ai-edge-torch-nightly 0.2.0.dev20240714__py3-none-any.whl → 0.3.0.dev20240926__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_edge_torch/__init__.py +5 -4
- ai_edge_torch/_convert/conversion.py +112 -0
- ai_edge_torch/_convert/conversion_utils.py +64 -0
- ai_edge_torch/{convert → _convert}/converter.py +94 -48
- ai_edge_torch/_convert/fx_passes/__init__.py +22 -0
- ai_edge_torch/{convert → _convert}/fx_passes/build_aten_composite_pass.py +107 -44
- ai_edge_torch/{convert → _convert}/fx_passes/build_interpolate_composite_pass.py +23 -20
- ai_edge_torch/{convert → _convert}/fx_passes/inject_mlir_debuginfo_pass.py +5 -6
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/__init__.py +1 -1
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_check.py +39 -9
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_mark.py +2 -0
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +1 -0
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +17 -8
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +9 -8
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +31 -18
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +2 -2
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/pass_body.py +34 -24
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/utils.py +2 -0
- ai_edge_torch/_convert/signature.py +66 -0
- ai_edge_torch/_convert/test/test_convert.py +495 -0
- ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
- ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
- ai_edge_torch/{convert → _convert}/test/test_to_channel_last_io.py +5 -5
- ai_edge_torch/{convert → _convert}/to_channel_last_io.py +10 -3
- ai_edge_torch/config.py +27 -0
- ai_edge_torch/conftest.py +20 -0
- ai_edge_torch/debug/culprit.py +72 -40
- ai_edge_torch/debug/test/test_culprit.py +7 -5
- ai_edge_torch/debug/test/test_search_model.py +8 -7
- ai_edge_torch/debug/utils.py +14 -3
- ai_edge_torch/fx_pass_base.py +101 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/gemma/{gemma.py → gemma1.py} +69 -55
- ai_edge_torch/generative/examples/gemma/gemma2.py +267 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma2.py +57 -0
- ai_edge_torch/generative/examples/gemma/verify_util.py +143 -0
- ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/openelm/openelm.py +206 -0
- ai_edge_torch/generative/examples/openelm/verify.py +64 -0
- ai_edge_torch/generative/examples/phi/__init__.py +14 -0
- ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/phi/convert_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/{phi2 → phi}/phi2.py +70 -51
- ai_edge_torch/generative/examples/phi/phi3.py +286 -0
- ai_edge_torch/generative/examples/phi/verify.py +65 -0
- ai_edge_torch/generative/examples/phi/verify_phi3.py +70 -0
- ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
- ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/smollm/smollm.py +101 -0
- ai_edge_torch/generative/examples/smollm/verify.py +62 -0
- ai_edge_torch/generative/examples/stable_diffusion/attention.py +3 -1
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +83 -13
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +27 -14
- ai_edge_torch/generative/examples/stable_diffusion/decoder.py +74 -9
- ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +179 -37
- ai_edge_torch/generative/examples/stable_diffusion/encoder.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +83 -58
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +1 -0
- ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +4 -1
- ai_edge_torch/generative/examples/stable_diffusion/util.py +9 -3
- ai_edge_torch/generative/examples/t5/convert_to_tflite.py +28 -25
- ai_edge_torch/generative/examples/t5/t5.py +208 -159
- ai_edge_torch/generative/examples/t5/t5_attention.py +45 -30
- ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
- ai_edge_torch/generative/examples/test_models/toy_model.py +69 -41
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +50 -64
- ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +41 -39
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +67 -54
- ai_edge_torch/generative/examples/tiny_llama/verify.py +64 -0
- ai_edge_torch/generative/fx_passes/__init__.py +4 -5
- ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +10 -7
- ai_edge_torch/generative/layers/attention.py +141 -102
- ai_edge_torch/generative/layers/attention_utils.py +53 -12
- ai_edge_torch/generative/layers/builder.py +37 -7
- ai_edge_torch/generative/layers/feed_forward.py +39 -14
- ai_edge_torch/generative/layers/kv_cache.py +162 -50
- ai_edge_torch/generative/layers/model_config.py +84 -30
- ai_edge_torch/generative/layers/normalization.py +185 -7
- ai_edge_torch/generative/layers/rotary_position_embedding.py +6 -4
- ai_edge_torch/generative/layers/scaled_dot_product_attention.py +48 -21
- ai_edge_torch/generative/layers/unet/blocks_2d.py +136 -77
- ai_edge_torch/generative/layers/unet/builder.py +7 -4
- ai_edge_torch/generative/layers/unet/model_config.py +17 -15
- ai_edge_torch/generative/quantize/example.py +7 -8
