ai-edge-torch-nightly 0.2.0.dev20240714__py3-none-any.whl → 0.3.0.dev20240926__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (169) hide show
  1. ai_edge_torch/__init__.py +5 -4
  2. ai_edge_torch/_convert/conversion.py +112 -0
  3. ai_edge_torch/_convert/conversion_utils.py +64 -0
  4. ai_edge_torch/{convert → _convert}/converter.py +94 -48
  5. ai_edge_torch/_convert/fx_passes/__init__.py +22 -0
  6. ai_edge_torch/{convert → _convert}/fx_passes/build_aten_composite_pass.py +107 -44
  7. ai_edge_torch/{convert → _convert}/fx_passes/build_interpolate_composite_pass.py +23 -20
  8. ai_edge_torch/{convert → _convert}/fx_passes/inject_mlir_debuginfo_pass.py +5 -6
  9. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/__init__.py +1 -1
  10. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_check.py +39 -9
  11. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_mark.py +2 -0
  12. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +1 -0
  13. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +17 -8
  14. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +9 -8
  15. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +31 -18
  16. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +2 -2
  17. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/pass_body.py +34 -24
  18. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/utils.py +2 -0
  19. ai_edge_torch/_convert/signature.py +66 -0
  20. ai_edge_torch/_convert/test/test_convert.py +495 -0
  21. ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
  22. ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
  23. ai_edge_torch/{convert → _convert}/test/test_to_channel_last_io.py +5 -5
  24. ai_edge_torch/{convert → _convert}/to_channel_last_io.py +10 -3
  25. ai_edge_torch/config.py +27 -0
  26. ai_edge_torch/conftest.py +20 -0
  27. ai_edge_torch/debug/culprit.py +72 -40
  28. ai_edge_torch/debug/test/test_culprit.py +7 -5
  29. ai_edge_torch/debug/test/test_search_model.py +8 -7
  30. ai_edge_torch/debug/utils.py +14 -3
  31. ai_edge_torch/fx_pass_base.py +101 -0
  32. ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +68 -0
  33. ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +68 -0
  34. ai_edge_torch/generative/examples/gemma/{gemma.py → gemma1.py} +69 -55
  35. ai_edge_torch/generative/examples/gemma/gemma2.py +267 -0
  36. ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
  37. ai_edge_torch/generative/examples/gemma/verify_gemma2.py +57 -0
  38. ai_edge_torch/generative/examples/gemma/verify_util.py +143 -0
  39. ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +68 -0
  40. ai_edge_torch/generative/examples/openelm/openelm.py +206 -0
  41. ai_edge_torch/generative/examples/openelm/verify.py +64 -0
  42. ai_edge_torch/generative/examples/phi/__init__.py +14 -0
  43. ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +68 -0
  44. ai_edge_torch/generative/examples/phi/convert_to_tflite.py +68 -0
  45. ai_edge_torch/generative/examples/{phi2 → phi}/phi2.py +70 -51
  46. ai_edge_torch/generative/examples/phi/phi3.py +286 -0
  47. ai_edge_torch/generative/examples/phi/verify.py +65 -0
  48. ai_edge_torch/generative/examples/phi/verify_phi3.py +70 -0
  49. ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
  50. ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +68 -0
  51. ai_edge_torch/generative/examples/smollm/smollm.py +101 -0
  52. ai_edge_torch/generative/examples/smollm/verify.py +62 -0
  53. ai_edge_torch/generative/examples/stable_diffusion/attention.py +3 -1
  54. ai_edge_torch/generative/examples/stable_diffusion/clip.py +83 -13
  55. ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +27 -14
