ai-edge-torch-nightly 0.2.0.dev20240714__py3-none-any.whl → 0.3.0.dev20240926__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (169) hide show
  1. ai_edge_torch/__init__.py +5 -4
  2. ai_edge_torch/_convert/conversion.py +112 -0
  3. ai_edge_torch/_convert/conversion_utils.py +64 -0
  4. ai_edge_torch/{convert → _convert}/converter.py +94 -48
  5. ai_edge_torch/_convert/fx_passes/__init__.py +22 -0
  6. ai_edge_torch/{convert → _convert}/fx_passes/build_aten_composite_pass.py +107 -44
  7. ai_edge_torch/{convert → _convert}/fx_passes/build_interpolate_composite_pass.py +23 -20
  8. ai_edge_torch/{convert → _convert}/fx_passes/inject_mlir_debuginfo_pass.py +5 -6
  9. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/__init__.py +1 -1
  10. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_check.py +39 -9
  11. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_mark.py +2 -0
  12. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +1 -0
  13. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +17 -8
  14. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +9 -8
  15. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +31 -18
  16. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +2 -2
  17. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/pass_body.py +34 -24
  18. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/utils.py +2 -0
  19. ai_edge_torch/_convert/signature.py +66 -0
  20. ai_edge_torch/_convert/test/test_convert.py +495 -0
  21. ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
  22. ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
  23. ai_edge_torch/{convert → _convert}/test/test_to_channel_last_io.py +5 -5
  24. ai_edge_torch/{convert → _convert}/to_channel_last_io.py +10 -3
  25. ai_edge_torch/config.py +27 -0
  26. ai_edge_torch/conftest.py +20 -0
  27. ai_edge_torch/debug/culprit.py +72 -40
  28. ai_edge_torch/debug/test/test_culprit.py +7 -5
  29. ai_edge_torch/debug/test/test_search_model.py +8 -7
  30. ai_edge_torch/debug/utils.py +14 -3
  31. ai_edge_torch/fx_pass_base.py +101 -0
  32. ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +68 -0
  33. ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +68 -0
  34. ai_edge_torch/generative/examples/gemma/{gemma.py → gemma1.py} +69 -55
  35. ai_edge_torch/generative/examples/gemma/gemma2.py +267 -0
  36. ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
  37. ai_edge_torch/generative/examples/gemma/verify_gemma2.py +57 -0
  38. ai_edge_torch/generative/examples/gemma/verify_util.py +143 -0
  39. ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +68 -0
  40. ai_edge_torch/generative/examples/openelm/openelm.py +206 -0
  41. ai_edge_torch/generative/examples/openelm/verify.py +64 -0
  42. ai_edge_torch/generative/examples/phi/__init__.py +14 -0
  43. ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +68 -0
  44. ai_edge_torch/generative/examples/phi/convert_to_tflite.py +68 -0
  45. ai_edge_torch/generative/examples/{phi2 → phi}/phi2.py +70 -51
  46. ai_edge_torch/generative/examples/phi/phi3.py +286 -0
  47. ai_edge_torch/generative/examples/phi/verify.py +65 -0
  48. ai_edge_torch/generative/examples/phi/verify_phi3.py +70 -0
  49. ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
  50. ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +68 -0
  51. ai_edge_torch/generative/examples/smollm/smollm.py +101 -0
  52. ai_edge_torch/generative/examples/smollm/verify.py +62 -0
  53. ai_edge_torch/generative/examples/stable_diffusion/attention.py +3 -1
  54. ai_edge_torch/generative/examples/stable_diffusion/clip.py +83 -13
  55. ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +27 -14
