ai-edge-torch-nightly 0.2.0.dev20240714__py3-none-any.whl → 0.3.0.dev20240926__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (169) hide show
  1. ai_edge_torch/__init__.py +5 -4
  2. ai_edge_torch/_convert/conversion.py +112 -0
  3. ai_edge_torch/_convert/conversion_utils.py +64 -0
  4. ai_edge_torch/{convert → _convert}/converter.py +94 -48
  5. ai_edge_torch/_convert/fx_passes/__init__.py +22 -0
  6. ai_edge_torch/{convert → _convert}/fx_passes/build_aten_composite_pass.py +107 -44
  7. ai_edge_torch/{convert → _convert}/fx_passes/build_interpolate_composite_pass.py +23 -20
  8. ai_edge_torch/{convert → _convert}/fx_passes/inject_mlir_debuginfo_pass.py +5 -6
  9. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/__init__.py +1 -1
  10. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_check.py +39 -9
  11. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_mark.py +2 -0
  12. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +1 -0
  13. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +17 -8
  14. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +9 -8
  15. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +31 -18
  16. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +2 -2
  17. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/pass_body.py +34 -24
  18. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/utils.py +2 -0
  19. ai_edge_torch/_convert/signature.py +66 -0
  20. ai_edge_torch/_convert/test/test_convert.py +495 -0
  21. ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
  22. ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
  23. ai_edge_torch/{convert → _convert}/test/test_to_channel_last_io.py +5 -5
  24. ai_edge_torch/{convert → _convert}/to_channel_last_io.py +10 -3
  25. ai_edge_torch/config.py +27 -0
  26. ai_edge_torch/conftest.py +20 -0
  27. ai_edge_torch/debug/culprit.py +72 -40
  28. ai_edge_torch/debug/test/test_culprit.py +7 -5
  29. ai_edge_torch/debug/test/test_search_model.py +8 -7
  30. ai_edge_torch/debug/utils.py +14 -3
  31. ai_edge_torch/fx_pass_base.py +101 -0
  32. ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +68 -0
  33. ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +68 -0
  34. ai_edge_torch/generative/examples/gemma/{gemma.py → gemma1.py} +69 -55
  35. ai_edge_torch/generative/examples/gemma/gemma2.py +267 -0
  36. ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
  37. ai_edge_torch/generative/examples/gemma/verify_gemma2.py +57 -0
  38. ai_edge_torch/generative/examples/gemma/verify_util.py +143 -0
  39. ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +68 -0
  40. ai_edge_torch/generative/examples/openelm/openelm.py +206 -0
  41. ai_edge_torch/generative/examples/openelm/verify.py +64 -0
  42. ai_edge_torch/generative/examples/phi/__init__.py +14 -0
  43. ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +68 -0
  44. ai_edge_torch/generative/examples/phi/convert_to_tflite.py +68 -0
  45. ai_edge_torch/generative/examples/{phi2 → phi}/phi2.py +70 -51
  46. ai_edge_torch/generative/examples/phi/phi3.py +286 -0
  47. ai_edge_torch/generative/examples/phi/verify.py +65 -0
  48. ai_edge_torch/generative/examples/phi/verify_phi3.py +70 -0
  49. ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
  50. ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +68 -0
  51. ai_edge_torch/generative/examples/smollm/smollm.py +101 -0
  52. ai_edge_torch/generative/examples/smollm/verify.py +62 -0
  53. ai_edge_torch/generative/examples/stable_diffusion/attention.py +3 -1
  54. ai_edge_torch/generative/examples/stable_diffusion/clip.py +83 -13
  55. ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +27 -14
