ai-edge-torch-nightly 0.2.0.dev20240714__py3-none-any.whl → 0.3.0.dev20240926__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_edge_torch/__init__.py +5 -4
- ai_edge_torch/_convert/conversion.py +112 -0
- ai_edge_torch/_convert/conversion_utils.py +64 -0
- ai_edge_torch/{convert → _convert}/converter.py +94 -48
- ai_edge_torch/_convert/fx_passes/__init__.py +22 -0
- ai_edge_torch/{convert → _convert}/fx_passes/build_aten_composite_pass.py +107 -44
- ai_edge_torch/{convert → _convert}/fx_passes/build_interpolate_composite_pass.py +23 -20
- ai_edge_torch/{convert → _convert}/fx_passes/inject_mlir_debuginfo_pass.py +5 -6
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/__init__.py +1 -1
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_check.py +39 -9
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_mark.py +2 -0
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +1 -0
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +17 -8
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +9 -8
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +31 -18
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +2 -2
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/pass_body.py +34 -24
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/utils.py +2 -0
- ai_edge_torch/_convert/signature.py +66 -0
- ai_edge_torch/_convert/test/test_convert.py +495 -0
- ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
- ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
- ai_edge_torch/{convert → _convert}/test/test_to_channel_last_io.py +5 -5
- ai_edge_torch/{convert → _convert}/to_channel_last_io.py +10 -3
- ai_edge_torch/config.py +27 -0
- ai_edge_torch/conftest.py +20 -0
- ai_edge_torch/debug/culprit.py +72 -40
- ai_edge_torch/debug/test/test_culprit.py +7 -5
- ai_edge_torch/debug/test/test_search_model.py +8 -7
- ai_edge_torch/debug/utils.py +14 -3
- ai_edge_torch/fx_pass_base.py +101 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/gemma/{gemma.py → gemma1.py} +69 -55
- ai_edge_torch/generative/examples/gemma/gemma2.py +267 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma2.py +57 -0
- ai_edge_torch/generative/examples/gemma/verify_util.py +143 -0
- ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/openelm/openelm.py +206 -0
- ai_edge_torch/generative/examples/openelm/verify.py +64 -0
- ai_edge_torch/generative/examples/phi/__init__.py +14 -0
- ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/phi/convert_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/{phi2 → phi}/phi2.py +70 -51
- ai_edge_torch/generative/examples/phi/phi3.py +286 -0
- ai_edge_torch/generative/examples/phi/verify.py +65 -0
- ai_edge_torch/generative/examples/phi/verify_phi3.py +70 -0
- ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
- ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/smollm/smollm.py +101 -0
- ai_edge_torch/generative/examples/smollm/verify.py +62 -0
- ai_edge_torch/generative/examples/stable_diffusion/attention.py +3 -1
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +83 -13
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +27 -14
- ai_edge_torch/generative/examples/stable_diffusion/decoder.py +74 -9
- ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +179 -37
- ai_edge_torch/generative/examples/stable_diffusion/encoder.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +83 -58
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +1 -0
- ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +4 -1
- ai_edge_torch/generative/examples/stable_diffusion/util.py +9 -3
- ai_edge_torch/generative/examples/t5/convert_to_tflite.py +28 -25
- ai_edge_torch/generative/examples/t5/t5.py +208 -159
- ai_edge_torch/generative/examples/t5/t5_attention.py +45 -30
- ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
- ai_edge_torch/generative/examples/test_models/toy_model.py +69 -41
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +50 -64
- ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +41 -39
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +67 -54
- ai_edge_torch/generative/examples/tiny_llama/verify.py +64 -0
- ai_edge_torch/generative/fx_passes/__init__.py +4 -5
- ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +10 -7
- ai_edge_torch/generative/layers/attention.py +141 -102
- ai_edge_torch/generative/layers/attention_utils.py +53 -12
- ai_edge_torch/generative/layers/builder.py +37 -7
- ai_edge_torch/generative/layers/feed_forward.py +39 -14
- ai_edge_torch/generative/layers/kv_cache.py +162 -50
- ai_edge_torch/generative/layers/model_config.py +84 -30
- ai_edge_torch/generative/layers/normalization.py +185 -7
- ai_edge_torch/generative/layers/rotary_position_embedding.py +6 -4
- ai_edge_torch/generative/layers/scaled_dot_product_attention.py +48 -21
