ai-edge-torch-nightly 0.2.0.dev20240714__py3-none-any.whl → 0.3.0.dev20240926__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (169) hide show
  1. ai_edge_torch/__init__.py +5 -4
  2. ai_edge_torch/_convert/conversion.py +112 -0
  3. ai_edge_torch/_convert/conversion_utils.py +64 -0
  4. ai_edge_torch/{convert → _convert}/converter.py +94 -48
  5. ai_edge_torch/_convert/fx_passes/__init__.py +22 -0
  6. ai_edge_torch/{convert → _convert}/fx_passes/build_aten_composite_pass.py +107 -44
  7. ai_edge_torch/{convert → _convert}/fx_passes/build_interpolate_composite_pass.py +23 -20
  8. ai_edge_torch/{convert → _convert}/fx_passes/inject_mlir_debuginfo_pass.py +5 -6
  9. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/__init__.py +1 -1
  10. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_check.py +39 -9
  11. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_mark.py +2 -0
  12. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +1 -0
  13. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +17 -8
  14. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +9 -8
  15. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +31 -18
  16. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +2 -2
  17. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/pass_body.py +34 -24
  18. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/utils.py +2 -0
  19. ai_edge_torch/_convert/signature.py +66 -0
  20. ai_edge_torch/_convert/test/test_convert.py +495 -0
  21. ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
  22. ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
  23. ai_edge_torch/{convert → _convert}/test/test_to_channel_last_io.py +5 -5
  24. ai_edge_torch/{convert → _convert}/to_channel_last_io.py +10 -3
  25. ai_edge_torch/config.py +27 -0
  26. ai_edge_torch/conftest.py +20 -0
  27. ai_edge_torch/debug/culprit.py +72 -40
  28. ai_edge_torch/debug/test/test_culprit.py +7 -5
  29. ai_edge_torch/debug/test/test_search_model.py +8 -7
  30. ai_edge_torch/debug/utils.py +14 -3
  31. ai_edge_torch/fx_pass_base.py +101 -0
  32. ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +68 -0
  33. ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +68 -0
  34. ai_edge_torch/generative/examples/gemma/{gemma.py → gemma1.py} +69 -55
  35. ai_edge_torch/generative/examples/gemma/gemma2.py +267 -0
  36. ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
  37. ai_edge_torch/generative/examples/gemma/verify_gemma2.py +57 -0
  38. ai_edge_torch/generative/examples/gemma/verify_util.py +143 -0
  39. ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +68 -0
  40. ai_edge_torch/generative/examples/openelm/openelm.py +206 -0
  41. ai_edge_torch/generative/examples/openelm/verify.py +64 -0
  42. ai_edge_torch/generative/examples/phi/__init__.py +14 -0
  43. ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +68 -0
  44. ai_edge_torch/generative/examples/phi/convert_to_tflite.py +68 -0
  45. ai_edge_torch/generative/examples/{phi2 → phi}/phi2.py +70 -51
  46. ai_edge_torch/generative/examples/phi/phi3.py +286 -0
  47. ai_edge_torch/generative/examples/phi/verify.py +65 -0
  48. ai_edge_torch/generative/examples/phi/verify_phi3.py +70 -0
  49. ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
  50. ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +68 -0
  51. ai_edge_torch/generative/examples/smollm/smollm.py +101 -0
  52. ai_edge_torch/generative/examples/smollm/verify.py +62 -0
  53. ai_edge_torch/generative/examples/stable_diffusion/attention.py +3 -1
  54. ai_edge_torch/generative/examples/stable_diffusion/clip.py +83 -13
  55. ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +27 -14
  56. ai_edge_torch/generative/examples/stable_diffusion/decoder.py +74 -9