  56. ai_edge_torch/generative/examples/stable_diffusion/decoder.py +74 -9
  57. ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +179 -37
  58. ai_edge_torch/generative/examples/stable_diffusion/encoder.py +4 -3
  59. ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +83 -58
  60. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +4 -3
  61. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +4 -3
  62. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +4 -3
  63. ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +1 -0
  64. ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +4 -1
  65. ai_edge_torch/generative/examples/stable_diffusion/util.py +9 -3
  66. ai_edge_torch/generative/examples/t5/convert_to_tflite.py +28 -25
  67. ai_edge_torch/generative/examples/t5/t5.py +208 -159
  68. ai_edge_torch/generative/examples/t5/t5_attention.py +45 -30
  69. ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
  70. ai_edge_torch/generative/examples/test_models/toy_model.py +69 -41
  71. ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +50 -64
  72. ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
  73. ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +41 -39
  74. ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +67 -54
  75. ai_edge_torch/generative/examples/tiny_llama/verify.py +64 -0
  76. ai_edge_torch/generative/fx_passes/__init__.py +4 -5
  77. ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +10 -7
  78. ai_edge_torch/generative/layers/attention.py +141 -102
  79. ai_edge_torch/generative/layers/attention_utils.py +53 -12
  80. ai_edge_torch/generative/layers/builder.py +37 -7
  81. ai_edge_torch/generative/layers/feed_forward.py +39 -14
  82. ai_edge_torch/generative/layers/kv_cache.py +162 -50
  83. ai_edge_torch/generative/layers/model_config.py +84 -30
  84. ai_edge_torch/generative/layers/normalization.py +185 -7
  85. ai_edge_torch/generative/layers/rotary_position_embedding.py +6 -4
  86. ai_edge_torch/generative/layers/scaled_dot_product_attention.py +48 -21
  87. ai_edge_torch/generative/layers/unet/blocks_2d.py +136 -77
  88. ai_edge_torch/generative/layers/unet/builder.py +7 -4
  89. ai_edge_torch/generative/layers/unet/model_config.py +17 -15
  90. ai_edge_torch/generative/quantize/example.py +7 -8
  91. ai_edge_torch/generative/quantize/quant_recipe.py +10 -7
  92. ai_edge_torch/generative/quantize/quant_recipe_utils.py +12 -1
  93. ai_edge_torch/generative/quantize/quant_recipes.py +8 -0
  94. ai_edge_torch/generative/test/test_kv_cache.py +120 -0
  95. ai_edge_torch/generative/test/{loader_test.py → test_loader.py} +9 -7
  96. ai_edge_torch/generative/test/test_model_conversion.py +124 -188
  97. ai_edge_torch/generative/test/test_model_conversion_large.py +251 -0
  98. ai_edge_torch/generative/test/test_quantize.py +76 -60
  99. ai_edge_torch/generative/test/utils.py +54 -0
  100. ai_edge_torch/generative/utilities/converter.py +82 -0
  101. ai_edge_torch/generative/utilities/loader.py +120 -57
  102. ai_edge_torch/generative/utilities/stable_diffusion_loader.py +165 -57
  103. ai_edge_torch/generative/utilities/t5_loader.py +110 -81
  104. ai_edge_torch/generative/utilities/verifier.py +247 -0
  105. ai_edge_torch/hlfb/__init__.py +1 -1
  106. ai_edge_torch/hlfb/mark_pattern/__init__.py +9 -7
  107. ai_edge_torch/hlfb/mark_pattern/passes.py +23 -3
  108. ai_edge_torch/hlfb/mark_pattern/pattern.py +39 -30
  109. ai_edge_torch/hlfb/test/test_mark_pattern.py +46 -20
  110. ai_edge_torch/hlfb/test/test_stablehlo_composite_builder.py +24 -11
  111. ai_edge_torch/lowertools/__init__.py +18 -0
  112. ai_edge_torch/lowertools/_shim.py +80 -0
  113. ai_edge_torch/lowertools/common_utils.py +142 -0
