ai-edge-torch-nightly 0.2.0.dev20240714__py3-none-any.whl → 0.3.0.dev20240926__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_edge_torch/__init__.py +5 -4
- ai_edge_torch/_convert/conversion.py +112 -0
- ai_edge_torch/_convert/conversion_utils.py +64 -0
- ai_edge_torch/{convert → _convert}/converter.py +94 -48
- ai_edge_torch/_convert/fx_passes/__init__.py +22 -0
- ai_edge_torch/{convert → _convert}/fx_passes/build_aten_composite_pass.py +107 -44
- ai_edge_torch/{convert → _convert}/fx_passes/build_interpolate_composite_pass.py +23 -20
- ai_edge_torch/{convert → _convert}/fx_passes/inject_mlir_debuginfo_pass.py +5 -6
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/__init__.py +1 -1
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_check.py +39 -9
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_mark.py +2 -0
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +1 -0
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +17 -8
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +9 -8
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +31 -18
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +2 -2
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/pass_body.py +34 -24
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/utils.py +2 -0
- ai_edge_torch/_convert/signature.py +66 -0
- ai_edge_torch/_convert/test/test_convert.py +495 -0
- ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
- ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
- ai_edge_torch/{convert → _convert}/test/test_to_channel_last_io.py +5 -5
- ai_edge_torch/{convert → _convert}/to_channel_last_io.py +10 -3
- ai_edge_torch/config.py +27 -0
- ai_edge_torch/conftest.py +20 -0
- ai_edge_torch/debug/culprit.py +72 -40
- ai_edge_torch/debug/test/test_culprit.py +7 -5
- ai_edge_torch/debug/test/test_search_model.py +8 -7
- ai_edge_torch/debug/utils.py +14 -3
- ai_edge_torch/fx_pass_base.py +101 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/gemma/{gemma.py → gemma1.py} +69 -55
- ai_edge_torch/generative/examples/gemma/gemma2.py +267 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma2.py +57 -0
- ai_edge_torch/generative/examples/gemma/verify_util.py +143 -0
- ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/openelm/openelm.py +206 -0
- ai_edge_torch/generative/examples/openelm/verify.py +64 -0
- ai_edge_torch/generative/examples/phi/__init__.py +14 -0
- ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/phi/convert_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/{phi2 → phi}/phi2.py +70 -51
- ai_edge_torch/generative/examples/phi/phi3.py +286 -0
- ai_edge_torch/generative/examples/phi/verify.py +65 -0
- ai_edge_torch/generative/examples/phi/verify_phi3.py +70 -0
- ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
- ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/smollm/smollm.py +101 -0
- ai_edge_torch/generative/examples/smollm/verify.py +62 -0
- ai_edge_torch/generative/examples/stable_diffusion/attention.py +3 -1
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +83 -13
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +27 -14
- ai_edge_torch/generative/examples/stable_diffusion/decoder.py +74 -9
- ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +179 -37
- ai_edge_torch/generative/examples/stable_diffusion/encoder.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +83 -58
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +1 -0
- ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +4 -1
- ai_edge_torch/generative/examples/stable_diffusion/util.py +9 -3
- ai_edge_torch/generative/examples/t5/convert_to_tflite.py +28 -25
- ai_edge_torch/generative/examples/t5/t5.py +208 -159
- ai_edge_torch/generative/examples/t5/t5_attention.py +45 -30
- ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
- ai_edge_torch/generative/examples/test_models/toy_model.py +69 -41
