quantize/quant_recipe_utils.py +12 -1
  93. ai_edge_torch/generative/quantize/quant_recipes.py +8 -0
  94. ai_edge_torch/generative/test/test_kv_cache.py +120 -0
  95. ai_edge_torch/generative/test/{loader_test.py → test_loader.py} +9 -7
  96. ai_edge_torch/generative/test/test_model_conversion.py +124 -188
  97. ai_edge_torch/generative/test/test_model_conversion_large.py +251 -0
  98. ai_edge_torch/generative/test/test_quantize.py +76 -60
  99. ai_edge_torch/generative/test/utils.py +54 -0
  100. ai_edge_torch/generative/utilities/converter.py +82 -0
  101. ai_edge_torch/generative/utilities/loader.py +120 -57
  102. ai_edge_torch/generative/utilities/stable_diffusion_loader.py +165 -57
  103. ai_edge_torch/generative/utilities/t5_loader.py +110 -81
  104. ai_edge_torch/generative/utilities/verifier.py +247 -0
  105. ai_edge_torch/hlfb/__init__.py +1 -1
  106. ai_edge_torch/hlfb/mark_pattern/__init__.py +9 -7
  107. ai_edge_torch/hlfb/mark_pattern/passes.py +23 -3
  108. ai_edge_torch/hlfb/mark_pattern/pattern.py +39 -30
  109. ai_edge_torch/hlfb/test/test_mark_pattern.py +46 -20
  110. ai_edge_torch/hlfb/test/test_stablehlo_composite_builder.py +24 -11
  111. ai_edge_torch/lowertools/__init__.py +18 -0
  112. ai_edge_torch/lowertools/_shim.py +80 -0
  113. ai_edge_torch/lowertools/common_utils.py +142 -0
  114. ai_edge_torch/lowertools/odml_torch_utils.py +255 -0
  115. ai_edge_torch/lowertools/test_utils.py +60 -0
  116. ai_edge_torch/lowertools/torch_xla_utils.py +284 -0
  117. ai_edge_torch/{generative/quantize/ai_edge_quantizer_glue → lowertools}/translate_recipe.py +29 -14
  118. ai_edge_torch/model.py +53 -18
  119. ai_edge_torch/odml_torch/__init__.py +20 -0
  120. ai_edge_torch/odml_torch/_torch_future.py +61 -0
  121. ai_edge_torch/odml_torch/_torch_library.py +19 -0
  122. ai_edge_torch/odml_torch/composite/__init__.py +16 -0
  123. ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
  124. ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
  125. ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
  126. ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
  127. ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
  128. ai_edge_torch/odml_torch/export.py +357 -0
  129. ai_edge_torch/odml_torch/export_utils.py +168 -0
  130. ai_edge_torch/odml_torch/jax_bridge/__init__.py +15 -0
  131. ai_edge_torch/odml_torch/jax_bridge/_wrap.py +150 -0
  132. ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
  133. ai_edge_torch/odml_torch/lowerings/__init__.py +25 -0
  134. ai_edge_torch/odml_torch/lowerings/_basic.py +258 -0
  135. ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
  136. ai_edge_torch/odml_torch/lowerings/_convolution.py +241 -0
  137. ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +252 -0
  138. ai_edge_torch/odml_torch/lowerings/_layer_norm.py +78 -0
  139. ai_edge_torch/odml_torch/lowerings/context.py +42 -0
  140. ai_edge_torch/odml_torch/lowerings/registry.py +96 -0
  141. ai_edge_torch/odml_torch/lowerings/utils.py +185 -0
  142. ai_edge_torch/odml_torch/passes/__init__.py +38 -0
  143. ai_edge_torch/odml_torch/tf_integration.py +194 -0
  144. ai_edge_torch/quantize/pt2e_quantizer.py +52 -24
  145. ai_edge_torch/quantize/pt2e_quantizer_utils.py +43 -23
  146. ai_edge_torch/quantize/quant_config.py +13 -9
  147. ai_edge_torch/testing/model_coverage/model_coverage.py +29 -16
  148. ai_edge_torch/version.py +16 -0
  149. {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/METADATA +7 -3
  150. ai_edge_torch_nightly-0.3.0.dev20240926.dist-info/RECORD +177 -0
  151. {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/WHEEL +1 -1
  152. ai_edge_torch/convert/conversion.py +0 -117
  153. ai_edge_torch/convert/conversion_utils.py +0 -400
  154. ai_edge_torch/convert/fx_passes/__init__.py +0 -59
  155. ai_edge_torch/convert/fx_passes/_pass_base.py +0 -49
  156. ai_edge_torch/convert/fx_passes/canonicalize_pass.py +0 -37
  157. ai_edge_torch/convert/test/test_convert.py +0 -311
  158. ai_edge_torch/convert/test/test_convert_composites.py +0 -192
  159. ai_edge_torch/convert/test/test_convert_multisig.py +0 -139
  160. ai_edge_torch/generative/examples/gemma/convert_to_tflite.py +0 -66
  161. ai_edge_torch/generative/examples/phi2/convert_to_tflite.py +0 -64
  162. ai_edge_torch/generative/examples/test_models/toy_model_with_external_kv_cache.py +0 -161
  163. ai_edge_torch/generative/quantize/ai_edge_quantizer_glue/__init__.py +0 -0
  164. ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/RECORD +0 -121
  165. /ai_edge_torch/{convert → _convert}/__init__.py +0 -0
  166. /ai_edge_torch/{convert → _convert}/test/__init__.py +0 -0
  167. /ai_edge_torch/generative/examples/{phi2 → openelm}/__init__.py +0 -0
  168. {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/LICENSE +0 -0
  169. {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/top_level.txt +0 -0
@@ -12,43 +12,38 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
  # ==============================================================================
15
- # Example of building a Gemma model.
16
15
 