  114. ai_edge_torch/lowertools/odml_torch_utils.py +255 -0
  115. ai_edge_torch/lowertools/test_utils.py +60 -0
  116. ai_edge_torch/lowertools/torch_xla_utils.py +284 -0
  117. ai_edge_torch/{generative/quantize/ai_edge_quantizer_glue → lowertools}/translate_recipe.py +29 -14
  118. ai_edge_torch/model.py +53 -18
  119. ai_edge_torch/odml_torch/__init__.py +20 -0
  120. ai_edge_torch/odml_torch/_torch_future.py +61 -0
  121. ai_edge_torch/odml_torch/_torch_library.py +19 -0
  122. ai_edge_torch/odml_torch/composite/__init__.py +16 -0
  123. ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
  124. ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
  125. ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
  126. ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
  127. ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
  128. ai_edge_torch/odml_torch/export.py +357 -0
  129. ai_edge_torch/odml_torch/export_utils.py +168 -0
  130. ai_edge_torch/odml_torch/jax_bridge/__init__.py +15 -0
  131. ai_edge_torch/odml_torch/jax_bridge/_wrap.py +150 -0
  132. ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
  133. ai_edge_torch/odml_torch/lowerings/__init__.py +25 -0
  134. ai_edge_torch/odml_torch/lowerings/_basic.py +258 -0
  135. ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
  136. ai_edge_torch/odml_torch/lowerings/_convolution.py +241 -0
  137. ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +252 -0
  138. ai_edge_torch/odml_torch/lowerings/_layer_norm.py +78 -0
  139. ai_edge_torch/odml_torch/lowerings/context.py +42 -0
  140. ai_edge_torch/odml_torch/lowerings/registry.py +96 -0
  141. ai_edge_torch/odml_torch/lowerings/utils.py +185 -0
  142. ai_edge_torch/odml_torch/passes/__init__.py +38 -0
  143. ai_edge_torch/odml_torch/tf_integration.py +194 -0
  144. ai_edge_torch/quantize/pt2e_quantizer.py +52 -24
  145. ai_edge_torch/quantize/pt2e_quantizer_utils.py +43 -23
  146. ai_edge_torch/quantize/quant_config.py +13 -9
  147. ai_edge_torch/testing/model_coverage/model_coverage.py +29 -16
  148. ai_edge_torch/version.py +16 -0
  149. {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/METADATA +7 -3
  150. ai_edge_torch_nightly-0.3.0.dev20240926.dist-info/RECORD +177 -0
  151. {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/WHEEL +1 -1
  152. ai_edge_torch/convert/conversion.py +0 -117
  153. ai_edge_torch/convert/conversion_utils.py +0 -400
  154. ai_edge_torch/convert/fx_passes/__init__.py +0 -59
  155. ai_edge_torch/convert/fx_passes/_pass_base.py +0 -49
  156. ai_edge_torch/convert/fx_passes/canonicalize_pass.py +0 -37
  157. ai_edge_torch/convert/test/test_convert.py +0 -311
  158. ai_edge_torch/convert/test/test_convert_composites.py +0 -192
  159. ai_edge_torch/convert/test/test_convert_multisig.py +0 -139
  160. ai_edge_torch/generative/examples/gemma/convert_to_tflite.py +0 -66
  161. ai_edge_torch/generative/examples/phi2/convert_to_tflite.py +0 -64
  162. ai_edge_torch/generative/examples/test_models/toy_model_with_external_kv_cache.py +0 -161
  163. ai_edge_torch/generative/quantize/ai_edge_quantizer_glue/__init__.py +0 -0
  164. ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/RECORD +0 -121
  165. /ai_edge_torch/{convert → _convert}/__init__.py +0 -0
  166. /ai_edge_torch/{convert → _convert}/test/__init__.py +0 -0
  167. /ai_edge_torch/generative/examples/{phi2 → openelm}/__init__.py +0 -0
  168. {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/LICENSE +0 -0
  169. {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/top_level.txt +0 -0
@@ -14,19 +14,22 @@
14
14
  # ==============================================================================
15
15
  # Common normalization layers.
16
16
 