- ai_edge_torch/generative/quantize/quant_recipe.py +10 -7
- ai_edge_torch/generative/quantize/quant_recipe_utils.py +12 -1
- ai_edge_torch/generative/quantize/quant_recipes.py +8 -0
- ai_edge_torch/generative/test/test_kv_cache.py +120 -0
- ai_edge_torch/generative/test/{loader_test.py → test_loader.py} +9 -7
- ai_edge_torch/generative/test/test_model_conversion.py +124 -188
- ai_edge_torch/generative/test/test_model_conversion_large.py +251 -0
- ai_edge_torch/generative/test/test_quantize.py +76 -60
- ai_edge_torch/generative/test/utils.py +54 -0
- ai_edge_torch/generative/utilities/converter.py +82 -0
- ai_edge_torch/generative/utilities/loader.py +120 -57
- ai_edge_torch/generative/utilities/stable_diffusion_loader.py +165 -57
- ai_edge_torch/generative/utilities/t5_loader.py +110 -81
- ai_edge_torch/generative/utilities/verifier.py +247 -0
- ai_edge_torch/hlfb/__init__.py +1 -1
- ai_edge_torch/hlfb/mark_pattern/__init__.py +9 -7
- ai_edge_torch/hlfb/mark_pattern/passes.py +23 -3
- ai_edge_torch/hlfb/mark_pattern/pattern.py +39 -30
- ai_edge_torch/hlfb/test/test_mark_pattern.py +46 -20
- ai_edge_torch/hlfb/test/test_stablehlo_composite_builder.py +24 -11
- ai_edge_torch/lowertools/__init__.py +18 -0
- ai_edge_torch/lowertools/_shim.py +80 -0
- ai_edge_torch/lowertools/common_utils.py +142 -0
- ai_edge_torch/lowertools/odml_torch_utils.py +255 -0
- ai_edge_torch/lowertools/test_utils.py +60 -0
- ai_edge_torch/lowertools/torch_xla_utils.py +284 -0
- ai_edge_torch/{generative/quantize/ai_edge_quantizer_glue → lowertools}/translate_recipe.py +29 -14
- ai_edge_torch/model.py +53 -18
- ai_edge_torch/odml_torch/__init__.py +20 -0
- ai_edge_torch/odml_torch/_torch_future.py +61 -0
- ai_edge_torch/odml_torch/_torch_library.py +19 -0
- ai_edge_torch/odml_torch/composite/__init__.py +16 -0
- ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
- ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
- ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
- ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
- ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
- ai_edge_torch/odml_torch/export.py +357 -0
- ai_edge_torch/odml_torch/export_utils.py +168 -0
- ai_edge_torch/odml_torch/jax_bridge/__init__.py +15 -0
- ai_edge_torch/odml_torch/jax_bridge/_wrap.py +150 -0
- ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
- ai_edge_torch/odml_torch/lowerings/__init__.py +25 -0
- ai_edge_torch/odml_torch/lowerings/_basic.py +258 -0
- ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
- ai_edge_torch/odml_torch/lowerings/_convolution.py +241 -0
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +252 -0
- ai_edge_torch/odml_torch/lowerings/_layer_norm.py +78 -0
- ai_edge_torch/odml_torch/lowerings/context.py +42 -0
- ai_edge_torch/odml_torch/lowerings/registry.py +96 -0
- ai_edge_torch/odml_torch/lowerings/utils.py +185 -0
- ai_edge_torch/odml_torch/passes/__init__.py +38 -0
- ai_edge_torch/odml_torch/tf_integration.py +194 -0
- ai_edge_torch/quantize/pt2e_quantizer.py +52 -24
- ai_edge_torch/quantize/pt2e_quantizer_utils.py +43 -23
- ai_edge_torch/quantize/quant_config.py +13 -9
- ai_edge_torch/testing/model_coverage/model_coverage.py +29 -16
- ai_edge_torch/version.py +16 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/METADATA +7 -3
- ai_edge_torch_nightly-0.3.0.dev20240926.dist-info/RECORD +177 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/WHEEL +1 -1
- ai_edge_torch/convert/conversion.py +0 -117
- ai_edge_torch/convert/conversion_utils.py +0 -400
- ai_edge_torch/convert/fx_passes/__init__.py +0 -59
- ai_edge_torch/convert/fx_passes/_pass_base.py +0 -49
- ai_edge_torch/convert/fx_passes/canonicalize_pass.py +0 -37
- ai_edge_torch/convert/test/test_convert.py +0 -311
- ai_edge_torch/convert/test/test_convert_composites.py +0 -192
- ai_edge_torch/convert/test/test_convert_multisig.py +0 -139
- ai_edge_torch/generative/examples/gemma/convert_to_tflite.py +0 -66
- ai_edge_torch/generative/examples/phi2/convert_to_tflite.py +0 -64
- ai_edge_torch/generative/examples/test_models/toy_model_with_external_kv_cache.py +0 -161
- ai_edge_torch/generative/quantize/ai_edge_quantizer_glue/__init__.py +0 -0
- ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/RECORD +0 -121
- /ai_edge_torch/{convert → _convert}/__init__.py +0 -0
- /ai_edge_torch/{convert → _convert}/test/__init__.py +0 -0
- /ai_edge_torch/generative/examples/{phi2 → openelm}/__init__.py +0 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/LICENSE +0 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/top_level.txt +0 -0
@@ -13,14 +13,13 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
15
|
|
16
|
-
import torch
|
17
|
-
from torch import nn
|
18
|
-
|
19
16
|
import ai_edge_torch.generative.layers.builder as layers_builder
|
20
17
|
import ai_edge_torch.generative.layers.model_config as layers_cfg
|
21
|
-
|
18
|
+
from ai_edge_torch.generative.layers.unet import blocks_2d
|
22
19
|
import ai_edge_torch.generative.layers.unet.model_config as unet_cfg
|
23
|
-
|
20
|
+