17
- import os
18
- from pathlib import Path
16
+ """Example of building a Gemma1 model."""
19
17
 
20
- import numpy as np
21
- import torch
22
- import torch.nn as nn
23
-
24
- from ai_edge_torch.generative.layers.attention import TransformerBlock
18
+ from ai_edge_torch.generative.layers import attention
19
+ from ai_edge_torch.generative.layers import builder
20
+ from ai_edge_torch.generative.layers import kv_cache as kv_utils
25
21
  import ai_edge_torch.generative.layers.attention_utils as attn_utils
26
- import ai_edge_torch.generative.layers.builder as builder
27
22
  import ai_edge_torch.generative.layers.model_config as cfg
28
23
  import ai_edge_torch.generative.utilities.loader as loading_utils
24
+ import torch
25
+ from torch import nn
29
26
 
30
27
  TENSOR_NAMES = loading_utils.ModelLoader.TensorNames(
31
28
  ff_up_proj="model.layers.{}.mlp.up_proj",
32
29
  ff_down_proj="model.layers.{}.mlp.down_proj",
33
30
  ff_gate_proj="model.layers.{}.mlp.gate_proj",
34
- attn_query_proj="model.layers.{}.self_attn.q_proj",
35
- attn_key_proj="model.layers.{}.self_attn.k_proj",
36
- attn_value_proj="model.layers.{}.self_attn.v_proj",
31
+ attn_fused_qkv_proj="model.layers.{}.self_attn.qkv_proj",
37
32
  attn_output_proj="model.layers.{}.self_attn.o_proj",
38
33
  pre_attn_norm="model.layers.{}.input_layernorm",
39
- pre_ff_norm="model.layers.{}.post_attention_layernorm",
40
- embedding="model.embed_tokens",
34
+ post_attn_norm="model.layers.{}.post_attention_layernorm",
35
+ embedding="embedder",
41
36
  final_norm="model.norm",
42
37
  lm_head=None,
43
38
  )
44
39
 