  56. ai_edge_torch/generative/examples/stable_diffusion/decoder.py +74 -9
  57. ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +179 -37
  58. ai_edge_torch/generative/examples/stable_diffusion/encoder.py +4 -3
  59. ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +83 -58
  60. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +4 -3
  61. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +4 -3
  62. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +4 -3
  63. ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +1 -0
  64. ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +4 -1
  65. ai_edge_torch/generative/examples/stable_diffusion/util.py +9 -3
  66. ai_edge_torch/generative/examples/t5/convert_to_tflite.py +28 -25
  67. ai_edge_torch/generative/examples/t5/t5.py +208 -159
  68. ai_edge_torch/generative/examples/t5/t5_attention.py +45 -30
  69. ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
  70. ai_edge_torch/generative/examples/test_models/toy_model.py +69 -41
  71. ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +50 -64
  72. ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
  73. ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +41 -39
  74. ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +67 -54
  75. ai_edge_torch/generative/examples/tiny_llama/verify.py +64 -0
  76. ai_edge_torch/generative/fx_passes/__init__.py +4 -5
  77. ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +10 -7
  78. ai_edge_torch/generative/layers/attention.py +141 -102
  79. ai_edge_torch/generative/layers/attention_utils.py +53 -12
  80. ai_edge_torch/generative/layers/builder.py +37 -7
  81. ai_edge_torch/generative/layers/feed_forward.py +39 -14
  82. ai_edge_torch/generative/layers/kv_cache.py +162 -50
  83. ai_edge_torch/generative/layers/model_config.py +84 -30
  84. ai_edge_torch/generative/layers/normalization.py +185 -7
  85. ai_edge_torch/generative/layers/rotary_position_embedding.py +6 -4
  86. ai_edge_torch/generative/layers/scaled_dot_product_attention.py +48 -21
  87. ai_edge_torch/generative/layers/unet/blocks_2d.py +136 -77
  88. ai_edge_torch/generative/layers/unet/builder.py +7 -4
  89. ai_edge_torch/generative/layers/unet/model_config.py +17 -15
  90. ai_edge_torch/generative/quantize/example.py +7 -8
  91. ai_edge_torch/generative/quantize/quant_recipe.py +10 -7
  92. ai_edge_torch/generative/quantize/quant_recipe_utils.py +12 -1
  93. ai_edge_torch/generative/quantize/quant_recipes.py +8 -0
  94. ai_edge_torch/generative/test/test_kv_cache.py +120 -0
  95. ai_edge_torch/generative/test/{loader_test.py → test_loader.py} +9 -7
  96. ai_edge_torch/generative/test/test_model_conversion.py +124 -188
  97. ai_edge_torch/generative/test/test_model_conversion_large.py +251 -0
  98. ai_edge_torch/generative/test/test_quantize.py +76 -60
  99. ai_edge_torch/generative/test/utils.py +54 -0
  100. ai_edge_torch/generative/utilities/converter.py +82 -0
  101. ai_edge_torch/generative/utilities/loader.py +120 -57
  102. ai_edge_torch/generative/utilities/stable_diffusion_loader.py +165 -57
  103. ai_edge_torch/generative/utilities/t5_loader.py +110 -81
  104. ai_edge_torch/generative/utilities/verifier.py +247 -0
  105. ai_edge_torch/hlfb/__init__.py +1 -1
  106. ai_edge_torch/hlfb/mark_pattern/__init__.py +9 -7
  107. ai_edge_torch/hlfb/mark_pattern/passes.py +23 -3
  108. ai_edge_torch/hlfb/mark_pattern/pattern.py +39 -30
  109. ai_edge_torch/hlfb/test/test_mark_pattern.py +46 -20
  110. ai_edge_torch/hlfb/test/test_stablehlo_composite_builder.py +24 -11
  111. ai_edge_torch/lowertools/__init__.py +18 -0
  112. ai_edge_torch/lowertools/_shim.py +80 -0
  113. ai_edge_torch/lowertools/common_utils.py +142 -0