from ai_edge_torch.generative.utilities import stable_diffusion_loader
|
21
|
+
import torch
|
22
|
+
from torch import nn
|
24
23
|
|
25
24
|
_down_encoder_blocks_tensor_names = [
|
26
25
|
stable_diffusion_loader.DownEncoderBlockTensorNames(
|
@@ -39,9 +38,15 @@ _down_encoder_blocks_tensor_names = [
|
|
39
38
|
],
|
40
39
|
transformer_block_tensor_names=[
|
41
40
|
stable_diffusion_loader.TransformerBlockTensorNames(
|
42
|
-
pre_conv_norm=
|
43
|
-
|
44
|
-
|
41
|
+
pre_conv_norm=(
|
42
|
+
f"model.diffusion_model.input_blocks.{i*3+j+1}.1.norm"
|
43
|
+
),
|
44
|
+
conv_in=(
|
45
|
+
f"model.diffusion_model.input_blocks.{i*3+j+1}.1.proj_in"
|
46
|
+
),
|
47
|
+
conv_out=(
|
48
|
+
f"model.diffusion_model.input_blocks.{i*3+j+1}.1.proj_out"
|
49
|
+
),
|
45
50
|
self_attention=stable_diffusion_loader.AttentionBlockTensorNames(
|
46
51
|
norm=f"model.diffusion_model.input_blocks.{i*3+j+1}.1.transformer_blocks.0.norm1",
|
47
52
|
q_proj=f"model.diffusion_model.input_blocks.{i*3+j+1}.1.transformer_blocks.0.attn1.to_q",
|
@@ -80,7 +85,9 @@ _mid_block_tensor_names = stable_diffusion_loader.MidBlockTensorNames(
|
|
80
85
|
conv_1=f"model.diffusion_model.middle_block.{i}.in_layers.2",
|
81
86
|
norm_2=f"model.diffusion_model.middle_block.{i}.out_layers.0",
|
82
87
|
conv_2=f"model.diffusion_model.middle_block.{i}.out_layers.3",
|
83
|
-
time_embedding=
|
88
|
+
time_embedding=(
|
89
|
+
f"model.diffusion_model.middle_block.{i}.emb_layers.1"
|
90
|
+
),
|
84
91
|
)
|
85
92
|
for i in [0, 2]
|
86
93
|
],
|
@@ -117,8 +124,12 @@ _up_decoder_blocks_tensor_names = [
|
|
117
124
|
stable_diffusion_loader.SkipUpDecoderBlockTensorNames(
|
118
125
|
residual_block_tensor_names=[
|
119
126
|
stable_diffusion_loader.ResidualBlockTensorNames(
|
120
|
-
norm_1=
|
121
|
-
|
127
|
+
norm_1=(
|
128
|
+
f"model.diffusion_model.output_blocks.{i*3+j}.0.in_layers.0"
|
129
|
+
),
|
130
|
+
conv_1=(
|
131
|
+
f"model.diffusion_model.output_blocks.{i*3+j}.0.in_layers.2"
|
132
|
+
),
|
122
133
|
norm_2=f"model.diffusion_model.output_blocks.{i*3+j}.0.out_layers.0",
|
123
134
|
conv_2=f"model.diffusion_model.output_blocks.{i*3+j}.0.out_layers.3",
|
124
135
|
time_embedding=f"model.diffusion_model.output_blocks.{i*3+j}.0.emb_layers.1",
|
@@ -128,9 +139,15 @@ _up_decoder_blocks_tensor_names = [
|
|
128
139
|
],
|
129
140
|
transformer_block_tensor_names=[
|
130
141
|
stable_diffusion_loader.TransformerBlockTensorNames(
|
131
|
-
pre_conv_norm=
|
132
|
-
|
133
|
-
|
142
|
+
pre_conv_norm=(
|
143
|
+
f"model.diffusion_model.output_blocks.{i*3+j}.1.norm"
|
144
|
+
),
|
145
|
+
conv_in=(
|
146
|
+
f"model.diffusion_model.output_blocks.{i*3+j}.1.proj_in"
|
147
|
+
),
|
148
|
+
conv_out=(
|
149
|
+
f"model.diffusion_model.output_blocks.{i*3+j}.1.proj_out"
|
150
|
+
),
|
134
151
|
self_attention=stable_diffusion_loader.AttentionBlockTensorNames(
|
135
152
|
norm=f"model.diffusion_model.output_blocks.{i*3+j}.1.transformer_blocks.0.norm1",
|
136
153
|
q_proj=f"model.diffusion_model.output_blocks.{i*3+j}.1.transformer_blocks.0.attn1.to_q",
|
@@ -157,7 +174,9 @@ _up_decoder_blocks_tensor_names = [
|
|
157
174
|
else None,
|
158
175
|
upsample_conv=f"model.diffusion_model.output_blocks.{i*3+2}.2.conv"
|
159
176
|
if 0 < i < 3
|
160
|
-
else (
|
177
|
+
else (
|
178
|
+
f"model.diffusion_model.output_blocks.2.1.conv" if i == 0 else None
|
179
|
+
),
|
161
180
|
)
|
162
181
|
for i in range(4)
|
163
182
|
]
|
@@ -176,6 +195,31 @@ TENSOR_NAMES = stable_diffusion_loader.DiffusionModelLoader.TensorNames(
|
|
176
195
|
)
|
177
196
|
|
178
197
|
|
198
|
+
def build_attention_config(
|
199
|
+
num_heads,
|
200
|
+
dim,
|
201
|
+
num_query_groups,
|
202
|
+
rotary_percentage=0.0,
|
203
|
+
qkv_transpose_before_split=True,
|
204
|
+
qkv_use_bias=False,
|
205
|
+
output_proj_use_bias=True,
|
206
|
+
enable_kv_cache=False,
|
207
|
+
qkv_fused_interleaved=False,
|
208
|
+
):
|
209
|
+
|
210
|
+
return layers_cfg.AttentionConfig(
|
211
|
+
num_heads=num_heads,
|
212
|
+
head_dim=dim // num_heads,
|
213
|
+
num_query_groups=num_query_groups,
|
214
|
+
rotary_percentage=rotary_percentage,
|
215
|
+
qkv_transpose_before_split=qkv_transpose_before_split,
|
216
|
+
qkv_use_bias=qkv_use_bias,
|
217
|
+
output_proj_use_bias=output_proj_use_bias,
|
218
|
+
enable_kv_cache=enable_kv_cache,
|
219
|
+
qkv_fused_interleaved=qkv_fused_interleaved,
|
220
|
+
)
|
221
|
+
|
222
|
+
|
179
223
|
class TimeEmbedding(nn.Module):
|
180
224
|
|
181
225
|
def __init__(self, in_dim, out_dim):
|
@@ -248,17 +292,6 @@ class Diffusion(nn.Module):
|
|
248
292
|
config.in_channels, block_out_channels[0], kernel_size=3, padding=1
|
249
293
|
)
|
250
294
|
|
251
|
-
attention_config = layers_cfg.AttentionConfig(
|
252
|
-
num_heads=config.transformer_num_attention_heads,
|
253
|
-
num_query_groups=config.transformer_num_attention_heads,
|
254
|
-
rotary_percentage=0.0,
|
255
|
-
qkv_transpose_before_split=True,
|
256
|
-
qkv_use_bias=False,
|
257
|
-
output_proj_use_bias=True,
|
258
|
-
enable_kv_cache=False,
|
259
|
-
qkv_fused_interleaved=False,
|
260
|
-
)
