ai-edge-torch-nightly 0.2.0.dev20240714__py3-none-any.whl → 0.3.0.dev20240926__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_edge_torch/__init__.py +5 -4
- ai_edge_torch/_convert/conversion.py +112 -0
- ai_edge_torch/_convert/conversion_utils.py +64 -0
- ai_edge_torch/{convert → _convert}/converter.py +94 -48
- ai_edge_torch/_convert/fx_passes/__init__.py +22 -0
- ai_edge_torch/{convert → _convert}/fx_passes/build_aten_composite_pass.py +107 -44
- ai_edge_torch/{convert → _convert}/fx_passes/build_interpolate_composite_pass.py +23 -20
- ai_edge_torch/{convert → _convert}/fx_passes/inject_mlir_debuginfo_pass.py +5 -6
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/__init__.py +1 -1
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_check.py +39 -9
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_mark.py +2 -0
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +1 -0
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +17 -8
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +9 -8
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +31 -18
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +2 -2
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/pass_body.py +34 -24
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/utils.py +2 -0
- ai_edge_torch/_convert/signature.py +66 -0
- ai_edge_torch/_convert/test/test_convert.py +495 -0
- ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
- ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
- ai_edge_torch/{convert → _convert}/test/test_to_channel_last_io.py +5 -5
- ai_edge_torch/{convert → _convert}/to_channel_last_io.py +10 -3
- ai_edge_torch/config.py +27 -0
- ai_edge_torch/conftest.py +20 -0
- ai_edge_torch/debug/culprit.py +72 -40
- ai_edge_torch/debug/test/test_culprit.py +7 -5
- ai_edge_torch/debug/test/test_search_model.py +8 -7
- ai_edge_torch/debug/utils.py +14 -3
- ai_edge_torch/fx_pass_base.py +101 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/gemma/{gemma.py → gemma1.py} +69 -55
- ai_edge_torch/generative/examples/gemma/gemma2.py +267 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma2.py +57 -0
- ai_edge_torch/generative/examples/gemma/verify_util.py +143 -0
- ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/openelm/openelm.py +206 -0
- ai_edge_torch/generative/examples/openelm/verify.py +64 -0
- ai_edge_torch/generative/examples/phi/__init__.py +14 -0
- ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/phi/convert_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/{phi2 → phi}/phi2.py +70 -51
- ai_edge_torch/generative/examples/phi/phi3.py +286 -0
- ai_edge_torch/generative/examples/phi/verify.py +65 -0
- ai_edge_torch/generative/examples/phi/verify_phi3.py +70 -0
- ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
- ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/smollm/smollm.py +101 -0
- ai_edge_torch/generative/examples/smollm/verify.py +62 -0
- ai_edge_torch/generative/examples/stable_diffusion/attention.py +3 -1
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +83 -13
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +27 -14
- ai_edge_torch/generative/examples/stable_diffusion/decoder.py +74 -9
- ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +179 -37
- ai_edge_torch/generative/examples/stable_diffusion/encoder.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +83 -58