  114. ai_edge_torch/lowertools/odml_torch_utils.py +255 -0
  115. ai_edge_torch/lowertools/test_utils.py +60 -0
  116. ai_edge_torch/lowertools/torch_xla_utils.py +284 -0
  117. ai_edge_torch/{generative/quantize/ai_edge_quantizer_glue → lowertools}/translate_recipe.py +29 -14
  118. ai_edge_torch/model.py +53 -18
  119. ai_edge_torch/odml_torch/__init__.py +20 -0
  120. ai_edge_torch/odml_torch/_torch_future.py +61 -0
  121. ai_edge_torch/odml_torch/_torch_library.py +19 -0
  122. ai_edge_torch/odml_torch/composite/__init__.py +16 -0
  123. ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
  124. ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
  125. ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
  126. ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
  127. ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
  128. ai_edge_torch/odml_torch/export.py +357 -0
  129. ai_edge_torch/odml_torch/export_utils.py +168 -0
  130. ai_edge_torch/odml_torch/jax_bridge/__init__.py +15 -0
  131. ai_edge_torch/odml_torch/jax_bridge/_wrap.py +150 -0
  132. ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
  133. ai_edge_torch/odml_torch/lowerings/__init__.py +25 -0
  134. ai_edge_torch/odml_torch/lowerings/_basic.py +258 -0
  135. ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
  136. ai_edge_torch/odml_torch/lowerings/_convolution.py +241 -0
  137. ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +252 -0
  138. ai_edge_torch/odml_torch/lowerings/_layer_norm.py +78 -0
  139. ai_edge_torch/odml_torch/lowerings/context.py +42 -0
  140. ai_edge_torch/odml_torch/lowerings/registry.py +96 -0
  141. ai_edge_torch/odml_torch/lowerings/utils.py +185 -0
  142. ai_edge_torch/odml_torch/passes/__init__.py +38 -0
  143. ai_edge_torch/odml_torch/tf_integration.py +194 -0
  144. ai_edge_torch/quantize/pt2e_quantizer.py +52 -24
  145. ai_edge_torch/quantize/pt2e_quantizer_utils.py +43 -23
  146. ai_edge_torch/quantize/quant_config.py +13 -9
  147. ai_edge_torch/testing/model_coverage/model_coverage.py +29 -16
  148. ai_edge_torch/version.py +16 -0
  149. {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/METADATA +7 -3
  150. ai_edge_torch_nightly-0.3.0.dev20240926.dist-info/RECORD +177 -0
  151. {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/WHEEL +1 -1
  152. ai_edge_torch/convert/conversion.py +0 -117
  153. ai_edge_torch/convert/conversion_utils.py +0 -400
  154. ai_edge_torch/convert/fx_passes/__init__.py +0 -59
  155. ai_edge_torch/convert/fx_passes/_pass_base.py +0 -49
  156. ai_edge_torch/convert/fx_passes/canonicalize_pass.py +0 -37
  157. ai_edge_torch/convert/test/test_convert.py +0 -311
  158. ai_edge_torch/convert/test/test_convert_composites.py +0 -192
  159. ai_edge_torch/convert/test/test_convert_multisig.py +0 -139
  160. ai_edge_torch/generative/examples/gemma/convert_to_tflite.py +0 -66
  161. ai_edge_torch/generative/examples/phi2/convert_to_tflite.py +0 -64
  162. ai_edge_torch/generative/examples/test_models/toy_model_with_external_kv_cache.py +0 -161
  163. ai_edge_torch/generative/quantize/ai_edge_quantizer_glue/__init__.py +0 -0
  164. ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/RECORD +0 -121
  165. /ai_edge_torch/{convert → _convert}/__init__.py +0 -0
  166. /ai_edge_torch/{convert → _convert}/test/__init__.py +0 -0
  167. /ai_edge_torch/generative/examples/{phi2 → openelm}/__init__.py +0 -0
  168. {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/LICENSE +0 -0
  169. {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/top_level.txt +0 -0
@@ -13,54 +13,56 @@
13
13
  # limitations under the License.
14
14
  # ==============================================================================
15
15
 
