ai-edge-torch-nightly 0.2.0.dev20240714__py3-none-any.whl → 0.3.0.dev20240926__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_edge_torch/__init__.py +5 -4
- ai_edge_torch/_convert/conversion.py +112 -0
- ai_edge_torch/_convert/conversion_utils.py +64 -0
- ai_edge_torch/{convert → _convert}/converter.py +94 -48
- ai_edge_torch/_convert/fx_passes/__init__.py +22 -0
- ai_edge_torch/{convert → _convert}/fx_passes/build_aten_composite_pass.py +107 -44
- ai_edge_torch/{convert → _convert}/fx_passes/build_interpolate_composite_pass.py +23 -20
- ai_edge_torch/{convert → _convert}/fx_passes/inject_mlir_debuginfo_pass.py +5 -6
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/__init__.py +1 -1
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_check.py +39 -9
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_mark.py +2 -0
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +1 -0
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +17 -8
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +9 -8
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +31 -18
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +2 -2
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/pass_body.py +34 -24
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/utils.py +2 -0
- ai_edge_torch/_convert/signature.py +66 -0
- ai_edge_torch/_convert/test/test_convert.py +495 -0
- ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
- ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
- ai_edge_torch/{convert → _convert}/test/test_to_channel_last_io.py +5 -5
- ai_edge_torch/{convert → _convert}/to_channel_last_io.py +10 -3
- ai_edge_torch/config.py +27 -0
- ai_edge_torch/conftest.py +20 -0
- ai_edge_torch/debug/culprit.py +72 -40
- ai_edge_torch/debug/test/test_culprit.py +7 -5
- ai_edge_torch/debug/test/test_search_model.py +8 -7
- ai_edge_torch/debug/utils.py +14 -3
- ai_edge_torch/fx_pass_base.py +101 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/gemma/{gemma.py → gemma1.py} +69 -55
- ai_edge_torch/generative/examples/gemma/gemma2.py +267 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma2.py +57 -0
- ai_edge_torch/generative/examples/gemma/verify_util.py +143 -0
- ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/openelm/openelm.py +206 -0
- ai_edge_torch/generative/examples/openelm/verify.py +64 -0
- ai_edge_torch/generative/examples/phi/__init__.py +14 -0
- ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/phi/convert_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/{phi2 → phi}/phi2.py +70 -51
- ai_edge_torch/generative/examples/phi/phi3.py +286 -0
- ai_edge_torch/generative/examples/phi/verify.py +65 -0
- ai_edge_torch/generative/examples/phi/verify_phi3.py +70 -0
- ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
- ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/smollm/smollm.py +101 -0
- ai_edge_torch/generative/examples/smollm/verify.py +62 -0
- ai_edge_torch/generative/examples/stable_diffusion/attention.py +3 -1
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +83 -13
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +27 -14
- ai_edge_torch/generative/examples/stable_diffusion/decoder.py +74 -9
- ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +179 -37
- ai_edge_torch/generative/examples/stable_diffusion/encoder.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +83 -58
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +1 -0
- ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +4 -1
- ai_edge_torch/generative/examples/stable_diffusion/util.py +9 -3
- ai_edge_torch/generative/examples/t5/convert_to_tflite.py +28 -25
- ai_edge_torch/generative/examples/t5/t5.py +208 -159
- ai_edge_torch/generative/examples/t5/t5_attention.py +45 -30
- ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
- ai_edge_torch/generative/examples/test_models/toy_model.py +69 -41
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +50 -64
- ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +41 -39
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +67 -54
- ai_edge_torch/generative/examples/tiny_llama/verify.py +64 -0
- ai_edge_torch/generative/fx_passes/__init__.py +4 -5
- ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +10 -7
- ai_edge_torch/generative/layers/attention.py +141 -102
- ai_edge_torch/generative/layers/attention_utils.py +53 -12
- ai_edge_torch/generative/layers/builder.py +37 -7
- ai_edge_torch/generative/layers/feed_forward.py +39 -14
- ai_edge_torch/generative/layers/kv_cache.py +162 -50
- ai_edge_torch/generative/layers/model_config.py +84 -30
- ai_edge_torch/generative/layers/normalization.py +185 -7
- ai_edge_torch/generative/layers/rotary_position_embedding.py +6 -4
- ai_edge_torch/generative/layers/scaled_dot_product_attention.py +48 -21
- ai_edge_torch/generative/layers/unet/blocks_2d.py +136 -77