17
+ from ai_edge_torch.hlfb import StableHLOCompositeBuilder
17
18
  import torch
19
+ from torch import nn
20
+ import torch.nn.functional as F
18
21
 
19
22
 
20
23
  # Implementation for RMSNorm from: https://arxiv.org/abs/1910.07467
21
24
  class RMSNorm(torch.nn.Module):
22
25
 
23
26
  def __init__(self, dim: int, eps: float = 1e-6, zero_centered_gamma=False):
24
- """
25
- Initialize the RMSNorm layer.
27
+ """Initialize the RMSNorm layer.
26
28
 
27
29
  Args:
28
30
  dim (int): dimension of the input tensor.
29
- eps (float): A small float value to ensure numerical stability (default: 1e-6).
31
+ eps (float): A small float value to ensure numerical stability (default:
32
+ 1e-6).
30
33
  """
31
34
  super().__init__()
32
35
  self.eps = eps
@@ -34,8 +37,7 @@ class RMSNorm(torch.nn.Module):
34
37
  self.zero_centered_gamma = zero_centered_gamma
35
38
 
36
39
  def _norm(self, x):
37
- """
38
- Apply RMSNorm normalization.
40
+ """Apply RMSNorm normalization.
39
41
 
40
42
  Args:
41
43
  x (torch.Tensor): input tensor.
@@ -46,8 +48,7 @@ class RMSNorm(torch.nn.Module):
46
48
  return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
47
49
 
48
50
  def forward(self, x):
49
- """
50
- Running the forward pass of RMSNorm layer.
51
+ """Running the forward pass of RMSNorm layer.
51
52
 
52
53
  Args:
53
54
  x (torch.Tensor): input tensor.
@@ -60,3 +61,180 @@ class RMSNorm(torch.nn.Module):
60
61
  return output * (1 + self.weight)
61
62
  else:
62
63
  return output * self.weight
64
+
65
+
66
+ class GroupNorm(torch.nn.Module):
67
+
68
+ def __init__(
69
+ self,
70
+ group_num: int,
71
+ dim: int,
72
+ eps: float = 1e-5,
73
+ enable_hlfb: bool = False,
74
+ ):
75
+ """Initialize the GroupNorm layer.
76
+
77
+ Args:
78
+ group_num (int): Number of groups to separate the channels into.
79
+ dim (int): Dimension of the input tensor.
80
+ eps (float): A small float value to ensure numerical stability (default:
81
+ 1e-5).
82
+ enable_hlfb (bool): Whether to convert this normalization into a single
83
+ op.
84
+ """
85
+ super().__init__()
86
+ self.enable_hlfb = enable_hlfb
87
+ self.group_num = group_num
88
+ self.eps = eps
89
+ self.weight = torch.nn.Parameter(torch.ones(dim))
90
+ self.bias = torch.nn.Parameter(torch.ones(dim))
91
+
92
+ def forward(self, x):
93
+ """Running the forward pass of GroupNorm layer.
94
+
95
+ Args:
96
+ x (torch.Tensor): input tensor.
97
+
98
+ Returns:
99
+ torch.Tensor: output tensor after applying GroupNorm.
100
+ """
101
+ if self.enable_hlfb:
102
+ return group_norm_with_hlfb(
103
+ x,
104
+ self.weight,
105
+ self.bias,
106
+ self.group_num,
107
+ self.eps,
108
+ )
109
+ else:
110
+ return F.group_norm(x, self.group_num, self.weight, self.bias, self.eps)
111
+
112
+
113
+ class LayerNorm(torch.nn.Module):
114
+
115
+ def __init__(
116
+ self,
117
+ dim: int,
118
+ eps: float = 1e-5,
119
+ enable_hlfb: bool = False,
120
+ use_input_shape: bool = True,
121
+ ):
122
+ """Initialize the LayerNorm layer.
123
+
124
+ Args:
125
+ dim (int): dimension of the input tensor.
126
+ eps (float): A small float value to ensure numerical stability (default:
127
+ 1e-6).
128
+ enable_hlfb (bool): Whether to convert this normalization into a single
129
+ op.
130
+ use_input_shape (bool): Whether to use the input shape to determine the
131
+ dimension of normalization (default: True).
132
+ """
133
+ super().__init__()
134
+ self.enable_hlfb = enable_hlfb
135