- ai_edge_torch/generative/layers/unet/blocks_2d.py +136 -77
- ai_edge_torch/generative/layers/unet/builder.py +7 -4
- ai_edge_torch/generative/layers/unet/model_config.py +17 -15
- ai_edge_torch/generative/quantize/example.py +7 -8
- ai_edge_torch/generative/quantize/quant_recipe.py +10 -7
- ai_edge_torch/generative/quantize/quant_recipe_utils.py +12 -1
- ai_edge_torch/generative/quantize/quant_recipes.py +8 -0
- ai_edge_torch/generative/test/test_kv_cache.py +120 -0
- ai_edge_torch/generative/test/{loader_test.py → test_loader.py} +9 -7
- ai_edge_torch/generative/test/test_model_conversion.py +124 -188
- ai_edge_torch/generative/test/test_model_conversion_large.py +251 -0
- ai_edge_torch/generative/test/test_quantize.py +76 -60
- ai_edge_torch/generative/test/utils.py +54 -0
- ai_edge_torch/generative/utilities/converter.py +82 -0
- ai_edge_torch/generative/utilities/loader.py +120 -57
- ai_edge_torch/generative/utilities/stable_diffusion_loader.py +165 -57
- ai_edge_torch/generative/utilities/t5_loader.py +110 -81
- ai_edge_torch/generative/utilities/verifier.py +247 -0
- ai_edge_torch/hlfb/__init__.py +1 -1
- ai_edge_torch/hlfb/mark_pattern/__init__.py +9 -7
- ai_edge_torch/hlfb/mark_pattern/passes.py +23 -3
- ai_edge_torch/hlfb/mark_pattern/pattern.py +39 -30
- ai_edge_torch/hlfb/test/test_mark_pattern.py +46 -20
- ai_edge_torch/hlfb/test/test_stablehlo_composite_builder.py +24 -11
- ai_edge_torch/lowertools/__init__.py +18 -0
- ai_edge_torch/lowertools/_shim.py +80 -0
- ai_edge_torch/lowertools/common_utils.py +142 -0
- ai_edge_torch/lowertools/odml_torch_utils.py +255 -0
- ai_edge_torch/lowertools/test_utils.py +60 -0
- ai_edge_torch/lowertools/torch_xla_utils.py +284 -0
- ai_edge_torch/{generative/quantize/ai_edge_quantizer_glue → lowertools}/translate_recipe.py +29 -14
- ai_edge_torch/model.py +53 -18
- ai_edge_torch/odml_torch/__init__.py +20 -0
- ai_edge_torch/odml_torch/_torch_future.py +61 -0
- ai_edge_torch/odml_torch/_torch_library.py +19 -0
- ai_edge_torch/odml_torch/composite/__init__.py +16 -0
- ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
- ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
- ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
- ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
- ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
- ai_edge_torch/odml_torch/export.py +357 -0
- ai_edge_torch/odml_torch/export_utils.py +168 -0
- ai_edge_torch/odml_torch/jax_bridge/__init__.py +15 -0
- ai_edge_torch/odml_torch/jax_bridge/_wrap.py +150 -0
- ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
- ai_edge_torch/odml_torch/lowerings/__init__.py +25 -0
- ai_edge_torch/odml_torch/lowerings/_basic.py +258 -0
- ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
- ai_edge_torch/odml_torch/lowerings/_convolution.py +241 -0
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +252 -0
- ai_edge_torch/odml_torch/lowerings/_layer_norm.py +78 -0
- ai_edge_torch/odml_torch/lowerings/context.py +42 -0
- ai_edge_torch/odml_torch/lowerings/registry.py +96 -0
- ai_edge_torch/odml_torch/lowerings/utils.py +185 -0
- ai_edge_torch/odml_torch/passes/__init__.py +38 -0
- ai_edge_torch/odml_torch/tf_integration.py +194 -0
- ai_edge_torch/quantize/pt2e_quantizer.py +52 -24
- ai_edge_torch/quantize/pt2e_quantizer_utils.py +43 -23
- ai_edge_torch/quantize/quant_config.py +13 -9
- ai_edge_torch/testing/model_coverage/model_coverage.py +29 -16
- ai_edge_torch/version.py +16 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/METADATA +7 -3
- ai_edge_torch_nightly-0.3.0.dev20240926.dist-info/RECORD +177 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/WHEEL +1 -1
- ai_edge_torch/convert/conversion.py +0 -117
- ai_edge_torch/convert/conversion_utils.py +0 -400
- ai_edge_torch/convert/fx_passes/__init__.py +0 -59
- ai_edge_torch/convert/fx_passes/_pass_base.py +0 -49
- ai_edge_torch/convert/fx_passes/canonicalize_pass.py +0 -37
- ai_edge_torch/convert/test/test_convert.py +0 -311
- ai_edge_torch/convert/test/test_convert_composites.py +0 -192
- ai_edge_torch/convert/test/test_convert_multisig.py +0 -139
- ai_edge_torch/generative/examples/gemma/convert_to_tflite.py +0 -66
- ai_edge_torch/generative/examples/phi2/convert_to_tflite.py +0 -64
- ai_edge_torch/generative/examples/test_models/toy_model_with_external_kv_cache.py +0 -161
- ai_edge_torch/generative/quantize/ai_edge_quantizer_glue/__init__.py +0 -0
- ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/RECORD +0 -121
- /ai_edge_torch/{convert → _convert}/__init__.py +0 -0
- /ai_edge_torch/{convert → _convert}/test/__init__.py +0 -0
- /ai_edge_torch/generative/examples/{phi2 → openelm}/__init__.py +0 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/LICENSE +0 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/top_level.txt +0 -0