16
- import os
17
- from pathlib import Path
16
+ """Example of converting TinyLlama model to multi-signature tflite model."""
18
17
 
19
- import torch
18
+ import os
19
+ import pathlib
20
20
 
21
- import ai_edge_torch
21
+ from absl import app
22
+ from absl import flags
22
23
  from ai_edge_torch.generative.examples.tiny_llama import tiny_llama
23
- from ai_edge_torch.generative.quantize import quant_recipes
24
+ from ai_edge_torch.generative.utilities import converter
24
25
 
26
+ _CHECKPOINT_PATH = flags.DEFINE_string(
27
+ 'checkpoint_path',
28
+ os.path.join(pathlib.Path.home(), 'Downloads/llm_data/tiny_llama'),
29
+ 'The path to the model checkpoint, or directory holding the checkpoint.',
30
+ )
31
+ _TFLITE_PATH = flags.DEFINE_string(
32
+ 'tflite_path',
33
+ '/tmp/',
34
+ 'The tflite file path to export.',
35
+ )
36
+ _PREFILL_SEQ_LEN = flags.DEFINE_integer(
37
+ 'prefill_seq_len',
38
+ 1024,
39
+ 'The maximum size of prefill input tensor.',
40
+ )
41
+ _KV_CACHE_MAX_LEN = flags.DEFINE_integer(
42
+ 'kv_cache_max_len',
43
+ 1280,
44
+ 'The maximum size of KV cache buffer, including both prefill and decode.',
45
+ )
46
+ _QUANTIZE = flags.DEFINE_bool(
47
+ 'quantize',
48
+ True,
49
+ 'Whether the model should be quantized.',
50
+ )
25
51
 
26
- def convert_tiny_llama_to_tflite(
27
- checkpoint_path: str,
28
- prefill_seq_len: int = 512,
29
- kv_cache_max_len: int = 1024,
30
- quantize: bool = True,
31
- ):
32
- """An example method for converting TinyLlama model to multi-signature
33
- tflite model.
34
52
 
35
- Args:
36
- checkpoint_path (str): The filepath to the model checkpoint, or directory holding the checkpoint.
37
- prefill_seq_len (int, optional): The maximum size of prefill input tensor.
38
- Defaults to 512.
39
- kv_cache_max_len (int, optional): The maximum size of KV cache buffer,
40
- including both prefill and decode. Defaults to 1024.
41
- quantize (bool, optional): Whether the model should be quanized.
42
- Defaults to True.
43
- """
53
+ def main(_):
44
54
  pytorch_model = tiny_llama.build_model(
45
- checkpoint_path, kv_cache_max_len=kv_cache_max_len
55
+ _CHECKPOINT_PATH.value, kv_cache_max_len=_KV_CACHE_MAX_LEN.value
46
56
  )
47
- # Tensors used to trace the model graph during conversion.
48
- prefill_tokens = torch.full((1, prefill_seq_len), 0, dtype=torch.long)
49
- prefill_input_pos = torch.arange(0, prefill_seq_len)
50
- decode_token = torch.tensor([[0]], dtype=torch.long)
51
- decode_input_pos = torch.tensor([0], dtype=torch.int64)
52
-
53
- quant_config = quant_recipes.full_int8_dynamic_recipe() if quantize else None
54
- edge_model = (
55
- ai_edge_torch.signature(
56
- 'prefill', pytorch_model, (prefill_tokens, prefill_input_pos)
57
- )
58
- .signature('decode', pytorch_model, (decode_token, decode_input_pos))
59
- .convert(quant_config=quant_config)
57
+ quant_suffix = 'q8' if _QUANTIZE.value else 'f32'
58
+ output_filename = f'tinyllama_{quant_suffix}_seq{_PREFILL_SEQ_LEN.value}_ekv{_KV_CACHE_MAX_LEN.value}.tflite'
59
+ converter.convert_to_tflite(
60
+ pytorch_model,
61
+ tflite_path=os.path.join(_TFLITE_PATH.value, output_filename),
62
+ prefill_seq_len=_PREFILL_SEQ_LEN.value,
63
+ quantize=_QUANTIZE.value,
60
64
  )
61
- edge_model.export(f'/tmp/tiny_llama_seq{prefill_seq_len}_kv{kv_cache_max_len}.tflite')
62
65
 