+ self.use_input_shape = use_input_shape
136
+ self.eps = eps
137
+ self.weight = torch.nn.Parameter(torch.ones(dim))
138
+ self.bias = torch.nn.Parameter(torch.ones(dim))
139
+
140
+ def forward(self, x):
141
+ """Running the forward pass of LayerNorm layer.
142
+
143
+ Args:
144
+ x (torch.Tensor): input tensor.
145
+
146
+ Returns:
147
+ torch.Tensor: output tensor after applying LayerNorm.
148
+ """
149
+ if self.enable_hlfb:
150
+ return layer_norm_with_hlfb(
151
+ x, self.weight, self.bias, self.eps, self.use_input_shape
152
+ )
153
+
154
+ if self.use_input_shape:
155
+ normalized_shape = x.shape
156
+ weight = self.weight.broadcast_to(x.shape)
157
+ bias = self.bias.broadcast_to(x.shape)
158
+ else:
159
+ normalized_shape = self.weight.shape
160
+ weight = self.weight
161
+ bias = self.bias
162
+ return F.layer_norm(x, normalized_shape, weight, bias, self.eps)
163
+
164
+
165
+ def group_norm_with_hlfb(
166
+ x: torch.Tensor,
167
+ w: torch.Tensor,
168
+ b: torch.Tensor,
169
+ num_groups: int,
170
+ eps: float,
171
+ ):
172
+ """Group Normalization with high-level function boundary enabled.
173
+
174
+ Args:
175
+ x (torch.Tensor): Input tensor for Group Normalization, with BCHW shape.
176
+ w (torch.Tensor): The weight tensor for the normalization.
177
+ b (torch.Tensor): The bias tensor for the normalization.
178
+ num_groups (int): Number of groups to separate the channels into.
179
+ eps (float): A small float value to ensure numerical stability.
180
+
181
+ Returns:
182
+ The output tensor of Group Normalization.
183
+ """
184
+ x = torch.permute(x, (0, 2, 3, 1))
185
+
186
+ # TODO: b/366544750 - Change "reduction_axes" field as an array, rather than
187
+ # int32 when the bug is fixed.
188
+ builder = StableHLOCompositeBuilder(
189
+ name="odml.group_norm",
190
+ attr={
191
+ "num_groups": num_groups,
192
+ "epsilon": eps,
193
+ "reduction_axes": 3,
194
+ "channel_axis": 3,
195
+ },
196
+ )
197
+ x, w, b = builder.mark_inputs(x, w, b)
198
+ x = torch.permute(x, (0, 3, 1, 2))
199
+ y = F.group_norm(x, num_groups, weight=w, bias=b, eps=eps)
200
+ y = torch.permute(y, (0, 2, 3, 1))
201
+ y = builder.mark_outputs(y)
202
+
203
+ y = torch.permute(y, (0, 3, 1, 2))
204
+ return y
205
+
206
+
207
+ def layer_norm_with_hlfb(
208
+ x: torch.Tensor,
209
+ w: torch.Tensor,
210
+ b: torch.Tensor,
211
+ eps: float,
212
+ use_input_shape: bool,
213
+ ):
214
+ """Layer Normalization with high-level function boundary enabled.
215
+
216
+ Args:
217
+ x (torch.Tensor): Input tensor for Layer Normalization, with BCHW shape.
218
+ w (torch.Tensor): The weight tensor for the normalization.
219
+ b (torch.Tensor): The bias tensor for the normalization.
220
+ eps (float): A small float value to ensure numerical stability.
221
+ use_input_shape (bool): Whether to use the input shape to determine the
222
+ dimension of normalization.
223
+
224
+ Returns:
225
+ The output tensor of Layer Normalization.
226
+ """
227
+ builder = StableHLOCompositeBuilder(
228
+ name="odml.group_norm",
229
+ attr={"num_groups": 1, "epsilon": eps, "channel_axis": 1},
230
+ )
231
+ x, w, b = builder.mark_inputs(x, w, b)
232
+ if use_input_shape:
233
+ normalized_shape = x.shape
234
+ w = w.broadcast_to(x.shape)
235
+ b = b.broadcast_to(x.shape)
236
+ else:
237
+ normalized_shape = w.shape
238
+ y = F.layer_norm(x, normalized_shape, w, b, eps=eps)
239
+ y = builder.mark_outputs(y)
240
+ return y
@@ -16,13 +16,15 @@
16
16
  import torch
17
17
 