@@ -14,11 +14,10 @@
|
|
14
14
|
# ==============================================================================
|
15
15
|
# Common building blocks for FeedForward layers.
|
16
16
|
|
17
|
-
from typing import Callable
|
17
|
+
from typing import Callable, Optional
|
18
18
|
|
19
19
|
import torch
|
20
20
|
from torch import nn
|
21
|
-
import torch.nn.functional as F
|
22
21
|
|
23
22
|
|
24
23
|
class SequentialFeedForward(nn.Module):
|
@@ -30,19 +29,30 @@ class SequentialFeedForward(nn.Module):
|
|
30
29
|
hidden_dim: int,
|
31
30
|
activation: Callable[[torch.Tensor], torch.Tensor],
|
32
31
|
use_bias=False,
|
32
|
+
use_glu=False,
|
33
|
+
pre_ff_norm: Optional[Callable[[torch.Tensor], torch.Tensor]] = None,
|
34
|
+
post_ff_norm: Optional[Callable[[torch.Tensor], torch.Tensor]] = None,
|
33
35
|
):
|
34
36
|
"""Init function for feedforward layer.
|
35
37
|
|
36
38
|
Args:
|
37
|
-
dim(int): embedding size.
|
38
|
-
hidden_dim(int): hidden dim size of the feedforward layer.
|
39
|
-
activation(Callable): activation function used in this block.
|
40
|
-
use_bias(Boolean): whether to use bias. Default is false.
|
39
|
+
dim (int): embedding size.
|
40
|
+
hidden_dim (int): hidden dim size of the feedforward layer.
|
41
|
+
activation (Callable): activation function used in this block.
|
42
|
+
use_bias (Boolean): whether to use bias. Default is false.
|
43
|
+
use_glu (Boolean): whether to use glu in activation. Default is false.
|
44
|
+
pre_ff_norm (Callable): pre feedforward norm. Default is None.
|
45
|
+
post_ff_norm (Callable): post feedforward norm. Default is None.
|
41
46
|
"""
|
42
47
|
super().__init__()
|
43
48
|
self.act = activation
|
44
|
-
|
49
|
+
if use_glu:
|
50
|
+
self.w1 = nn.Linear(dim, hidden_dim * 2, bias=use_bias)
|
51
|
+
else:
|
52
|
+
self.w1 = nn.Linear(dim, hidden_dim, bias=use_bias)
|
45
53
|
self.w2 = nn.Linear(hidden_dim, dim, bias=use_bias)
|
54
|
+
self.pre_ff_norm = pre_ff_norm if pre_ff_norm else lambda x: x
|
55
|
+
self.post_ff_norm = post_ff_norm if post_ff_norm else lambda x: x
|
46
56
|
|
47
57
|
def forward(self, x):
|
48
58
|
"""Forward pass for Feedforward layer.
|
@@ -53,7 +63,9 @@ class SequentialFeedForward(nn.Module):
|
|
53
63
|
Returns:
|
54
64
|
torch.Tensor: output tensor after feedforward.
|
55
65
|
"""
|
56
|
-
|
66
|
+
x_norm = self.pre_ff_norm(x)
|
67
|
+
out = self.w2(self.act(self.w1(x_norm)))
|
68
|
+
return self.post_ff_norm(out)
|
57
69
|
|
58
70
|
|
59
71
|
class GatedFeedForward(nn.Module):
|
@@ -68,20 +80,31 @@ class GatedFeedForward(nn.Module):
|
|
68
80
|
hidden_dim: int,
|
69
81
|
activation: Callable[[torch.Tensor], torch.Tensor],
|
70
82
|
use_bias=False,
|
83
|
+
use_glu=False,
|
84
|
+
pre_ff_norm: Optional[Callable[[torch.Tensor], torch.Tensor]] = None,
|
85
|
+
post_ff_norm: Optional[Callable[[torch.Tensor], torch.Tensor]] = None,
|
71
86
|
):
|
72
87
|
"""Init function for feedforward layer.