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +50 -64
- ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +41 -39
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +67 -54
- ai_edge_torch/generative/examples/tiny_llama/verify.py +64 -0
- ai_edge_torch/generative/fx_passes/__init__.py +4 -5
- ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +10 -7
- ai_edge_torch/generative/layers/attention.py +141 -102
- ai_edge_torch/generative/layers/attention_utils.py +53 -12
- ai_edge_torch/generative/layers/builder.py +37 -7
- ai_edge_torch/generative/layers/feed_forward.py +39 -14
- ai_edge_torch/generative/layers/kv_cache.py +162 -50
- ai_edge_torch/generative/layers/model_config.py +84 -30
- ai_edge_torch/generative/layers/normalization.py +185 -7
- ai_edge_torch/generative/layers/rotary_position_embedding.py +6 -4
- ai_edge_torch/generative/layers/scaled_dot_product_attention.py +48 -21
- ai_edge_torch/generative/layers/unet/blocks_2d.py +136 -77
- ai_edge_torch/generative/layers/unet/builder.py +7 -4
- ai_edge_torch/generative/layers/unet/model_config.py +17 -15
- ai_edge_torch/generative/quantize/example.py +7 -8
- ai_edge_torch/generative/quantize/quant_recipe.py +10 -7
- ai_edge_torch/generative/quantize/quant_recipe_utils.py +12 -1
- ai_edge_torch/generative/quantize/quant_recipes.py +8 -0
- ai_edge_torch/generative/test/test_kv_cache.py +120 -0
- ai_edge_torch/generative/test/{loader_test.py → test_loader.py} +9 -7
- ai_edge_torch/generative/test/test_model_conversion.py +124 -188
- ai_edge_torch/generative/test/test_model_conversion_large.py +251 -0
- ai_edge_torch/generative/test/test_quantize.py +76 -60
- ai_edge_torch/generative/test/utils.py +54 -0
- ai_edge_torch/generative/utilities/converter.py +82 -0
- ai_edge_torch/generative/utilities/loader.py +120 -57
- ai_edge_torch/generative/utilities/stable_diffusion_loader.py +165 -57
- ai_edge_torch/generative/utilities/t5_loader.py +110 -81
- ai_edge_torch/generative/utilities/verifier.py +247 -0
- ai_edge_torch/hlfb/__init__.py +1 -1
- ai_edge_torch/hlfb/mark_pattern/__init__.py +9 -7
- ai_edge_torch/hlfb/mark_pattern/passes.py +23 -3
- ai_edge_torch/hlfb/mark_pattern/pattern.py +39 -30
- ai_edge_torch/hlfb/test/test_mark_pattern.py +46 -20
- ai_edge_torch/hlfb/test/test_stablehlo_composite_builder.py +24 -11
- ai_edge_torch/lowertools/__init__.py +18 -0
- ai_edge_torch/lowertools/_shim.py +80 -0
- ai_edge_torch/lowertools/common_utils.py +142 -0
- ai_edge_torch/lowertools/odml_torch_utils.py +255 -0
- ai_edge_torch/lowertools/test_utils.py +60 -0
- ai_edge_torch/lowertools/torch_xla_utils.py +284 -0
- ai_edge_torch/{generative/quantize/ai_edge_quantizer_glue → lowertools}/translate_recipe.py +29 -14
- ai_edge_torch/model.py +53 -18
- ai_edge_torch/odml_torch/__init__.py +20 -0
- ai_edge_torch/odml_torch/_torch_future.py +61 -0
- ai_edge_torch/odml_torch/_torch_library.py +19 -0
- ai_edge_torch/odml_torch/composite/__init__.py +16 -0
- ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
- ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
- ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
- ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
- ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
- ai_edge_torch/odml_torch/export.py +357 -0
- ai_edge_torch/odml_torch/export_utils.py +168 -0
- ai_edge_torch/odml_torch/jax_bridge/__init__.py +15 -0
- ai_edge_torch/odml_torch/jax_bridge/_wrap.py +150 -0
- ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
- ai_edge_torch/odml_torch/lowerings/__init__.py +25 -0
- ai_edge_torch/odml_torch/lowerings/_basic.py +258 -0
- ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
- ai_edge_torch/odml_torch/lowerings/_convolution.py +241 -0
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +252 -0
- ai_edge_torch/odml_torch/lowerings/_layer_norm.py +78 -0
- ai_edge_torch/odml_torch/lowerings/context.py +42 -0
