ai-edge-torch-nightly 0.2.0.dev20240714__py3-none-any.whl → 0.3.0.dev20240926__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_edge_torch/__init__.py +5 -4
- ai_edge_torch/_convert/conversion.py +112 -0
- ai_edge_torch/_convert/conversion_utils.py +64 -0
- ai_edge_torch/{convert → _convert}/converter.py +94 -48
- ai_edge_torch/_convert/fx_passes/__init__.py +22 -0
- ai_edge_torch/{convert → _convert}/fx_passes/build_aten_composite_pass.py +107 -44
- ai_edge_torch/{convert → _convert}/fx_passes/build_interpolate_composite_pass.py +23 -20
- ai_edge_torch/{convert → _convert}/fx_passes/inject_mlir_debuginfo_pass.py +5 -6
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/__init__.py +1 -1
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_check.py +39 -9
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_mark.py +2 -0
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +1 -0
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +17 -8
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +9 -8
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +31 -18
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +2 -2
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/pass_body.py +34 -24
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/utils.py +2 -0
- ai_edge_torch/_convert/signature.py +66 -0
- ai_edge_torch/_convert/test/test_convert.py +495 -0
- ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
- ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
- ai_edge_torch/{convert → _convert}/test/test_to_channel_last_io.py +5 -5
- ai_edge_torch/{convert → _convert}/to_channel_last_io.py +10 -3
- ai_edge_torch/config.py +27 -0
- ai_edge_torch/conftest.py +20 -0
- ai_edge_torch/debug/culprit.py +72 -40
- ai_edge_torch/debug/test/test_culprit.py +7 -5
- ai_edge_torch/debug/test/test_search_model.py +8 -7
- ai_edge_torch/debug/utils.py +14 -3
- ai_edge_torch/fx_pass_base.py +101 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/gemma/{gemma.py → gemma1.py} +69 -55
- ai_edge_torch/generative/examples/gemma/gemma2.py +267 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma2.py +57 -0
- ai_edge_torch/generative/examples/gemma/verify_util.py +143 -0
- ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/openelm/openelm.py +206 -0
- ai_edge_torch/generative/examples/openelm/verify.py +64 -0
- ai_edge_torch/generative/examples/phi/__init__.py +14 -0
- ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/phi/convert_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/{phi2 → phi}/phi2.py +70 -51
- ai_edge_torch/generative/examples/phi/phi3.py +286 -0
- ai_edge_torch/generative/examples/phi/verify.py +65 -0
- ai_edge_torch/generative/examples/phi/verify_phi3.py +70 -0
- ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
- ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/smollm/smollm.py +101 -0
- ai_edge_torch/generative/examples/smollm/verify.py +62 -0
- ai_edge_torch/generative/examples/stable_diffusion/attention.py +3 -1
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +83 -13
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +27 -14
- ai_edge_torch/generative/examples/stable_diffusion/decoder.py +74 -9
- ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +179 -37
- ai_edge_torch/generative/examples/stable_diffusion/encoder.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +83 -58
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +1 -0
- ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +4 -1
- ai_edge_torch/generative/examples/stable_diffusion/util.py +9 -3
- ai_edge_torch/generative/examples/t5/convert_to_tflite.py +28 -25
- ai_edge_torch/generative/examples/t5/t5.py +208 -159
- ai_edge_torch/generative/examples/t5/t5_attention.py +45 -30
- ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
- ai_edge_torch/generative/examples/test_models/toy_model.py +69 -41
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +50 -64
- ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +41 -39
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +67 -54
- ai_edge_torch/generative/examples/tiny_llama/verify.py +64 -0
- ai_edge_torch/generative/fx_passes/__init__.py +4 -5
- ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +10 -7
- ai_edge_torch/generative/layers/attention.py +141 -102
- ai_edge_torch/generative/layers/attention_utils.py +53 -12
- ai_edge_torch/generative/layers/builder.py +37 -7
- ai_edge_torch/generative/layers/feed_forward.py +39 -14
- ai_edge_torch/generative/layers/kv_cache.py +162 -50
- ai_edge_torch/generative/layers/model_config.py +84 -30
- ai_edge_torch/generative/layers/normalization.py +185 -7
- ai_edge_torch/generative/layers/rotary_position_embedding.py +6 -4
- ai_edge_torch/generative/layers/scaled_dot_product_attention.py +48 -21
- ai_edge_torch/generative/layers/unet/blocks_2d.py +136 -77
- ai_edge_torch/generative/layers/unet/builder.py +7 -4