45
40
 
46
41
  class Gemma(nn.Module):
42
+ """A Gemma model built from the Edge Generative API layers."""
47
43
 
48
44
  def __init__(self, config: cfg.ModelConfig):
49
45
  super().__init__()
50
46
 
51
- self.config = config
52
47
  # Construct model layers.
53
48
  self.tok_embedding = nn.Embedding(
54
49
  config.vocab_size, config.embedding_dim, padding_idx=0
@@ -60,35 +55,48 @@ class Gemma(nn.Module):
60
55
  )
61
56
  # Gemma re-uses the embedding as the head projection layer.
62
57
  self.lm_head.weight.data = self.tok_embedding.weight.data
58
+ # Gemma has only one block config.
59
+ block_config = config.block_config(0)
63
60
  self.transformer_blocks = nn.ModuleList(
64
- TransformerBlock(config) for _ in range(config.num_layers)
61
+ attention.TransformerBlock(block_config, config)
62
+ for _ in range(config.num_layers)
65
63
  )
66
64
  self.final_norm = builder.build_norm(
67
65
  config.embedding_dim,
68
66
  config.final_norm_config,
69
67
  )
68
+ attn_config = block_config.attn_config
70
69
  self.rope_cache = attn_utils.build_rope_cache(
71
70
  size=config.kv_cache_max,
72
- dim=int(config.attn_config.rotary_percentage * config.head_dim),
71
+ dim=int(attn_config.rotary_percentage * attn_config.head_dim),
73
72
  base=10_000,
74
73
  condense_ratio=1,
75
74
  dtype=torch.float32,
76
75
  device=torch.device("cpu"),
77
76
  )
78
77
  self.mask_cache = attn_utils.build_causal_mask_cache(
79
- size=config.kv_cache_max, dtype=torch.float32, device=torch.device("cpu")
78
+ size=config.kv_cache_max,
79
+ dtype=torch.float32,
80
+ device=torch.device("cpu"),
80
81
  )
81
82
  self.config = config
82
83
 
83
- # The model's forward function takes in additional k/v cache tensors
84
- # and returns the updated k/v cache tensors to the caller.
85
- # This can be eliminated if we handle k/v cache updates inside the model itself.
86
84
  @torch.inference_mode
87
- def forward(self, idx: torch.Tensor, input_pos: torch.Tensor) -> torch.Tensor:
88
- B, T = idx.size()
89
- assert (
90
- self.config.max_seq_len >= T
91
- ), f"Cannot forward sequence of length {T}, max seq length is only {self.config.max_seq_len}"
85
+ def forward(
86
+ self,
87
+ tokens: torch.Tensor,
88
+ input_pos: torch.Tensor,
89
+ kv_cache: kv_utils.KVCache,
90
+ ) -> dict[torch.Tensor, kv_utils.KVCache]:
91
+ _, seq_len = tokens.size()
92
+ assert self.config.max_seq_len >= seq_len, (
93
+ f"Cannot forward sequence of length {seq_len}, max seq length is only"
94
+ f" {self.config.max_seq_len}"
95
+ )
96
+ assert len(self.transformer_blocks) == len(kv_cache.caches), (
97
+ "The number of transformer blocks and the number of KV cache entries"
98
+ " must be the same."
99
+ )
92
100
 
93
101
  cos, sin = self.rope_cache
94
102
  cos = cos.index_select(0, input_pos)
@@ -97,20 +105,35 @@ class Gemma(nn.Module):
97
105
  mask = mask[:, :, :, : self.config.kv_cache_max]
98
106
 
99
107
  # token embeddings of shape (b, t, n_embd)
100
- x = self.tok_embedding(idx)
108
+ x = self.tok_embedding(tokens)
101
109
  x = x * (self.config.embedding_dim**0.5)
102
110
 