  56. ai_edge_torch/generative/examples/stable_diffusion/decoder.py +74 -9
  57. ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +179 -37
  58. ai_edge_torch/generative/examples/stable_diffusion/encoder.py +4 -3
  59. ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +83 -58
  60. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +4 -3
  61. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +4 -3
  62. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +4 -3
  63. ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +1 -0
  64. ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +4 -1
  65. ai_edge_torch/generative/examples/stable_diffusion/util.py +9 -3
  66. ai_edge_torch/generative/examples/t5/convert_to_tflite.py +28 -25
  67. ai_edge_torch/generative/examples/t5/t5.py +208 -159
  68. ai_edge_torch/generative/examples/t5/t5_attention.py +45 -30
  69. ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
  70. ai_edge_torch/generative/examples/test_models/toy_model.py +69 -41
  71. ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +50 -64
  72. ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
  73. ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +41 -39
  74. ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +67 -54
  75. ai_edge_torch/generative/examples/tiny_llama/verify.py +64 -0
  76. ai_edge_torch/generative/fx_passes/__init__.py +4 -5
  77. ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +10 -7
  78. ai_edge_torch/generative/layers/attention.py +141 -102
  79. ai_edge_torch/generative/layers/attention_utils.py +53 -12
  80. ai_edge_torch/generative/layers/builder.py +37 -7
  81. ai_edge_torch/generative/layers/feed_forward.py +39 -14
  82. ai_edge_torch/generative/layers/kv_cache.py +162 -50
  83. ai_edge_torch/generative/layers/model_config.py +84 -30
  84. ai_edge_torch/generative/layers/normalization.py +185 -7
  85. ai_edge_torch/generative/layers/rotary_position_embedding.py +6 -4
  86. ai_edge_torch/generative/layers/scaled_dot_product_attention.py +48 -21
  87. ai_edge_torch/generative/layers/unet/blocks_2d.py +136 -77
  88. ai_edge_torch/generative/layers/unet/builder.py +7 -4
  89. ai_edge_torch/generative/layers/unet/model_config.py +17 -15
  90. ai_edge_torch/generative/quantize/example.py +7 -8
  91. ai_edge_torch/generative/quantize/quant_recipe.py +10 -7
  92. ai_edge_torch/generative/quantize/quant_recipe_utils.py +12 -1
  93. ai_edge_torch/generative/quantize/quant_recipes.py +8 -0
  94. ai_edge_torch/generative/test/test_kv_cache.py +120 -0
  95. ai_edge_torch/generative/test/{loader_test.py → test_loader.py} +9 -7
  96. ai_edge_torch/generative/test/test_model_conversion.py +124 -188
  97. ai_edge_torch/generative/test/test_model_conversion_large.py +251 -0
  98. ai_edge_torch/generative/test/test_quantize.py +76 -60
  99. ai_edge_torch/generative/test/utils.py +54 -0
  100. ai_edge_torch/generative/utilities/converter.py +82 -0
  101. ai_edge_torch/generative/utilities/loader.py +120 -57
  102. ai_edge_torch/generative/utilities/stable_diffusion_loader.py +165 -57
  103. ai_edge_torch/generative/utilities/t5_loader.py +110 -81
  104. ai_edge_torch/generative/utilities/verifier.py +247 -0
  105. ai_edge_torch/hlfb/__init__.py +1 -1
  106. ai_edge_torch/hlfb/mark_pattern/__init__.py +9 -7
  107. ai_edge_torch/hlfb/mark_pattern/passes.py +23 -3
  108. ai_edge_torch/hlfb/mark_pattern/pattern.py +39 -30
  109. ai_edge_torch/hlfb/test/test_mark_pattern.py +46 -20
  110. ai_edge_torch/hlfb/test/test_stablehlo_composite_builder.py +24 -11
  111. ai_edge_torch/lowertools/__init__.py +18 -0
  112. ai_edge_torch/lowertools/_shim.py +80 -0
  113. ai_edge_torch/lowertools/common_utils.py +142 -0