- ai_edge_torch/generative/layers/unet/model_config.py +17 -15
- ai_edge_torch/generative/quantize/example.py +7 -8
- ai_edge_torch/generative/quantize/quant_recipe.py +10 -7
- ai_edge_torch/generative/quantize/quant_recipe_utils.py +12 -1
- ai_edge_torch/generative/quantize/quant_recipes.py +8 -0
- ai_edge_torch/generative/test/test_kv_cache.py +120 -0
- ai_edge_torch/generative/test/{loader_test.py → test_loader.py} +9 -7
- ai_edge_torch/generative/test/test_model_conversion.py +124 -188
- ai_edge_torch/generative/test/test_model_conversion_large.py +251 -0
- ai_edge_torch/generative/test/test_quantize.py +76 -60
- ai_edge_torch/generative/test/utils.py +54 -0
- ai_edge_torch/generative/utilities/converter.py +82 -0
- ai_edge_torch/generative/utilities/loader.py +120 -57
- ai_edge_torch/generative/utilities/stable_diffusion_loader.py +165 -57
- ai_edge_torch/generative/utilities/t5_loader.py +110 -81
- ai_edge_torch/generative/utilities/verifier.py +247 -0
- ai_edge_torch/hlfb/__init__.py +1 -1
- ai_edge_torch/hlfb/mark_pattern/__init__.py +9 -7
- ai_edge_torch/hlfb/mark_pattern/passes.py +23 -3
- ai_edge_torch/hlfb/mark_pattern/pattern.py +39 -30
- ai_edge_torch/hlfb/test/test_mark_pattern.py +46 -20
- ai_edge_torch/hlfb/test/test_stablehlo_composite_builder.py +24 -11
- ai_edge_torch/lowertools/__init__.py +18 -0
- ai_edge_torch/lowertools/_shim.py +80 -0
- ai_edge_torch/lowertools/common_utils.py +142 -0
- ai_edge_torch/lowertools/odml_torch_utils.py +255 -0
- ai_edge_torch/lowertools/test_utils.py +60 -0
- ai_edge_torch/lowertools/torch_xla_utils.py +284 -0
- ai_edge_torch/{generative/quantize/ai_edge_quantizer_glue → lowertools}/translate_recipe.py +29 -14
- ai_edge_torch/model.py +53 -18
- ai_edge_torch/odml_torch/__init__.py +20 -0
- ai_edge_torch/odml_torch/_torch_future.py +61 -0
- ai_edge_torch/odml_torch/_torch_library.py +19 -0
- ai_edge_torch/odml_torch/composite/__init__.py +16 -0
- ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
- ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
- ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
- ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
- ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
- ai_edge_torch/odml_torch/export.py +357 -0
- ai_edge_torch/odml_torch/export_utils.py +168 -0
- ai_edge_torch/odml_torch/jax_bridge/__init__.py +15 -0
- ai_edge_torch/odml_torch/jax_bridge/_wrap.py +150 -0
- ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
- ai_edge_torch/odml_torch/lowerings/__init__.py +25 -0
- ai_edge_torch/odml_torch/lowerings/_basic.py +258 -0
- ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
- ai_edge_torch/odml_torch/lowerings/_convolution.py +241 -0
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +252 -0
- ai_edge_torch/odml_torch/lowerings/_layer_norm.py +78 -0
- ai_edge_torch/odml_torch/lowerings/context.py +42 -0
- ai_edge_torch/odml_torch/lowerings/registry.py +96 -0
- ai_edge_torch/odml_torch/lowerings/utils.py +185 -0
- ai_edge_torch/odml_torch/passes/__init__.py +38 -0
- ai_edge_torch/odml_torch/tf_integration.py +194 -0
- ai_edge_torch/quantize/pt2e_quantizer.py +52 -24
- ai_edge_torch/quantize/pt2e_quantizer_utils.py +43 -23
- ai_edge_torch/quantize/quant_config.py +13 -9
- ai_edge_torch/testing/model_coverage/model_coverage.py +29 -16
- ai_edge_torch/version.py +16 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/METADATA +7 -3
- ai_edge_torch_nightly-0.3.0.dev20240926.dist-info/RECORD +177 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/WHEEL +1 -1
- ai_edge_torch/convert/conversion.py +0 -117
- ai_edge_torch/convert/conversion_utils.py +0 -400
- ai_edge_torch/convert/fx_passes/__init__.py +0 -59
- ai_edge_torch/convert/fx_passes/_pass_base.py +0 -49
- ai_edge_torch/convert/fx_passes/canonicalize_pass.py +0 -37
- ai_edge_torch/convert/test/test_convert.py +0 -311
- ai_edge_torch/convert/test/test_convert_composites.py +0 -192
- ai_edge_torch/convert/test/test_convert_multisig.py +0 -139
- ai_edge_torch/generative/examples/gemma/convert_to_tflite.py +0 -66
- ai_edge_torch/generative/examples/phi2/convert_to_tflite.py +0 -64
- ai_edge_torch/generative/examples/test_models/toy_model_with_external_kv_cache.py +0 -161
- ai_edge_torch/generative/quantize/ai_edge_quantizer_glue/__init__.py +0 -0
- ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/RECORD +0 -121
- /ai_edge_torch/{convert → _convert}/__init__.py +0 -0
- /ai_edge_torch/{convert → _convert}/test/__init__.py +0 -0
- /ai_edge_torch/generative/examples/{phi2 → openelm}/__init__.py +0 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/LICENSE +0 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/top_level.txt +0 -0
@@ -12,20 +12,18 @@
|
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
|
-
# Common building blocks for Attention layer.
|
16
15
|
|
17
|
-
|
16
|
+
"""Common building blocks for Attention layer."""