111
+ updated_kv_entires = []
103
112
  for i, block in enumerate(self.transformer_blocks):
104
- x = block(x, (cos, sin), mask, input_pos)
113
+ kv_entry = kv_cache.caches[i] if kv_cache else None
114
+ x, kv_entry = block(x, (cos, sin), mask, input_pos, kv_entry)
115
+ if kv_entry:
116
+ updated_kv_entires.append(kv_entry)
117
+ updated_kv_cache = kv_utils.KVCache(tuple(updated_kv_entires))
105
118
 
106
119
  x = self.final_norm(x)
107
- res = self.lm_head(x) # (b, t, vocab_size)
108
- return res
120
+ logits = self.lm_head(x) # (b, t, vocab_size)
121
+ return {"logits": logits, "kv_cache": updated_kv_cache}
109
122
 
110
123
 
111
124
  def get_model_config_2b(kv_cache_max_len: int = 1024) -> cfg.ModelConfig:
125
+ """Returns the model config for a Gemma 2B model.
126
+
127
+ Args:
128
+ kv_cache_max_len (int): The maximum sequence length of the KV cache. Default
129
+ is 1024.
130
+
131
+ Returns:
132
+ The model config for a Gemma 2B model.
133
+ """
112
134
  attn_config = cfg.AttentionConfig(
113
135
  num_heads=8,
136
+ head_dim=256,
114
137
  num_query_groups=1,
115
138
  rotary_percentage=1.0,
116
139
  )
@@ -124,51 +147,42 @@ def get_model_config_2b(kv_cache_max_len: int = 1024) -> cfg.ModelConfig:
124
147
  epsilon=1e-6,
125
148
  zero_centered=True,
126
149
  )
150
+ block_config = cfg.TransformerBlockConfig(
151
+ attn_config=attn_config,
152
+ ff_config=ff_config,
153
+ pre_attention_norm_config=norm_config,
154
+ post_attention_norm_config=norm_config,
155
+ )
127
156
  config = cfg.ModelConfig(
128
157
  vocab_size=256000,
129
158
  num_layers=18,
130
159
  max_seq_len=8192,
131
160
  embedding_dim=2048,
132
161
  kv_cache_max_len=kv_cache_max_len,
133
- attn_config=attn_config,
134
- ff_config=ff_config,
135
- pre_attention_norm_config=norm_config,
136
- pre_ff_norm_config=norm_config,
162
+ block_configs=block_config,
137
163
  final_norm_config=norm_config,
138
- parallel_residual=False,
139
164
  lm_head_use_bias=False,
140
165
  enable_hlfb=True,
141
166
  )
142
167
  return config
143
168
 
144
169
 
145
- def get_fake_model_config_2b_for_test() -> cfg.ModelConfig:
146
- config = get_model_config_2b()
170
+ def get_fake_model_config(kv_cache_max_len: int = 128) -> cfg.ModelConfig:
171
+ config = get_model_config_2b(kv_cache_max_len)
172
+ # Gemma has only one block config.
173
+ config.block_config(0).ff_config.intermediate_size = 128
174
+ config.vocab_size = 128
147
175
  config.num_layers = 2
176
+ config.max_seq_len = 2 * kv_cache_max_len
148
177
  return config
149
178
 