  57. ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +179 -37
  58. ai_edge_torch/generative/examples/stable_diffusion/encoder.py +4 -3
  59. ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +83 -58
  60. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +4 -3
  61. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +4 -3
  62. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +4 -3
  63. ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +1 -0
  64. ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +4 -1
  65. ai_edge_torch/generative/examples/stable_diffusion/util.py +9 -3
  66. ai_edge_torch/generative/examples/t5/convert_to_tflite.py +28 -25
  67. ai_edge_torch/generative/examples/t5/t5.py +208 -159
  68. ai_edge_torch/generative/examples/t5/t5_attention.py +45 -30
  69. ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
  70. ai_edge_torch/generative/examples/test_models/toy_model.py +69 -41
  71. ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +50 -64
  72. ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
  73. ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +41 -39
  74. ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +67 -54
  75. ai_edge_torch/generative/examples/tiny_llama/verify.py +64 -0
  76. ai_edge_torch/generative/fx_passes/__init__.py +4 -5
  77. ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +10 -7
  78. ai_edge_torch/generative/layers/attention.py +141 -102
  79. ai_edge_torch/generative/layers/attention_utils.py +53 -12
  80. ai_edge_torch/generative/layers/builder.py +37 -7
  81. ai_edge_torch/generative/layers/feed_forward.py +39 -14
  82. ai_edge_torch/generative/layers/kv_cache.py +162 -50
  83. ai_edge_torch/generative/layers/model_config.py +84 -30
  84. ai_edge_torch/generative/layers/normalization.py +185 -7
  85. ai_edge_torch/generative/layers/rotary_position_embedding.py +6 -4
  86. ai_edge_torch/generative/layers/scaled_dot_product_attention.py +48 -21
  87. ai_edge_torch/generative/layers/unet/blocks_2d.py +136 -77
  88. ai_edge_torch/generative/layers/unet/builder.py +7 -4
  89. ai_edge_torch/generative/layers/unet/model_config.py +17 -15
  90. ai_edge_torch/generative/quantize/example.py +7 -8
  91. ai_edge_torch/generative/quantize/quant_recipe.py +10 -7
  92. ai_edge_torch/generative/quantize/quant_recipe_utils.py +12 -1
  93. ai_edge_torch/generative/quantize/quant_recipes.py +8 -0
  94. ai_edge_torch/generative/test/test_kv_cache.py +120 -0
  95. ai_edge_torch/generative/test/{loader_test.py → test_loader.py} +9 -7
  96. ai_edge_torch/generative/test/test_model_conversion.py +124 -188
  97. ai_edge_torch/generative/test/test_model_conversion_large.py +251 -0
  98. ai_edge_torch/generative/test/test_quantize.py +76 -60
  99. ai_edge_torch/generative/test/utils.py +54 -0
  100. ai_edge_torch/generative/utilities/converter.py +82 -0
  101. ai_edge_torch/generative/utilities/loader.py +120 -57
  102. ai_edge_torch/generative/utilities/stable_diffusion_loader.py +165 -57
  103. ai_edge_torch/generative/utilities/t5_loader.py +110 -81
  104. ai_edge_torch/generative/utilities/verifier.py +247 -0
  105. ai_edge_torch/hlfb/__init__.py +1 -1
  106. ai_edge_torch/hlfb/mark_pattern/__init__.py +9 -7
  107. ai_edge_torch/hlfb/mark_pattern/passes.py +23 -3
  108. ai_edge_torch/hlfb/mark_pattern/pattern.py +39 -30
  109. ai_edge_torch/hlfb/test/test_mark_pattern.py +46 -20
  110. ai_edge_torch/hlfb/test/test_stablehlo_composite_builder.py +24 -11
  111. ai_edge_torch/lowertools/__init__.py +18 -0
  112. ai_edge_torch/lowertools/_shim.py +80 -0
  113. ai_edge_torch/lowertools/common_utils.py +142 -0
  114. ai_edge_torch/lowertools/odml_torch_utils.py +255 -0
  115. ai_edge_torch/lowertools/test_utils.py +60 -0