- ai_edge_torch/generative/layers/unet/builder.py +7 -4
- ai_edge_torch/generative/layers/unet/model_config.py +17 -15
- ai_edge_torch/generative/quantize/example.py +7 -8
- ai_edge_torch/generative/quantize/quant_recipe.py +10 -7
- ai_edge_torch/generative/quantize/quant_recipe_utils.py +12 -1
- ai_edge_torch/generative/quantize/quant_recipes.py +8 -0
- ai_edge_torch/generative/test/test_kv_cache.py +120 -0
- ai_edge_torch/generative/test/{loader_test.py → test_loader.py} +9 -7
- ai_edge_torch/generative/test/test_model_conversion.py +124 -188
- ai_edge_torch/generative/test/test_model_conversion_large.py +251 -0
- ai_edge_torch/generative/test/test_quantize.py +76 -60
- ai_edge_torch/generative/test/utils.py +54 -0
- ai_edge_torch/generative/utilities/converter.py +82 -0
- ai_edge_torch/generative/utilities/loader.py +120 -57
- ai_edge_torch/generative/utilities/stable_diffusion_loader.py +165 -57
- ai_edge_torch/generative/utilities/t5_loader.py +110 -81
- ai_edge_torch/generative/utilities/verifier.py +247 -0
- ai_edge_torch/hlfb/__init__.py +1 -1
- ai_edge_torch/hlfb/mark_pattern/__init__.py +9 -7
- ai_edge_torch/hlfb/mark_pattern/passes.py +23 -3
- ai_edge_torch/hlfb/mark_pattern/pattern.py +39 -30
- ai_edge_torch/hlfb/test/test_mark_pattern.py +46 -20
- ai_edge_torch/hlfb/test/test_stablehlo_composite_builder.py +24 -11
- ai_edge_torch/lowertools/__init__.py +18 -0
- ai_edge_torch/lowertools/_shim.py +80 -0
- ai_edge_torch/lowertools/common_utils.py +142 -0
- ai_edge_torch/lowertools/odml_torch_utils.py +255 -0
- ai_edge_torch/lowertools/test_utils.py +60 -0
- ai_edge_torch/lowertools/torch_xla_utils.py +284 -0
- ai_edge_torch/{generative/quantize/ai_edge_quantizer_glue → lowertools}/translate_recipe.py +29 -14
- ai_edge_torch/model.py +53 -18
- ai_edge_torch/odml_torch/__init__.py +20 -0
- ai_edge_torch/odml_torch/_torch_future.py +61 -0
- ai_edge_torch/odml_torch/_torch_library.py +19 -0
- ai_edge_torch/odml_torch/composite/__init__.py +16 -0
- ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
- ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
- ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
- ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
- ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
- ai_edge_torch/odml_torch/export.py +357 -0
- ai_edge_torch/odml_torch/export_utils.py +168 -0
- ai_edge_torch/odml_torch/jax_bridge/__init__.py +15 -0
- ai_edge_torch/odml_torch/jax_bridge/_wrap.py +150 -0
- ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
- ai_edge_torch/odml_torch/lowerings/__init__.py +25 -0
- ai_edge_torch/odml_torch/lowerings/_basic.py +258 -0
- ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
- ai_edge_torch/odml_torch/lowerings/_convolution.py +241 -0
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +252 -0
- ai_edge_torch/odml_torch/lowerings/_layer_norm.py +78 -0
- ai_edge_torch/odml_torch/lowerings/context.py +42 -0
- ai_edge_torch/odml_torch/lowerings/registry.py +96 -0
- ai_edge_torch/odml_torch/lowerings/utils.py +185 -0
- ai_edge_torch/odml_torch/passes/__init__.py +38 -0
- ai_edge_torch/odml_torch/tf_integration.py +194 -0
- ai_edge_torch/quantize/pt2e_quantizer.py +52 -24
- ai_edge_torch/quantize/pt2e_quantizer_utils.py +43 -23
- ai_edge_torch/quantize/quant_config.py +13 -9
- ai_edge_torch/testing/model_coverage/model_coverage.py +29 -16
- ai_edge_torch/version.py +16 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/METADATA +7 -3
- ai_edge_torch_nightly-0.3.0.dev20240926.dist-info/RECORD +177 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/WHEEL +1 -1
- ai_edge_torch/convert/conversion.py +0 -117
- ai_edge_torch/convert/conversion_utils.py +0 -400
- ai_edge_torch/convert/fx_passes/__init__.py +0 -59
- ai_edge_torch/convert/fx_passes/_pass_base.py +0 -49
- ai_edge_torch/convert/fx_passes/canonicalize_pass.py +0 -37
- ai_edge_torch/convert/test/test_convert.py +0 -311
- ai_edge_torch/convert/test/test_convert_composites.py +0 -192
- ai_edge_torch/convert/test/test_convert_multisig.py +0 -139
- ai_edge_torch/generative/examples/gemma/convert_to_tflite.py +0 -66
- ai_edge_torch/generative/examples/phi2/convert_to_tflite.py +0 -64
- ai_edge_torch/generative/examples/test_models/toy_model_with_external_kv_cache.py +0 -161
- ai_edge_torch/generative/quantize/ai_edge_quantizer_glue/__init__.py +0 -0
- ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/RECORD +0 -121
- /ai_edge_torch/{convert → _convert}/__init__.py +0 -0
- /ai_edge_torch/{convert → _convert}/test/__init__.py +0 -0
- /ai_edge_torch/generative/examples/{phi2 → openelm}/__init__.py +0 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/LICENSE +0 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,251 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Testing model conversion for a few gen-ai models."""