- ai_edge_torch/odml_torch/lowerings/registry.py +96 -0
- ai_edge_torch/odml_torch/lowerings/utils.py +185 -0
- ai_edge_torch/odml_torch/passes/__init__.py +38 -0
- ai_edge_torch/odml_torch/tf_integration.py +194 -0
- ai_edge_torch/quantize/pt2e_quantizer.py +52 -24
- ai_edge_torch/quantize/pt2e_quantizer_utils.py +43 -23
- ai_edge_torch/quantize/quant_config.py +13 -9
- ai_edge_torch/testing/model_coverage/model_coverage.py +29 -16
- ai_edge_torch/version.py +16 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/METADATA +7 -3
- ai_edge_torch_nightly-0.3.0.dev20240926.dist-info/RECORD +177 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/WHEEL +1 -1
- ai_edge_torch/convert/conversion.py +0 -117
- ai_edge_torch/convert/conversion_utils.py +0 -400
- ai_edge_torch/convert/fx_passes/__init__.py +0 -59
- ai_edge_torch/convert/fx_passes/_pass_base.py +0 -49
- ai_edge_torch/convert/fx_passes/canonicalize_pass.py +0 -37
- ai_edge_torch/convert/test/test_convert.py +0 -311
- ai_edge_torch/convert/test/test_convert_composites.py +0 -192
- ai_edge_torch/convert/test/test_convert_multisig.py +0 -139
- ai_edge_torch/generative/examples/gemma/convert_to_tflite.py +0 -66
- ai_edge_torch/generative/examples/phi2/convert_to_tflite.py +0 -64
- ai_edge_torch/generative/examples/test_models/toy_model_with_external_kv_cache.py +0 -161
- ai_edge_torch/generative/quantize/ai_edge_quantizer_glue/__init__.py +0 -0
- ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/RECORD +0 -121
- /ai_edge_torch/{convert → _convert}/__init__.py +0 -0
- /ai_edge_torch/{convert → _convert}/test/__init__.py +0 -0
- /ai_edge_torch/generative/examples/{phi2 → openelm}/__init__.py +0 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/LICENSE +0 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/top_level.txt +0 -0
ai_edge_torch/__init__.py
CHANGED
@@ -13,10 +13,11 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
15
|
|
16
|
-
from .
|
17
|
-
from .
|
18
|
-
from .
|
19
|
-
from .model import Model
|
16
|
+
from ai_edge_torch._convert.converter import convert
|
17
|
+
from ai_edge_torch._convert.converter import signature
|
18
|
+
from ai_edge_torch._convert.to_channel_last_io import to_channel_last_io
|
19
|
+
from ai_edge_torch.model import Model
|
20
|
+
from ai_edge_torch.version import __version__
|
20
21
|
|
21
22
|
|
22
23
|
def load(path: str) -> Model:
|
@@ -0,0 +1,112 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
import logging
|
17
|
+
import os
|
18
|
+
from typing import Any, Optional
|
19
|
+
|
20
|
+
from ai_edge_torch import fx_pass_base
|
21
|
+
from ai_edge_torch import lowertools
|
22
|
+
from ai_edge_torch import model
|
23
|
+
from ai_edge_torch._convert import fx_passes
|
24
|
+
from ai_edge_torch._convert import signature
|
25
|
+
from ai_edge_torch.generative import fx_passes as generative_fx_passes
|
26
|
+
from ai_edge_torch.quantize import quant_config as qcfg
|
27
|
+
import torch
|
28
|
+
|
29
|
+
os.environ["EXPERIMENTAL_XLA_UNBOUNDED_DYNAMISM"] = "1"
|
30
|
+
|
31
|
+
|
32
|
+
def _run_convert_passes(
|
33
|
+
exported_program: torch.export.ExportedProgram,
|
34
|
+
) -> torch.export.ExportedProgram:
|
35
|
+
exported_program = generative_fx_passes.run_generative_passes(
|
36
|
+
exported_program
|
37
|
+
)
|
38
|
+
return fx_pass_base.run_passes(
|
39
|
+
exported_program,
|
40
|
+
[
|
41
|
+
fx_passes.BuildInterpolateCompositePass(),
|
42
|
+
fx_passes.CanonicalizePass(),
|
43
|
+
fx_passes.OptimizeLayoutTransposesPass(),
|
44
|
+
fx_passes.CanonicalizePass(),
|
45
|
+
fx_passes.BuildAtenCompositePass(),
|
46
|
+
fx_passes.CanonicalizePass(),
|
47
|
+
fx_passes.InjectMlirDebuginfoPass(),
|
48
|
+
fx_passes.CanonicalizePass(),
|
49
|
+
],
|
50
|
+
)
|
51
|
+
|
52
|
+
|
53
|
+
def _warn_training_modules(signatures: list[signature.Signature]):
|
54
|
+
"""Warns the user if the module is in training mode (.eval not called)."""