|
18
17
|
|
19
|
-
import
|
20
|
-
from torch import nn
|
21
|
-
import torch.nn.functional as F
|
18
|
+
from typing import Optional, Tuple, Union
|
22
19
|
|
23
|
-
|
24
|
-
from ai_edge_torch.generative.layers
|
20
|
+
from ai_edge_torch.generative.layers import builder
|
21
|
+
from ai_edge_torch.generative.layers import kv_cache as kv_utils
|
22
|
+
from ai_edge_torch.generative.layers import scaled_dot_product_attention as sdpa
|
25
23
|
import ai_edge_torch.generative.layers.model_config as cfg
|
26
24
|
import ai_edge_torch.generative.layers.rotary_position_embedding as rotary_pos_emb
|
27
|
-
|
28
|
-
from
|
25
|
+
import torch
|
26
|
+
from torch import nn
|
29
27
|
|
30
28
|
|
31
29
|
def _embed_rope(
|
@@ -57,29 +55,35 @@ def _embed_rope(
|
|
57
55
|
|
58
56
|
class TransformerBlock(nn.Module):
|
59
57
|
|
60
|
-
def __init__(
|
58
|
+
def __init__(
|
59
|
+
self,
|
60
|
+
config: cfg.TransformerBlockConfig,
|
61
|
+
model_config: cfg.ModelConfig,
|
62
|
+
) -> None:
|
61
63
|
"""Initialize an instance of the TransformerBlock.
|
62
64
|
|
63
65
|
Args:
|
64
|
-
config (cfg.
|
65
|
-
|
66
|
+
config (cfg.TransformerBlockConfig): the configuration object for this
|
67
|
+
transformer block.
|
68
|
+
model_config (cfg.ModelConfig): the configuration object for the model
|
69
|
+
this transformer block belongs to.
|
66
70
|
"""
|
67
|
-
|
68
71
|
super().__init__()
|
69
72
|
self.pre_atten_norm = builder.build_norm(
|
70
|
-
|
73
|
+
model_config.embedding_dim,
|
74
|
+
config.pre_attention_norm_config,
|
71
75
|
)
|
72
76
|
self.atten_func = CausalSelfAttention(
|
73
|
-
|
74
|
-
|
77
|
+
model_config.batch_size,
|
78
|
+
model_config.embedding_dim,
|
75
79
|
config.attn_config,
|
76
|
-
|
77
|
-
config.enable_hlfb,
|
80
|
+
model_config.enable_hlfb,
|
78
81
|
)
|
79
|
-
self.
|
80
|
-
|
82
|
+
self.post_atten_norm = builder.build_norm(
|
83
|
+
model_config.embedding_dim,
|
84
|
+
config.post_attention_norm_config,
|
81
85
|
)
|
82
|
-
self.ff = builder.build_ff(
|
86
|
+
self.ff = builder.build_ff(model_config.embedding_dim, config.ff_config)
|
83
87
|
self.config = config
|
84
88
|
|
85
89
|
def forward(
|
@@ -88,7 +92,8 @@ class TransformerBlock(nn.Module):
|
|
88
92
|
rope: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
89
93
|
mask: Optional[torch.Tensor] = None,
|
90
94
|
input_pos: Optional[torch.Tensor] = None,
|
91
|
-
|
95
|
+
kv_cache: kv_utils.KVCacheEntry = None,
|
96
|
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, kv_utils.KVCacheEntry]]:
|
92
97
|
"""Forward function of the TransformerBlock.
|
93
98
|
|
94
99
|
Args:
|
@@ -96,24 +101,34 @@ class TransformerBlock(nn.Module):
|
|
96
101
|
rope (Tuple[torch.Tensor, torch.Tensor]): the input rope tensor.
|
97
102
|
mask (torch.Tensor): the optional mask tensor.
|
98
103
|
input_pos (torch.Tensor): the optional input position tensor.
|
104
|
+
kv_cache (KVCacheEntry): the optional kv cache entry.
|
99
105
|
|
100
106
|
Returns:
|
101
|
-
output activation from this transformer block
|
107
|
+
output activation from this transformer block, and updated kv cache (if
|
108
|
+
passed in).
|
102
109
|
"""
|
103
|
-
|
110
|
+
kv = None
|
104
111
|
if self.config.parallel_residual:
|
105
112
|
x_norm = self.pre_atten_norm(x)
|
106
|
-
|
113
|
+
atten_func_out = self.atten_func(x_norm, rope, mask, input_pos, kv_cache)
|
114
|
+
if kv_cache is None:
|
115
|
+
attn_out = atten_func_out
|
116
|
+
else:
|
117
|
+
attn_out, kv = atten_func_out
|
107
118
|
ff_out = self.ff(x_norm)
|
108
119
|
output = x + attn_out + ff_out
|
109
120
|
else:
|
110
121
|
x_norm = self.pre_atten_norm(x)
|
111
|
-
|
122
|
+
atten_func_out = self.atten_func(x_norm, rope, mask, input_pos, kv_cache)
|
123
|
+
if kv_cache is None:
|
124
|
+
attn_out = atten_func_out
|
125
|
+
else:
|
126
|
+
attn_out, kv = atten_func_out
|
112
127
|
x = x + attn_out
|
113
|
-
x_norm = self.
|
128
|
+
x_norm = self.post_atten_norm(x)
|
114
129
|
output = x + self.ff(x_norm)
|
115
130
|
|
116
|
-
return output
|
131
|
+
return output if kv is None else (output, kv)
|
117
132
|
|
118
133
|
|
119
134
|
class CausalSelfAttention(nn.Module):
|
@@ -123,7 +138,6 @@ class CausalSelfAttention(nn.Module):
|
|
123
138
|
batch_size: int,
|
124
139
|
dim: int,
|
125
140
|
config: cfg.AttentionConfig,
|
126
|
-
kv_cache_max: int,
|
127
141
|
enable_hlfb: bool,
|
128
142
|
) -> None:
|
129
143
|
"""Initialize an instance of CausalSelfAttention.