|
261
|
-
|
262
295
|
# Down encoders.
|
263
296
|
down_encoders = []
|
264
297
|
output_channel = block_out_channels[0]
|
@@ -293,14 +326,26 @@ class Diffusion(nn.Module):
|
|
293
326
|
dim=output_channel,
|
294
327
|
attention_batch_size=config.transformer_batch_size,
|
295
328
|
normalization_config=config.transformer_norm_config,
|
296
|
-
attention_config=
|
329
|
+
attention_config=build_attention_config(
|
330
|
+
num_heads=config.transformer_num_attention_heads,
|
331
|
+
dim=output_channel,
|
332
|
+
num_query_groups=config.transformer_num_attention_heads,
|
333
|
+
),
|
334
|
+
enable_hlfb=False,
|
297
335
|
),
|
298
336
|
cross_attention_block_config=unet_cfg.CrossAttentionBlock2DConfig(
|
299
337
|
query_dim=output_channel,
|
300
338
|
cross_dim=config.transformer_cross_attention_dim,
|
339
|
+
hidden_dim=output_channel,
|
340
|
+
output_dim=output_channel,
|
301
341
|
attention_batch_size=config.transformer_batch_size,
|
302
342
|
normalization_config=config.transformer_norm_config,
|
303
|
-
attention_config=
|
343
|
+
attention_config=build_attention_config(
|
344
|
+
num_heads=config.transformer_num_attention_heads,
|
345
|
+
dim=output_channel,
|
346
|
+
num_query_groups=config.transformer_num_attention_heads,
|
347
|
+
),
|
348
|
+
enable_hlfb=False,
|
304
349
|
),
|
305
350
|
pre_conv_normalization_config=config.transformer_pre_conv_norm_config,
|
306
351
|
feed_forward_block_config=unet_cfg.FeedForwardBlock2DConfig(
|
@@ -353,14 +398,26 @@ class Diffusion(nn.Module):
|
|
353
398
|
dim=mid_block_channels,
|
354
399
|
attention_batch_size=config.transformer_batch_size,
|
355
400
|
normalization_config=config.transformer_norm_config,
|
356
|
-
attention_config=
|
401
|
+
attention_config=build_attention_config(
|
402
|
+
num_heads=config.transformer_num_attention_heads,
|
403
|
+
dim=mid_block_channels,
|
404
|
+
num_query_groups=config.transformer_num_attention_heads,
|
405
|
+
),
|
406
|
+
enable_hlfb=False,
|
357
407
|
),
|
358
408
|
cross_attention_block_config=unet_cfg.CrossAttentionBlock2DConfig(
|
359
409
|
query_dim=mid_block_channels,
|
360
410
|
cross_dim=config.transformer_cross_attention_dim,
|
411
|
+
hidden_dim=mid_block_channels,
|
412
|
+
output_dim=mid_block_channels,
|
361
413
|
attention_batch_size=config.transformer_batch_size,
|
362
414
|
normalization_config=config.transformer_norm_config,
|
363
|
-
attention_config=
|
415
|
+
attention_config=build_attention_config(
|
416
|
+
num_heads=config.transformer_num_attention_heads,
|
417
|
+
dim=mid_block_channels,
|
418
|
+
num_query_groups=config.transformer_num_attention_heads,
|
419
|
+
),
|
420
|
+
enable_hlfb=False,
|
364
421
|
),
|
365
422
|
pre_conv_normalization_config=config.transformer_pre_conv_norm_config,
|
366
423
|
feed_forward_block_config=unet_cfg.FeedForwardBlock2DConfig(
|
@@ -414,14 +471,26 @@ class Diffusion(nn.Module):
|
|
414
471
|
dim=output_channel,
|
415
472
|
attention_batch_size=config.transformer_batch_size,
|
416
473
|
normalization_config=config.transformer_norm_config,
|
417
|
-
attention_config=
|
474
|
+
attention_config=build_attention_config(
|
475
|
+
num_heads=config.transformer_num_attention_heads,
|
476
|
+
dim=output_channel,
|
477
|
+
num_query_groups=config.transformer_num_attention_heads,
|
478
|
+
),
|
479
|
+
enable_hlfb=False,
|
418
480
|
),
|
419
481
|
cross_attention_block_config=unet_cfg.CrossAttentionBlock2DConfig(
|
420
482
|
query_dim=output_channel,
|
421
483
|
cross_dim=config.transformer_cross_attention_dim,
|
484
|
+
hidden_dim=output_channel,
|
485
|
+
output_dim=output_channel,
|
422
486
|
attention_batch_size=config.transformer_batch_size,
|
423
487
|
normalization_config=config.transformer_norm_config,
|
424
|
-
attention_config=
|
488
|
+
attention_config=build_attention_config(
|
489
|
+
num_heads=config.transformer_num_attention_heads,