|
55
|
+
for sig in signatures:
|
56
|
+
if not sig.module.training:
|
57
|
+
continue
|
58
|
+
|
59
|
+
message = (
|
60
|
+
"Your model {sig_name}is converted in training mode. Please set the"
|
61
|
+
" module in evaluation mode with `module.eval()` for better on-device"
|
62
|
+
" performance and compatibility."
|
63
|
+
)
|
64
|
+
if len(signatures) == 1 and sig.name == model.DEFAULT_SIGNATURE_NAME:
|
65
|
+
# User does not specify any signature names explicitly.
|
66
|
+
message = message.format(sig_name="")
|
67
|
+
else:
|
68
|
+
message = message.format(sig_name=f'"{sig.name}" ')
|
69
|
+
|
70
|
+
logging.warning(message)
|
71
|
+
|
72
|
+
|
73
|
+
def convert_signatures(
|
74
|
+
signatures: list[signature.Signature],
|
75
|
+
*,
|
76
|
+
quant_config: Optional[qcfg.QuantConfig] = None,
|
77
|
+
_tfl_converter_flags: Optional[dict[str, Any]],
|
78
|
+
) -> model.TfLiteModel:
|
79
|
+
"""Converts a list of `signature.Signature`s and embeds them into one `model.TfLiteModel`.
|
80
|
+
|
81
|
+
Args:
|
82
|
+
signatures: The list of 'signature.Signature' objects containing PyTorch
|
83
|
+
modules to be converted.
|
84
|
+
quant_config: User-defined quantization method and scheme of the model.
|
85
|
+
_tfl_converter_flags: A nested dictionary allowing setting flags for the
|
86
|
+
underlying tflite converter.
|
87
|
+
|
88
|
+
Returns:
|
89
|
+
The converted `model.TfLiteModel` object.
|
90
|
+
"""
|
91
|
+
if _tfl_converter_flags is None:
|
92
|
+
_tfl_converter_flags = {}
|
93
|
+
|
94
|
+
_warn_training_modules(signatures)
|
95
|
+
|
96
|
+
exported_programs: torch.export.torch.export.ExportedProgram = [
|
97
|
+
torch.export.export(
|
98
|
+
sig.module, sig.flat_args, dynamic_shapes=sig.dynamic_shapes
|
99
|
+
)
|
100
|
+
for sig in signatures
|
101
|
+
]
|
102
|
+
|
103
|
+
# Apply default fx passes
|
104
|
+
exported_programs = list(map(_run_convert_passes, exported_programs))
|
105
|
+
tflite_model = lowertools.exported_programs_to_tflite(
|
106
|
+
exported_programs,
|
107
|
+
signatures,
|
108
|
+
quant_config=quant_config,
|
109
|
+
_tfl_converter_flags=_tfl_converter_flags,
|
110
|
+
)
|
111
|
+
|
112
|
+
return model.TfLiteModel(tflite_model)
|
@@ -0,0 +1,64 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
from typing import Any
|
17
|
+
|
18
|
+
from ai_edge_torch.quantize import quant_config as qcfg
|
19
|
+
import tensorflow as tf
|
20
|
+
|
21
|
+
|
22
|
+
def apply_tfl_converter_flags(
|
23
|
+
converter: tf.lite.TFLiteConverter, tfl_converter_flags: dict[str, Any]
|
24
|
+
):
|
25
|
+
"""Applies TFLite converter flags to the converter.