|
17
|
+
|
18
|
+
import ai_edge_torch
|
19
|
+
from ai_edge_torch import config as ai_edge_config
|
20
|
+
from ai_edge_torch.generative.examples.gemma import gemma1
|
21
|
+
from ai_edge_torch.generative.examples.gemma import gemma2
|
22
|
+
from ai_edge_torch.generative.examples.openelm import openelm
|
23
|
+
from ai_edge_torch.generative.examples.phi import phi2
|
24
|
+
from ai_edge_torch.generative.examples.phi import phi3
|
25
|
+
from ai_edge_torch.generative.examples.smollm import smollm
|
26
|
+
from ai_edge_torch.generative.examples.stable_diffusion import clip as sd_clip
|
27
|
+
from ai_edge_torch.generative.examples.stable_diffusion import decoder as sd_decoder
|
28
|
+
from ai_edge_torch.generative.examples.stable_diffusion import diffusion as sd_diffusion
|
29
|
+
from ai_edge_torch.generative.layers import kv_cache
|
30
|
+
from ai_edge_torch.generative.test import utils as test_utils
|
31
|
+
import numpy as np
|
32
|
+
import torch
|
33
|
+
|
34
|
+
from absl.testing import absltest as googletest
|
35
|
+
from ai_edge_litert import interpreter
|
36
|
+
|
37
|
+
|
38
|
+
class TestModelConversion(googletest.TestCase):
|
39
|
+
"""Unit tests that check for model conversion and correctness."""
|
40
|
+
|
41
|
+
def setUp(self):
|
42
|
+
super().setUp()
|
43
|
+
# Builder function for an Interpreter that supports custom ops.
|
44
|
+
self._interpreter_builder = (
|
45
|
+
lambda tflite_model: lambda: interpreter.InterpreterWithCustomOps(
|
46
|
+
custom_op_registerers=["GenAIOpsRegisterer"],
|
47
|
+
model_content=tflite_model,
|
48
|
+
experimental_default_delegate_latest_features=True,
|
49
|
+
)
|
50
|
+
)
|
51
|
+
|
52
|
+
def _test_model(self, config, model, signature_name, atol, rtol):
|
53
|
+
idx = torch.from_numpy(np.array([[1, 2, 3, 4]]))
|
54
|
+
tokens = torch.full((1, 10), 0, dtype=torch.int, device="cpu")
|
55
|
+
tokens[0, :4] = idx
|
56
|
+
input_pos = torch.arange(0, 10, dtype=torch.int)
|
57
|
+
kv = kv_cache.KVCache.from_model_config(config)
|
58
|
+
|
59
|
+
edge_model = ai_edge_torch.signature(
|
60
|
+
signature_name,
|
61
|
+
model,
|
62
|
+
sample_kwargs={
|
63
|
+
"tokens": tokens,
|
64
|
+
"input_pos": input_pos,
|
65
|
+
"kv_cache": kv,
|
66
|
+
},
|
67
|
+
).convert()
|
68
|
+
edge_model.set_interpreter_builder(
|
69
|
+
self._interpreter_builder(edge_model.tflite_model())
|
70
|
+
)
|
71
|
+
|
72
|
+
self.assertTrue(
|
73
|
+
test_utils.compare_tflite_torch(
|
74
|
+
edge_model,
|
75
|
+
model,
|
76
|
+
tokens,
|
77
|
+
input_pos,
|
78
|
+
kv,
|
79
|
+
signature_name=signature_name,
|
80
|
+
atol=atol,
|
81
|
+
rtol=rtol,
|
82
|
+
)
|
83
|
+
)
|
84
|
+
|
85
|
+
@googletest.skipIf(
|
86
|
+
ai_edge_config.Config.use_torch_xla,
|
87
|
+
reason="tests with custom ops are not supported on oss",
|
88
|
+
)
|
89
|
+
def test_gemma1(self):
|
90
|
+
config = gemma1.get_fake_model_config()
|
91
|
+
pytorch_model = gemma1.Gemma(config).eval()
|
92
|
+
self._test_model(
|
93
|
+
config, pytorch_model, "serving_default", atol=1e-2, rtol=1e-5
|
94
|
+
)
|
95
|
+
|
96
|
+
@googletest.skipIf(
|
97
|
+
ai_edge_config.Config.use_torch_xla,
|
98
|
+
reason="tests with custom ops are not supported on oss",
|
99
|
+
)
|
100
|
+