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +1 -0
- ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +4 -1
- ai_edge_torch/generative/examples/stable_diffusion/util.py +9 -3
- ai_edge_torch/generative/examples/t5/convert_to_tflite.py +28 -25
- ai_edge_torch/generative/examples/t5/t5.py +208 -159
- ai_edge_torch/generative/examples/t5/t5_attention.py +45 -30
- ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
- ai_edge_torch/generative/examples/test_models/toy_model.py +69 -41
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +50 -64
- ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +41 -39
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +67 -54
- ai_edge_torch/generative/examples/tiny_llama/verify.py +64 -0
- ai_edge_torch/generative/fx_passes/__init__.py +4 -5
- ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +10 -7
- ai_edge_torch/generative/layers/attention.py +141 -102
- ai_edge_torch/generative/layers/attention_utils.py +53 -12
- ai_edge_torch/generative/layers/builder.py +37 -7
- ai_edge_torch/generative/layers/feed_forward.py +39 -14
- ai_edge_torch/generative/layers/kv_cache.py +162 -50
- ai_edge_torch/generative/layers/model_config.py +84 -30
- ai_edge_torch/generative/layers/normalization.py +185 -7
- ai_edge_torch/generative/layers/rotary_position_embedding.py +6 -4
- ai_edge_torch/generative/layers/scaled_dot_product_attention.py +48 -21
- ai_edge_torch/generative/layers/unet/blocks_2d.py +136 -77
- ai_edge_torch/generative/layers/unet/builder.py +7 -4
- ai_edge_torch/generative/layers/unet/model_config.py +17 -15
- ai_edge_torch/generative/quantize/example.py +7 -8
- ai_edge_torch/generative/quantize/quant_recipe.py +10 -7
- ai_edge_torch/generative/quantize/quant_recipe_utils.py +12 -1
- ai_edge_torch/generative/quantize/quant_recipes.py +8 -0
- ai_edge_torch/generative/test/test_kv_cache.py +120 -0
- ai_edge_torch/generative/test/{loader_test.py → test_loader.py} +9 -7
- ai_edge_torch/generative/test/test_model_conversion.py +124 -188
- ai_edge_torch/generative/test/test_model_conversion_large.py +251 -0
- ai_edge_torch/generative/test/test_quantize.py +76 -60
- ai_edge_torch/generative/test/utils.py +54 -0
- ai_edge_torch/generative/utilities/converter.py +82 -0
- ai_edge_torch/generative/utilities/loader.py +120 -57
- ai_edge_torch/generative/utilities/stable_diffusion_loader.py +165 -57
- ai_edge_torch/generative/utilities/t5_loader.py +110 -81
- ai_edge_torch/generative/utilities/verifier.py +247 -0
- ai_edge_torch/hlfb/__init__.py +1 -1
- ai_edge_torch/hlfb/mark_pattern/__init__.py +9 -7
- ai_edge_torch/hlfb/mark_pattern/passes.py +23 -3
- ai_edge_torch/hlfb/mark_pattern/pattern.py +39 -30
- ai_edge_torch/hlfb/test/test_mark_pattern.py +46 -20
- ai_edge_torch/hlfb/test/test_stablehlo_composite_builder.py +24 -11
- ai_edge_torch/lowertools/__init__.py +18 -0
- ai_edge_torch/lowertools/_shim.py +80 -0
- ai_edge_torch/lowertools/common_utils.py +142 -0
- ai_edge_torch/lowertools/odml_torch_utils.py +255 -0
- ai_edge_torch/lowertools/test_utils.py +60 -0
- ai_edge_torch/lowertools/torch_xla_utils.py +284 -0
- ai_edge_torch/{generative/quantize/ai_edge_quantizer_glue → lowertools}/translate_recipe.py +29 -14
- ai_edge_torch/model.py +53 -18
- ai_edge_torch/odml_torch/__init__.py +20 -0
- ai_edge_torch/odml_torch/_torch_future.py +61 -0
- ai_edge_torch/odml_torch/_torch_library.py +19 -0
- ai_edge_torch/odml_torch/composite/__init__.py +16 -0
- ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
- ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
- ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
- ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
- ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
- ai_edge_torch/odml_torch/export.py +357 -0
- ai_edge_torch/odml_torch/export_utils.py +168 -0
- ai_edge_torch/odml_torch/jax_bridge/__init__.py +15 -0
- ai_edge_torch/odml_torch/jax_bridge/_wrap.py +150 -0
- ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
- ai_edge_torch/odml_torch/lowerings/__init__.py +25 -0
- ai_edge_torch/odml_torch/lowerings/_basic.py +258 -0
- ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
- ai_edge_torch/odml_torch/lowerings/_convolution.py +241 -0
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +252 -0
- ai_edge_torch/odml_torch/lowerings/_layer_norm.py +78 -0
- ai_edge_torch/odml_torch/lowerings/context.py +42 -0
- ai_edge_torch/odml_torch/lowerings/registry.py +96 -0
- ai_edge_torch/odml_torch/lowerings/utils.py +185 -0
- ai_edge_torch/odml_torch/passes/__init__.py +38 -0
- ai_edge_torch/odml_torch/tf_integration.py +194 -0
- ai_edge_torch/quantize/pt2e_quantizer.py +52 -24
- ai_edge_torch/quantize/pt2e_quantizer_utils.py +43 -23
- ai_edge_torch/quantize/quant_config.py +13 -9
- ai_edge_torch/testing/model_coverage/model_coverage.py +29 -16
- ai_edge_torch/version.py +16 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/METADATA +7 -3
- ai_edge_torch_nightly-0.3.0.dev20240926.dist-info/RECORD +177 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/WHEEL +1 -1
- ai_edge_torch/convert/conversion.py +0 -117
- ai_edge_torch/convert/conversion_utils.py +0 -400
- ai_edge_torch/convert/fx_passes/__init__.py +0 -59
- ai_edge_torch/convert/fx_passes/_pass_base.py +0 -49
- ai_edge_torch/convert/fx_passes/canonicalize_pass.py +0 -37
- ai_edge_torch/convert/test/test_convert.py +0 -311
- ai_edge_torch/convert/test/test_convert_composites.py +0 -192
- ai_edge_torch/convert/test/test_convert_multisig.py +0 -139
- ai_edge_torch/generative/examples/gemma/convert_to_tflite.py +0 -66
- ai_edge_torch/generative/examples/phi2/convert_to_tflite.py +0 -64
- ai_edge_torch/generative/examples/test_models/toy_model_with_external_kv_cache.py +0 -161
- ai_edge_torch/generative/quantize/ai_edge_quantizer_glue/__init__.py +0 -0
- ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/RECORD +0 -121
- /ai_edge_torch/{convert → _convert}/__init__.py +0 -0
- /ai_edge_torch/{convert → _convert}/test/__init__.py +0 -0
- /ai_edge_torch/generative/examples/{phi2 → openelm}/__init__.py +0 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/LICENSE +0 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/top_level.txt +0 -0
ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py
RENAMED
@@ -12,22 +12,22 @@
|
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
|
+
"""Layout rewrite for the optimized layout transposes pass."""
|
16
|
+
|
15
17
|
import operator
|
16
18
|
|
19
|
+
from ai_edge_torch._convert.fx_passes.optimize_layout_transposes_pass import layout_mark
|
20
|
+
from ai_edge_torch._convert.fx_passes.optimize_layout_transposes_pass import op_func_registry
|
21
|
+
from ai_edge_torch._convert.fx_passes.optimize_layout_transposes_pass import utils
|
17
22
|
import torch
|
18
|
-
from torch.fx import Node
|
19
23
|