|
@@ -132,33 +146,31 @@ class CausalSelfAttention(nn.Module):
|
|
132
146
|
batch_size (int): batch size of the input tensor.
|
133
147
|
dim (int): causal attention's input/output dimmension.
|
134
148
|
config (cfg.AttentionConfig): attention specific configurations.
|
135
|
-
kv_cache_max (int): determines the size of the KV Cache buffer, if enabled.
|
136
149
|
enable_hlfb (bool): whether hlfb is enabled or not.
|
137
150
|
"""
|
138
151
|
super().__init__()
|
139
|
-
self.head_dim = dim // config.num_heads
|
140
|
-
shape = (config.num_heads + 2 * config.num_query_groups) * self.head_dim
|
141
|
-
# Key, query, value projections for all heads.
|
142
|
-
self.qkv_projection = nn.Linear(dim, shape, bias=config.qkv_use_bias)
|
143
|
-
self.output_projection = nn.Linear(dim, dim, bias=config.output_proj_use_bias)
|
144
|
-
self.config = config
|
145
152
|
self.kv_cache = None
|
146
153
|
self.batch_size = batch_size
|
147
|
-
|
148
|
-
|
149
|
-
|
150
|
-
|
151
|
-
|
152
|
-
|
153
|
-
|
154
|
-
|
155
|
-
|
156
|
-
|
157
|
-
|
158
|
-
|
159
|
-
|
160
|
-
|
161
|
-
|
154
|
+
qkv_shape = (
|
155
|
+
config.num_heads + 2 * config.num_query_groups
|
156
|
+
) * config.head_dim
|
157
|
+
output_shape = config.num_heads * config.head_dim
|
158
|
+
# Key, query, value projections for all heads.
|
159
|
+
self.qkv_projection = nn.Linear(dim, qkv_shape, bias=config.qkv_use_bias)
|
160
|
+
self.output_projection = nn.Linear(
|
161
|
+
output_shape, dim, bias=config.output_proj_use_bias
|
162
|
+
)
|
163
|
+
self.query_norm = builder.build_norm(
|
164
|
+
config.head_dim, config.query_norm_config
|
165
|
+
)
|
166
|
+
self.key_norm = builder.build_norm(config.head_dim, config.key_norm_config)
|
167
|
+
self.config = config
|
168
|
+
self.enable_hlfb = enable_hlfb
|
169
|
+
self.sdpa_func = (
|
170
|
+
sdpa.scaled_dot_product_attention_with_hlfb
|
171
|
+
if enable_hlfb
|
172
|
+
else sdpa.scaled_dot_product_attention
|
173
|
+
)
|
162
174
|
|
163
175
|
def forward(
|
164
176
|
self,
|
@@ -166,8 +178,10 @@ class CausalSelfAttention(nn.Module):
|
|
166
178
|
rope: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
167
179
|
mask: Optional[torch.Tensor] = None,
|
168
180
|
input_pos: Optional[torch.Tensor] = None,
|
169
|
-
|
181
|
+
kv_cache: Optional[kv_utils.KVCacheEntry] = None,
|
182
|
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, kv_utils.KVCacheEntry]]:
|
170
183
|
"""Forward function of the CausalSelfAttention layer, which can support
|
184
|
+
|
171
185
|
MQA, GQA and MHA.
|
172
186
|
|
173
187
|
Args:
|
@@ -175,15 +189,18 @@ class CausalSelfAttention(nn.Module):
|
|
175
189
|
rope (Tuple[torch.Tensor, torch.Tensor]): the input rope tensor.
|
176
190
|
mask (torch.Tensor): the optional mask tensor.
|
177
191
|
input_pos (torch.Tensor): the optional input position tensor.
|
192
|
+
kv_cache (KVCacheEntry): The KV cache entry corresponding to this module.
|
178
193
|
|
179
194
|
Returns:
|
180
|
-
output activation from this self attention layer
|
195
|
+
output activation from this self attention layer, and the updated
|
196
|
+
KV Cach Entry (if passed in).
|
181
197
|
"""
|
182
198
|
# Batch size, sequence length, embedding dimensionality.
|
183
199
|
B, T, E = x.size()
|
184
|
-
assert (
|
185
|
-
|
186
|
-
|
200
|
+
assert B == self.batch_size, (
|
201
|
+
"batch size of input tensor must match with the batch size specified in"
|
202
|
+
" the model configuration."