  116. ai_edge_torch/lowertools/torch_xla_utils.py +284 -0
  117. ai_edge_torch/{generative/quantize/ai_edge_quantizer_glue → lowertools}/translate_recipe.py +29 -14
  118. ai_edge_torch/model.py +53 -18
  119. ai_edge_torch/odml_torch/__init__.py +20 -0
  120. ai_edge_torch/odml_torch/_torch_future.py +61 -0
  121. ai_edge_torch/odml_torch/_torch_library.py +19 -0
  122. ai_edge_torch/odml_torch/composite/__init__.py +16 -0
  123. ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
  124. ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
  125. ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
  126. ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
  127. ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
  128. ai_edge_torch/odml_torch/export.py +357 -0
  129. ai_edge_torch/odml_torch/export_utils.py +168 -0
  130. ai_edge_torch/odml_torch/jax_bridge/__init__.py +15 -0
  131. ai_edge_torch/odml_torch/jax_bridge/_wrap.py +150 -0
  132. ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
  133. ai_edge_torch/odml_torch/lowerings/__init__.py +25 -0
  134. ai_edge_torch/odml_torch/lowerings/_basic.py +258 -0
  135. ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
  136. ai_edge_torch/odml_torch/lowerings/_convolution.py +241 -0
  137. ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +252 -0
  138. ai_edge_torch/odml_torch/lowerings/_layer_norm.py +78 -0
  139. ai_edge_torch/odml_torch/lowerings/context.py +42 -0
  140. ai_edge_torch/odml_torch/lowerings/registry.py +96 -0
  141. ai_edge_torch/odml_torch/lowerings/utils.py +185 -0
  142. ai_edge_torch/odml_torch/passes/__init__.py +38 -0
  143. ai_edge_torch/odml_torch/tf_integration.py +194 -0
  144. ai_edge_torch/quantize/pt2e_quantizer.py +52 -24
  145. ai_edge_torch/quantize/pt2e_quantizer_utils.py +43 -23
  146. ai_edge_torch/quantize/quant_config.py +13 -9
  147. ai_edge_torch/testing/model_coverage/model_coverage.py +29 -16
  148. ai_edge_torch/version.py +16 -0
  149. {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/METADATA +7 -3
  150. ai_edge_torch_nightly-0.3.0.dev20240926.dist-info/RECORD +177 -0
  151. {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/WHEEL +1 -1
  152. ai_edge_torch/convert/conversion.py +0 -117
  153. ai_edge_torch/convert/conversion_utils.py +0 -400
  154. ai_edge_torch/convert/fx_passes/__init__.py +0 -59
  155. ai_edge_torch/convert/fx_passes/_pass_base.py +0 -49
  156. ai_edge_torch/convert/fx_passes/canonicalize_pass.py +0 -37
  157. ai_edge_torch/convert/test/test_convert.py +0 -311
  158. ai_edge_torch/convert/test/test_convert_composites.py +0 -192
  159. ai_edge_torch/convert/test/test_convert_multisig.py +0 -139
  160. ai_edge_torch/generative/examples/gemma/convert_to_tflite.py +0 -66
  161. ai_edge_torch/generative/examples/phi2/convert_to_tflite.py +0 -64
  162. ai_edge_torch/generative/examples/test_models/toy_model_with_external_kv_cache.py +0 -161
  163. ai_edge_torch/generative/quantize/ai_edge_quantizer_glue/__init__.py +0 -0
  164. ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/RECORD +0 -121
  165. /ai_edge_torch/{convert → _convert}/__init__.py +0 -0
  166. /ai_edge_torch/{convert → _convert}/test/__init__.py +0 -0
  167. /ai_edge_torch/generative/examples/{phi2 → openelm}/__init__.py +0 -0
  168. {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/LICENSE +0 -0
  169. {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/top_level.txt +0 -0
@@ -12,22 +12,22 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
  # ==============================================================================
15
+ """Layout rewrite for the optimized layout transposes pass."""
16
+
15
17
  import operator
16
18
 