def test_gemma2(self):
|
101
|
+
config = gemma2.get_fake_model_config()
|
102
|
+
pytorch_model = gemma2.Gemma2(config).eval()
|
103
|
+
self._test_model(config, pytorch_model, "prefill", atol=1e-4, rtol=1e-5)
|
104
|
+
|
105
|
+
@googletest.skipIf(
|
106
|
+
ai_edge_config.Config.use_torch_xla,
|
107
|
+
reason="tests with custom ops are not supported on oss",
|
108
|
+
)
|
109
|
+
def test_phi2(self):
|
110
|
+
config = phi2.get_fake_model_config()
|
111
|
+
pytorch_model = phi2.Phi2(config).eval()
|
112
|
+
self._test_model(
|
113
|
+
config, pytorch_model, "serving_default", atol=1e-3, rtol=1e-3
|
114
|
+
)
|
115
|
+
|
116
|
+
@googletest.skipIf(
|
117
|
+
ai_edge_config.Config.use_torch_xla,
|
118
|
+
reason="tests with custom ops are not supported on oss",
|
119
|
+
)
|
120
|
+
def test_phi3(self):
|
121
|
+
config = phi3.get_fake_model_config()
|
122
|
+
pytorch_model = phi3.Phi3_5Mini(config).eval()
|
123
|
+
self._test_model(
|
124
|
+
config, pytorch_model, "prefill", atol=1e-5, rtol=1e-5
|
125
|
+
)
|
126
|
+
|
127
|
+
@googletest.skipIf(
|
128
|
+
ai_edge_config.Config.use_torch_xla,
|
129
|
+
reason="tests with custom ops are not supported on oss",
|
130
|
+
)
|
131
|
+
def test_smollm(self):
|
132
|
+
config = smollm.get_fake_model_config()
|
133
|
+
pytorch_model = smollm.SmolLM(config).eval()
|
134
|
+
self._test_model(config, pytorch_model, "prefill", atol=1e-4, rtol=1e-5)
|
135
|
+
|
136
|
+
@googletest.skipIf(
|
137
|
+
ai_edge_config.Config.use_torch_xla,
|
138
|
+
reason="tests with custom ops are not supported on oss",
|
139
|
+
)
|
140
|
+
def test_openelm(self):
|
141
|
+
config = openelm.get_fake_model_config()
|
142
|
+
pytorch_model = openelm.OpenELM(config).eval()
|
143
|
+
self._test_model(config, pytorch_model, "prefill", atol=1e-4, rtol=1e-5)
|
144
|
+
|
145
|
+
@googletest.skipIf(
|
146
|
+
ai_edge_config.Config.use_torch_xla,
|
147
|
+
reason="tests with custom ops are not supported on oss",
|
148
|
+
)
|
149
|
+
def test_stable_diffusion_clip(self):
|
150
|
+
config = sd_clip.get_fake_model_config()
|
151
|
+
prompt_tokens = torch.from_numpy(
|
152
|
+
np.array([[1, 2, 3, 4, 5, 6]], dtype=np.int32)
|
153
|
+
)
|
154
|
+
|
155
|
+
pytorch_model = sd_clip.CLIP(config).eval()
|
156
|
+
torch_output = pytorch_model(prompt_tokens)
|
157
|
+
|
158
|
+
edge_model = ai_edge_torch.signature(
|
159
|
+
"encode", pytorch_model, (prompt_tokens,)
|
160
|
+
).convert()
|
161
|
+
edge_model.set_interpreter_builder(
|
162
|
+
self._interpreter_builder(edge_model.tflite_model())
|
163
|
+
)
|
164
|
+
edge_output = edge_model(
|
165
|
+
prompt_tokens.numpy(),
|
166
|
+
signature_name="encode",
|
167
|
+
)
|
168
|
+
self.assertTrue(
|
169
|
+
np.allclose(
|
170
|
+
edge_output,
|
171
|
+
torch_output.detach().numpy(),
|
172
|
+
atol=1e-4,
|
173
|
+
rtol=1e-5,
|
174
|
+
)
|
175
|
+
)
|
176
|
+
|
177
|
+
@googletest.skipIf(
|
178
|
+
ai_edge_config.Config.use_torch_xla,
|
179
|
+
reason="tests with custom ops are not supported on oss",
|
180
|
+
)
|
181
|
+
def test_stable_diffusion_diffusion(self):
|
182
|
+
config = sd_diffusion.get_fake_model_config(2)
|
183
|
+
latents = torch.from_numpy(
|
184
|
+
np.random.normal(size=(2, 4, 8, 8)).astype(np.float32)