|
26
|
+
|
27
|
+
Args:
|
28
|
+
converter: TFLite converter.
|
29
|
+
tfl_converter_flags: TFLite converter flags.
|
30
|
+
"""
|
31
|
+
|
32
|
+
def _set_converter_flag(path: list[Any]):
|
33
|
+
if len(path) < 2:
|
34
|
+
raise ValueError("Expecting at least two values in the path.")
|
35
|
+
|
36
|
+
target_obj = converter
|
37
|
+
for idx in range(len(path) - 2):
|
38
|
+
target_obj = getattr(target_obj, path[idx])
|
39
|
+
|
40
|
+
setattr(target_obj, path[-2], path[-1])
|
41
|
+
|
42
|
+
def _iterate_dict_tree(flags_dict: dict[str, Any], path: list[Any]):
|
43
|
+
for key, value in flags_dict.items():
|
44
|
+
path.append(key)
|
45
|
+
if isinstance(value, dict):
|
46
|
+
_iterate_dict_tree(value, path)
|
47
|
+
else:
|
48
|
+
path.append(value)
|
49
|
+
_set_converter_flag(path)
|
50
|
+
path.pop()
|
51
|
+
path.pop()
|
52
|
+
|
53
|
+
_iterate_dict_tree(tfl_converter_flags, [])
|
54
|
+
|
55
|
+
|
56
|
+
def set_tfl_converter_quant_flags(
|
57
|
+
converter: tf.lite.TFLiteConverter, quant_config: qcfg.QuantConfig
|
58
|
+
):
|
59
|
+
if quant_config is not None:
|
60
|
+
quantizer_mode = quant_config._quantizer_mode
|
61
|
+
if quantizer_mode == qcfg.QuantConfig._QuantizerMode.PT2E_DYNAMIC:
|
62
|
+
converter._experimental_qdq_conversion_mode = "DYNAMIC"
|
63
|
+
elif quantizer_mode == qcfg.QuantConfig._QuantizerMode.PT2E_STATIC:
|
64
|
+
converter._experimental_qdq_conversion_mode = "STATIC"
|
@@ -15,20 +15,23 @@
|
|
15
15
|
|
16
16
|
from __future__ import annotations
|
17
17
|
|
18
|
-
from typing import Any,
|
19
|
-
|
20
|
-
import torch
|
18
|
+
from typing import Any, Optional, Tuple, Union
|
21
19
|
|
22
20
|
from ai_edge_torch import model
|
23
|
-
from ai_edge_torch.
|
24
|
-
from ai_edge_torch.
|
21
|
+
from ai_edge_torch._convert import conversion
|
22
|
+
from ai_edge_torch._convert import signature as signature_module
|
25
23
|
from ai_edge_torch.quantize import quant_config as qcfg
|
24
|
+
import torch
|
26
25
|
|
27
26
|
|
28
27
|
class Converter:
|
28
|
+
"""A converter for converting PyTorch models to edge models.
|
29
|
+
|
30
|
+
This class allows adding multiple signatures to the converted edge model.
|
31
|
+
"""
|
29
32
|
|
30
33
|
def __init__(self):
|
31
|
-
self._signatures: list[
|
34
|
+
self._signatures: list[signature_module.Signature] = []
|
32
35
|
|
33
36
|
def signature(
|
34
37
|
self,
|
@@ -37,9 +40,9 @@ class Converter:
|
|
37
40
|
sample_args=None,
|
38
41
|
sample_kwargs=None,
|
39
42
|
*,
|
40
|
-
dynamic_shapes: Optional[Union[
|
43
|
+
dynamic_shapes: Optional[Union[dict[str, Any], Tuple[Any, ...]]] = None,
|
41
44
|
) -> Converter:
|
42
|
-
"""
|
45
|
+
"""Functions as an alias to `add_signature`."""