|
73
88
|
|
74
89
|
Args:
|
75
|
-
dim(int): embedding size.
|
76
|
-
hidden_dim(int): hidden dim size of the feedforward layer.
|
77
|
-
activation(Callable): activation function used in this block.
|
78
|
-
use_bias(Boolean): whether to use bias. Default is false.
|
90
|
+
dim (int): embedding size.
|
91
|
+
hidden_dim (int): hidden dim size of the feedforward layer.
|
92
|
+
activation (Callable): activation function used in this block.
|
93
|
+
use_bias (Boolean): whether to use bias. Default is false.
|
94
|
+
use_glu (Boolean): whether to use glu in activation. Default is false.
|
95
|
+
pre_ff_norm (Callable): pre feedforward norm. Default is None.
|
96
|
+
post_ff_norm (Callable): post feedforward norm. Default is None.
|
79
97
|
"""
|
80
98
|
super().__init__()
|
81
99
|
self.act = activation
|
82
|
-
|
100
|
+
if use_glu:
|
101
|
+
self.w1 = nn.Linear(dim, hidden_dim * 2, bias=use_bias)
|
102
|
+
else:
|
103
|
+
self.w1 = nn.Linear(dim, hidden_dim, bias=use_bias)
|
83
104
|
self.w2 = nn.Linear(hidden_dim, dim, bias=use_bias)
|
84
105
|
self.w3 = nn.Linear(dim, hidden_dim, bias=use_bias)
|
106
|
+
self.pre_ff_norm = pre_ff_norm if pre_ff_norm else lambda x: x
|
107
|
+
self.post_ff_norm = post_ff_norm if post_ff_norm else lambda x: x
|
85
108
|
|
86
109
|
def forward(self, x):
|
87
110
|
"""Forward pass for Feedforward layer.
|
@@ -92,4 +115,6 @@ class GatedFeedForward(nn.Module):
|
|
92
115
|
Returns:
|
93
116
|
torch.Tensor: output tensor after feedforward.
|
94
117
|
"""
|
95
|
-
|
118
|
+
x_norm = self.pre_ff_norm(x)
|
119
|
+
out = self.w2(self.act(self.w1(x_norm)) * self.w3(x_norm))
|
120
|
+
return self.post_ff_norm(out)
|
@@ -12,72 +12,184 @@
|
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
|
-
# `nn.Module` which implements a KV cache.
|
16
15
|
|
16
|
+
"""Utility functions for externalized KV Cache."""
|
17
|
+
|
18
|
+
import dataclasses
|
19
|
+
from typing import List, Tuple
|
20
|
+
|
21
|
+
from ai_edge_torch import hlfb
|
22
|
+
from ai_edge_torch.generative.layers import model_config
|
17
23
|
import torch
|
18
|
-
|
19
|
-
import torch_xla
|
24
|
+
import torch.utils._pytree as pytree
|
20
25
|
|
21
|
-
|
26
|
+
BATCH_SIZE = 1
|
22
27
|
|
23
28
|
|
24
|
-
|
29
|
+
@dataclasses.dataclass
|
30
|
+
class KVCacheEntry:
|
31
|
+
"""A single cache entry that includes K and V caches.
|
25
32
|
|
26
|
-
|
27
|
-
|
33
|
+
The chaches are built based on the provided config with the shape of
|
34
|
+
(batch_size=1, kv_cache_max, num_query_groups, head_dim).
|
35
|
+
"""
|
28
36
|
|
29
|
-
|
30
|
-
|
31
|
-
kv_cache_max (int): the max length of KV cache.
|
32
|
-
n_heads (int): number of kv heads.
|
33
|
-
head_dim (int): the head dimension size.
|
34
|
-
enable_hlfb (bool): whether hlfb is enabled or not.