  114. ai_edge_torch/lowertools/odml_torch_utils.py +255 -0
  115. ai_edge_torch/lowertools/test_utils.py +60 -0
  116. ai_edge_torch/lowertools/torch_xla_utils.py +284 -0
  117. ai_edge_torch/{generative/quantize/ai_edge_quantizer_glue → lowertools}/translate_recipe.py +29 -14
  118. ai_edge_torch/model.py +53 -18
  119. ai_edge_torch/odml_torch/__init__.py +20 -0
  120. ai_edge_torch/odml_torch/_torch_future.py +61 -0
  121. ai_edge_torch/odml_torch/_torch_library.py +19 -0
  122. ai_edge_torch/odml_torch/composite/__init__.py +16 -0
  123. ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
  124. ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
  125. ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
  126. ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
  127. ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
  128. ai_edge_torch/odml_torch/export.py +357 -0
  129. ai_edge_torch/odml_torch/export_utils.py +168 -0
  130. ai_edge_torch/odml_torch/jax_bridge/__init__.py +15 -0
  131. ai_edge_torch/odml_torch/jax_bridge/_wrap.py +150 -0
  132. ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
  133. ai_edge_torch/odml_torch/lowerings/__init__.py +25 -0
  134. ai_edge_torch/odml_torch/lowerings/_basic.py +258 -0
  135. ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
  136. ai_edge_torch/odml_torch/lowerings/_convolution.py +241 -0
  137. ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +252 -0
  138. ai_edge_torch/odml_torch/lowerings/_layer_norm.py +78 -0
  139. ai_edge_torch/odml_torch/lowerings/context.py +42 -0
  140. ai_edge_torch/odml_torch/lowerings/registry.py +96 -0
  141. ai_edge_torch/odml_torch/lowerings/utils.py +185 -0
  142. ai_edge_torch/odml_torch/passes/__init__.py +38 -0
  143. ai_edge_torch/odml_torch/tf_integration.py +194 -0
  144. ai_edge_torch/quantize/pt2e_quantizer.py +52 -24
  145. ai_edge_torch/quantize/pt2e_quantizer_utils.py +43 -23
  146. ai_edge_torch/quantize/quant_config.py +13 -9
  147. ai_edge_torch/testing/model_coverage/model_coverage.py +29 -16
  148. ai_edge_torch/version.py +16 -0
  149. {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/METADATA +7 -3
  150. ai_edge_torch_nightly-0.3.0.dev20240926.dist-info/RECORD +177 -0
  151. {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/WHEEL +1 -1
  152. ai_edge_torch/convert/conversion.py +0 -117
  153. ai_edge_torch/convert/conversion_utils.py +0 -400
  154. ai_edge_torch/convert/fx_passes/__init__.py +0 -59
  155. ai_edge_torch/convert/fx_passes/_pass_base.py +0 -49
  156. ai_edge_torch/convert/fx_passes/canonicalize_pass.py +0 -37
  157. ai_edge_torch/convert/test/test_convert.py +0 -311
  158. ai_edge_torch/convert/test/test_convert_composites.py +0 -192
  159. ai_edge_torch/convert/test/test_convert_multisig.py +0 -139
  160. ai_edge_torch/generative/examples/gemma/convert_to_tflite.py +0 -66
  161. ai_edge_torch/generative/examples/phi2/convert_to_tflite.py +0 -64
  162. ai_edge_torch/generative/examples/test_models/toy_model_with_external_kv_cache.py +0 -161
  163. ai_edge_torch/generative/quantize/ai_edge_quantizer_glue/__init__.py +0 -0
  164. ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/RECORD +0 -121
  165. /ai_edge_torch/{convert → _convert}/__init__.py +0 -0
  166. /ai_edge_torch/{convert → _convert}/test/__init__.py +0 -0
  167. /ai_edge_torch/generative/examples/{phi2 → openelm}/__init__.py +0 -0
  168. {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/LICENSE +0 -0
  169. {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/top_level.txt +0 -0
@@ -13,14 +13,13 @@
13
13
  # limitations under the License.
14
14
  # ==============================================================================
15
15
 