|
490
|
+
dim=output_channel,
|
491
|
+
num_query_groups=config.transformer_num_attention_heads,
|
492
|
+
),
|
493
|
+
enable_hlfb=False,
|
425
494
|
),
|
426
495
|
pre_conv_normalization_config=config.transformer_pre_conv_norm_config,
|
427
496
|
feed_forward_block_config=unet_cfg.FeedForwardBlock2DConfig(
|
@@ -469,7 +538,10 @@ class Diffusion(nn.Module):
|
|
469
538
|
layers_cfg.ActivationConfig(config.final_activation_type)
|
470
539
|
)
|
471
540
|
self.conv_out = nn.Conv2d(
|
472
|
-
reversed_block_out_channels[-1],
|
541
|
+
reversed_block_out_channels[-1],
|
542
|
+
config.out_channels,
|
543
|
+
kernel_size=3,
|
544
|
+
padding=1,
|
473
545
|
)
|
474
546
|
|
475
547
|
@torch.inference_mode
|
@@ -490,12 +562,15 @@ class Diffusion(nn.Module):
|
|
490
562
|
x = self.conv_in(latents)
|
491
563
|
skip_connection_tensors = [x]
|
492
564
|
for encoder in self.down_encoders:
|
493
|
-
x, hidden_states = encoder(
|
565
|
+
x, hidden_states = encoder(
|
566
|
+
x, time_emb, context, output_hidden_states=True
|
567
|
+
)
|
494
568
|
skip_connection_tensors.extend(hidden_states)
|
495
569
|
x = self.mid_block(x, time_emb, context)
|
496
570
|
for decoder in self.up_decoders:
|
497
571
|
encoder_tensors = [
|
498
|
-
skip_connection_tensors.pop()
|
572
|
+
skip_connection_tensors.pop()
|
573
|
+
for i in range(self.config.layers_per_block + 1)
|
499
574
|
]
|
500
575
|
x = decoder(x, encoder_tensors, time_emb, context)
|
501
576
|
x = self.final_norm(x)
|
@@ -512,7 +587,6 @@ def get_model_config(batch_size: int) -> unet_cfg.DiffusionModelConfig:
|
|
512
587
|
|
513
588
|
Retruns:
|
514
589
|
The configuration of diffusion model of Stable Diffusion v1.5.
|
515
|
-
|
516
590
|
"""
|
517
591
|
in_channels = 4
|
518
592
|
out_channels = 4
|
@@ -529,7 +603,7 @@ def get_model_config(batch_size: int) -> unet_cfg.DiffusionModelConfig:
|
|
529
603
|
# Transformer configs.
|
530
604
|
transformer_num_attention_heads = 8
|
531
605
|
transformer_batch_size = batch_size
|
532
|
-
transformer_cross_attention_dim = 768 # Embedding
|
606
|
+
transformer_cross_attention_dim = 768 # Embedding from CLIP model
|
533
607
|
transformer_pre_conv_norm_config = layers_cfg.NormalizationConfig(
|
534
608
|
layers_cfg.NormalizationType.GROUP_NORM, epsilon=1e-6, group_num=32
|
535
609
|
)
|
@@ -571,3 +645,71 @@ def get_model_config(batch_size: int) -> unet_cfg.DiffusionModelConfig:
|
|
571
645
|
final_norm_config=final_norm_config,
|
572
646
|
final_activation_type=final_activation_type,
|
573
647
|
)
|
648
|
+
|
649
|
+
|
650
|
+
def get_fake_model_config(batch_size: int) -> unet_cfg.DiffusionModelConfig:
|
651
|
+
"""Get fake configs for the Diffusion model of Stable Diffusion v1.5 for testing.
|
652
|
+
|
653
|
+
Args:
|
654
|
+
batch_size (int): the batch size of input.
|
655
|
+
|
656
|
+
Retruns:
|
657
|
+
The configuration of diffusion model of Stable Diffusion v1.5.
|
658
|
+
"""
|
659
|
+
in_channels = 4
|
660
|
+
out_channels = 4
|
661
|
+
block_out_channels = [2, 4, 8, 8]
|
662
|
+
layers_per_block = 1
|
663
|
+
downsample_padding = 1
|
664
|
+
|
665
|
+
# Residual configs.
|
666
|
+
residual_norm_config = layers_cfg.NormalizationConfig(
|
667
|
+
layers_cfg.NormalizationType.GROUP_NORM, group_num=2
|
668
|
+
)
|
669
|
+
residual_activation_type = layers_cfg.ActivationType.SILU
|
670
|
+
|
671
|
+
# Transformer configs.
|
672
|
+
transformer_num_attention_heads = 1
|
673
|
+
transformer_batch_size = batch_size
|
674
|
+
transformer_cross_attention_dim = 4 # Embedding from CLIP model
|
675
|
+
transformer_pre_conv_norm_config = layers_cfg.NormalizationConfig(
|
676
|
+
layers_cfg.NormalizationType.GROUP_NORM, epsilon=1e-6, group_num=2
|
677
|
+
)
|
678
|
+
transformer_norm_config = layers_cfg.NormalizationConfig(
|
679
|
+
layers_cfg.NormalizationType.LAYER_NORM
|
680
|
+
)