19
+ from ai_edge_torch._convert.fx_passes.optimize_layout_transposes_pass import layout_mark
20
+ from ai_edge_torch._convert.fx_passes.optimize_layout_transposes_pass import op_func_registry
21
+ from ai_edge_torch._convert.fx_passes.optimize_layout_transposes_pass import utils
17
22
  import torch
18
- from torch.fx import Node
19
23
  import torch.utils._pytree as pytree
20
24
 
21
- from ai_edge_torch.convert.fx_passes.optimize_layout_transposes_pass import layout_mark # NOQA
22
- from ai_edge_torch.convert.fx_passes.optimize_layout_transposes_pass import utils # NOQA
23
- from ai_edge_torch.convert.fx_passes.optimize_layout_transposes_pass.op_func_registry import OpFuncRegistry # NOQA
24
-
25
25
  aten = torch.ops.aten
26
26
 
27
27
  __all__ = ["rewrite_nhwc_node", "has_nhwc_rewriter"]
28
28
 
29
29
 
30
- class NHWCNodeRewritersRegistry(OpFuncRegistry):
30
+ class NHWCNodeRewritersRegistry(op_func_registry.OpFuncRegistry):
31
31
 
32
32
  def __missing__(self, op):
33
33
  def _rewriter(node):
@@ -39,14 +39,14 @@ class NHWCNodeRewritersRegistry(OpFuncRegistry):
39
39
  rewriters = NHWCNodeRewritersRegistry()
40
40
 
41
41
 
42
- def rewrite_nhwc_node(node: Node):
42
+ def rewrite_nhwc_node(node: torch.fx.Node):
43
43
  if not layout_mark.is_nhwc_node(node):
44
44
  return
45
45
 
46
46
  rewriters[node.target](node)
47
47
 
48
48
 
49
- def has_nhwc_rewriter(node: Node):
49
+ def has_nhwc_rewriter(node: torch.fx.Node):
50
50
  return node.target in rewriters
51
51
 
52
52
 
@@ -55,13 +55,13 @@ def has_nhwc_rewriter(node: Node):
55
55
 
56
56
  @rewriters.register(torch.ops.quantized_decomposed.dequantize_per_tensor)
57
57
  @rewriters.register(torch.ops.quantized_decomposed.quantize_per_tensor)
58
- def noop(node: Node):
58
+ def noop(node: torch.fx.Node):
59
59
  pass
60
60
 
61
61
 
62
62
  @rewriters.register(torch.ops.quantized_decomposed.dequantize_per_channel)
63
63
  @rewriters.register(torch.ops.quantized_decomposed.quantize_per_channel)
64
- def _qdq_per_channel_rewriter(node: Node):
64
+ def _qdq_per_channel_rewriter(node: torch.fx.Node):
65
65
  new_args = []
66
66
  new_kwargs = {}
67
67
 
@@ -200,7 +200,7 @@ def _qdq_per_channel_rewriter(node: Node):
200
200
  @rewriters.register(aten._prelu_kernel)
201
201
  @rewriters.register(aten.softplus)
202
202
  @rewriters.register(aten.silu)
203
- def noop(node: Node):
203
+ def noop(node: torch.fx.Node):
204
204
  pass
205
205
 
206
206
 
@@ -213,25 +213,28 @@ def noop(node: Node):
213
213
  @rewriters.register(aten.max_pool2d_with_indices)
214
214
  @rewriters.register(aten.avg_pool2d)
215
215
  @rewriters.register(aten._adaptive_avg_pool2d.default)
216
- def transpose_first_arg_rewriter(node: Node):
216
+ def transpose_first_arg_rewriter(node: torch.fx.Node):
217
217
  op = node.target
218
218
 
219
219
  def nhwc_op(x, *args, **kwargs):
220
220
  nonlocal op
221
221
  x = utils.tensor_to_nchw(x)
222
222
  res = pytree.tree_map_only(
223
- torch.Tensor, utils.tensor_to_nhwc, op(x, *args, **kwargs)
223
+ torch.Tensor,
224
+ utils.tensor_to_nhwc,
225
+ op(x, *args, **kwargs),
224
226
  )
225
227
  return res
226
228
 