16
- import torch
17
- from torch import nn
18
-
19
16
  import ai_edge_torch.generative.layers.builder as layers_builder
20
17
  import ai_edge_torch.generative.layers.model_config as layers_cfg
21
- import ai_edge_torch.generative.layers.unet.blocks_2d as blocks_2d
18
+ from ai_edge_torch.generative.layers.unet import blocks_2d
22
19
  import ai_edge_torch.generative.layers.unet.model_config as unet_cfg
23
- import ai_edge_torch.generative.utilities.stable_diffusion_loader as stable_diffusion_loader
20
+ from ai_edge_torch.generative.utilities import stable_diffusion_loader
21
+ import torch
22
+ from torch import nn
24
23
 
25
24
  _down_encoder_blocks_tensor_names = [
26
25
  stable_diffusion_loader.DownEncoderBlockTensorNames(
@@ -39,9 +38,15 @@ _down_encoder_blocks_tensor_names = [
39
38
  ],
40
39
  transformer_block_tensor_names=[
41
40
  stable_diffusion_loader.TransformerBlockTensorNames(
42
- pre_conv_norm=f"model.diffusion_model.input_blocks.{i*3+j+1}.1.norm",
43
- conv_in=f"model.diffusion_model.input_blocks.{i*3+j+1}.1.proj_in",
44
- conv_out=f"model.diffusion_model.input_blocks.{i*3+j+1}.1.proj_out",
41
+ pre_conv_norm=(
42
+ f"model.diffusion_model.input_blocks.{i*3+j+1}.1.norm"
43
+ ),
44
+ conv_in=(
45
+ f"model.diffusion_model.input_blocks.{i*3+j+1}.1.proj_in"
46
+ ),
47
+ conv_out=(
48
+ f"model.diffusion_model.input_blocks.{i*3+j+1}.1.proj_out"
49
+ ),
45
50
  self_attention=stable_diffusion_loader.AttentionBlockTensorNames(
46
51
  norm=f"model.diffusion_model.input_blocks.{i*3+j+1}.1.transformer_blocks.0.norm1",
47
52
  q_proj=f"model.diffusion_model.input_blocks.{i*3+j+1}.1.transformer_blocks.0.attn1.to_q",
@@ -80,7 +85,9 @@ _mid_block_tensor_names = stable_diffusion_loader.MidBlockTensorNames(
80
85
  conv_1=f"model.diffusion_model.middle_block.{i}.in_layers.2",
81
86
  norm_2=f"model.diffusion_model.middle_block.{i}.out_layers.0",
82
87
  conv_2=f"model.diffusion_model.middle_block.{i}.out_layers.3",
83
- time_embedding=f"model.diffusion_model.middle_block.{i}.emb_layers.1",
88
+ time_embedding=(
89
+ f"model.diffusion_model.middle_block.{i}.emb_layers.1"
90
+ ),
84
91
  )
85
92
  for i in [0, 2]
86
93
  ],
@@ -117,8 +124,12 @@ _up_decoder_blocks_tensor_names = [
117
124
  stable_diffusion_loader.SkipUpDecoderBlockTensorNames(
118
125
  residual_block_tensor_names=[
119
126
  stable_diffusion_loader.ResidualBlockTensorNames(
120
- norm_1=f"model.diffusion_model.output_blocks.{i*3+j}.0.in_layers.0",
121
- conv_1=f"model.diffusion_model.output_blocks.{i*3+j}.0.in_layers.2",
127
+ norm_1=(
128
+ f"model.diffusion_model.output_blocks.{i*3+j}.0.in_layers.0"
129
+ ),
130
+ conv_1=(
131
+ f"model.diffusion_model.output_blocks.{i*3+j}.0.in_layers.2"
132
+ ),
122
133
  norm_2=f"model.diffusion_model.output_blocks.{i*3+j}.0.out_layers.0",
123
134
  conv_2=f"model.diffusion_model.output_blocks.{i*3+j}.0.out_layers.3",
124
135
  time_embedding=f"model.diffusion_model.output_blocks.{i*3+j}.0.emb_layers.1",
@@ -128,9 +139,15 @@ _up_decoder_blocks_tensor_names = [
128
139
  ],
129
140
  transformer_block_tensor_names=[
130
141
  stable_diffusion_loader.TransformerBlockTensorNames(
131
- pre_conv_norm=f"model.diffusion_model.output_blocks.{i*3+j}.1.norm",
132
- conv_in=f"model.diffusion_model.output_blocks.{i*3+j}.1.proj_in",
133
- conv_out=f"model.diffusion_model.output_blocks.{i*3+j}.1.proj_out",
142
+ pre_conv_norm=(
143
+ f"model.diffusion_model.output_blocks.{i*3+j}.1.norm"
144
+ ),
145
+ conv_in=(
146
+ f"model.diffusion_model.output_blocks.{i*3+j}.1.proj_in"
147
+ ),
148
+ conv_out=(
149
+ f"model.diffusion_model.output_blocks.{i*3+j}.1.proj_out"
150
+ ),
134
151
  self_attention=stable_diffusion_loader.AttentionBlockTensorNames(
135
152
  norm=f"model.diffusion_model.output_blocks.{i*3+j}.1.transformer_blocks.0.norm1",
136
153
  q_proj=f"model.diffusion_model.output_blocks.{i*3+j}.1.transformer_blocks.0.attn1.to_q",
@@ -157,7 +174,9 @@ _up_decoder_blocks_tensor_names = [
157
174
  else None,
158
175
  upsample_conv=f"model.diffusion_model.output_blocks.{i*3+2}.2.conv"
159
176
  if 0 < i < 3
160
- else (f"model.diffusion_model.output_blocks.2.1.conv" if i == 0 else None),
177
+ else (
178
+ f"model.diffusion_model.output_blocks.2.1.conv" if i == 0 else None
179
+ ),
161
180
  )
162
181
  for i in range(4)
163
182
  ]
@@ -176,6 +195,31 @@ TENSOR_NAMES = stable_diffusion_loader.DiffusionModelLoader.TensorNames(
176
195
  )
177
196
 