|
185
|
+
)
|
186
|
+
context = torch.from_numpy(
|
187
|
+
np.random.normal(size=(2, 4, 4)).astype(np.float32)
|
188
|
+
)
|
189
|
+
time_embedding = torch.from_numpy(
|
190
|
+
np.random.normal(size=(2, 2)).astype(np.float32)
|
191
|
+
)
|
192
|
+
|
193
|
+
pytorch_model = sd_diffusion.Diffusion(config).eval()
|
194
|
+
torch_output = pytorch_model(latents, context, time_embedding)
|
195
|
+
|
196
|
+
edge_model = ai_edge_torch.signature(
|
197
|
+
"diffusion", pytorch_model, (latents, context, time_embedding)
|
198
|
+
).convert()
|
199
|
+
edge_model.set_interpreter_builder(
|
200
|
+
self._interpreter_builder(edge_model.tflite_model())
|
201
|
+
)
|
202
|
+
edge_output = edge_model(
|
203
|
+
latents.numpy(),
|
204
|
+
context.numpy(),
|
205
|
+
time_embedding.numpy(),
|
206
|
+
signature_name="diffusion",
|
207
|
+
)
|
208
|
+
self.assertTrue(
|
209
|
+
np.allclose(
|
210
|
+
edge_output,
|
211
|
+
torch_output.detach().numpy(),
|
212
|
+
atol=1e-4,
|
213
|
+
rtol=1e-5,
|
214
|
+
)
|
215
|
+
)
|
216
|
+
|
217
|
+
@googletest.skipIf(
|
218
|
+
ai_edge_config.Config.use_torch_xla,
|
219
|
+
reason="tests with custom ops are not supported on oss",
|
220
|
+
)
|
221
|
+
def test_stable_diffusion_decoder(self):
|
222
|
+
config = sd_decoder.get_fake_model_config()
|
223
|
+
latents = torch.from_numpy(
|
224
|
+
np.random.normal(size=(1, 4, 64, 64)).astype(np.float32)
|
225
|
+
)
|
226
|
+
|
227
|
+
pytorch_model = sd_decoder.Decoder(config).eval()
|
228
|
+
torch_output = pytorch_model(latents)
|
229
|
+
|
230
|
+
edge_model = ai_edge_torch.signature(
|
231
|
+
"decode", pytorch_model, (latents,)
|
232
|
+
).convert()
|
233
|
+
edge_model.set_interpreter_builder(
|
234
|
+
self._interpreter_builder(edge_model.tflite_model())
|
235
|
+
)
|
236
|
+
edge_output = edge_model(
|
237
|
+
latents.numpy(),
|
238
|
+
signature_name="decode",
|
239
|
+
)
|
240
|
+
self.assertTrue(
|
241
|
+
np.allclose(
|
242
|
+
edge_output,
|
243
|
+
torch_output.detach().numpy(),
|
244
|
+
atol=1e-4,
|
245
|
+
rtol=1e-5,
|
246
|
+
)
|
247
|
+
)
|
248
|
+
|
249
|
+
|
250
|
+
if __name__ == "__main__":
|
251
|
+
googletest.main()
|
@@ -13,12 +13,8 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
15
|
|
16
|
-
import unittest
|
17
|
-
|
18
|
-
from parameterized import parameterized
|
19
|
-
import torch
|
20
|
-
|
21
16
|
import ai_edge_torch
|
17
|
+
from ai_edge_torch import config
|
22
18
|
from ai_edge_torch.generative.examples.test_models import toy_model # NOQA
|
23
19
|
from ai_edge_torch.generative.quantize import quant_recipe
|
24
20
|
from ai_edge_torch.generative.quantize import quant_recipe_utils
|
@@ -29,20 +25,22 @@ from ai_edge_torch.generative.quantize.quant_attrs import Granularity
|
|
29
25
|
from ai_edge_torch.generative.quantize.quant_attrs import Mode
|
30
26
|
from ai_edge_torch.quantize import quant_config
|
31
27
|
from ai_edge_torch.testing import model_coverage
|
28
|
+
import torch
|
32
29
|
|
30
|
+
from absl.testing import absltest as googletest
|
31
|
+
from absl.testing import parameterized
|
33
32
|
|
34
|
-
|
33
|
+
|
34
|
+
class TestVerifyRecipes(parameterized.TestCase):
|
35
35
|
"""Unit tests that check for model quantization recipes."""