|
681
|
+
transformer_ff_activation_type = layers_cfg.ActivationType.GE_GLU
|
682
|
+
|
683
|
+
# Time embedding configs.
|
684
|
+
time_embedding_dim = 2
|
685
|
+
time_embedding_blocks_dim = 4
|
686
|
+
|
687
|
+
# Mid block configs.
|
688
|
+
mid_block_layers = 1
|
689
|
+
|
690
|
+
# Finaly layer configs.
|
691
|
+
final_norm_config = layers_cfg.NormalizationConfig(
|
692
|
+
layers_cfg.NormalizationType.GROUP_NORM, group_num=2
|
693
|
+
)
|
694
|
+
final_activation_type = layers_cfg.ActivationType.SILU
|
695
|
+
|
696
|
+
return unet_cfg.DiffusionModelConfig(
|
697
|
+
in_channels=in_channels,
|
698
|
+
out_channels=out_channels,
|
699
|
+
block_out_channels=block_out_channels,
|
700
|
+
layers_per_block=layers_per_block,
|
701
|
+
downsample_padding=downsample_padding,
|
702
|
+
residual_norm_config=residual_norm_config,
|
703
|
+
residual_activation_type=residual_activation_type,
|
704
|
+
transformer_batch_size=transformer_batch_size,
|
705
|
+
transformer_num_attention_heads=transformer_num_attention_heads,
|
706
|
+
transformer_cross_attention_dim=transformer_cross_attention_dim,
|
707
|
+
transformer_pre_conv_norm_config=transformer_pre_conv_norm_config,
|
708
|
+
transformer_norm_config=transformer_norm_config,
|
709
|
+
transformer_ff_activation_type=transformer_ff_activation_type,
|
710
|
+
mid_block_layers=mid_block_layers,
|
711
|
+
time_embedding_dim=time_embedding_dim,
|
712
|
+
time_embedding_blocks_dim=time_embedding_blocks_dim,
|
713
|
+
final_norm_config=final_norm_config,
|
714
|
+
final_activation_type=final_activation_type,
|
715
|
+
)
|
@@ -13,12 +13,11 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
15
|
|
16
|
+
from ai_edge_torch.generative.examples.stable_diffusion.attention import SelfAttention # NOQA
|
16
17
|
import torch
|
17
18
|
from torch import nn
|
18
19
|
from torch.nn import functional as F
|
19
20
|
|
20
|
-
from ai_edge_torch.generative.examples.stable_diffusion.attention import SelfAttention # NOQA
|
21
|
-
|
22
21
|
|
23
22
|
class AttentionBlock(nn.Module):
|
24
23
|
|
@@ -50,7 +49,9 @@ class ResidualBlock(nn.Module):
|
|
50
49
|
self.conv_1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
|
51
50
|
|
52
51
|
self.groupnorm_2 = nn.GroupNorm(32, out_channels)
|
53
|
-
self.conv_2 = nn.Conv2d(
|
52
|
+
self.conv_2 = nn.Conv2d(
|
53
|
+
out_channels, out_channels, kernel_size=3, padding=1
|
54
|
+
)
|
54
55
|
|
55
56
|
if in_channels == out_channels:
|
56
57
|
self.residual_layer = nn.Identity()
|
@@ -15,33 +15,44 @@
|
|
15
15
|
|
16
16
|
import argparse
|
17
17
|
import os
|
18
|
-
|
19
|
-
from typing import
|
18
|
+
import pathlib
|
19
|
+
from typing import Optional
|
20
20
|
|
21
|
+
import ai_edge_torch
|
22
|
+
from ai_edge_torch.generative.examples.stable_diffusion import samplers
|
23
|
+
from ai_edge_torch.generative.examples.stable_diffusion import tokenizer
|
24
|
+
from ai_edge_torch.generative.examples.stable_diffusion import util
|
21
25
|
import numpy as np
|
22
26
|
from PIL import Image
|
23
|
-
|
24
|
-
|
25
|
-
import ai_edge_torch.generative.examples.stable_diffusion.samplers as samplers
|
26
|
-
from ai_edge_torch.generative.examples.stable_diffusion.tokenizer import Tokenizer # NOQA
|
27
|
-
import ai_edge_torch.generative.examples.stable_diffusion.util as util
|
28
|
-
from ai_edge_torch.model import TfLiteModel
|
27
|
+
import tqdm
|
29
28
|
|
30
29
|
arg_parser = argparse.ArgumentParser()
|
31
30
|
arg_parser.add_argument(
|
32
31
|
'--tokenizer_vocab_dir',
|
33
32
|
type=str,
|
34
|
-
help=
|
33
|
+
help=(
|
34
|
+
'Directory to the tokenizer vocabulary files, which include'
|
35
|
+
' `merges.txt` and `vocab.json`'
|
36
|
+
),
|
35
37
|
required=True,
|
36
38
|
)
|
37
39
|
arg_parser.add_argument(
|
38
|
-
'--clip_ckpt',
|
40
|
+
'--clip_ckpt',
|
41
|
+
type=str,
|
42
|
+
help='Path to CLIP TFLite tflite file',
|
43
|
+
required=True,
|
39
44
|
)
|
40
45
|
arg_parser.add_argument(
|
41
|
-
'--diffusion_ckpt',
|
46
|
+
'--diffusion_ckpt',
|
47
|
+
type=str,
|
48
|
+
help='Path to diffusion tflite file',
|
49
|
+
required=True,
|
42
50
|
)
|
43
51
|
arg_parser.add_argument(
|
44
|
-
'--decoder_ckpt',
|
52
|
+
'--decoder_ckpt',
|
53
|
+
type=str,
|
54
|
+
help='Path to decoder tflite file',
|
55
|
+
required=True,
|
45
56
|
)
|
46
57
|
arg_parser.add_argument(
|
47
58
|
'--output_path',
|
@@ -56,14 +67,29 @@ arg_parser.add_argument(
|
|
56
67
|
help='The prompt to guide the image generation.',
|
57
68
|
)
|
58
69
|
arg_parser.add_argument(
|
59
|
-
'--n_inference_steps',
|
70
|
+
'--n_inference_steps',
|
71
|
+
default=20,
|
72
|
+
type=int,
|
73
|
+
help='The number of denoising steps.',
|
60
74
|
)
|
61
75
|
arg_parser.add_argument(
|
62
76
|
'--sampler',
|
63
77
|
default='k_euler',
|
64
78
|
type=str,
|
65
79
|
choices=['k_euler', 'k_euler_ancestral', 'k_lms'],
|
66
|
-
help=
|
80
|
+
help=(
|
81
|
+
'A sampler to be used to denoise the encoded image latents. Can be one'
|
82
|
+
' of `k_lms, `k_euler`, or `k_euler_ancestral`.'