178
197
 
198
+ def build_attention_config(
199
+ num_heads,
200
+ dim,
201
+ num_query_groups,
202
+ rotary_percentage=0.0,
203
+ qkv_transpose_before_split=True,
204
+ qkv_use_bias=False,
205
+ output_proj_use_bias=True,
206
+ enable_kv_cache=False,
207
+ qkv_fused_interleaved=False,
208
+ ):
209
+
210
+ return layers_cfg.AttentionConfig(
211
+ num_heads=num_heads,
212
+ head_dim=dim // num_heads,
213
+ num_query_groups=num_query_groups,
214
+ rotary_percentage=rotary_percentage,
215
+ qkv_transpose_before_split=qkv_transpose_before_split,
216
+ qkv_use_bias=qkv_use_bias,
217
+ output_proj_use_bias=output_proj_use_bias,
218
+ enable_kv_cache=enable_kv_cache,
219
+ qkv_fused_interleaved=qkv_fused_interleaved,
220
+ )
221
+
222
+
179
223
  class TimeEmbedding(nn.Module):
180
224
 
181
225
  def __init__(self, in_dim, out_dim):
@@ -248,17 +292,6 @@ class Diffusion(nn.Module):
248
292
  config.in_channels, block_out_channels[0], kernel_size=3, padding=1
249
293
  )
250
294
 
251
- attention_config = layers_cfg.AttentionConfig(
252
- num_heads=config.transformer_num_attention_heads,
253
- num_query_groups=config.transformer_num_attention_heads,
254
- rotary_percentage=0.0,
255
- qkv_transpose_before_split=True,
256
- qkv_use_bias=False,
257
- output_proj_use_bias=True,
258
- enable_kv_cache=False,
259
- qkv_fused_interleaved=False,
260
- )
261
-
262
295
  # Down encoders.
263
296
  down_encoders = []
264
297
  output_channel = block_out_channels[0]
@@ -293,14 +326,26 @@ class Diffusion(nn.Module):
293
326
  dim=output_channel,
294
327
  attention_batch_size=config.transformer_batch_size,
295
328
  normalization_config=config.transformer_norm_config,
296
- attention_config=attention_config,
329
+ attention_config=build_attention_config(
330
+ num_heads=config.transformer_num_attention_heads,
331
+ dim=output_channel,
332
+ num_query_groups=config.transformer_num_attention_heads,
333
+ ),
334
+ enable_hlfb=False,
297
335
  ),
298
336
  cross_attention_block_config=unet_cfg.CrossAttentionBlock2DConfig(
299
337
  query_dim=output_channel,
300
338
  cross_dim=config.transformer_cross_attention_dim,
339
+ hidden_dim=output_channel,
340
+ output_dim=output_channel,
301
341
  attention_batch_size=config.transformer_batch_size,
302
342
  normalization_config=config.transformer_norm_config,
303
- attention_config=attention_config,
343
+ attention_config=build_attention_config(
344
+ num_heads=config.transformer_num_attention_heads,
345
+ dim=output_channel,
346
+ num_query_groups=config.transformer_num_attention_heads,
347
+ ),
348
+ enable_hlfb=False,
304
349
  ),
305
350
  pre_conv_normalization_config=config.transformer_pre_conv_norm_config,
306
351
  feed_forward_block_config=unet_cfg.FeedForwardBlock2DConfig(
@@ -353,14 +398,26 @@ class Diffusion(nn.Module):
353
398
  dim=mid_block_channels,
354
399