|
35
|
-
"""
|
36
|
-
super().__init__()
|
37
|
-
cache_shape = (batch_size, kv_cache_max, n_heads, head_dim)
|
38
|
-
self.register_buffer("k_cache", torch.zeros(cache_shape), persistent=False)
|
39
|
-
self.register_buffer("v_cache", torch.zeros(cache_shape), persistent=False)
|
40
|
-
self.enable_hlfb = enable_hlfb
|
41
|
-
self.kv_cache_max = kv_cache_max
|
37
|
+
k_cache: torch.Tensor
|
38
|
+
v_cache: torch.Tensor
|
42
39
|
|
43
|
-
|
44
|
-
|
40
|
+
@classmethod
|
41
|
+
def from_model_config(
|
42
|
+
cls,
|
43
|
+
kv_cache_max: int,
|
44
|
+
config: model_config.AttentionConfig,
|
45
|
+
dtype: torch.dtype = torch.float32,
|
46
|
+
device: torch.device = None,
|
47
|
+
) -> "KVCacheEntry":
|
48
|
+
"""Build an instance of the class based on model config."""
|
49
|
+
shape = (BATCH_SIZE, kv_cache_max, config.num_query_groups, config.head_dim)
|
50
|
+
k = torch.zeros(shape, dtype=dtype, device=device)
|
51
|
+
v = torch.zeros(shape, dtype=dtype, device=device)
|
52
|
+
obj = cls(k_cache=k, v_cache=v)
|
53
|
+
return obj
|
45
54
|
|
46
|
-
Args:
|
47
|
-
input_pos (torch.Tensor): the input position.
|
48
|
-
k_val (torch.Tensor): the new `key` value.
|
49
|
-
v_val (torch.Tensor): the new `value` value.
|
50
55
|
|
51
|
-
|
52
|
-
|
53
|
-
|
54
|
-
if self.enable_hlfb:
|
55
|
-
return self.update_cache_with_hlfb(input_pos, k_val, v_val)
|
56
|
+
@dataclasses.dataclass
|
57
|
+
class KVCache:
|
58
|
+
"""A utility class for holding KV cache entries per layer."""
|
56
59
|
|
57
|
-
|
58
|
-
updated_v = self.v_cache.index_copy_(1, input_pos, v_val)
|
59
|
-
# Here we need a clone otherwise dynamo export will fail.
|
60
|
-
return torch.clone(updated_k), torch.clone(updated_v)
|
60
|
+
caches: Tuple[KVCacheEntry, ...]
|
61
61
|
|
62
|
-
|
63
|
-
|
62
|
+
@classmethod
|
63
|
+
def from_model_config(
|
64
|
+
cls,
|
65
|
+
config: model_config.ModelConfig,
|
66
|
+
dtype: torch.dtype = torch.float32,
|
67
|
+
device: torch.device = None,
|
68
|
+
) -> "KVCache":
|
69
|
+
"""Build an instance of the class based on model config.
|
64
70
|
|
65
71
|
Args:
|
66
|
-
|
67
|
-
|
68
|
-
|
72
|
+
config (ModelConfig): Model config used for building the cache.
|
73
|
+
dtype (torch.dtype, optional): The data type of the cache tensor.
|
74
|
+
Defaults to torch.float32.
|
75
|
+
device (torch.device, optional): The device placement of the cache
|
76
|
+
tensors. Defaults to None.
|
69
77
|
|
70
78
|
Returns:
|
71
|
-
|
79
|
+
KVCache: The created cache object.
|
72
80
|
"""
|
81
|
+
caches = [
|
82
|
+
KVCacheEntry.from_model_config(
|
83
|
+
config.kv_cache_max,
|
84
|
+
config.block_config(idx).attn_config,
|
85
|
+
dtype,
|
86
|
+
device,
|
87
|
+
)
|
88
|
+
for idx in range(config.num_layers)
|
89
|
+
]
|
90
|
+
obj = cls(caches=tuple(caches))
|
91
|
+
return obj
|
73
92
|
|
74
|
-
|
75
|
-
|
76
|
-
)
|
77
|
-
|
78
|
-
|
93
|
+
def flatten(self) -> List[torch.Tensor]:
|
94
|
+
"""Flatten the cache entries into a list of tensors with order k_i, v_i."""
|
95
|
+
flattened, _ = _flatten_kvc(self)
|
96
|
+
return flattened
|
97
|
+
|
98
|
+
|
99
|
+
def _flatten_kvc(kvc: KVCache) -> Tuple[List[str], List[str]]:
|
100
|
+
flattened = []
|
101
|
+
flat_names = []
|
102
|
+
none_names = []
|
103
|
+
for i, kv_entry in enumerate(kvc.caches):
|
104
|
+
flattened.append(kv_entry.k_cache)
|
105
|
+
flat_names.append(f"k_{i}")
|
106
|
+
flattened.append(kv_entry.v_cache)
|
107
|
+
flat_names.append(f"v_{i}")
|
108
|
+
return flattened, [flat_names, none_names]
|
109
|
+
|
110
|
+
|
111
|
+
def _flatten_kvc_with_keys(kvc: KVCache) -> Tuple[List, List]:
|
112
|
+
flattened, (flat_names, none_names) = _flatten_kvc(kvc)
|
113
|
+
return [
|
114
|
+
(pytree.MappingKey(k), v) for k, v in zip(flat_names, flattened)
|
115
|
+
], flat_names
|
116
|
+
|
117
|
+
|
118
|
+
def _unflatten_kvc(
|
119
|
+
values: List[torch.Tensor], context: Tuple[List, List]
|
120
|
+
) -> KVCache:
|
121
|
+
assert len(values) % 2 == 0, "Found odd number of K and V entries."