import torch.utils._pytree as pytree
|
20
24
|
|
21
|
-
from ai_edge_torch.convert.fx_passes.optimize_layout_transposes_pass import layout_mark # NOQA
|
22
|
-
from ai_edge_torch.convert.fx_passes.optimize_layout_transposes_pass import utils # NOQA
|
23
|
-
from ai_edge_torch.convert.fx_passes.optimize_layout_transposes_pass.op_func_registry import OpFuncRegistry # NOQA
|
24
|
-
|
25
25
|
aten = torch.ops.aten
|
26
26
|
|
27
27
|
__all__ = ["rewrite_nhwc_node", "has_nhwc_rewriter"]
|
28
28
|
|
29
29
|
|
30
|
-
class NHWCNodeRewritersRegistry(OpFuncRegistry):
|
30
|
+
class NHWCNodeRewritersRegistry(op_func_registry.OpFuncRegistry):
|
31
31
|
|
32
32
|
def __missing__(self, op):
|
33
33
|
def _rewriter(node):
|
@@ -39,14 +39,14 @@ class NHWCNodeRewritersRegistry(OpFuncRegistry):
|
|
39
39
|
rewriters = NHWCNodeRewritersRegistry()
|
40
40
|
|
41
41
|
|
42
|
-
def rewrite_nhwc_node(node: Node):
|
42
|
+
def rewrite_nhwc_node(node: torch.fx.Node):
|
43
43
|
if not layout_mark.is_nhwc_node(node):
|
44
44
|
return
|
45
45
|
|
46
46
|
rewriters[node.target](node)
|
47
47
|
|
48
48
|
|
49
|
-
def has_nhwc_rewriter(node: Node):
|
49
|
+
def has_nhwc_rewriter(node: torch.fx.Node):
|
50
50
|
return node.target in rewriters
|
51
51
|
|
52
52
|
|
@@ -55,13 +55,13 @@ def has_nhwc_rewriter(node: Node):
|
|
55
55
|
|
56
56
|
@rewriters.register(torch.ops.quantized_decomposed.dequantize_per_tensor)
|
57
57
|
@rewriters.register(torch.ops.quantized_decomposed.quantize_per_tensor)
|
58
|
-
def noop(node: Node):
|
58
|
+
def noop(node: torch.fx.Node):
|
59
59
|
pass
|
60
60
|
|
61
61
|
|
62
62
|
@rewriters.register(torch.ops.quantized_decomposed.dequantize_per_channel)
|
63
63
|
@rewriters.register(torch.ops.quantized_decomposed.quantize_per_channel)
|
64
|
-
def _qdq_per_channel_rewriter(node: Node):
|
64
|
+
def _qdq_per_channel_rewriter(node: torch.fx.Node):
|
65
65
|
new_args = []
|
66
66
|
new_kwargs = {}
|
67
67
|
|
@@ -200,7 +200,7 @@ def _qdq_per_channel_rewriter(node: Node):
|
|
200
200
|
@rewriters.register(aten._prelu_kernel)
|
201
201
|
@rewriters.register(aten.softplus)
|
202
202
|
@rewriters.register(aten.silu)
|
203
|
-
def noop(node: Node):
|
203
|
+
def noop(node: torch.fx.Node):
|
204
204
|
pass
|
205
205
|
|
206
206
|
|
@@ -213,25 +213,28 @@ def noop(node: Node):
|
|
213
213
|
@rewriters.register(aten.max_pool2d_with_indices)
|
214
214
|
@rewriters.register(aten.avg_pool2d)
|
215
215
|
@rewriters.register(aten._adaptive_avg_pool2d.default)
|
216
|
-
def transpose_first_arg_rewriter(node: Node):
|
216
|
+
def transpose_first_arg_rewriter(node: torch.fx.Node):
|
217
217
|
op = node.target
|
218
218
|
|
219
219
|
def nhwc_op(x, *args, **kwargs):
|
220
220
|
nonlocal op
|
221
221
|
x = utils.tensor_to_nchw(x)
|
222
222
|
res = pytree.tree_map_only(
|
223
|
-
torch.Tensor,
|
223
|
+
torch.Tensor,
|
224
|
+
utils.tensor_to_nhwc,
|
225
|
+
op(x, *args, **kwargs),
|
224
226
|
)
|
225
227
|
return res
|
226
228
|
|
227
229
|
node.target = nhwc_op
|
228
230
|
|
229
231
|
|
232
|
+
@rewriters.register(aten.conv2d)
|
230
233
|
@rewriters.register(aten.convolution)
|
231
|
-
def _aten_convolution_rewriter(node: Node):
|
234
|
+
def _aten_convolution_rewriter(node: torch.fx.Node):
|
232
235
|
op = node.target
|
233
236
|
|
234
|
-
def conv_nhwc(input, weight, bias, *args, **kwargs):
|
237
|
+
def conv_nhwc(input, weight, bias=None, *args, **kwargs):
|
235
238
|
nonlocal op