63
66
 
64
67
  if __name__ == '__main__':
65
- checkpoint_path = os.path.join(Path.home(), 'Downloads/llm_data/tiny_llama')
66
- convert_tiny_llama_to_tflite(checkpoint_path)
68
+ app.run(main)
@@ -12,20 +12,17 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
  # ==============================================================================
15
- # Example of building a TinyLlama model from the Edge Generative API layers.
16
15
 
17
- import os
18
- from pathlib import Path
16
+ """Example of building a TinyLlama model."""
19
17
 
20
- import numpy as np
21
- import torch
22
- import torch.nn as nn
23
-
24
- from ai_edge_torch.generative.layers.attention import TransformerBlock
18
+ from ai_edge_torch.generative.layers import attention
19
+ from ai_edge_torch.generative.layers import builder
20
+ from ai_edge_torch.generative.layers import kv_cache as kv_utils
25
21
  import ai_edge_torch.generative.layers.attention_utils as attn_utils
26
- import ai_edge_torch.generative.layers.builder as builder
27
22
  import ai_edge_torch.generative.layers.model_config as cfg
28
23
  import ai_edge_torch.generative.utilities.loader as loading_utils
24
+ import torch
25
+ from torch import nn
29
26
 
30
27
  TENSOR_NAMES = loading_utils.ModelLoader.TensorNames(
31
28
  ff_up_proj="model.layers.{}.mlp.up_proj",
@@ -36,19 +33,19 @@ TENSOR_NAMES = loading_utils.ModelLoader.TensorNames(
36
33
  attn_value_proj="model.layers.{}.self_attn.v_proj",
37
34
  attn_output_proj="model.layers.{}.self_attn.o_proj",
38
35
  pre_attn_norm="model.layers.{}.input_layernorm",
39
- pre_ff_norm="model.layers.{}.post_attention_layernorm",
36
+ post_attn_norm="model.layers.{}.post_attention_layernorm",
40
37
  embedding="model.embed_tokens",
41
38
  final_norm="model.norm",
42
39
  lm_head="lm_head",
43
40
  )
44
41
 
45
42
 
46
- class TinyLLamma(nn.Module):
43
+ class TinyLlama(nn.Module):
44
+ """A TinyLlama model built from the Edge Generative API layers."""
47
45
 
48
46
  def __init__(self, config: cfg.ModelConfig):
49
47
  super().__init__()
50
48
 
51
- self.config = config
52
49
  # Construct model layers.
53
50
  self.lm_head = nn.Linear(
54
51
  config.embedding_dim, config.vocab_size, bias=config.lm_head_use_bias
@@ -56,35 +53,48 @@ class TinyLLamma(nn.Module):
56
53
  self.tok_embedding = nn.Embedding(
57
54
  config.vocab_size, config.embedding_dim, padding_idx=0
58
55
  )
56
+ # TinyLlama has only one block config.
57
+ block_config = config.block_config(0)
59
58
  self.transformer_blocks = nn.ModuleList(
60
- TransformerBlock(config) for _ in range(config.num_layers)
59
+ attention.TransformerBlock(block_config, config)
60
+ for _ in range(config.num_layers)
61
61
  )
62
62
  self.final_norm = builder.build_norm(
63
63
  config.embedding_dim,
64
64
  config.final_norm_config,
65
65
  )
66
+ attn_config = block_config.attn_config
66
67
  self.rope_cache = attn_utils.build_rope_cache(
67
68
  size=config.kv_cache_max,
68
- dim=int(config.attn_config.rotary_percentage * config.head_dim),
69
+ dim=int(attn_config.rotary_percentage * attn_config.head_dim),
69
70
  base=10_000,
70
71
  condense_ratio=1,
71
72
  dtype=torch.float32,
72
73
  device=torch.device("cpu"),
73
74
  )
74
75
  self.mask_cache = attn_utils.build_causal_mask_cache(
75
- size=config.kv_cache_max, dtype=torch.float32, device=torch.device("cpu")
76
+ size=config.kv_cache_max,
77
+ dtype=torch.float32,
78
+ device=torch.device("cpu"),
76
79
  )
77
80
  self.config = config
78
81
 