|
203
|
+
)
|
187
204
|
|
188
205
|
qkv = self.qkv_projection(x)
|
189
206
|
|
@@ -191,7 +208,7 @@ class CausalSelfAttention(nn.Module):
|
|
191
208
|
q_per_kv = self.config.num_heads // self.config.num_query_groups
|
192
209
|
# Each group has >=1 queries, 1 key, and 1 value.
|
193
210
|
if self.config.qkv_transpose_before_split:
|
194
|
-
qkv = qkv.view(B, T, -1, self.head_dim)
|
211
|
+
qkv = qkv.view(B, T, -1, self.config.head_dim)
|
195
212
|
q, k, v = qkv.split(
|
196
213
|
(
|
197
214
|
q_per_kv * self.config.num_query_groups,
|
@@ -203,27 +220,44 @@ class CausalSelfAttention(nn.Module):
|
|
203
220
|
else:
|
204
221
|
qkv = qkv.view(B, T, self.config.num_query_groups, -1)
|
205
222
|
q, k, v = qkv.split(
|
206
|
-
(
|
223
|
+
(
|
224
|
+
q_per_kv * self.config.head_dim,
|
225
|
+
self.config.head_dim,
|
226
|
+
self.config.head_dim,
|
227
|
+
),
|
228
|
+
dim=-1,
|
207
229
|
)
|
208
230
|
|
209
|
-
q =
|
210
|
-
k =
|
211
|
-
|
231
|
+
q = self.query_norm(q)
|
232
|
+
k = self.key_norm(k)
|
233
|
+
|
234
|
+
q = q.reshape(B, T, -1, self.config.head_dim)
|
235
|
+
k = k.reshape(B, T, -1, self.config.head_dim)
|
236
|
+
v = v.reshape(B, T, -1, self.config.head_dim)
|
212
237
|
|
213
238
|
# Compute rotary positional embedding for query and key.
|
214
|
-
n_elem = int(self.config.rotary_percentage * self.head_dim)
|
239
|
+
n_elem = int(self.config.rotary_percentage * self.config.head_dim)
|
215
240
|
q, k = _embed_rope(q, k, n_elem, rope)
|
216
241
|
|
217
|
-
if
|
218
|
-
|
219
|
-
|
220
|
-
|
221
|
-
|
222
|
-
|
242
|
+
if kv_cache is not None:
|
243
|
+
kv_cache = kv_utils.update(
|
244
|
+
kv_cache, input_pos, k, v, enable_hlfb=self.enable_hlfb
|
245
|
+
)
|
246
|
+
k, v = kv_cache.k_cache, kv_cache.v_cache
|
247
|
+
|
248
|
+
y = self.sdpa_func(
|
249
|
+
q,
|
250
|
+
k,
|
251
|
+
v,
|
252
|
+
self.config.head_dim,
|
253
|
+
mask=mask,
|
254
|
+
softcap=self.config.logit_softcap,
|
255
|
+
)
|
256
|
+
y = y.reshape(B, T, -1)
|
223
257
|
|
224
258
|
# Compute the output projection.
|
225
259
|
y = self.output_projection(y)
|
226
|
-
return y
|
260
|
+
return y if kv_cache is None else (y, kv_cache)
|
227
261
|
|
228
262
|
|
229
263
|
class SelfAttention(CausalSelfAttention):
|
@@ -234,16 +268,19 @@ class SelfAttention(CausalSelfAttention):
|
|
234
268
|
x: torch.Tensor,
|
235
269
|
rope: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
236
270
|
input_pos: Optional[torch.Tensor] = None,
|
237
|
-
|
271
|
+
kv_cache: Optional[kv_utils.KVCacheEntry] = None,
|
272
|
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, kv_utils.KVCacheEntry]]:
|
238
273
|
"""Forward function of the SelfAttention layer, which can support MQA, GQA and MHA.
|
239
274
|
|
240
275
|
Args:
|
241
276
|
x (torch.Tensor): the input tensor.
|
242
277
|
rope (Tuple[torch.Tensor, torch.Tensor]): the input rope tensor.
|
243
278
|
input_pos (torch.Tensor): the optional input position tensor.
|
279
|
+
kv_cache (KVCacheEntry): The KV cache entry corresponding to this module.
|
244
280
|
|
245
281
|
Returns:
|
246
|
-
output activation from this self attention layer
|
282
|
+
output activation from this self attention layer, and the updated
|
283
|
+
KV Cach Entry (if passed in).
|
247
284
|
"""
|
248
285
|
B, T, _ = x.size()
|
249
286
|
return super().forward(
|
@@ -261,46 +298,43 @@ class CrossAttention(nn.Module):
|
|
261
298
|
batch_size: int,
|
262
299
|
query_dim: int,
|
263
300
|
cross_dim: int,
|
301
|
+
hidden_dim: int,
|
302
|
+
output_dim: int,
|
264
303
|
config: cfg.AttentionConfig,
|
265
|
-
kv_cache_max: int,
|
266
304
|
enable_hlfb: bool,
|
267
|
-
)
|
305
|
+
):
|
268
306
|
"""Initialize an instance of CrossAttention.
|
269
307
|
|
270
308
|
Args:
|
271
309
|
batch_size (int): batch size of the input tensor.
|
272
310
|
query_dim (int): query tensor's dimension.
|
273
311
|
cross_dim (int): cross attention's dimensions, for key and value tensors.
|
312
|
+
hidden_dim (int): hidden dimension that q, k, v tensors project to.
|
313
|
+
output_dim (int): output tensor's dimension.
|
274
314
|
config (cfg.AttentionConfig): attention specific configurations.
|
275
|
-
kv_cache_max (int): determines the size of the KV Cache buffer, if enabled.
|
276
315
|
enable_hlfb (bool): whether hlfb is enabled or not.