|
43
46
|
return self.add_signature(
|
44
47
|
name, module, sample_args, sample_kwargs, dynamic_shapes=dynamic_shapes
|
45
48
|
)
|
@@ -51,31 +54,44 @@ class Converter:
|
|
51
54
|
sample_args=None,
|
52
55
|
sample_kwargs=None,
|
53
56
|
*,
|
54
|
-
dynamic_shapes: Optional[Union[
|
57
|
+
dynamic_shapes: Optional[Union[dict[str, Any], Tuple[Any, ...]]] = None,
|
55
58
|
) -> Converter:
|
56
59
|
"""Allows adding a new named torch model along with sample args to the conversion.
|
57
60
|
|
58
61
|
Args:
|
59
62
|
name: The name of the signature included in the converted edge model.
|
60
63
|
module: The torch module to be converted.
|
61
|
-
sample_args: Tuple of tensors by which the torch module will be traced
|
62
|
-
|
63
|
-
|
64
|
-
|
64
|
+
sample_args: Tuple of tensors by which the torch module will be traced
|
65
|
+
with prior to conversion.
|
66
|
+
sample_kwargs: Dict of str to tensor by which the torch module will be
|
67
|
+
traced with prior to conversion.
|
68
|
+
dynamic_shapes: Optional dict or tuple that specify dynamic shape
|
69
|
+
specifications for each input in original order. See
|
70
|
+
https://pytorch.org/docs/stable/export.html#expressing-dynamism for more
|
71
|
+
details.
|
72
|
+
|
73
|
+
Returns:
|
74
|
+
The converter object itself.
|
65
75
|
|
66
76
|
Raises:
|
67
77
|
ValueError: If a signature with the provided name already exists.
|
68
78
|
"""
|
69
79
|
|
70
80
|
if name in [sig.name for sig in self._signatures]:
|
71
|
-
raise ValueError(
|
81
|
+
raise ValueError(
|
82
|
+
f"A signature with the provided name ({name}) is already added."
|
83
|
+
)
|
72
84
|
|
73
85
|
if sample_args is None and sample_kwargs is None:
|
74
86
|
raise ValueError("sample_args or sample_kwargs must be provided.")
|
75
87
|
|
76
88
|
self._signatures.append(
|
77
|
-
|
78
|
-
name,
|
89
|
+
signature_module.Signature(
|
90
|
+
name,
|
91
|
+
module,
|
92
|
+
sample_args,
|
93
|
+
sample_kwargs,
|
94
|
+
dynamic_shapes=dynamic_shapes,
|
79
95
|
)
|
80
96
|
)
|
81
97
|
return self
|
@@ -87,8 +103,8 @@ class Converter:
|
|
87
103
|
sample_kwargs=None,
|
88
104
|
*,
|
89
105
|
quant_config: Optional[qcfg.QuantConfig] = None,
|
90
|
-
dynamic_shapes: Optional[Union[
|
91
|
-
_ai_edge_converter_flags: dict =
|
106
|
+
dynamic_shapes: Optional[Union[dict[str, Any], Tuple[Any, ...]]] = None,
|
107
|
+
_ai_edge_converter_flags: Optional[dict[str, Any]] = None,
|
92
108
|
) -> model.TfLiteModel:
|
93
109
|
"""Finalizes the conversion and produces an edge model.
|
94
110
|
|
@@ -96,31 +112,44 @@ class Converter:
|
|
96
112
|
|
97
113
|
edge_model = Converter().signature(name, module, args).convert()
|
98
114
|
|
99
|
-
Or it could be used to set the default signature for the converted edge
|
115
|
+
Or it could be used to set the default signature for the converted edge
|
116
|
+
model:
|
100
117
|
|
101
118
|
edge_model = Converter().convert(module, args)
|
102
119
|
|
103
120
|
Args:
|
104
|
-
name: The name of the signature included in the converted edge model.