  attention_batch_size=config.transformer_batch_size,
355
400
  normalization_config=config.transformer_norm_config,
356
- attention_config=attention_config,
401
+ attention_config=build_attention_config(
402
+ num_heads=config.transformer_num_attention_heads,
403
+ dim=mid_block_channels,
404
+ num_query_groups=config.transformer_num_attention_heads,
405
+ ),
406
+ enable_hlfb=False,
357
407
  ),
358
408
  cross_attention_block_config=unet_cfg.CrossAttentionBlock2DConfig(
359
409
  query_dim=mid_block_channels,
360
410
  cross_dim=config.transformer_cross_attention_dim,
411
+ hidden_dim=mid_block_channels,
412
+ output_dim=mid_block_channels,
361
413
  attention_batch_size=config.transformer_batch_size,
362
414
  normalization_config=config.transformer_norm_config,
363
- attention_config=attention_config,
415
+ attention_config=build_attention_config(
416
+ num_heads=config.transformer_num_attention_heads,
417
+ dim=mid_block_channels,
418
+ num_query_groups=config.transformer_num_attention_heads,
419
+ ),
420
+ enable_hlfb=False,
364
421
  ),
365
422
  pre_conv_normalization_config=config.transformer_pre_conv_norm_config,
366
423
  feed_forward_block_config=unet_cfg.FeedForwardBlock2DConfig(
@@ -414,14 +471,26 @@ class Diffusion(nn.Module):
414
471
  dim=output_channel,
415
472
  attention_batch_size=config.transformer_batch_size,
416
473
  normalization_config=config.transformer_norm_config,
417
- attention_config=attention_config,
474
+ attention_config=build_attention_config(
475
+ num_heads=config.transformer_num_attention_heads,
476
+ dim=output_channel,
477
+ num_query_groups=config.transformer_num_attention_heads,
478
+ ),
479
+ enable_hlfb=False,
418
480
  ),
419
481
  cross_attention_block_config=unet_cfg.CrossAttentionBlock2DConfig(
420
482
  query_dim=output_channel,
421
483
  cross_dim=config.transformer_cross_attention_dim,
484
+ hidden_dim=output_channel,
485
+ output_dim=output_channel,
422
486
  attention_batch_size=config.transformer_batch_size,
423
487
  normalization_config=config.transformer_norm_config,
424
- attention_config=attention_config,
488
+ attention_config=build_attention_config(
489
+ num_heads=config.transformer_num_attention_heads,
490
+ dim=output_channel,
491
+ num_query_groups=config.transformer_num_attention_heads,
492
+ ),
493
+ enable_hlfb=False,
425
494
  ),
426
495
  pre_conv_normalization_config=config.transformer_pre_conv_norm_config,
427
496
  feed_forward_block_config=unet_cfg.FeedForwardBlock2DConfig(
@@ -469,7 +538,10 @@ class Diffusion(nn.Module):
469
538
  layers_cfg.ActivationConfig(config.final_activation_type)
470
539
  )
471
540
  self.conv_out = nn.Conv2d(
472
- reversed_block_out_channels[-1], config.out_channels, kernel_size=3, padding=1
541
+ reversed_block_out_channels[-1],
542
+ config.out_channels,
543
+ kernel_size=3,
544
+ padding=1,
473
545
  )
474
546
 