|
122
|
+
num_layers = len(values) // 2
|
123
|
+
flat_names = context[0]
|
124
|
+
kv_entries = []
|
125
|
+
for i in range(num_layers):
|
126
|
+
k_cache_idx = flat_names.index(f"k_{i}")
|
127
|
+
v_cache_idx = flat_names.index(f"v_{i}")
|
128
|
+
kv_entries.append(
|
129
|
+
KVCacheEntry(k_cache=values[k_cache_idx], v_cache=values[v_cache_idx])
|
79
130
|
)
|
80
|
-
|
81
|
-
|
82
|
-
|
83
|
-
|
131
|
+
obj = KVCache(tuple(kv_entries))
|
132
|
+
return obj
|
133
|
+
|
134
|
+
|
135
|
+
pytree.register_pytree_node(
|
136
|
+
KVCache,
|
137
|
+
_flatten_kvc,
|
138
|
+
_unflatten_kvc,
|
139
|
+
flatten_with_keys_fn=_flatten_kvc_with_keys,
|
140
|
+
serialized_type_name="",
|
141
|
+
)
|
142
|
+
|
143
|
+
|
144
|
+
def update(
|
145
|
+
cache: KVCacheEntry,
|
146
|
+
input_pos: torch.Tensor,
|
147
|
+
k_slice: torch.Tensor,
|
148
|
+
v_slice: torch.Tensor,
|
149
|
+
enable_hlfb: bool = True,
|
150
|
+
) -> KVCacheEntry:
|
151
|
+
"""Out of place update of Cache buffer.
|
152
|
+
|
153
|
+
Args:
|
154
|
+
cache (KVCacheEntry): The original cache buffer.
|
155
|
+
input_pos (torch.Tensor): The update slice positions.
|
156
|
+
k_slice (torch.Tensor): The K slice to be updated in the new cache.
|
157
|
+
v_slice (torch.Tensor): The V slice to be updated in the new cache.
|
158
|
+
enable_hlfb (bool, optional): Whether the op is annotated for export with
|
159
|
+
High Level Function Boundary. Defaults to True.
|
160
|
+
|
161
|
+
Returns:
|
162
|
+
KVCacheEntry: The updated KVCache entry based on the passed inputs.
|
163
|
+
"""
|
164
|
+
update_func = _update_kv_hlfb_impl if enable_hlfb else _update_kv_base_impl
|
165
|
+
return update_func(cache, input_pos, k_slice, v_slice)
|
166
|
+
|
167
|
+
|
168
|
+
def _update_kv_base_impl(
|
169
|
+
cache: KVCacheEntry,
|
170
|
+
input_pos: torch.Tensor,
|
171
|
+
k_slice: torch.Tensor,
|
172
|
+
v_slice: torch.Tensor,
|
173
|
+
) -> KVCacheEntry:
|
174
|
+
"""Update the cache buffer without High Level Function Boundary annotation."""
|
175
|
+
k = cache.k_cache.index_copy(1, input_pos.to(torch.long), k_slice)
|
176
|
+
v = cache.v_cache.index_copy(1, input_pos.to(torch.long), v_slice)
|
177
|
+
updated_cache = KVCacheEntry(k, v)
|
178
|
+
return updated_cache
|
179
|
+
|
180
|
+
|
181
|
+
def _update_kv_hlfb_impl(
|
182
|
+
cache: KVCacheEntry,
|
183
|
+
input_pos: torch.Tensor,
|
184
|
+
k_slice: torch.Tensor,
|
185
|
+
v_slice: torch.Tensor,
|
186
|
+
) -> KVCacheEntry:
|
187
|
+
"""Update the cache buffer with High Level Function Boundary annotation."""