|
105
121
|
module: The torch module to be converted.
|
106
|
-
sample_args: Tuple of tensors by which the torch module will be traced
|
107
|
-
|
122
|
+
sample_args: Tuple of tensors by which the torch module will be traced
|
123
|
+
with prior to conversion.
|
124
|
+
sample_kwargs: Dict of str to tensor by which the torch module will be
|
125
|
+
traced with prior to conversion.
|
108
126
|
quant_config: User-defined quantization method and scheme of the model.
|
109
|
-
dynamic_shapes: Optional dict or tuple that specify dynamic shape
|
110
|
-
|
111
|
-
|
112
|
-
|
113
|
-
|
127
|
+
dynamic_shapes: Optional dict or tuple that specify dynamic shape
|
128
|
+
specifications for each input in original order. See
|
129
|
+
https://pytorch.org/docs/stable/export.html#expressing-dynamism for more
|
130
|
+
details.
|
131
|
+
_ai_edge_converter_flags: A nested dictionary allowing setting flags for
|
132
|
+
the underlying converter. This gives access to an implementation detail
|
133
|
+
of this function and so needs to be treated as such. Please do not rely
|
134
|
+
on this parameter except for local debugging as this can be removed in a
|
135
|
+
future release.
|
136
|
+
|
137
|
+
Returns:
|
138
|
+
The converted edge model.
|
114
139
|
|
115
140
|
Raises:
|
116
|
-
ValueError: If the arguments are not provided as expected. See the example
|
141
|
+
ValueError: If the arguments are not provided as expected. See the example
|
142
|
+
in this functions's comment.
|
117
143
|
"""
|
144
|
+
if _ai_edge_converter_flags is None:
|
145
|
+
_ai_edge_converter_flags = {}
|
146
|
+
|
118
147
|
if module is not None:
|
119
148
|
if (
|
120
149
|
sample_args is not None or sample_kwargs is not None
|
121
150
|
): # both module and args provided
|
122
151
|
self.add_signature(
|
123
|
-
|
152
|
+
model.DEFAULT_SIGNATURE_NAME,
|
124
153
|
module,
|
125
154
|
sample_args,
|
126
155
|
sample_kwargs,
|
@@ -128,9 +157,9 @@ class Converter:
|
|
128
157
|
)
|
129
158
|
else: # module is provided but not args
|
130
159
|
raise ValueError(
|
131
|
-
"sample_args or sample_kwargs must be provided if a module is
|
160
|
+
"sample_args or sample_kwargs must be provided if a module is"
|
161
|
+
" specified."
|
132
162
|
)
|
133
|
-
|
134
163
|
return conversion.convert_signatures(
|
135
164
|
self._signatures,
|
136
165
|
quant_config=quant_config,
|
@@ -143,22 +172,28 @@ def signature(
|
|
143
172
|
module: torch.nn.Module,
|
144
173
|
sample_args=None,
|
145
174
|
sample_kwargs=None,
|
146
|
-
dynamic_shapes: Optional[Union[
|
175
|
+
dynamic_shapes: Optional[Union[dict[str, Any], Tuple[Any, ...]]] = None,
|
147
176
|
) -> Converter:
|
148
177
|
"""Initiates a Converter object with the provided signature.
|
149
178
|
|
150
179
|
Args:
|
151
180
|
name: The name of the signature included in the converted edge model.
|
152
181
|
module: The torch module to be converted.
|
153
|
-
sample_args: Tuple of tensors by which the torch module will be traced with
|
154
|
-
|
155
|
-
|
156
|
-
|
182
|
+
sample_args: Tuple of tensors by which the torch module will be traced with
|
183
|
+
prior to conversion.
|
184
|
+
sample_kwargs: Dict of str to tensor by which the torch module will be
|
185
|
+
traced with prior to conversion.