150
179
 
151
- def build_2b_model(checkpoint_path, **kwargs) -> nn.Module:
180
+ def build_2b_model(checkpoint_path: str, **kwargs) -> nn.Module:
152
181
  config = get_model_config_2b(**kwargs)
153
182
  model = Gemma(config)
154
183
  loader = loading_utils.ModelLoader(checkpoint_path, TENSOR_NAMES)
155
- # since embedding and lm-head use the same weight, we need to set strict
184
+ # Since embedding and lm-head use the same weight, we need to set strict
156
185
  # to False.
157
186
  loader.load(model, strict=False)
187
+ model.eval()
158
188
  return model
159
-
160
-
161
- def define_and_run_2b() -> None:
162
- kv_cache_max_len = 1024
163
- checkpoint_path = os.path.join(Path.home(), "Downloads/llm_data/gemma-2b")
164
- model = build_2b_model(checkpoint_path, kv_cache_max_len=kv_cache_max_len)
165
- idx = torch.from_numpy(np.array([[1, 2, 3, 4]]))
166
- tokens = torch.full((1, kv_cache_max_len), 0, dtype=torch.long, device="cpu")
167
- tokens[0, :4] = idx
168
- input_pos = torch.arange(0, kv_cache_max_len)
169
- print("running an inference")
170
- print(model.forward(tokens, input_pos))
171
-
172
-
173
- if __name__ == "__main__":
174
- define_and_run_2b()
@@ -0,0 +1,267 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ """Example of building a Gemma2 model."""
17
+
18
+ import os
19
+ from typing import Optional, Tuple
20
+
21
+ from ai_edge_torch.generative.layers import attention
22
+ from ai_edge_torch.generative.layers import builder
23
+ from ai_edge_torch.generative.layers import kv_cache as kv_utils
24
+ import ai_edge_torch.generative.layers.attention_utils as attn_utils
25
+ import ai_edge_torch.generative.layers.model_config as cfg
26
+ import ai_edge_torch.generative.utilities.loader as loading_utils
27
+ import torch
28
+ from torch import nn
29
+
30
+ TENSOR_NAMES = loading_utils.ModelLoader.TensorNames(
31
+ ff_up_proj="model.layers.{}.mlp.up_proj",
32
+ ff_down_proj="model.layers.{}.mlp.down_proj",
33
+ ff_gate_proj="model.layers.{}.mlp.gate_proj",
34
+ attn_fused_qkv_proj="model.layers.{}.self_attn.qkv_proj",
35
+ attn_output_proj="model.layers.{}.self_attn.o_proj",
36
+ pre_attn_norm="model.layers.{}.input_layernorm",
37
+ post_attn_norm="model.layers.{}.post_attention_layernorm",
38
+ pre_ff_norm="model.layers.{}.pre_feedforward_layernorm",
39
+ post_ff_norm="model.layers.{}.post_feedforward_layernorm",
40
+ embedding="embedder",
41
+ final_norm="model.norm",
42
+ lm_head=None,
43
+ )
44
+
45
+
46
+ class Gemma2Block(attention.TransformerBlock):
47
+
48
+ def forward(
49
+ self,
50
+ x: torch.Tensor,
51
+ rope: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
52
+ mask: Optional[torch.Tensor] = None,
53
+ input_pos: Optional[torch.Tensor] = None,
54
+ kv_cache: kv_utils.KVCacheEntry = None,
55
+ ) -> Tuple[torch.Tensor, Optional[kv_utils.KVCacheEntry]]:
56
+ """Forward function of the Gemma2Block.
57
+
58
+ Exactly the same as TransformerBlock but we call the post-attention norm
59
+ immediately after attention and not after the residual pointwise addition.
60
+
61
+ Args:
62
+ x (torch.Tensor): the input tensor.
63
+ rope (Tuple[torch.Tensor, torch.Tensor]): the input rope tensor.
64