79
- # The model's forward function takes in additional k/v cache tensors
80
- # and returns the updated k/v cache tensors to the caller.
81
- # This can be eliminated if we handle k/v cache updates inside the model itself.
82
82
  @torch.inference_mode
83
- def forward(self, idx: torch.Tensor, input_pos: torch.Tensor) -> torch.Tensor:
84
- B, T = idx.size()
85
- assert (
86
- self.config.max_seq_len >= T
87
- ), f"Cannot forward sequence of length {T}, max seq length is only {self.config.max_seq_len}"
83
+ def forward(
84
+ self,
85
+ tokens: torch.Tensor,
86
+ input_pos: torch.Tensor,
87
+ kv_cache: kv_utils.KVCache,
88
+ ) -> dict[torch.Tensor, kv_utils.KVCache]:
89
+ _, seq_len = tokens.size()
90
+ assert self.config.max_seq_len >= seq_len, (
91
+ f"Cannot forward sequence of length {seq_len}, max seq length is only"
92
+ f" {self.config.max_seq_len}"
93
+ )
94
+ assert len(self.transformer_blocks) == len(kv_cache.caches), (
95
+ "The number of transformer blocks and the number of KV cache entries"
96
+ " must be the same."
97
+ )
88
98
 
89
99
  cos, sin = self.rope_cache
90
100
  cos = cos.index_select(0, input_pos)
@@ -92,21 +102,35 @@ class TinyLLamma(nn.Module):
92
102
  mask = self.mask_cache.index_select(2, input_pos)
93
103
  mask = mask[:, :, :, : self.config.kv_cache_max]
94
104
 
95
- # forward the model itself
96
- x = self.tok_embedding(idx) # token embeddings of shape (b, t, n_embd)
105
+ # token embeddings of shape (b, t, n_embd)
106
+ x = self.tok_embedding(tokens)
97
107
 
108
+ updated_kv_entires = []
98
109
  for i, block in enumerate(self.transformer_blocks):
99
- x = block(x, (cos, sin), mask, input_pos)
110
+ kv_entry = kv_cache.caches[i] if kv_cache else None
111
+ x, kv_entry = block(x, (cos, sin), mask, input_pos, kv_entry)
112
+ if kv_entry:
113
+ updated_kv_entires.append(kv_entry)
114
+ updated_kv_cache = kv_utils.KVCache(tuple(updated_kv_entires))
100
115
 
101
116
  x = self.final_norm(x)
102
-
103
- res = self.lm_head(x) # (b, t, vocab_size)
104
- return res
117
+ logits = self.lm_head(x) # (b, t, vocab_size)
118
+ return {"logits": logits, "kv_cache": updated_kv_cache}
105
119
 
106
120
 
107
121
  def get_model_config(kv_cache_max_len: int = 1024) -> cfg.ModelConfig:
122
+ """Returns the model config for a TinyLlama model.
123
+
124
+ Args:
125
+ kv_cache_max_len (int): The maximum sequence length of the KV cache. Default
126
+ is 1024.
127
+
128
+ Returns:
129
+ The model config for a TinyLlama model.
130
+ """
108
131
  attn_config = cfg.AttentionConfig(
109
132
  num_heads=32,
133
+ head_dim=64,
110
134
  num_query_groups=4,
111
135
  rotary_percentage=1.0,
112
136
  )
@@ -116,49 +140,38 @@ def get_model_config(kv_cache_max_len: int = 1024) -> cfg.ModelConfig:
116
140
  intermediate_size=5632,
117
141
  )
118
142
  norm_config = cfg.NormalizationConfig(type=cfg.NormalizationType.RMS_NORM)
143
+ block_config = cfg.TransformerBlockConfig(
144
+ attn_config=attn_config,
145
+ ff_config=ff_config,
146
+ pre_attention_norm_config=norm_config,
147
+ post_attention_norm_config=norm_config,
148
+ )
119
149
  config = cfg.ModelConfig(
120
150
  vocab_size=32000,
121
151
  num_layers=22,
122
152
  max_seq_len=2048,
123
153
  embedding_dim=2048,
124
154
  kv_cache_max_len=kv_cache_max_len,
125
- attn_config=attn_config,
126
- ff_config=ff_config,
127
- pre_attention_norm_config=norm_config,
128
- pre_ff_norm_config=norm_config,
155
+ block_configs=block_config,
129
156
  final_norm_config=norm_config,
130
157
  enable_hlfb=True,
131
158
  )
132
159
  return config
133
160
 