|
36
36
|
|
37
|
-
@parameterized.
|
38
|
-
|
39
|
-
|
40
|
-
|
41
|
-
|
42
|
-
|
43
|
-
|
44
|
-
]
|
45
|
-
)
|
37
|
+
@parameterized.parameters([
|
38
|
+
(Dtype.FP32, Dtype.FP32),
|
39
|
+
(Dtype.INT8, Dtype.INT8),
|
40
|
+
(Dtype.INT8, Dtype.FP16),
|
41
|
+
(Dtype.FP16, Dtype.INT8),
|
42
|
+
(Dtype.FP16, Dtype.FP16),
|
43
|
+
])
|
46
44
|
def test_verify_invalid_recipes(
|
47
45
|
self,
|
48
46
|
activation,
|
@@ -54,31 +52,29 @@ class TestVerifyRecipes(unittest.TestCase):
|
|
54
52
|
with self.assertRaises(ValueError):
|
55
53
|
quant_recipe.LayerQuantRecipe(activation, weight, m, a, g).verify()
|
56
54
|
|
57
|
-
@parameterized.
|
58
|
-
|
59
|
-
|
60
|
-
|
61
|
-
|
62
|
-
|
63
|
-
|
64
|
-
|
65
|
-
|
66
|
-
|
67
|
-
|
68
|
-
|
69
|
-
|
70
|
-
|
71
|
-
|
72
|
-
|
73
|
-
|
74
|
-
|
75
|
-
|
76
|
-
|
77
|
-
|
78
|
-
|
79
|
-
|
80
|
-
]
|
81
|
-
)
|
55
|
+
@parameterized.parameters([
|
56
|
+
(
|
57
|
+
Dtype.FP32,
|
58
|
+
Dtype.INT8,
|
59
|
+
Mode.DYNAMIC_RANGE,
|
60
|
+
Algorithm.MIN_MAX,
|
61
|
+
Granularity.CHANNELWISE,
|
62
|
+
),
|
63
|
+
(
|
64
|
+
Dtype.FP32,
|
65
|
+
Dtype.INT8,
|
66
|
+
Mode.WEIGHT_ONLY,
|
67
|
+
Algorithm.MIN_MAX,
|
68
|
+
Granularity.CHANNELWISE,
|
69
|
+
),
|
70
|
+
(
|
71
|
+
Dtype.FP32,
|
72
|
+
Dtype.FP16,
|
73
|
+
Mode.WEIGHT_ONLY,
|
74
|
+
Algorithm.FLOAT_CAST,
|
75
|
+
Granularity.NONE,
|
76
|
+
),
|
77
|
+
])
|
82
78
|
def test_verify_valid_recipes(
|
83
79
|
self,
|
84
80
|
activation,
|
@@ -87,10 +83,12 @@ class TestVerifyRecipes(unittest.TestCase):
|
|
87
83
|
algo,
|
88
84
|
granularity,
|
89
85
|
):
|
90
|
-
quant_recipe.LayerQuantRecipe(
|
86
|
+
quant_recipe.LayerQuantRecipe(
|
87
|
+
activation, weight, mode, algo, granularity
|
88
|
+
).verify()
|
91
89
|
|
92
90
|
|
93
|
-
class TestQuantizeConvert(
|
91
|
+
class TestQuantizeConvert(parameterized.TestCase):
|
94
92
|
"""Test conversion with quantization."""
|
95
93
|
|
96
94
|
def _attention_int8_dynamic_recipe() -> quant_config.QuantConfig:
|
@@ -107,35 +105,51 @@ class TestQuantizeConvert(unittest.TestCase):
|
|
107
105
|
)
|
108
106
|
)
|
109
107
|
|
110
|
-
@parameterized.