18
18
 
19
- def apply_rope(x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor) -> torch.Tensor:
19
+ def apply_rope(
20
+ x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
21
+ ) -> torch.Tensor:
20
22
  """Computes rotary positional embedding.
21
23
 
22
24
  Args:
23
- x(torch.Tensor): the input tensor.
24
- cos(torch.Tensor): cosine value for the rope.
25
- sin(torch.Tensor): sin value for the rope.
25
+ x: the input tensor.
26
+ cos: cosine value for the rope.
27
+ sin: sin value for the rope.
26
28
 
27
29
  Returns:
28
30
  output tensor of RoPE.
@@ -17,11 +17,10 @@
17
17
  import math
18
18
  from typing import Optional
19
19
 
20
+ from ai_edge_torch.hlfb import StableHLOCompositeBuilder
20
21
  import torch
21
22
  import torch.nn.functional as F
22
23
 
23
- from ai_edge_torch.hlfb import StableHLOCompositeBuilder
24
-
25
24
 
26
25
  def scaled_dot_product_attention(
27
26
  q: torch.Tensor,
@@ -30,6 +29,7 @@ def scaled_dot_product_attention(
30
29
  head_size: int,
31
30
  mask: Optional[torch.Tensor] = None,
32
31
  scale: Optional[float] = None,
32
+ softcap: Optional[float] = None,
33
33
  ):
34
34
  """Scaled dot product attention.
35
35
 
@@ -54,15 +54,26 @@ def scaled_dot_product_attention(
54
54
  # Handle the GQA case, where q.shape[1] % k.shape[1] == 0.
55
55
  k = k.repeat_interleave(q.shape[1] // k.shape[1], dim=1)
56
56
  v = v.repeat_interleave(q.shape[1] // v.shape[1], dim=1)
57
- y = F.scaled_dot_product_attention(
58
- q,
59
- k,
60
- v,
61
- attn_mask=mask,
62
- dropout_p=0.0,
63
- is_causal=mask is None,
64
- scale=scale,
65
- )
57
+ if softcap is None:
58
+ y = F.scaled_dot_product_attention(
59
+ q,
60
+ k,
61
+ v,
62
+ attn_mask=mask,
63
+ dropout_p=0.0,
64
+ is_causal=mask is None,
65
+ scale=scale,
66
+ )
67
+ else:
68
+ q.mul_(scale)
69
+ scores = q @ k.transpose(-1, -2)
70
+ scores = scores / softcap
71
+ scores = torch.tanh(scores)
72
+ scores = scores * softcap
73
+ scores = scores + mask
74
+ out = F.softmax(scores.float(), dim=-1).type_as(q)
75
+ y = torch.matmul(out, v)
76
+
66
77
  return y.transpose(1, 2)
67
78
 
68
79
 
@@ -73,6 +84,7 @@ def scaled_dot_product_attention_with_hlfb(
73
84
  head_size: int,
74
85
  mask: Optional[torch.Tensor] = None,
75
86
  scale: Optional[float] = None,
87
+ softcap: Optional[float] = None,
76
88
  ):
77
89
  """Scaled dot product attention with high-level function boundary enabled.
78
90
 
@@ -90,8 +102,13 @@ def scaled_dot_product_attention_with_hlfb(
90
102
  if scale is None:
91
103
  scale = 1.0 / math.sqrt(head_size)
92
104
 
105
+ attrs = {"scale": scale}
106
+
107
+ if softcap is not None:
108
+ attrs["logit_cap"] = softcap
109
+
93
110
  builder = StableHLOCompositeBuilder(
94
- name="odml.scaled_dot_product_attention", attr={"scale": scale}
111
+ name="odml.scaled_dot_product_attention", attr=attrs
95
112
  )
96
113
  q, k, v, mask = builder.mark_inputs(q, k, v, mask)
97
114
 
@@ -102,15 +119,25 @@ def scaled_dot_product_attention_with_hlfb(
102
119
  # Handle the GQA case, where q.shape[1] % k.shape[1] == 0.
103
120
  k = k.repeat_interleave(q.shape[1] // k.shape[1], dim=1)
104
121
  v = v.repeat_interleave(q.shape[1] // v.shape[1], dim=1)
105
- y = F.scaled_dot_product_attention(
106
- q,
107
- k,
108
- v,
109
- attn_mask=mask,
110
- dropout_p=0.0,
111
- is_causal=mask is None,
112
- scale=scale,
113
- )
122
+ if softcap is None:
123
+ y = F.scaled_dot_product_attention(
124
+ q,
125
+ k,
126
+ v,
127
+ attn_mask=mask,
128
+ dropout_p=0.0,
129
+ is_causal=mask is None,
130
+ scale=scale,
131
+ )
132
+ else:
133
+ q.mul_(scale)
134
+ scores = q @ k.transpose(-1, -2)
135
+ scores = scores / softcap
136
+ scores = torch.tanh(scores)
137
+ scores = scores * softcap
138
+ scores = scores + mask
139
+ out = F.softmax(scores.float(), dim=-1).type_as(q)
140
+ y = torch.matmul(out, v)
114
141
 
115
142
  result = y.transpose(1, 2)
116
143
  result = builder.mark_outputs(result)