|
188
|
+
builder = hlfb.StableHLOCompositeBuilder(name="odml.update_external_kv_cache")
|
189
|
+
k_cache, v_cache, input_pos, k_slice, v_slice = builder.mark_inputs(
|
190
|
+
cache.k_cache, cache.v_cache, input_pos, k_slice, v_slice
|
191
|
+
)
|
192
|
+
k = k_cache.index_copy(1, input_pos.to(torch.long), k_slice)
|
193
|
+
v = v_cache.index_copy(1, input_pos.to(torch.long), v_slice)
|
194
|
+
k, v = builder.mark_outputs(k, v)
|
195
|
+
return KVCacheEntry(k, v)
|
@@ -16,7 +16,7 @@
|
|
16
16
|
from dataclasses import dataclass
|
17
17
|
from dataclasses import field
|
18
18
|
import enum
|
19
|
-
from typing import Optional
|
19
|
+
from typing import Optional, Sequence, Union
|
20
20
|
|
21
21
|
|
22
22
|
@enum.unique
|
@@ -30,6 +30,7 @@ class ActivationType(enum.Enum):
|
|
30
30
|
GELU_QUICK = enum.auto()
|
31
31
|
GE_GLU = enum.auto()
|
32
32
|
RELU = enum.auto()
|
33
|
+
SILU_GLU = enum.auto()
|
33
34
|
|
34
35
|
|
35
36
|
@enum.unique
|
@@ -53,11 +54,32 @@ class FeedForwardType(enum.Enum):
|
|
53
54
|
GATED = enum.auto()
|
54
55
|
|
55
56
|
|
57
|
+
class AttentionType(enum.Enum):
|
58
|
+
GLOBAL = enum.auto()
|
59
|
+
LOCAL_SLIDING = enum.auto()
|
60
|
+
|
61
|
+
|
62
|
+
@dataclass
|
63
|
+
class NormalizationConfig:
|
64
|
+
"""Normalizater parameters."""
|
65
|
+
|
66
|
+
type: NormalizationType = NormalizationType.NONE
|
67
|
+
enable_hlfb: bool = False
|
68
|
+
epsilon: float = 1e-5
|
69
|
+
zero_centered: bool = False
|
70
|
+
# Number of groups used in group normalization.
|
71
|
+
group_num: Optional[float] = None
|
72
|
+
# Whether to use the input shape to determine the dimension of normalization
|
73
|
+
# when type is LAYER_NORM.
|
74
|
+
use_input_shape: bool = True
|
75
|
+
|
76
|
+
|
56
77
|
@dataclass
|
57
78
|
class AttentionConfig:
|
58
|
-
"""Attention
|
79
|
+
"""Attention model's parameters."""
|
59
80
|
|
60
81
|
num_heads: int
|
82
|
+
head_dim: int
|
61
83
|
# Used to determine number of groups in grouped query attention (GQA)
|
62
84
|
# https://arxiv.org/pdf/2305.13245.pdf
|
63
85
|
num_query_groups: Optional[int]
|
@@ -75,8 +97,22 @@ class AttentionConfig:
|
|
75
97
|
# Whether to use bias with attention output projection.
|
76
98
|
output_proj_use_bias: bool = False
|
77
99
|
enable_kv_cache: bool = True
|
100
|
+
# The normalization applied to query projection's output.
|
101
|
+
query_norm_config: NormalizationConfig = field(
|
102
|
+
default_factory=NormalizationConfig
|
103
|
+
)
|
104
|
+
# The normalization applied to key projection's output.
|
105
|
+
key_norm_config: NormalizationConfig = field(
|
106
|
+
default_factory=NormalizationConfig
|
107
|
+
)
|
78
108
|
relative_attention_num_buckets: int = 0
|
79
109
|
relative_attention_max_distance: int = 0
|
110
|
+
# Softcap on the output logits.
|
111
|
+
logit_softcap: Optional[float] = None
|
112
|
+
# The type of attention.
|
113
|
+
attn_type: Optional[AttentionType] = None
|
114
|
+
# The size of the sliding window used for local attention.
|
115
|
+
sliding_window_size: Optional[int] = None
|
80
116
|
|
81
117
|
|
82
118
|
@dataclass
|
@@ -95,17 +131,37 @@ class FeedForwardConfig:
|
|
95
131
|
activation: ActivationConfig
|
96
132
|
intermediate_size: int
|
97
133
|
use_bias: bool = False
|
134
|
+
# The normalization applied to feed forward's input.
|
135
|
+
pre_ff_norm_config: NormalizationConfig = field(
|
136
|
+
default_factory=NormalizationConfig
|
137
|
+
)
|
138
|
+
# The normalization applied to feed forward's output.
|
139
|
+
post_ff_norm_config: NormalizationConfig = field(
|
140
|
+
default_factory=NormalizationConfig
|
141
|
+
)
|
98
142
|
|
99
143
|
|
100
144
|
@dataclass
|
101
|
-
class
|
102
|
-
"""
|
145
|
+
class TransformerBlockConfig:
|
146
|
+
"""TransformerBlock module's parameters."""