227
229
  node.target = nhwc_op
228
230
 
229
231
 
232
+ @rewriters.register(aten.conv2d)
230
233
  @rewriters.register(aten.convolution)
231
- def _aten_convolution_rewriter(node: Node):
234
+ def _aten_convolution_rewriter(node: torch.fx.Node):
232
235
  op = node.target
233
236
 
234
- def conv_nhwc(input, weight, bias, *args, **kwargs):
237
+ def conv_nhwc(input, weight, bias=None, *args, **kwargs):
235
238
  nonlocal op
236
239
  nhwc_bias = None
237
240
  if bias is not None and len(bias.shape) == 1:
@@ -287,7 +290,7 @@ def _aten_convolution_rewriter(node: Node):
287
290
  @rewriters.register(aten.sort.default)
288
291
  @rewriters.register(aten.topk.default)
289
292
  @rewriters.register(aten.cat.default)
290
- def dim_attr_rewriter(node: Node):
293
+ def dim_attr_rewriter(node: torch.fx.Node):
291
294
  op = node.target
292
295
 
293
296
  new_args = []
@@ -329,7 +332,12 @@ def _aten__native_batch_norm_legit_no_training(node):
329
332
  def batch_norm(input, weight, bias, running_mean, running_var, momentum, eps):
330
333
  a = input - running_mean
331
334
  b = torch.sqrt(running_var + eps)
332
- return a / b * weight + bias, None, None
335
+ out = a / b
336
+ if weight is not None:
337
+ out = out * weight
338
+ if bias is not None:
339
+ out = out + bias
340
+ return out, None, None
333
341
 
334
342
  node.target = batch_norm
335
343
 
@@ -349,7 +357,12 @@ def _aten_native_group_norm(node):
349
357
  ):
350
358
  input_reshaped = torch.reshape(
351
359
  input,
352
- [batch_size, flattened_inner_size, num_groups, num_channels // num_groups],
360
+ [
361
+ batch_size,
362
+ flattened_inner_size,
363
+ num_groups,
364
+ num_channels // num_groups,
365
+ ],
353
366
  )
354
367
  reduction_dims = [1, 3]
355
368
 
@@ -12,9 +12,9 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
  # ==============================================================================
15
- import torch
15
+ """Op function registry for the optimized layout transposes pass."""
16
16
 
17
- from ai_edge_torch.convert.fx_passes.optimize_layout_transposes_pass import utils # NOQA
17
+ from ai_edge_torch._convert.fx_passes.optimize_layout_transposes_pass import utils
18
18
 
19
19
 
20
20
  class OpFuncRegistry(dict):
@@ -12,28 +12,25 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
  # ==============================================================================
15
- import os
16
- from typing import Optional, Tuple, Union
15
+ """Optimize layout transposes pass."""
17
16
 
17
+ import operator
18
+ import os
19
+ from typing import Union
20
+
21
+ from ai_edge_torch import fx_pass_base
22
+ from ai_edge_torch._convert.fx_passes.optimize_layout_transposes_pass import layout_check # NOQA
23
+ from ai_edge_torch._convert.fx_passes.optimize_layout_transposes_pass import layout_mark # NOQA
24
+ from ai_edge_torch._convert.fx_passes.optimize_layout_transposes_pass import layout_partitioners # NOQA
25
+ from ai_edge_torch._convert.fx_passes.optimize_layout_transposes_pass import layout_rewrite # NOQA
26
+ from ai_edge_torch._convert.fx_passes.optimize_layout_transposes_pass import utils # NOQA
18
27
  import torch
19
28
  import torch.ao.quantization.quantize_pt2e
20
- from torch.export import ExportedProgram
21
- from torch.fx import GraphModule
22
- from torch.fx import Node
23
- import torch.utils._pytree as pytree
24
-
25
- from ai_edge_torch.convert.fx_passes import ExportedProgramPassBase
26
- from ai_edge_torch.convert.fx_passes import ExportedProgramPassResult
27
- from ai_edge_torch.convert.fx_passes.optimize_layout_transposes_pass import layout_check # NOQA
28
- from ai_edge_torch.convert.fx_passes.optimize_layout_transposes_pass import layout_mark # NOQA
29
- from ai_edge_torch.convert.fx_passes.optimize_layout_transposes_pass import layout_partitioners # NOQA
30
- from ai_edge_torch.convert.fx_passes.optimize_layout_transposes_pass import layout_rewrite # NOQA
31
- from ai_edge_torch.convert.fx_passes.optimize_layout_transposes_pass import utils # NOQA
32
29
 