475
547
  @torch.inference_mode
@@ -490,12 +562,15 @@ class Diffusion(nn.Module):
490
562
  x = self.conv_in(latents)
491
563
  skip_connection_tensors = [x]
492
564
  for encoder in self.down_encoders:
493
- x, hidden_states = encoder(x, time_emb, context, output_hidden_states=True)
565
+ x, hidden_states = encoder(
566
+ x, time_emb, context, output_hidden_states=True
567
+ )
494
568
  skip_connection_tensors.extend(hidden_states)
495
569
  x = self.mid_block(x, time_emb, context)
496
570
  for decoder in self.up_decoders:
497
571
  encoder_tensors = [
498
- skip_connection_tensors.pop() for i in range(self.config.layers_per_block + 1)
572
+ skip_connection_tensors.pop()
573
+ for i in range(self.config.layers_per_block + 1)
499
574
  ]
500
575
  x = decoder(x, encoder_tensors, time_emb, context)
501
576
  x = self.final_norm(x)
@@ -512,7 +587,6 @@ def get_model_config(batch_size: int) -> unet_cfg.DiffusionModelConfig:
512
587
 
513
588
  Retruns:
514
589
  The configuration of diffusion model of Stable Diffusion v1.5.
515
-
516
590
  """
517
591
  in_channels = 4
518
592
  out_channels = 4
@@ -529,7 +603,7 @@ def get_model_config(batch_size: int) -> unet_cfg.DiffusionModelConfig:
529
603
  # Transformer configs.
530
604
  transformer_num_attention_heads = 8
531
605
  transformer_batch_size = batch_size
532
- transformer_cross_attention_dim = 768 # Embedding fomr CLIP model
606
+ transformer_cross_attention_dim = 768 # Embedding from CLIP model
533
607
  transformer_pre_conv_norm_config = layers_cfg.NormalizationConfig(
534
608
  layers_cfg.NormalizationType.GROUP_NORM, epsilon=1e-6, group_num=32
535
609
  )
@@ -571,3 +645,71 @@ def get_model_config(batch_size: int) -> unet_cfg.DiffusionModelConfig:
571
645
  final_norm_config=final_norm_config,
572
646
  final_activation_type=final_activation_type,
573
647
  )
648
+
649
+
650
+ def get_fake_model_config(batch_size: int) -> unet_cfg.DiffusionModelConfig:
651
+ """Get fake configs for the Diffusion model of Stable Diffusion v1.5 for testing.
652
+
653
+ Args:
654
+ batch_size (int): the batch size of input.
655
+
656
+ Retruns:
657
+ The configuration of diffusion model of Stable Diffusion v1.5.
658
+ """
659
+ in_channels = 4
660
+ out_channels = 4
661
+ block_out_channels = [2, 4, 8, 8]
662
+ layers_per_block = 1
663
+ downsample_padding = 1
664
+
665
+ # Residual configs.
666
+ residual_norm_config = layers_cfg.NormalizationConfig(
667
+ layers_cfg.NormalizationType.GROUP_NORM, group_num=2
668
+ )
669
+ residual_activation_type = layers_cfg.ActivationType.SILU
670
+
671
+ # Transformer configs.
672
+ transformer_num_attention_heads = 1
673
+ transformer_batch_size = batch_size
674
+ transformer_cross_attention_dim = 4 # Embedding from CLIP model
675
+ transformer_pre_conv_norm_config = layers_cfg.NormalizationConfig(
676
+ layers_cfg.NormalizationType.GROUP_NORM, epsilon=1e-6, group_num=2
677
+ )
678
+ transformer_norm_config = layers_cfg.NormalizationConfig(
679
+ layers_cfg.NormalizationType.LAYER_NORM
680
+ )
681
+ transformer_ff_activation_type = layers_cfg.ActivationType.GE_GLU
682
+
683
+ # Time embedding configs.
684
+ time_embedding_dim = 2
685
+ time_embedding_blocks_dim = 4
686
+
687
+ # Mid block configs.
688
+ mid_block_layers = 1
689
+
690
+ # Finaly layer configs.
691
+ final_norm_config = layers_cfg.NormalizationConfig(
692
+ layers_cfg.NormalizationType.GROUP_NORM, group_num=2
693
+ )
694
+ final_activation_type = layers_cfg.ActivationType.SILU
695
+
696
+ return unet_cfg.DiffusionModelConfig(
697
+ in_channels=in_channels,
698
+ out_channels=out_channels,
699
+ block_out_channels=block_out_channels,
700
+ layers_per_block=layers_per_block,
701
+ downsample_padding=downsample_padding,
702
+ residual_norm_config=residual_norm_config,
703
+ residual_activation_type=residual_activation_type,
704
+ transformer_batch_size=transformer_batch_size,
705
+ transformer_num_attention_heads=transformer_num_attention_heads,
706
+ transformer_cross_attention_dim=transformer_cross_attention_dim,
707
+ transformer_pre_conv_norm_config=transformer_pre_conv_norm_config,
708
+ transformer_norm_config=transformer_norm_config,
709
+ transformer_ff_activation_type=transformer_ff_activation_type,
710
+ mid_block_layers=mid_block_layers,
711
+ time_embedding_dim=time_embedding_dim,
712
+ time_embedding_blocks_dim=time_embedding_blocks_dim,
713
+ final_norm_config=final_norm_config,
714
+ final_activation_type=final_activation_type,
715
+ )
@@ -13,12 +13,11 @@
13
13
  # limitations under the License.
14
14
  # ==============================================================================
15
15
 
16
+ from ai_edge_torch.generative.examples.stable_diffusion.attention import SelfAttention # NOQA
16
17
  import torch
17
18
  from torch import nn
18
19
  from torch.nn import functional as F
19
20
 
20
- from ai_edge_torch.generative.examples.stable_diffusion.attention import SelfAttention # NOQA
21
-
22
21
 
23
22
  class AttentionBlock(nn.Module):
24
23
 
@@ -50,7 +49,9 @@ class ResidualBlock(nn.Module):
50
49
  self.conv_1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
51
50
 
52
51
  self.groupnorm_2 = nn.GroupNorm(32, out_channels)
53
- self.conv_2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1)
52
+ self.conv_2 = nn.Conv2d(
53
+ out_channels, out_channels, kernel_size=3, padding=1
54
+ )
54
55
 
55
56
  if in_channels == out_channels:
56
57
  self.residual_layer = nn.Identity()
@@ -15,33 +15,44 @@
15
15
 
16
16
  import argparse
17
17
  import os
18
- from pathlib import Path
19
- from typing import Dict, Optional
18
+ import pathlib
19
+ from typing import Optional
20
20
 