|
277
316
|
"""
|
278
317
|
super().__init__()
|
279
318
|
self.config = config
|
280
|
-
self.head_dim = query_dim // config.num_heads
|
281
319
|
self.n_heads = config.num_heads
|
282
|
-
self.q_projection = nn.Linear(
|
283
|
-
|
284
|
-
|
320
|
+
self.q_projection = nn.Linear(
|
321
|
+
query_dim, hidden_dim, bias=config.qkv_use_bias
|
322
|
+
)
|
323
|
+
self.k_projection = nn.Linear(
|
324
|
+
cross_dim, hidden_dim, bias=config.qkv_use_bias
|
325
|
+
)
|
326
|
+
self.v_projection = nn.Linear(
|
327
|
+
cross_dim, hidden_dim, bias=config.qkv_use_bias
|
328
|
+
)
|
285
329
|
self.output_projection = nn.Linear(
|
286
|
-
|
330
|
+
hidden_dim, output_dim, bias=config.output_proj_use_bias
|
287
331
|
)
|
288
332
|
|
289
|
-
self.
|
290
|
-
|
291
|
-
|
292
|
-
|
293
|
-
|
294
|
-
kv_cache_max,
|
295
|
-
config.num_query_groups,
|
296
|
-
self.head_dim,
|
297
|
-
enable_hlfb,
|
298
|
-
)
|
299
|
-
|
300
|
-
if enable_hlfb:
|
301
|
-
self.sdpa_func = scaled_dot_product_attention_with_hlfb
|
302
|
-
else:
|
303
|
-
self.sdpa_func = scaled_dot_product_attention
|
333
|
+
self.sdpa_func = (
|
334
|
+
sdpa.scaled_dot_product_attention_with_hlfb
|
335
|
+
if enable_hlfb
|
336
|
+
else sdpa.scaled_dot_product_attention
|
337
|
+
)
|
304
338
|
|
305
339
|
def forward(
|
306
340
|
self,
|
@@ -309,6 +343,7 @@ class CrossAttention(nn.Module):
|
|
309
343
|
rope: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
310
344
|
mask: Optional[torch.Tensor] = None,
|
311
345
|
input_pos: Optional[torch.Tensor] = None,
|
346
|
+
kv_cache: Optional[kv_utils.KVCacheEntry] = None,
|
312
347
|
):
|
313
348
|
"""Forward function of the CrossAttention layer.
|
314
349
|
|
@@ -316,8 +351,10 @@ class CrossAttention(nn.Module):
|
|
316
351
|
x (torch.Tensor): the target tensor, with shape [B, target_seq_len, ...].
|
317
352
|
y (torch.Tensor): the source tensor, with shape [B, source_seq_len, ...].
|
318
353
|
rope (Tuple[torch.Tensor, torch.Tensor]): the optional input rope tensor.
|
319
|
-
mask (torch.Tensor): the optional mask tensor can be broadcaseted to shape
|
354
|
+
mask (torch.Tensor): the optional mask tensor can be broadcaseted to shape
|
355
|
+
[B, n_heads, target_seq_len, source_seq_len].
|
320
356
|
input_pos (torch.Tensor): the optional input position tensor.
|
357
|
+
kv_cache (KVCacheEntry): The KV cache entry corresponding to this module.
|
321
358
|
|
322
359
|
Returns:
|
323
360
|
output activation from this cross attention layer.
|
@@ -330,25 +367,27 @@ class CrossAttention(nn.Module):
|
|
330
367
|
k = self.k_projection(y)
|
331
368
|
v = self.v_projection(y)
|
332
369
|
|
333
|
-
interim_shape = (batch_size, -1, self.n_heads, self.head_dim)
|
370
|
+
interim_shape = (batch_size, -1, self.n_heads, self.config.head_dim)
|
334
371
|
q = q.view(interim_shape)
|
335
372
|
k = k.view(interim_shape)
|
336
373
|
v = v.view(interim_shape)
|
337
374
|
|
338
375
|
# Compute rotary positional embedding for query and key.
|
339
|
-
n_elem = int(self.config.rotary_percentage * self.head_dim)
|
376
|
+
n_elem = int(self.config.rotary_percentage * self.config.head_dim)
|
340
377
|
q, k = _embed_rope(q, k, n_elem, rope)
|
341
378
|
|
342
|
-
if
|
343
|
-
|
344
|
-
|
379
|
+
if kv_cache is not None:
|
380
|
+
kv_cache = kv_utils.update(
|
381
|
+
kv_cache, input_pos, k, v, enable_hlfb=self.enable_hlfb
|
382
|
+
)
|
383
|
+
k, v = kv_cache.k_cache, kv_cache.v_cache
|
345
384
|
if mask is None:
|
346
385
|
mask = torch.zeros(
|
347
386
|
(batch_size, 1, target_seq_len, source_seq_len), dtype=torch.float32
|
348
387
|
)
|
349
|
-
y = self.sdpa_func(q, k, v, self.head_dim, mask=mask)
|
388
|
+
y = self.sdpa_func(q, k, v, self.config.head_dim, mask=mask)
|
350
389
|
y = y.reshape(batch_size, target_seq_len, -1)
|
351
390
|
|
352
391
|
# Compute the output projection.
|
353
392
|
y = self.output_projection(y)
|
354
|
-
return y
|
393
|
+
return y if kv_cache is None else (y, kv_cache)
|
@@ -28,7 +28,9 @@ def build_rope_cache(
|
|
28
28
|
dtype: torch.dtype = torch.float32,
|
29
29
|
device: torch.device = None,
|
30
30
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
31
|
-
"""
|
31
|
+
"""Precomputes Rotary Positional Embeddings.