+ mask (torch.Tensor): the optional mask tensor.
65
+ input_pos (torch.Tensor): the optional input position tensor.
66
+ kv_cache (KVCacheEntry): the optional kv cache entry.
67
+
68
+ Returns:
69
+ output activation from this transformer block, and updated kv cache (if
70
+ passed in).
71
+ """
72
+
73
+ x_norm = self.pre_atten_norm(x)
74
+ attn_out, kv = self.atten_func(x_norm, rope, mask, input_pos, kv_cache)
75
+ attn_out_norm = self.post_atten_norm(attn_out)
76
+ x = x + attn_out_norm
77
+ output = x + self.ff(x)
78
+ return output, kv
79
+
80
+
81
+ class Gemma2(nn.Module):
82
+ """A Gemma2 model built from the Edge Generative API layers."""
83
+
84
+ def __init__(self, config: cfg.ModelConfig):
85
+ super().__init__()
86
+
87
+ # Construct model layers.
88
+ self.tok_embedding = nn.Embedding(
89
+ config.vocab_size, config.embedding_dim, padding_idx=0
90
+ )
91
+ self.lm_head = nn.Linear(
92
+ config.embedding_dim,
93
+ config.vocab_size,
94
+ bias=config.lm_head_use_bias,
95
+ )
96
+ # Gemma2 re-uses the embedding as the head projection layer.
97
+ self.lm_head.weight.data = self.tok_embedding.weight.data
98
+ self.transformer_blocks = nn.ModuleList(
99
+ Gemma2Block(config.block_config(idx), config)
100
+ for idx in range(config.num_layers)
101
+ )
102
+ self.final_norm = builder.build_norm(
103
+ config.embedding_dim,
104
+ config.final_norm_config,
105
+ )
106
+ # Gemma2 has same hyper parameters for each layer except for attention
107
+ # types. Use the first layer.
108
+ attn_config = config.block_config(0).attn_config
109
+ self.rope_cache = attn_utils.build_rope_cache(
110
+ size=config.kv_cache_max,
111
+ dim=int(attn_config.rotary_percentage * attn_config.head_dim),
112
+ base=10_000,
113
+ condense_ratio=1,
114
+ dtype=torch.float32,
115
+ device=torch.device("cpu"),
116
+ )
117
+ self.mask_cache = attn_utils.build_causal_mask_cache(
118
+ size=config.kv_cache_max,
119
+ dtype=torch.float32,
120
+ device=torch.device("cpu"),
121
+ )
122
+ self.sliding_window_mask_cache = attn_utils.build_sliding_window_mask_cache(
123
+ size=config.kv_cache_max,
124
+ window_size=attn_config.sliding_window_size,
125
+ dtype=torch.float32,
126
+ device=torch.device("cpu"),
127
+ )
128
+ self.config = config
129
+
130
+ def get_attention_mask(
131
+ self, attn_type: cfg.AttentionType, input_pos: torch.Tensor
132
+ ) -> torch.Tensor:
133
+ if attn_type == cfg.AttentionType.LOCAL_SLIDING:
134
+ return self.sliding_window_mask_cache.index_select(2, input_pos)
135
+ return self.mask_cache.index_select(2, input_pos)
136
+
137
+ @torch.inference_mode
138
+ def forward(
139
+ self,
140
+ tokens: torch.Tensor,
141
+ input_pos: torch.Tensor,
142
+ kv_cache: kv_utils.KVCache,
143
+ ) -> dict[torch.Tensor, kv_utils.KVCache]:
144
+ _, seq_len = tokens.size()
145
+ assert self.config.max_seq_len >= seq_len, (
146
+ f"Cannot forward sequence of length {seq_len}, max seq length is only"
147
+ f" {self.config.max_seq_len}"
148
+ )
149
+ assert len(self.transformer_blocks) == len(kv_cache.caches), (
150
+ "The number of transformer blocks and the number of KV cache entries"
151
+ " must be the same."
152
+ )
153
+
154
+ cos, sin = self.rope_cache
155
+ cos = cos.index_select(0, input_pos)