|
103
147
|
|
104
|
-
|
105
|
-
|
106
|
-
|
107
|
-
|
108
|
-
|
148
|
+
attn_config: AttentionConfig
|
149
|
+
ff_config: FeedForwardConfig
|
150
|
+
# The normalization applied to attention's input.
|
151
|
+
pre_attention_norm_config: NormalizationConfig = field(
|
152
|
+
default_factory=NormalizationConfig
|
153
|
+
)
|
154
|
+
# The normalization applied to attentions's output.
|
155
|
+
post_attention_norm_config: NormalizationConfig = field(
|
156
|
+
default_factory=NormalizationConfig
|
157
|
+
)
|
158
|
+
# If set to True, only attn_config.pre_attention_norm is applied to the input
|
159
|
+
# and the decode's output is computed as `output = input + attn_out + ff_out`
|
160
|
+
# where attention and feed forward are called with pre_attention_norm's
|
161
|
+
# output.
|
162
|
+
parallel_residual: bool = False
|
163
|
+
# The Attention computation will include relative positional bias.
|
164
|
+
relative_attention: bool = False
|
109
165
|
|
110
166
|
|
111
167
|
@dataclass
|
@@ -117,21 +173,15 @@ class ModelConfig:
|
|
117
173
|
max_seq_len: int
|
118
174
|
embedding_dim: int
|
119
175
|
|
120
|
-
|
121
|
-
|
122
|
-
|
123
|
-
|
176
|
+
# TransformerBlockConfig for each layer block. If a single
|
177
|
+
# TransformerBlockConfig is provided, it will be used for all layers.
|
178
|
+
block_configs: Union[TransformerBlockConfig, Sequence[TransformerBlockConfig]]
|
179
|
+
|
180
|
+
# The normalization applied before LM head.
|
181
|
+
final_norm_config: NormalizationConfig = field(
|
124
182
|
default_factory=NormalizationConfig
|
125
183
|
)
|
126
|
-
# The normalization applied to feed forward's input.
|
127
|
-
pre_ff_norm_config: NormalizationConfig = field(default_factory=NormalizationConfig)
|
128
|
-
# The normalization applied before LM head.
|
129
|
-
final_norm_config: NormalizationConfig = field(default_factory=NormalizationConfig)
|
130
184
|
|
131
|
-
# If set to True, only pre_attention_norm is applied to the input and the
|
132
|
-
# decode's output is computed as `output = input + attn_out + ff_out` where
|
133
|
-
# attention and feed forward are called with pre_attention_norm's output.
|
134
|
-
parallel_residual: bool = False
|
135
185
|
# Use bias term within LLM's HEAD.
|
136
186
|
lm_head_use_bias: bool = False
|
137
187
|
# Whether to turn on high-level function boundary.
|
@@ -140,19 +190,23 @@ class ModelConfig:
|
|
140
190
|
# The maximum sequence length of the KV cache. Should not exceed max_seq_len.
|
141
191
|
kv_cache_max_len: int = 0
|
142
192
|
|
143
|
-
# The Attention computation will include relative positional bias.
|
144
|
-
relative_attention: bool = False
|
145
|
-
|
146
193
|
# Default batch size of the exported model. Default value is 1.
|
147
194
|
batch_size: int = 1
|
148
195
|
|
196
|
+
# Softcap on the model output logits.
|
197
|
+
final_logit_softcap: Optional[float] = None
|
198
|
+
|
149
199
|
@property
|
150
200
|
def kv_cache_max(self) -> int:
|
151
201
|
if self.kv_cache_max_len > 0:
|
152
202
|
return self.kv_cache_max_len
|
153
|
-
|
154
|
-
|
155
|
-
|
156
|
-
|
157
|
-
|
158
|
-
|
203
|
+
return self.max_seq_len
|
204
|
+
|
205
|
+
def block_config(self, idx: int) -> TransformerBlockConfig:
|
206
|
+
if isinstance(self.block_configs, TransformerBlockConfig):
|
207
|
+
return self.block_configs
|
208
|
+
if idx < 0 or idx >= len(self.block_configs):
|
209
|
+
raise ValueError(
|
210
|
+
f"Index {idx} is out of range for layer configs: {self.block_configs}"
|
211
|
+
)
|
212
|
+
return self.block_configs[idx]
|