|
236
239
|
nhwc_bias = None
|
237
240
|
if bias is not None and len(bias.shape) == 1:
|
@@ -287,7 +290,7 @@ def _aten_convolution_rewriter(node: Node):
|
|
287
290
|
@rewriters.register(aten.sort.default)
|
288
291
|
@rewriters.register(aten.topk.default)
|
289
292
|
@rewriters.register(aten.cat.default)
|
290
|
-
def dim_attr_rewriter(node: Node):
|
293
|
+
def dim_attr_rewriter(node: torch.fx.Node):
|
291
294
|
op = node.target
|
292
295
|
|
293
296
|
new_args = []
|
@@ -329,7 +332,12 @@ def _aten__native_batch_norm_legit_no_training(node):
|
|
329
332
|
def batch_norm(input, weight, bias, running_mean, running_var, momentum, eps):
|
330
333
|
a = input - running_mean
|
331
334
|
b = torch.sqrt(running_var + eps)
|
332
|
-
|
335
|
+
out = a / b
|
336
|
+
if weight is not None:
|
337
|
+
out = out * weight
|
338
|
+
if bias is not None:
|
339
|
+
out = out + bias
|
340
|
+
return out, None, None
|
333
341
|
|
334
342
|
node.target = batch_norm
|
335
343
|
|
@@ -349,7 +357,12 @@ def _aten_native_group_norm(node):
|
|
349
357
|
):
|
350
358
|
input_reshaped = torch.reshape(
|
351
359
|
input,
|
352
|
-
[
|
360
|
+
[
|
361
|
+
batch_size,
|
362
|
+
flattened_inner_size,
|
363
|
+
num_groups,
|
364
|
+
num_channels // num_groups,
|
365
|
+
],
|
353
366
|
)
|
354
367
|
reduction_dims = [1, 3]
|
355
368
|
|
ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/op_func_registry.py
RENAMED
@@ -12,9 +12,9 @@
|
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
|
-
|
15
|
+
"""Op function registry for the optimized layout transposes pass."""
|
16
16
|
|
17
|
-
from ai_edge_torch.
|
17
|
+
from ai_edge_torch._convert.fx_passes.optimize_layout_transposes_pass import utils
|
18
18
|
|
19
19
|
|
20
20
|
class OpFuncRegistry(dict):
|
@@ -12,28 +12,25 @@
|
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
|
-
|
16
|
-
from typing import Optional, Tuple, Union
|
15
|
+
"""Optimize layout transposes pass."""
|
17
16
|
|
17
|
+
import operator
|
18
|
+
import os
|
19
|
+
from typing import Union
|
20
|
+
|
21
|
+
from ai_edge_torch import fx_pass_base
|
22
|
+
from ai_edge_torch._convert.fx_passes.optimize_layout_transposes_pass import layout_check # NOQA
|
23
|
+
from ai_edge_torch._convert.fx_passes.optimize_layout_transposes_pass import layout_mark # NOQA
|
24
|
+
from ai_edge_torch._convert.fx_passes.optimize_layout_transposes_pass import layout_partitioners # NOQA
|
25
|
+
from ai_edge_torch._convert.fx_passes.optimize_layout_transposes_pass import layout_rewrite # NOQA
|
26
|
+
from ai_edge_torch._convert.fx_passes.optimize_layout_transposes_pass import utils # NOQA
|
18
27
|
import torch
|
19
28
|
import torch.ao.quantization.quantize_pt2e
|
20
|
-
from torch.export import ExportedProgram
|
21
|
-
from torch.fx import GraphModule
|
22
|
-
from torch.fx import Node
|
23
|
-
import torch.utils._pytree as pytree
|
24
|
-
|
25
|
-
from ai_edge_torch.convert.fx_passes import ExportedProgramPassBase
|
26
|
-
from ai_edge_torch.convert.fx_passes import ExportedProgramPassResult
|
27
|
-
from ai_edge_torch.convert.fx_passes.optimize_layout_transposes_pass import layout_check # NOQA
|
28
|
-
from ai_edge_torch.convert.fx_passes.optimize_layout_transposes_pass import layout_mark # NOQA
|
29
|
-
from ai_edge_torch.convert.fx_passes.optimize_layout_transposes_pass import layout_partitioners # NOQA
|
30
|
-
from ai_edge_torch.convert.fx_passes.optimize_layout_transposes_pass import layout_rewrite # NOQA