134
161
 
135
- def get_fake_model_config_for_test() -> cfg.ModelConfig:
136
- config = get_model_config()
162
+ def get_fake_model_config(**kwargs) -> cfg.ModelConfig:
163
+ config = get_model_config(**kwargs)
137
164
  config.vocab_size = 128
138
165
  config.num_layers = 2
139
- config.ff_config.intermediate_size = 256
166
+ # TinyLlama has only one block config.
167
+ config.block_config(0).ff_config.intermediate_size = 64
140
168
  return config
141
169
 
142
170
 
143
- def build_model(checkpoint_path, **kwargs) -> nn.Module:
171
+ def build_model(checkpoint_path: str, **kwargs) -> nn.Module:
144
172
  config = get_model_config(**kwargs)
145
- model = TinyLLamma(config)
173
+ model = TinyLlama(config)
146
174
  loader = loading_utils.ModelLoader(checkpoint_path, TENSOR_NAMES)
147
175
  loader.load(model)
176
+ model.eval()
148
177
  return model
149
-
150
-
151
- def define_and_run() -> None:
152
- kv_cache_max_len = 1024
153
- checkpoint_path = os.path.join(Path.home(), "Downloads/llm_data/tiny_llama")
154
- model = build_model(checkpoint_path, kv_cache_max_len=kv_cache_max_len)
155
- idx = torch.from_numpy(np.array([[1, 2, 3, 4]]))
156
- tokens = torch.full((1, kv_cache_max_len), 0, dtype=torch.long, device="cpu")
157
- tokens[0, :4] = idx
158
- input_pos = torch.arange(0, kv_cache_max_len)
159
- print("running an inference")
160
- print(model.forward(tokens, input_pos))
161
-
162
-
163
- if __name__ == "__main__":
164
- define_and_run()
@@ -0,0 +1,64 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ """Verifies the reauthored TinyLlama-1.1B model."""
17
+
18
+ import logging
19
+ import pathlib
20
+
21
+ from absl import app
22
+ from absl import flags
23
+ from ai_edge_torch.generative.examples.tiny_llama import tiny_llama
24
+ from ai_edge_torch.generative.utilities import verifier
25
+ import transformers
26
+
27
+
28
+ _PROMPTS = flags.DEFINE_multi_string(
29
+ "prompts",
30
+ "Show me the program to add 2 and 3.",
31
+ "The input prompts to generate answers.",
32
+ )
33
+
34
+
35
+ def main(_):
36
+ checkpoint = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
37
+ logging.info("Loading the original model from: %s", checkpoint)
38
+ wrapper_model = verifier.ModelWrapper(
39
+ model=transformers.AutoModelForCausalLM.from_pretrained(
40
+ checkpoint, trust_remote_code=True
41
+ ),
42
+ )
43
+ # Locate the cached dir.
44
+ cached_config_file = transformers.utils.cached_file(
45
+ checkpoint, transformers.utils.CONFIG_NAME
46
+ )
47
+ reauthored_checkpoint = pathlib.Path(cached_config_file).parent
48
+ logging.info("Building the reauthored model from: %s", reauthored_checkpoint)
49
+ reauthored_model = tiny_llama.build_model(reauthored_checkpoint)
50
+
51
+ logging.info("Loading the tokenizer from: %s", checkpoint)
52
+ tokenizer = transformers.AutoTokenizer.from_pretrained(checkpoint)
53
+
54
+ verifier.verify_reauthored_model(
55
+ original_model=wrapper_model,
56
+ reauthored_model=reauthored_model,
57
+ tokenizer=tokenizer,
58
+ generate_prompts=_PROMPTS.value,
59
+ atol=1e-04,
60
+ )
61
+
62
+
63
+ if __name__ == "__main__":
64
+ app.run(main)
@@ -12,17 +12,16 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
  # ==============================================================================
15
+ from ai_edge_torch import fx_pass_base
16
+ from ai_edge_torch.fx_pass_base import CanonicalizePass
17
+ from ai_edge_torch.generative.fx_passes.remove_sdpa_zero_mask_pass import RemoveSDPACompositeZeroMaskPass
15
18
  import torch
16
19
 