|
32
|
+
|
33
|
+
Precompute Rotary Positional Embedding Sin and Cos values for quick lookup
|
32
34
|
during the inference.
|
33
35
|
|
34
36
|
Args:
|
@@ -72,28 +74,64 @@ def build_causal_mask_cache(
|
|
72
74
|
Returns:
|
73
75
|
torch.Tensor: Causal attention mask.
|
74
76
|
"""
|
77
|
+
|
75
78
|
if device is None:
|
76
79
|
device = torch.device('cpu')
|
77
80
|
mask = torch.full((size, size), float('-inf'), dtype=dtype, device=device)
|
78
81
|
return torch.triu(mask, diagonal=1).unsqueeze(0).unsqueeze(0)
|
79
82
|
|
80
83
|
|
84
|
+
def build_sliding_window_mask_cache(
|
85
|
+
size: int,
|
86
|
+
window_size: int,
|
87
|
+
dtype: torch.dtype = torch.float32,
|
88
|
+
device: torch.device = None,
|
89
|
+
) -> torch.Tensor:
|
90
|
+
"""Build a cache for a sliding window mask.
|
91
|
+
|
92
|
+
Args:
|
93
|
+
size (int): The size of the built mask cache.
|
94
|
+
window_size (int): The window size that is "seen" by a token.
|
95
|
+
dtype (torch.dtype, optional): Output tensor's data type. Defaults to
|
96
|
+
torch.float32.
|
97
|
+
device (torch.device, optional): Output tensor's data type. Defaults to
|
98
|
+
None in which case "cpu" is used.
|
99
|
+
|
100
|
+
Returns:
|
101
|
+
torch.Tensor: Causal attention mask.
|
102
|
+
"""
|
103
|
+
|
104
|
+
mask = build_causal_mask_cache(size, dtype, device)
|
105
|
+
all_ones = torch.ones_like(mask)
|
106
|
+
window_size = min(size, window_size)
|
107
|
+
sliding_mask = torch.triu(all_ones, -1 * window_size + 1) * torch.tril(
|
108
|
+
all_ones, window_size - 1
|
109
|
+
)
|
110
|
+
return torch.where(sliding_mask == 1, mask, -2.3819763e38)
|
111
|
+
|
112
|
+
|
81
113
|
def relative_position_bucket(
|
82
114
|
relative_position: torch.Tensor,
|
83
115
|
bidirectional: bool,
|
84
116
|
num_buckets: int,
|
85
117
|
max_distance: int,
|
86
118
|
) -> torch.Tensor:
|
87
|
-
"""
|
88
|
-
|
119
|
+
"""Adapted from Mesh Tensorflow:
|
120
|
+
|
89
121
|
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
|
90
122
|
|
91
|
-
Translate relative position to a bucket number for relative attention. The
|
92
|
-
|
93
|
-
|
94
|
-
|
95
|
-
|
96
|
-
|
123
|
+
Translate relative position to a bucket number for relative attention. The
|
124
|
+
relative position is defined as
|
125
|
+
memory_position - query_position, i.e. the distance in tokens from the
|
126
|
+
attending position to the attended-to
|
127
|
+
position. If bidirectional=False, then positive relative positions are
|
128
|
+
invalid. We use smaller buckets for
|
129
|
+
small absolute relative_position and larger buckets for larger absolute
|
130
|
+
relative_positions. All relative
|
131
|
+
positions >=max_distance map to the same bucket. All relative positions
|
132
|
+
<=-max_distance map to the same bucket.
|
133
|
+
This should allow for more graceful generalization to longer sequences than
|
134
|
+
the model has been trained on
|
97
135
|
|
98
136
|
Args:
|
99
137
|
relative_position: an int32 Tensor
|
@@ -102,7 +140,8 @@ def relative_position_bucket(
|
|
102
140
|
max_distance: an integer for max distance.
|
103
141
|
|
104
142
|
Returns:
|
105
|
-
a Tensor with the same shape as relative_position, containing int32 values
|
143
|
+
a Tensor with the same shape as relative_position, containing int32 values
|
144
|
+
in the range [0, num_buckets)
|
106
145
|
"""
|
107
146
|
relative_buckets = 0
|
108
147
|
if bidirectional:
|
@@ -119,7 +158,8 @@ def relative_position_bucket(
|
|
119
158
|
max_exact = num_buckets // 2
|
120
159
|
is_small = relative_position < max_exact
|
121
160
|
|
122
|
-
# The other half of the buckets are for logarithmically bigger bins in
|
161
|
+
# The other half of the buckets are for logarithmically bigger bins in
|
162
|
+
# positions up to max_distance
|
123
163
|
relative_position_if_large = max_exact + (
|
124
164
|
torch.log(relative_position.float() / max_exact)
|
125
165
|
/ math.log(max_distance / max_exact)
|
@@ -148,7 +188,8 @@ def build_relative_position_buckets(
|
|
148
188
|
Args:
|
149
189
|
query_length: an integer of length of current query tensor.
|
150
190
|
key_length: an integer of length of current key tensor.
|
151
|
-
bidirectional: a boolean - whether the attention is bidirectional, default
|
191
|
+
bidirectional: a boolean - whether the attention is bidirectional, default
|
192
|
+
is True.