156
+ sin = sin.index_select(0, input_pos)
157
+
158
+ # token embeddings of shape (b, t, n_embd)
159
+ x = self.tok_embedding(tokens)
160
+ x = x * (self.config.embedding_dim**0.5)
161
+
162
+ updated_kv_entires = []
163
+ for i, block in enumerate(self.transformer_blocks):
164
+ mask = self.get_attention_mask(
165
+ block.config.attn_config.attn_type, input_pos
166
+ )
167
+ kv_entry = kv_cache.caches[i] if kv_cache else None
168
+ x, kv_entry = block(x, (cos, sin), mask, input_pos, kv_entry)
169
+ if kv_entry:
170
+ updated_kv_entires.append(kv_entry)
171
+ updated_kv_cache = kv_utils.KVCache(tuple(updated_kv_entires))
172
+
173
+ x = self.final_norm(x)
174
+ res = self.lm_head(x) # (b, t, vocab_size)
175
+ if self.config.final_logit_softcap is not None:
176
+ res = res / self.config.final_logit_softcap
177
+ res = torch.tanh(res)
178
+ res = res * self.config.final_logit_softcap
179
+
180
+ return {"logits": res, "kv_cache": updated_kv_cache}
181
+
182
+
183
+ def get_model_config_2b(kv_cache_max_len: int = 1024) -> cfg.ModelConfig:
184
+ """Returns the model config for a Gemma2 2B model.
185
+
186
+ Args:
187
+ kv_cache_max_len (int): The maximum sequence length of the KV cache. Default
188
+ is 1024.
189
+
190
+ Returns:
191
+ The model config for a Gemma 2B model.
192
+ """
193
+ norm_config = cfg.NormalizationConfig(
194
+ type=cfg.NormalizationType.RMS_NORM,
195
+ epsilon=1e-6,
196
+ zero_centered=True,
197
+ )
198
+ ff_config = cfg.FeedForwardConfig(
199
+ type=cfg.FeedForwardType.GATED,
200
+ activation=cfg.ActivationConfig(cfg.ActivationType.GELU_TANH),
201
+ intermediate_size=9216,
202
+ pre_ff_norm_config=norm_config,
203
+ post_ff_norm_config=norm_config,
204
+ )
205
+
206
+ def get_block_config(idx: int) -> cfg.TransformerBlockConfig:
207
+ attn_config = cfg.AttentionConfig(
208
+ num_heads=8,
209
+ head_dim=256,
210
+ num_query_groups=4,
211
+ rotary_percentage=1.0,
212
+ qkv_transpose_before_split=True,
213
+ logit_softcap=50.0,
214
+ sliding_window_size=4096,
215
+ attn_type=(
216
+ cfg.AttentionType.GLOBAL
217
+ if idx % 2 == 0
218
+ else cfg.AttentionType.LOCAL_SLIDING
219
+ ),
220
+ )
221
+ return cfg.TransformerBlockConfig(
222
+ attn_config=attn_config,
223
+ ff_config=ff_config,
224
+ pre_attention_norm_config=norm_config,
225
+ post_attention_norm_config=norm_config,
226
+ )
227
+
228
+ num_layers = 26
229
+ config = cfg.ModelConfig(
230
+ vocab_size=256000,
231
+ num_layers=num_layers,
232
+ max_seq_len=8192,
233
+ embedding_dim=2304,
234
+ kv_cache_max_len=kv_cache_max_len,
235
+ block_configs=[get_block_config(i) for i in range(num_layers)],
236
+ final_norm_config=norm_config,
237
+ lm_head_use_bias=False,
238
+ enable_hlfb=True,
239
+ final_logit_softcap=30.0,
240
+ )
241
+ return config
242
+
243
+
244
+ def get_fake_model_config(kv_cache_max_len: int = 128) -> cfg.ModelConfig:
245
+ config = get_model_config_2b(kv_cache_max_len)
246
+ config.vocab_size = 128
247
+ config.num_layers = 2
248
+ config.max_seq_len = 2 * kv_cache_max_len
249
+ config.embedding_dim = 128
250
+ config.block_configs = config.block_configs[: config.num_layers]
251
+ for block_config in config.block_configs:
252