|
83
|
+
),
|
84
|
+
)
|
85
|
+
arg_parser.add_argument(
|
86
|
+
'--seed',
|
87
|
+
default=None,
|
88
|
+
type=int,
|
89
|
+
help=(
|
90
|
+
'A seed to make generation deterministic. A random number is used if'
|
91
|
+
' unspecified.'
|
92
|
+
),
|
67
93
|
)
|
68
94
|
|
69
95
|
|
@@ -78,12 +104,12 @@ class StableDiffusion:
|
|
78
104
|
diffusion_ckpt: str,
|
79
105
|
decoder_ckpt: str
|
80
106
|
):
|
81
|
-
self.tokenizer = Tokenizer(tokenizer_vocab_dir)
|
82
|
-
self.clip = TfLiteModel.load(clip_ckpt)
|
83
|
-
self.decoder = TfLiteModel.load(decoder_ckpt)
|
84
|
-
self.diffusion = TfLiteModel.load(diffusion_ckpt)
|
107
|
+
self.tokenizer = tokenizer.Tokenizer(tokenizer_vocab_dir)
|
108
|
+
self.clip = ai_edge_torch.model.TfLiteModel.load(clip_ckpt)
|
109
|
+
self.decoder = ai_edge_torch.model.TfLiteModel.load(decoder_ckpt)
|
110
|
+
self.diffusion = ai_edge_torch.model.TfLiteModel.load(diffusion_ckpt)
|
85
111
|
if encoder_ckpt is not None:
|
86
|
-
self.encoder = TfLiteModel.load(encoder_ckpt)
|
112
|
+
self.encoder = ai_edge_torch.model.TfLiteModel.load(encoder_ckpt)
|
87
113
|
|
88
114
|
|
89
115
|
def run_tflite_pipeline(
|
@@ -101,38 +127,33 @@ def run_tflite_pipeline(
|
|
101
127
|
input_image: Optional[Image.Image] = None,
|
102
128
|
):
|
103
129
|
"""Run stable diffusion pipeline with tflite model.
|
104
|
-
|
105
|
-
|
106
|
-
|
107
|
-
The prompt to guide the image generation.
|
108
|
-
|
109
|
-
The
|
110
|
-
|
111
|
-
|
112
|
-
|
113
|
-
|
114
|
-
|
115
|
-
image
|
116
|
-
|
117
|
-
The
|
118
|
-
|
119
|
-
|
120
|
-
|
121
|
-
|
122
|
-
|
123
|
-
|
124
|
-
|
125
|
-
|
126
|
-
|
127
|
-
|
128
|
-
|
129
|
-
|
130
|
-
|
131
|
-
The number of denoising steps depends on the amount of noise initially added. When `strength` is 1,
|
132
|
-
added noise will be maximum and the denoising process will run for the full number of iterations
|
133
|
-
specified in `n_inference_steps`. A value of 1, therefore, essentially ignores `input_image`.
|
134
|
-
input_image:
|
135
|
-
Image which is served as the starting point for the image generation.
|
130
|
+
|
131
|
+
Args:
|
132
|
+
model: StableDiffsuion model.
|
133
|
+
prompt: The prompt to guide the image generation.
|
134
|
+
output_path: The path to the generated output image.
|
135
|
+
uncond_prompt: The prompt not to guide the image generation.
|
136
|
+
cfg_scale: Guidance scale of classifier-free guidance. Higher guidance scale
|
137
|
+
encourages to generate images that are closely linked to the text
|
138
|
+
`prompt`, usually at the expense of lower image quality.
|
139
|
+
height: The height in pixels of the generated image.
|
140
|
+
width: The width in pixels of the generated image.
|
141
|
+
sampler: A sampler to be used to denoise the encoded image latents. Can be
|
142
|
+
one of `k_lms, `k_euler`, or `k_euler_ancestral`.
|
143
|
+
n_inference_steps: The number of denoising steps. More denoising steps
|
144
|
+
usually lead to a higher quality image at the expense of slower inference.
|
145
|
+
This parameter will be modulated by `strength`.
|
146
|
+
seed: A seed to make generation deterministic.
|
147
|
+
strength: Conceptually, indicates how much to transform the reference
|
148
|
+
`input_image`. Must be between 0 and 1. `input_image` will be used as a
|
149
|
+
starting point, adding more noise to it the larger the `strength`. The
|
150
|
+
number of denoising steps depends on the amount of noise initially added.
|
151
|
+
When `strength` is 1, added noise will be maximum and the denoising
|
152
|
+
process will run for the full number of iterations specified in
|
153
|
+
`n_inference_steps`. A value of 1, therefore, essentially ignores
|
154
|
+
`input_image`.
|
155
|
+
input_image: Image which is served as the starting point for the image
|
156
|
+
generation.
|
136
157
|
"""
|
137
158
|
if not 0 < strength < 1:
|
138
159
|
raise ValueError('strength must be between 0 and 1')
|
@@ -148,7 +169,9 @@ def run_tflite_pipeline(
|
|
148
169
|
elif sampler == 'k_euler':
|
149
170
|
sampler = samplers.KEulerSampler(n_inference_steps=n_inference_steps)
|
150
171
|
elif sampler == 'k_euler_ancestral':
|
151
|
-
sampler = samplers.KEulerAncestralSampler(
|
172
|
+
sampler = samplers.KEulerAncestralSampler(
|
173
|
+
n_inference_steps=n_inference_steps
|
174
|
+
)
|
152
175
|
else:
|
153
176
|
raise ValueError(
|
154
177
|
'Unknown sampler value %s. '
|
@@ -163,14 +186,15 @@ def run_tflite_pipeline(
|
|
163
186
|
context = np.concatenate([cond_context, uncond_context], axis=0)
|
164
187
|
noise_shape = (1, 4, height // 8, width // 8)
|
165
188
|
|
166
|
-
# Initialization starts from input_image if any, otherwise, starts from a
|
189
|
+
# Initialization starts from input_image if any, otherwise, starts from a
|
190
|
+
# random sampling.
|
167
191
|
if input_image:
|
168
192
|
if not hasattr(model, 'encoder'):
|
169
193
|
raise AttributeError(
|
170
|
-
'Stable Diffusion must be initialized with encoder to accept
|
194
|
+
'Stable Diffusion must be initialized with encoder to accept'
|
195
|
+
' input_image.'