|
111
|
-
|
112
|
-
|
113
|
-
|
114
|
-
|
115
|
-
|
116
|
-
|
117
|
-
)
|
118
|
-
def test_quantize_convert_toy_sizes(self, quant_config, expected_compression):
|
108
|
+
@parameterized.parameters([
|
109
|
+
(quant_recipes.full_fp16_recipe()),
|
110
|
+
(quant_recipes.full_int8_dynamic_recipe()),
|
111
|
+
(quant_recipes.full_int8_weight_only_recipe()),
|
112
|
+
(_attention_int8_dynamic_recipe()),
|
113
|
+
(_feedforward_int8_dynamic_recipe()),
|
114
|
+
])
|
115
|
+
def test_quantize_convert_toy_sizes(self, quant_config):
|
119
116
|
config = toy_model.get_model_config()
|
120
117
|
pytorch_model = toy_model.ToySingleLayerModel(config)
|
121
|
-
idx = torch.unsqueeze(torch.arange(0, 100), 0)
|
122
|
-
input_pos = torch.arange(0, 100)
|
118
|
+
idx = torch.unsqueeze(torch.arange(0, 100, dtype=torch.int), 0)
|
119
|
+
input_pos = torch.arange(0, 100, dtype=torch.int)
|
120
|
+
|
121
|
+
quantized_model = ai_edge_torch.convert(
|
122
|
+
pytorch_model, (idx, input_pos), quant_config=quant_config
|
123
|
+
)
|
124
|
+
float_model = ai_edge_torch.convert(pytorch_model, (idx, input_pos))
|
125
|
+
self.assertLess(
|
126
|
+
len(quantized_model._tflite_model),
|
127
|
+
len(float_model._tflite_model),
|
128
|
+
"Quantized model isn't smaller than F32 model.",
|
129
|
+
)
|
123
130
|
|
131
|
+
def test_quantize_convert_toy_weight_sharing(self):
|
132
|
+
config = toy_model.get_model_config()
|
133
|
+
pytorch_model = toy_model.ToySingleLayerModelWeightSharing(config)
|
134
|
+
idx = torch.unsqueeze(torch.arange(0, 100, dtype=torch.int), 0)
|
135
|
+
input_pos = torch.arange(0, 100, dtype=torch.int)
|
136
|
+
|
137
|
+
quant_config = quant_recipes.full_int8_dynamic_recipe()
|
124
138
|
quantized_model = ai_edge_torch.convert(
|
125
139
|
pytorch_model, (idx, input_pos), quant_config=quant_config
|
126
140
|
)
|
127
141
|
float_model = ai_edge_torch.convert(pytorch_model, (idx, input_pos))
|
128
|
-
self.
|
129
|
-
len(quantized_model._tflite_model)
|
130
|
-
|
131
|
-
|
142
|
+
self.assertLess(
|
143
|
+
len(quantized_model._tflite_model),
|
144
|
+
len(float_model._tflite_model),
|
145
|
+
"Quantized model isn't smaller than F32 model.",
|
132
146
|
)
|
133
147
|
|
134
148
|
def test_quantize_convert_compare_toy(self):
|
135
149
|
self.skipTest("b/338288901")
|
136
150
|
config = toy_model_with_kv_cache.get_model_config()
|
137
151
|
pytorch_model = toy_model_with_kv_cache.ToyModelWithKV(config)
|
138
|
-
idx, input_pos = torch.tensor([[1]], dtype=torch.
|
152
|
+
idx, input_pos = torch.tensor([[1]], dtype=torch.int), torch.tensor(
|
139
153
|
[10], dtype=torch.int64
|
140
154
|
)
|
141
155
|
|
@@ -145,7 +159,9 @@ class TestQuantizeConvert(unittest.TestCase):
|
|
145
159
|
)
|
146
160
|
float_model = ai_edge_torch.convert(pytorch_model, (idx, input_pos))
|
147
161
|
|
148
|
-
self.assertLess(
|
162
|
+
self.assertLess(
|
163
|
+
len(quantized_model._tflite_model), len(float_model._tflite_model)
|
164
|
+
)
|
149
165
|
self.assertTrue(
|
150
166
|
model_coverage.compare_tflite_torch(
|
151
167
|
quantized_model,
|
@@ -159,4 +175,4 @@ class TestQuantizeConvert(unittest.TestCase):
|
|
159
175
|
|
160
176
|
|
161
177
|
if __name__ == "__main__":
|
162
|
-
|
178
|
+
googletest.main()
|
@@ -0,0 +1,54 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Common utils for testing."""
|
17
|
+
|
18
|
+
from ai_edge_torch import model
|
19
|
+
from ai_edge_torch.generative.layers import kv_cache as kv_utils
|
20
|
+
from ai_edge_torch.lowertools import common_utils
|
21
|
+
import numpy as np
|
22
|
+
import torch
|
23
|
+
from torch.utils import _pytree as pytree
|
24
|
+
|
25
|
+
|
26
|
+
def compare_tflite_torch(
|
27
|
+
edge_model: model.Model,
|
28
|
+
torch_model: torch.nn.Module,
|
29
|
+
tokens: torch.Tensor,
|
30
|
+
input_pos: torch.Tensor,
|
31
|
+
kv_cache: kv_utils.KVCache,
|
32
|
+
signature_name: str,
|
33
|
+
atol: float = 1e-5,
|
34
|
+
rtol: float = 1e-5,
|
35
|
+
):
|
36
|
+
"""Compares torch models and TFLite models."""