33
30
  TransposeFunc = Union[utils.tensor_to_nchw, utils.tensor_to_nhwc]
34
31
 
35
32
 
36
- class OptimizeLayoutTransposesPass(ExportedProgramPassBase):
33
+ class OptimizeLayoutTransposesPass(fx_pass_base.ExportedProgramPassBase):
37
34
 
38
35
  def get_source_meta(self, node: torch.fx.Node):
39
36
  keys = ["stack_trace", "nn_module_stack", "source_fn_stack", "from_node"]
@@ -51,8 +48,8 @@ class OptimizeLayoutTransposesPass(ExportedProgramPassBase):
51
48
  transpose_func: TransposeFunc,
52
49
  transpose_node_meta: dict,
53
50
  ) -> list[torch.fx.Node]:
54
- """
55
- original:
51
+ """original:
52
+
56
53
  input_dq -> target
57
54
  insert the node as:
58
55
  input_dq -> (T q dq) -> target
@@ -86,8 +83,8 @@ class OptimizeLayoutTransposesPass(ExportedProgramPassBase):
86
83
  transpose_func: TransposeFunc,
87
84
  transpose_node_meta: dict,
88
85
  ) -> list[torch.fx.Node]:
89
- """
90
- original:
86
+ """original:
87
+
91
88
  input_q -> target
92
89
  insert the node as:
93
90
  input_q -> (dq T q) -> target
@@ -96,7 +93,7 @@ class OptimizeLayoutTransposesPass(ExportedProgramPassBase):
96
93
 
97
94
  q_args = input_q.args[1:]
98
95
  q_kwargs = input_q.kwargs
99
- q_op, dq_op = self.get_paired_q_dq_ops(input_q.target)
96
+ q_op, dq_op = utils.get_paired_q_dq_ops(input_q.target)
100
97
  with graph.inserting_before(target):
101
98
  # Q and DQ inserted here may required updating the `axis` arg when they
102
99
  # are per_channel ops. However, instead of updating here, the nodes would
@@ -207,7 +204,8 @@ class OptimizeLayoutTransposesPass(ExportedProgramPassBase):
207
204
 
208
205
  if not layout_check.is_4d(input_node):
209
206
  raise AssertionError(
210
- f"Attempting to convert non-NHWC compatible node to NHWC: {input_node}"
207
+ "Attempting to convert non-NHWC compatible node to NHWC:"
208
+ f" {input_node}"
211
209
  )
212
210
 
213
211
  # Assign target node's source meta to the to_NHWC node, because the transpose
@@ -249,7 +247,9 @@ class OptimizeLayoutTransposesPass(ExportedProgramPassBase):
249
247
 
250
248
  for node in graph.nodes:
251
249
  has_input_nodes = len(node.all_input_nodes) > 0
252
- all_inputs_are_const = all(map(layout_mark.is_const_node, node.all_input_nodes))
250
+ all_inputs_are_const = all(
251
+ map(layout_mark.is_const_node, node.all_input_nodes)
252
+ )
253
253
  if (
254
254
  node.name in non_user_input_names
255
255
  or (has_input_nodes and all_inputs_are_const)
@@ -261,7 +261,9 @@ class OptimizeLayoutTransposesPass(ExportedProgramPassBase):
261
261
  self.mark_const_nodes(exported_program)
262
262
 