17
- from ai_edge_torch.convert.fx_passes import CanonicalizePass
18
- from ai_edge_torch.convert.fx_passes import run_passes
19
- from ai_edge_torch.generative.fx_passes.remove_sdpa_zero_mask_pass import RemoveSDPACompositeZeroMaskPass # NOQA
20
-
21
20
 
22
21
  def run_generative_passes(
23
22
  exported_program: torch.export.ExportedProgram,
24
23
  ) -> torch.export.ExportedProgram:
25
- return run_passes(
24
+ return fx_pass_base.run_passes(
26
25
  exported_program,
27
26
  [
28
27
  RemoveSDPACompositeZeroMaskPass(),
@@ -12,13 +12,12 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
  # ==============================================================================
15
+ from ai_edge_torch import fx_pass_base
16
+ from ai_edge_torch import lowertools
15
17
  import torch
16
18
 
17
- from ai_edge_torch.convert.fx_passes._pass_base import ExportedProgramPassBase
18
- from ai_edge_torch.convert.fx_passes._pass_base import ExportedProgramPassResult # NOQA
19
19
 
20
-
21
- class RemoveSDPACompositeZeroMaskPass(ExportedProgramPassBase):
20
+ class RemoveSDPACompositeZeroMaskPass(fx_pass_base.ExportedProgramPassBase):
22
21
 
23
22
  def is_zero_tensor_node(self, node: torch.fx.Node):
24
23
  return node.target == torch.ops.aten.zeros.default
@@ -28,7 +27,7 @@ class RemoveSDPACompositeZeroMaskPass(ExportedProgramPassBase):
28
27
  for node in graph.nodes:
29
28
  if not (
30
29
  node.op == "call_function"
31
- and node.target == torch.ops.xla.mark_tensor.default
30
+ and node.target == lowertools.mark_tensor_op
32
31
  ):
33
32
  continue
34
33
 
@@ -36,7 +35,11 @@ class RemoveSDPACompositeZeroMaskPass(ExportedProgramPassBase):
36
35
  # Composite info:
37
36
  # - name: odml.scaled_dot_product_attention
38
37
  # - inputs: q, k, v, mask
39
- if name == "odml.scaled_dot_product_attention" and is_input and io_position == 3:
38
+ if (
39
+ name == "odml.scaled_dot_product_attention"
40
+ and is_input
41
+ and io_position == 3
42
+ ):
40
43
  if self.is_zero_tensor_node(source):
41
44
  # Remove the mark_tensor call on the mask input by
42
45
  # replacing the target with an identity function.
@@ -44,4 +47,4 @@ class RemoveSDPACompositeZeroMaskPass(ExportedProgramPassBase):
44
47
 
45
48
  exported_program.graph_module.graph.lint()
46
49
  exported_program.graph_module.recompile()
47
- return ExportedProgramPassResult(exported_program, True)
50
+ return fx_pass_base.ExportedProgramPassResult(exported_program, True)