+ block_config.attn_config.num_heads = 4
253
+ block_config.attn_config.head_dim = 64
254
+ block_config.attn_config.sliding_window_size = 64
255
+ block_config.ff_config.intermediate_size = 128
256
+ return config
257
+
258
+
259
+ def build_2b_model(checkpoint_path: str, **kwargs) -> nn.Module:
260
+ config = get_model_config_2b(**kwargs)
261
+ model = Gemma2(config)
262
+ loader = loading_utils.ModelLoader(checkpoint_path, TENSOR_NAMES)
263
+ # Since embedding and lm-head use the same weight, we need to set strict
264
+ # to False.
265
+ loader.load(model, strict=False)
266
+ model.eval()
267
+ return model
@@ -0,0 +1,56 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ """Verifies the reauthored Gemma1 model."""
17
+
18
+ import logging
19
+ from absl import app
20
+ from absl import flags
21
+ from ai_edge_torch.generative.examples.gemma import gemma1
22
+ from ai_edge_torch.generative.examples.gemma import verify_util
23
+ import kagglehub
24
+
25
+
26
+ _PROMPTS = flags.DEFINE_multi_string(
27
+ "prompts",
28
+ "What is the meaning of life?",
29
+ "The input prompts to generate answers.",
30
+ )
31
+ _MAX_NEW_TOKENS = flags.DEFINE_integer(
32
+ "max_new_tokens",
33
+ 30,
34
+ "The maximum size of the generated tokens.",
35
+ )
36
+
37
+
38
+ def main(_):
39
+ checkpoint = kagglehub.model_download("google/gemma/pyTorch/2b-it")
40
+
41
+ logging.info("Building the reauthored model from: %s", checkpoint)
42
+ reauthored_model = gemma1.build_2b_model(checkpoint)
43
+
44
+ verify_util.verify_reauthored_gemma_model(
45
+ checkpoint=checkpoint,
46
+ variant="2b",
47
+ reauthored_model=reauthored_model,
48
+ weight_filename="gemma-2b-it.ckpt",
49
+ generate_prompts=_PROMPTS.value,
50
+ forward_input_ids=[[1, 2, 3, 4]],
51
+ max_new_tokens=_MAX_NEW_TOKENS.value,
52
+ )
53
+
54
+
55
+ if __name__ == "__main__":
56
+ app.run(main)
@@ -0,0 +1,57 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ """Verifies the reauthored Gemma2 model."""
17
+
18
+ import logging
19
+ from absl import app
20
+ from absl import flags
21
+ from ai_edge_torch.generative.examples.gemma import gemma2
22
+ from ai_edge_torch.generative.examples.gemma import verify_util
23
+ from ai_edge_torch.generative.utilities import verifier
24
+ import kagglehub
25
+
26
+
27
+ _PROMPTS = flags.DEFINE_multi_string(
28
+ "prompts",
29
+ "What is the meaning of life?",
30
+ "The input prompts to generate answers.",
31
+ )
32
+ _MAX_NEW_TOKENS = flags.DEFINE_integer(
33
+ "max_new_tokens",
34
+ 30,
35
+ "The maximum size of the generated tokens.",
36
+ )
37
+
38
+
39
+ def main(_):
40
+ checkpoint = kagglehub.model_download("google/gemma-2/pyTorch/gemma-2-2b-it")
41
+
42
+ logging.info("Building the reauthored model from: %s", checkpoint)
43
+ reauthored_model = gemma2.build_2b_model(checkpoint)
44
+
45
+ verify_util.verify_reauthored_gemma_model(
46
+ checkpoint=checkpoint,
47
+ variant="2b-v2",
48
+ reauthored_model=reauthored_model,
49
+ generate_prompts=_PROMPTS.value,
50
+ forward_input_ids=[[2, 651, 9456, 576, 573, 3520, 3858, 603, 235248]],
51
+ max_new_tokens=_MAX_NEW_TOKENS.value,
52
+ atol=1e-04,
53
+ )
54
+
55
+
56
+ if __name__ == "__main__":
57
+ app.run(main)