263
263
  graph_module = exported_program.graph_module
264
- partitioner = os.environ.get("AIEDGETORCH_LAYOUT_OPTIMIZE_PARTITIONER", None)
264
+ partitioner = os.environ.get(
265
+ "AIEDGETORCH_LAYOUT_OPTIMIZE_PARTITIONER", None
266
+ )
265
267
  if partitioner == "MINCUT":
266
268
  graph_module = layout_partitioners.min_cut.partition(graph_module)
267
269
  elif partitioner == "GREEDY":
@@ -274,6 +276,14 @@ class OptimizeLayoutTransposesPass(ExportedProgramPassBase):
274
276
  graph_module = layout_partitioners.greedy.partition(graph_module)
275
277
 
276
278
  graph = graph_module.graph
279
+ for node in list(graph.nodes):
280
+ if node.target == operator.getitem:
281
+ # force the layout mark of a getitem node to follow its producer.
282
+ if layout_mark.is_nchw_node(node.args[0]):
283
+ layout_mark.mark_as_nchw_node(node)
284
+ else:
285
+ layout_mark.mark_as_nhwc_node(node)
286
+
277
287
  for node in list(graph.nodes):
278
288
  if layout_mark.is_nhwc_node(node):
279
289
  for input_node in layout_check.get_layout_sensitive_inputs(node):
@@ -290,4 +300,4 @@ class OptimizeLayoutTransposesPass(ExportedProgramPassBase):
290
300
  # Mark const node again for debugging
291
301
  self.mark_const_nodes(exported_program)
292
302
 
293
- return ExportedProgramPassResult(exported_program, True)
303
+ return fx_pass_base.ExportedProgramPassResult(exported_program, True)
@@ -12,6 +12,8 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
  # ==============================================================================
15
+ """Utils for the optimized layout transposes pass."""
16
+
15
17
  from typing import Callable
16
18
 
17
19
  import torch
@@ -0,0 +1,66 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ import dataclasses
17
+ from typing import Any, Dict, List, Optional, Tuple, Union
18
+
19
+ from ai_edge_torch import lowertools
20
+ import torch
21
+ import torch.utils._pytree as pytree
22
+
23
+
24
+ @dataclasses.dataclass
25
+ class Signature:
26
+ name: str
27
+ module: torch.nn.Module
28
+ sample_args: tuple[torch.Tensor]
29
+ sample_kwargs: dict[str, torch.Tensor]
30
+ dynamic_shapes: Optional[Union[Dict[str, Any], Tuple[Any]]] = None
31
+
32
+ @property
33
+ def _normalized_sample_args_kwargs(self):
34
+ args, kwargs = self.sample_args, self.sample_kwargs
35
+ if args is not None:
36
+ if not isinstance(args, tuple):
37
+ # TODO(b/352584188): Check value types
38
+ raise ValueError("sample_args must be a tuple of torch tensors.")
39
+ if kwargs is not None:
40
+ if not isinstance(kwargs, dict) or not all(
41
+ isinstance(key, str) for key in kwargs.keys()
42
+ ):
43
+ # TODO(b/352584188): Check value types
44
+ raise ValueError("sample_kwargs must be a dict of string to tensor.")
45
+ args = args if args is not None else tuple()
46
+ kwargs = kwargs if kwargs is not None else {}
47
+ return args, kwargs
48
+
49
+ @property
50
+ def flat_arg_names(self) -> list[str]:
51
+ spec = pytree.tree_flatten(self._normalized_sample_args_kwargs)[1]
52
+ args_spec, kwargs_spec = spec.children_specs
53
+ names = []
54
+ for i in range(args_spec.num_leaves):
55
+ names.append(f"args_{i}")
56
+
57
+ kwargs_names = lowertools.flat_dict_names(
58
+ kwargs_spec.children_specs, kwargs_spec.context
59
+ )
60
+ names.extend(kwargs_names)
61
+ return names
62
+
63
+ @property
64
+ def flat_args(self) -> tuple[Any]:
65
+ args, kwargs = self._normalized_sample_args_kwargs
66
+ return tuple([*args, *kwargs.values()])