|
171
196
|
)
|
172
197
|
input_image = input_image.resize((width, height))
|
173
|
-
input_image_np = np.array(input_image).astype(np.float32)
|
174
198
|
input_image_np = util.rescale(input_image, (0, 255), (-1, 1))
|
175
199
|
input_image_np = util.move_channel(input_image_np, to='first')
|
176
200
|
encoder_noise = np.random.normal(size=noise_shape).astype(np.float32)
|
@@ -183,8 +207,8 @@ def run_tflite_pipeline(
|
|
183
207
|
latents *= sampler.initial_scale
|
184
208
|
|
185
209
|
# Diffusion process.
|
186
|
-
timesteps = tqdm(sampler.timesteps)
|
187
|
-
for
|
210
|
+
timesteps = tqdm.tqdm(sampler.timesteps)
|
211
|
+
for _, timestep in enumerate(timesteps):
|
188
212
|
time_embedding = util.get_time_embedding(timestep)
|
189
213
|
|
190
214
|
input_latents = latents * sampler.get_input_scale()
|
@@ -202,7 +226,7 @@ def run_tflite_pipeline(
|
|
202
226
|
images = util.rescale(images, (-1, 1), (0, 255), clamp=True)
|
203
227
|
images = util.move_channel(images, to='last')
|
204
228
|
if not os.path.exists(output_path):
|
205
|
-
Path(output_path).parent.mkdir(parents=True, exist_ok=True)
|
229
|
+
pathlib.Path(output_path).parent.mkdir(parents=True, exist_ok=True)
|
206
230
|
Image.fromarray(images[0].astype(np.uint8)).save(output_path)
|
207
231
|
|
208
232
|
|
@@ -219,4 +243,5 @@ if __name__ == '__main__':
|
|
219
243
|
output_path=args.output_path,
|
220
244
|
sampler=args.sampler,
|
221
245
|
n_inference_steps=args.n_inference_steps,
|
246
|
+
seed=args.seed,
|
222
247
|
)
|
@@ -13,10 +13,9 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
15
|
|
16
|
-
import numpy as np
|
17
|
-
|
18
16
|
from ai_edge_torch.generative.examples.stable_diffusion import util
|
19
17
|
from ai_edge_torch.generative.examples.stable_diffusion.samplers.sampler import SamplerInterface # NOQA
|
18
|
+
import numpy as np
|
20
19
|
|
21
20
|
|
22
21
|
class KEulerSampler(SamplerInterface):
|
@@ -46,7 +45,9 @@ class KEulerSampler(SamplerInterface):
|
|
46
45
|
|
47
46
|
def set_strength(self, strength=1):
|
48
47
|
start_step = self.n_inference_steps - int(self.n_inference_steps * strength)
|
49
|
-
self.timesteps = np.linspace(
|
48
|
+
self.timesteps = np.linspace(
|
49
|
+
self.n_training_steps - 1, 0, self.n_inference_steps
|
50
|
+
)
|
50
51
|
self.timesteps = self.timesteps[start_step:]
|
51
52
|
self.initial_scale = self.sigmas[start_step]
|
52
53
|
self.step_count = start_step
|
@@ -13,10 +13,9 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
15
|
|
16
|
-
import numpy as np
|
17
|
-
|
18
16
|
from ai_edge_torch.generative.examples.stable_diffusion import util
|
19
17
|
from ai_edge_torch.generative.examples.stable_diffusion.samplers.sampler import SamplerInterface # NOQA
|
18
|
+
import numpy as np
|
20
19
|
|
21
20
|
|
22
21
|
class KEulerAncestralSampler(SamplerInterface):
|
@@ -46,7 +45,9 @@ class KEulerAncestralSampler(SamplerInterface):
|
|
46
45
|
|
47
46
|
def set_strength(self, strength=1):
|
48
47
|
start_step = self.n_inference_steps - int(self.n_inference_steps * strength)
|
49
|
-
self.timesteps = np.linspace(
|
48
|
+
self.timesteps = np.linspace(
|
49
|
+
self.n_training_steps - 1, 0, self.n_inference_steps
|
50
|
+
)
|
50
51
|
self.timesteps = self.timesteps[start_step:]
|
51
52
|
self.initial_scale = self.sigmas[start_step]
|
52
53
|
self.step_count = start_step
|
@@ -13,10 +13,9 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
15
|
|
16
|
-
import numpy as np
|
17
|
-
|
18
16
|
from ai_edge_torch.generative.examples.stable_diffusion import util
|
19
17
|
from ai_edge_torch.generative.examples.stable_diffusion.samplers.sampler import SamplerInterface # NOQA
|
18
|
+
import numpy as np
|
20
19
|
|
21
20
|
|
22
21
|
class KLMSSampler(SamplerInterface):
|
@@ -48,7 +47,9 @@ class KLMSSampler(SamplerInterface):
|
|
48
47
|
|
49
48
|
def set_strength(self, strength=1):
|
50
49
|
start_step = self.n_inference_steps - int(self.n_inference_steps * strength)
|
51
|
-
self.timesteps = np.linspace(
|
50
|
+
self.timesteps = np.linspace(
|
51
|
+
self.n_training_steps - 1, 0, self.n_inference_steps
|
52
|
+
)
|
52
53
|
self.timesteps = self.timesteps[start_step:]
|
53
54
|
self.initial_scale = self.sigmas[start_step]
|
54
55
|
self.step_count = start_step
|