|
152
193
|
num_buckets: an integer for number of buckets, default is 32.
|
153
194
|
max_distance: an integer for max distance, default is 128.
|
154
195
|
|
@@ -13,13 +13,14 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
15
|
# Builder class for individual components.
|
16
|
-
import
|
17
|
-
from torch import nn
|
18
|
-
import torch.nn.functional as F
|
16
|
+
from typing import Callable
|
19
17
|
|
20
18
|
import ai_edge_torch.generative.layers.feed_forward as feed_forward
|
21
19
|
import ai_edge_torch.generative.layers.model_config as cfg
|
22
20
|
import ai_edge_torch.generative.layers.normalization as normalization
|
21
|
+
import torch
|
22
|
+
from torch import nn
|
23
|
+
import torch.nn.functional as F
|
23
24
|
|
24
25
|
|
25
26
|
class GeGLU(nn.Module):
|
@@ -27,7 +28,6 @@ class GeGLU(nn.Module):
|
|
27
28
|
|
28
29
|
GeGLU(x) = (xW+b) * GELU(xV+c)
|
29
30
|
See: https://arxiv.org/abs/2002.05202v1
|
30
|
-
|
31
31
|
"""
|
32
32
|
|
33
33
|
def __init__(self, d_in: int, d_out: int):
|
@@ -39,6 +39,21 @@ class GeGLU(nn.Module):
|
|
39
39
|
return x * F.gelu(gate)
|
40
40
|
|
41
41
|
|
42
|
+
class SwiGLU(nn.Module):
|
43
|
+
"""SwiGLU is an activation function which is a variant of GLU.
|
44
|
+
|
45
|
+
SwiGLU is same as SiLU_GLU, because The SiLU function is also known as the
|
46
|
+
swish function.
|
47
|
+
|
48
|
+
SwiGLU(x) = Swish(xW+b) * (xV+c)
|
49
|
+
See: https://paperswithcode.com/method/swiglu
|
50
|
+
"""
|
51
|
+
|
52
|
+
def forward(self, x: torch.Tensor):
|
53
|
+
x, y = x.chunk(2, dim=-1)
|
54
|
+
return F.silu(x) * y
|
55
|
+
|
56
|
+
|
42
57
|
def build_norm(dim: int, config: cfg.NormalizationConfig):
|
43
58
|
"""Builder function for normalizers.
|
44
59
|
|
@@ -61,9 +76,13 @@ def build_norm(dim: int, config: cfg.NormalizationConfig):
|
|
61
76
|
zero_centered_gamma=config.zero_centered,
|
62
77
|
)
|
63
78
|
elif config.type == cfg.NormalizationType.LAYER_NORM:
|
64
|
-
return
|
79
|
+
return normalization.LayerNorm(
|
80
|
+
dim, config.epsilon, config.enable_hlfb, config.use_input_shape
|
81
|
+
)
|
65
82
|
elif config.type == cfg.NormalizationType.GROUP_NORM:
|
66
|
-
return
|
83
|
+
return normalization.GroupNorm(
|
84
|
+
config.group_num, dim, config.epsilon, config.enable_hlfb
|
85
|
+
)
|
67
86
|
else:
|
68
87
|
raise ValueError("Unsupported norm type.")
|
69
88
|
|
@@ -73,7 +92,7 @@ def build_ff(dim: int, config: cfg.FeedForwardConfig):
|
|
73
92
|
|
74
93
|
Args:
|
75
94
|
dim (int): dimension of the input tensor.
|
76
|
-
config (`
|
95
|
+
config (`FeedForwardConfig` object): the model configuration.
|
77
96
|
|
78
97
|
Returns:
|
79
98
|
The constructed `nn.Module` feedforward layer.
|
@@ -91,11 +110,20 @@ def build_ff(dim: int, config: cfg.FeedForwardConfig):
|
|
91
110
|
|
92
111
|
activation = get_activation(config.activation)
|
93
112
|
|
113
|
+
pre_ff_norm = build_norm(dim, config.pre_ff_norm_config)
|
114
|
+
post_ff_norm = build_norm(dim, config.post_ff_norm_config)
|
115
|
+
|
94
116
|
return ff_module(
|
95
117
|
dim=dim,
|
96
118
|
hidden_dim=config.intermediate_size,
|
97
119
|
activation=activation,
|
98
120
|
use_bias=config.use_bias,
|
121
|
+
use_glu=(
|
122
|
+
config.activation.type == cfg.ActivationType.GE_GLU
|
123
|
+
or config.activation.type == cfg.ActivationType.SILU_GLU
|
124
|
+
),
|
125
|
+
pre_ff_norm=pre_ff_norm,
|
126
|
+
post_ff_norm=post_ff_norm,
|
99
127
|
)
|
100
128
|
|
101
129
|
|
@@ -127,5 +155,7 @@ def get_activation(config: cfg.ActivationConfig):
|
|
127
155
|
return GeGLU(config.dim_in, config.dim_out)
|
128
156
|
elif config.type == cfg.ActivationType.RELU:
|
129
157
|
return F.relu
|
158
|
+
elif config.type == cfg.ActivationType.SILU_GLU:
|
159
|
+
return SwiGLU()
|
130
160
|
else:
|
131
161
|
raise ValueError("Unsupported activation type.")
|