|
31
|
-
from ai_edge_torch.convert.fx_passes.optimize_layout_transposes_pass import utils # NOQA
|
32
29
|
|
33
30
|
TransposeFunc = Union[utils.tensor_to_nchw, utils.tensor_to_nhwc]
|
34
31
|
|
35
32
|
|
36
|
-
class OptimizeLayoutTransposesPass(ExportedProgramPassBase):
|
33
|
+
class OptimizeLayoutTransposesPass(fx_pass_base.ExportedProgramPassBase):
|
37
34
|
|
38
35
|
def get_source_meta(self, node: torch.fx.Node):
|
39
36
|
keys = ["stack_trace", "nn_module_stack", "source_fn_stack", "from_node"]
|
@@ -51,8 +48,8 @@ class OptimizeLayoutTransposesPass(ExportedProgramPassBase):
|
|
51
48
|
transpose_func: TransposeFunc,
|
52
49
|
transpose_node_meta: dict,
|
53
50
|
) -> list[torch.fx.Node]:
|
54
|
-
"""
|
55
|
-
|
51
|
+
"""original:
|
52
|
+
|
56
53
|
input_dq -> target
|
57
54
|
insert the node as:
|
58
55
|
input_dq -> (T q dq) -> target
|
@@ -86,8 +83,8 @@ class OptimizeLayoutTransposesPass(ExportedProgramPassBase):
|
|
86
83
|
transpose_func: TransposeFunc,
|
87
84
|
transpose_node_meta: dict,
|
88
85
|
) -> list[torch.fx.Node]:
|
89
|
-
"""
|
90
|
-
|
86
|
+
"""original:
|
87
|
+
|
91
88
|
input_q -> target
|
92
89
|
insert the node as:
|
93
90
|
input_q -> (dq T q) -> target
|
@@ -96,7 +93,7 @@ class OptimizeLayoutTransposesPass(ExportedProgramPassBase):
|
|
96
93
|
|
97
94
|
q_args = input_q.args[1:]
|
98
95
|
q_kwargs = input_q.kwargs
|
99
|
-
q_op, dq_op =
|
96
|
+
q_op, dq_op = utils.get_paired_q_dq_ops(input_q.target)
|
100
97
|
with graph.inserting_before(target):
|
101
98
|
# Q and DQ inserted here may required updating the `axis` arg when they
|
102
99
|
# are per_channel ops. However, instead of updating here, the nodes would
|
@@ -207,7 +204,8 @@ class OptimizeLayoutTransposesPass(ExportedProgramPassBase):
|
|
207
204
|
|
208
205
|
if not layout_check.is_4d(input_node):
|
209
206
|
raise AssertionError(
|
210
|
-
|
207
|
+
"Attempting to convert non-NHWC compatible node to NHWC:"
|
208
|
+
f" {input_node}"
|
211
209
|
)
|
212
210
|
|
213
211
|
# Assign target node's source meta to the to_NHWC node, because the transpose
|
@@ -249,7 +247,9 @@ class OptimizeLayoutTransposesPass(ExportedProgramPassBase):
|
|
249
247
|
|
250
248
|
for node in graph.nodes:
|
251
249
|
has_input_nodes = len(node.all_input_nodes) > 0
|
252
|
-
all_inputs_are_const = all(
|
250
|
+
all_inputs_are_const = all(
|
251
|
+
map(layout_mark.is_const_node, node.all_input_nodes)
|
252
|
+
)
|
253
253
|
if (
|
254
254
|
node.name in non_user_input_names
|
255
255
|
or (has_input_nodes and all_inputs_are_const)
|
@@ -261,7 +261,9 @@ class OptimizeLayoutTransposesPass(ExportedProgramPassBase):
|
|
261
261
|
self.mark_const_nodes(exported_program)
|
262
262
|
|
263
263
|
graph_module = exported_program.graph_module
|
264
|
-
partitioner = os.environ.get(
|
264
|
+
partitioner = os.environ.get(
|
265
|
+
"AIEDGETORCH_LAYOUT_OPTIMIZE_PARTITIONER", None
|
266
|
+
)
|
265
267
|
if partitioner == "MINCUT":
|
266
268
|
graph_module = layout_partitioners.min_cut.partition(graph_module)
|
267
269
|
elif partitioner == "GREEDY":
|
@@ -274,6 +276,14 @@ class OptimizeLayoutTransposesPass(ExportedProgramPassBase):
|
|
274
276
|
graph_module = layout_partitioners.greedy.partition(graph_module)
|
275
277
|
|
276
278
|
graph = graph_module.graph
|
279
|
+
for node in list(graph.nodes):
|
280
|
+
if node.target == operator.getitem:
|
281
|
+
# force the layout mark of a getitem node to follow its producer.
|
282
|
+
if layout_mark.is_nchw_node(node.args[0]):
|
283
|
+
layout_mark.mark_as_nchw_node(node)
|
284
|
+
else:
|
285
|
+
layout_mark.mark_as_nhwc_node(node)
|
286
|
+
|
277
287
|
for node in list(graph.nodes):
|
278
288
|
if layout_mark.is_nhwc_node(node):
|
279
289
|
for input_node in layout_check.get_layout_sensitive_inputs(node):
|
@@ -290,4 +300,4 @@ class OptimizeLayoutTransposesPass(ExportedProgramPassBase):
|
|
290
300
|
# Mark const node again for debugging
|
291
301
|
self.mark_const_nodes(exported_program)
|
292
302
|
|
293
|
-
return ExportedProgramPassResult(exported_program, True)
|
303
|
+
return fx_pass_base.ExportedProgramPassResult(exported_program, True)
|
@@ -12,6 +12,8 @@
|
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
|
+
"""Utils for the optimized layout transposes pass."""
|
16
|
+
|
15
17
|
from typing import Callable
|
16
18
|
|
17
19
|
import torch
|
@@ -0,0 +1,66 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
import dataclasses
|
17
|
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
18
|
+
|
19
|
+
from ai_edge_torch import lowertools
|
20
|
+
import torch
|
21
|
+
import torch.utils._pytree as pytree
|
22
|
+
|
23
|
+
|
24
|
+
@dataclasses.dataclass
|
25
|
+
class Signature:
|
26
|
+
name: str
|
27
|
+
module: torch.nn.Module
|
28
|
+
sample_args: tuple[torch.Tensor]
|
29
|
+
sample_kwargs: dict[str, torch.Tensor]
|
30
|
+
dynamic_shapes: Optional[Union[Dict[str, Any], Tuple[Any]]] = None
|
31
|
+
|
32
|
+
@property
|
33
|
+
def _normalized_sample_args_kwargs(self):
|
34
|
+
args, kwargs = self.sample_args, self.sample_kwargs
|
35
|
+
if args is not None:
|
36
|
+
if not isinstance(args, tuple):
|
37
|
+
# TODO(b/352584188): Check value types
|
38
|
+
raise ValueError("sample_args must be a tuple of torch tensors.")
|
39
|
+
if kwargs is not None:
|
40
|
+
if not isinstance(kwargs, dict) or not all(
|
41
|
+
isinstance(key, str) for key in kwargs.keys()
|
42
|
+
):
|
43
|
+
# TODO(b/352584188): Check value types
|
44
|
+
raise ValueError("sample_kwargs must be a dict of string to tensor.")
|
45
|
+
args = args if args is not None else tuple()
|
46
|
+
kwargs = kwargs if kwargs is not None else {}
|
47
|
+
return args, kwargs
|
48
|
+
|
49
|
+
@property
|
50
|
+
def flat_arg_names(self) -> list[str]:
|
51
|
+
spec = pytree.tree_flatten(self._normalized_sample_args_kwargs)[1]
|
52
|
+
args_spec, kwargs_spec = spec.children_specs
|
53
|
+
names = []
|
54
|
+
for i in range(args_spec.num_leaves):
|
55
|
+
names.append(f"args_{i}")
|
56
|
+
|
57
|
+
kwargs_names = lowertools.flat_dict_names(
|
58
|
+
kwargs_spec.children_specs, kwargs_spec.context
|
59
|
+
)
|
60
|
+
names.extend(kwargs_names)
|
61
|
+
return names
|
62
|
+
|
63
|
+
@property
|
64
|
+
def flat_args(self) -> tuple[Any]:
|
65
|
+
args, kwargs = self._normalized_sample_args_kwargs
|
66
|
+
return tuple([*args, *kwargs.values()])
|