|
186
|
+
dynamic_shapes: Optional dict or tuple that specify dynamic shape
|
187
|
+
specifications for each input in original order. See
|
188
|
+
https://pytorch.org/docs/stable/export.html#expressing-dynamism for more
|
189
|
+
details.
|
190
|
+
|
191
|
+
Returns:
|
192
|
+
A Converter object with the provided signature.
|
157
193
|
|
158
194
|
Example:
|
159
195
|
converter = ai_edge_torch.signature(name, module, args)
|
160
196
|
edge_model = converter.convert()
|
161
|
-
|
162
197
|
"""
|
163
198
|
return Converter().signature(
|
164
199
|
name, module, sample_args, sample_kwargs, dynamic_shapes=dynamic_shapes
|
@@ -171,27 +206,38 @@ def convert(
|
|
171
206
|
sample_kwargs=None,
|
172
207
|
*,
|
173
208
|
quant_config: Optional[qcfg.QuantConfig] = None,
|
174
|
-
dynamic_shapes: Optional[Union[
|
175
|
-
_ai_edge_converter_flags: dict =
|
209
|
+
dynamic_shapes: Optional[Union[dict[str, Any], Tuple[Any, ...]]] = None,
|
210
|
+
_ai_edge_converter_flags: Optional[dict[str, Any]] = None,
|
176
211
|
) -> model.TfLiteModel:
|
177
|
-
"""
|
212
|
+
"""Converts a PyTorch model to an edge model with a default signature.
|
178
213
|
|
179
214
|
Args:
|
180
215
|
module: The torch module to be converted.
|
181
|
-
sample_args: Tuple of tensors by which the torch module will be traced with
|
182
|
-
|
216
|
+
sample_args: Tuple of tensors by which the torch module will be traced with
|
217
|
+
prior to conversion.
|
218
|
+
sample_kwargs: Dict of str to tensor by which the torch module will be
|
219
|
+
traced with prior to conversion.
|
183
220
|
quant_config: User-defined quantization method and scheme of the model.
|
184
|
-
dynamic_shapes: Optional dict or tuple that specify dynamic shape
|
185
|
-
|
186
|
-
|
187
|
-
|
188
|
-
|
221
|
+
dynamic_shapes: Optional dict or tuple that specify dynamic shape
|
222
|
+
specifications for each input in original order. See
|
223
|
+
https://pytorch.org/docs/stable/export.html#expressing-dynamism for more
|
224
|
+
details.
|
225
|
+
_ai_edge_converter_flags: A nested dictionary allowing setting flags for the
|
226
|
+
underlying converter. This gives access to an implementation detail of
|
227
|
+
this function and so needs to be treated as such. Please do not rely on
|
228
|
+
this parameter except for local debugging as this can be removed in a
|
229
|
+
future release.
|
230
|
+
|
231
|
+
Returns:
|
232
|
+
The converted edge model.
|
189
233
|
|
190
234
|
Example:
|
191
235
|
edge_model = ai_edge_torch.convert(module, args)
|
192
|
-
|
193
236
|
"""
|
194
237
|
|
238
|
+
if _ai_edge_converter_flags is None:
|
239
|
+
_ai_edge_converter_flags = {}
|
240
|
+
|
195
241
|
return Converter().convert(
|
196
242
|
module,
|
197
243
|
sample_args,
|
@@ -0,0 +1,22 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
from typing import Sequence, Union
|
17
|
+
|
18
|
+
from ai_edge_torch._convert.fx_passes.build_aten_composite_pass import BuildAtenCompositePass
|
19
|
+
from ai_edge_torch._convert.fx_passes.build_interpolate_composite_pass import BuildInterpolateCompositePass
|
20
|
+
from ai_edge_torch._convert.fx_passes.inject_mlir_debuginfo_pass import InjectMlirDebuginfoPass
|
21
|
+
from ai_edge_torch._convert.fx_passes.optimize_layout_transposes_pass import OptimizeLayoutTransposesPass
|
22
|
+
from ai_edge_torch.fx_pass_base import CanonicalizePass
|