|
37
|
+
values, spec = pytree.tree_flatten({"kv_cache": kv_cache})
|
38
|
+
flat_names = common_utils.flat_dict_names(spec.children_specs, spec.context)
|
39
|
+
torch_output = torch_model(tokens, input_pos, kv_cache)
|
40
|
+
|
41
|
+
input_kv_flatten = {k: v.numpy() for k, v in zip(flat_names, values)}
|
42
|
+
edge_output = edge_model(
|
43
|
+
signature_name=signature_name,
|
44
|
+
tokens=tokens.numpy(),
|
45
|
+
input_pos=input_pos.numpy(),
|
46
|
+
**input_kv_flatten,
|
47
|
+
)
|
48
|
+
|
49
|
+
return np.allclose(
|
50
|
+
edge_output["logits"],
|
51
|
+
torch_output["logits"].detach().numpy(),
|
52
|
+
atol=atol,
|
53
|
+
rtol=rtol,
|
54
|
+
)
|
@@ -0,0 +1,82 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Common utility functions for model conversion."""
|
17
|
+
|
18
|
+
import ai_edge_torch
|
19
|
+
from ai_edge_torch.generative.layers import kv_cache as kv_utils
|
20
|
+
from ai_edge_torch.generative.quantize import quant_recipes
|
21
|
+
import torch
|
22
|
+
|
23
|
+
|
24
|
+
def convert_to_tflite(
|
25
|
+
pytorch_model: torch.nn.Module,
|
26
|
+
tflite_path: str,
|
27
|
+
prefill_seq_len: int = 512,
|
28
|
+
quantize: bool = True,
|
29
|
+
):
|
30
|
+
"""Converts a nn.Module model to multi-signature tflite model.
|
31
|
+
|
32
|
+
A PyTorch model will be converted to a tflite model with two signatures:
|
33
|
+
"prefill" and "decode".
|
34
|
+
|
35
|
+
"prefill" signature takes a tensor of shape [1, prefill_seq_len] of token
|
36
|
+
sequence, a tensor of shape [1, prefill_seq_len] of token positions, and an
|
37
|
+
external KV cache as a sample input.
|
38
|
+
|
39
|
+
"decode" signature takes a tensor of shape [1, 1] of token sequence, a tensor
|
40
|
+
of shape [1, 1] of the token position, and an external KV cache as a sample
|
41
|
+
input.
|
42
|
+
|
43
|
+
The final tflite model will be exported to tflite_path.
|
44
|
+
|
45
|
+
Args:
|
46
|
+
pytorch_model (torch.nn.Module): PyTorch model to convert to tflite.
|
47
|
+
tflite_path (str): The tflite file path to export.
|
48
|
+
prefill_seq_len (int, optional): The maximum size of prefill input tensor.
|
49
|
+
Defaults to 512.
|
50
|
+
quantize (bool, optional): Whether the model should be quanized. Defaults
|
51
|
+
to True.
|
52
|
+
"""
|
53
|
+
# Tensors used to trace the model graph during conversion.
|
54
|
+
prefill_tokens = torch.full((1, prefill_seq_len), 0, dtype=torch.int)
|
55
|
+
prefill_input_pos = torch.arange(0, prefill_seq_len, dtype=torch.int)
|
56
|
+
decode_token = torch.tensor([[0]], dtype=torch.int)
|
57
|
+
decode_input_pos = torch.tensor([0], dtype=torch.int)
|
58
|
+
kv = kv_utils.KVCache.from_model_config(pytorch_model.config)
|
59
|
+
|
60
|
+
quant_config = quant_recipes.full_int8_dynamic_recipe() if quantize else None
|
61
|
+
edge_model = (
|
62
|
+
ai_edge_torch.signature(
|
63
|
+
'prefill',
|
64
|
+
pytorch_model,
|
65
|
+
sample_kwargs={
|
66
|
+
'tokens': prefill_tokens,
|
67
|
+
'input_pos': prefill_input_pos,
|
68
|
+
'kv_cache': kv,
|
69
|
+
},
|
70
|
+
)
|
71
|
+
.signature(
|
72
|
+
'decode',
|
73
|
+
pytorch_model,
|
74
|
+
sample_kwargs={
|
75
|
+
'tokens': decode_token,
|
76
|
+
'input_pos': decode_input_pos,
|
77
|
+
'kv_cache': kv,
|
78
|
+
},
|
79
|
+
)
|
80
|
+
.convert(quant_config=quant_config)
|
81
|
+
)
|
82
|
+
edge_model.export(tflite_path)
|