21
+ import ai_edge_torch
22
+ from ai_edge_torch.generative.examples.stable_diffusion import samplers
23
+ from ai_edge_torch.generative.examples.stable_diffusion import tokenizer
24
+ from ai_edge_torch.generative.examples.stable_diffusion import util
21
25
  import numpy as np
22
26
  from PIL import Image
23
- from tqdm import tqdm
24
-
25
- import ai_edge_torch.generative.examples.stable_diffusion.samplers as samplers
26
- from ai_edge_torch.generative.examples.stable_diffusion.tokenizer import Tokenizer # NOQA
27
- import ai_edge_torch.generative.examples.stable_diffusion.util as util
28
- from ai_edge_torch.model import TfLiteModel
27
+ import tqdm
29
28
 
30
29
  arg_parser = argparse.ArgumentParser()
31
30
  arg_parser.add_argument(
32
31
  '--tokenizer_vocab_dir',
33
32
  type=str,
34
- help='Directory to the tokenizer vocabulary files, which include `merges.txt` and `vocab.json`',
33
+ help=(
34
+ 'Directory to the tokenizer vocabulary files, which include'
35
+ ' `merges.txt` and `vocab.json`'
36
+ ),
35
37
  required=True,
36
38
  )
37
39
  arg_parser.add_argument(
38
- '--clip_ckpt', type=str, help='Path to CLIP TFLite tflite file', required=True
40
+ '--clip_ckpt',
41
+ type=str,
42
+ help='Path to CLIP TFLite tflite file',
43
+ required=True,
39
44
  )
40
45
  arg_parser.add_argument(
41
- '--diffusion_ckpt', type=str, help='Path to diffusion tflite file', required=True
46
+ '--diffusion_ckpt',
47
+ type=str,
48
+ help='Path to diffusion tflite file',
49
+ required=True,
42
50
  )
43
51
  arg_parser.add_argument(
44
- '--decoder_ckpt', type=str, help='Path to decoder tflite file', required=True
52
+ '--decoder_ckpt',
53
+ type=str,
54
+ help='Path to decoder tflite file',
55
+ required=True,
45
56
  )
46
57
  arg_parser.add_argument(
47
58
  '--output_path',
@@ -56,14 +67,29 @@ arg_parser.add_argument(
56
67
  help='The prompt to guide the image generation.',
57
68
  )
58
69
  arg_parser.add_argument(
59
- '--n_inference_steps', default=20, type=int, help='The number of denoising steps.'
70
+ '--n_inference_steps',
71
+ default=20,
72
+ type=int,
73
+ help='The number of denoising steps.',
60
74
  )
61
75
  arg_parser.add_argument(
62
76
  '--sampler',
63
77
  default='k_euler',
64
78
  type=str,
65
79
  choices=['k_euler', 'k_euler_ancestral', 'k_lms'],
66
- help='A sampler to be used to denoise the encoded image latents. Can be one of `k_lms, `k_euler`, or `k_euler_ancestral`.',
80
+ help=(
81
+ 'A sampler to be used to denoise the encoded image latents. Can be one'
82
+ ' of `k_lms, `k_euler`, or `k_euler_ancestral`.'
83
+ ),
84
+ )
85
+ arg_parser.add_argument(
86
+ '--seed',
87
+ default=None,
88
+ type=int,
89
+ help=(
90
+ 'A seed to make generation deterministic. A random number is used if'
91
+ ' unspecified.'
92
+ ),
67
93
  )
68
94
 
69
95
 
@@ -78,12 +104,12 @@ class StableDiffusion:
78
104
  diffusion_ckpt: str,
79
105
  decoder_ckpt: str
80
106
  ):
81
- self.tokenizer = Tokenizer(tokenizer_vocab_dir)
82
- self.clip = TfLiteModel.load(clip_ckpt)
83
- self.decoder = TfLiteModel.load(decoder_ckpt)
84
- self.diffusion = TfLiteModel.load(diffusion_ckpt)
107
+ self.tokenizer = tokenizer.Tokenizer(tokenizer_vocab_dir)
108
+ self.clip = ai_edge_torch.model.TfLiteModel.load(clip_ckpt)
109
+ self.decoder = ai_edge_torch.model.TfLiteModel.load(decoder_ckpt)
110
+ self.diffusion = ai_edge_torch.model.TfLiteModel.load(diffusion_ckpt)
85
111
  if encoder_ckpt is not None:
86
- self.encoder = TfLiteModel.load(encoder_ckpt)
112
+ self.encoder = ai_edge_torch.model.TfLiteModel.load(encoder_ckpt)
87
113
 
88
114
 
89
115
  def run_tflite_pipeline(
@@ -101,38 +127,33 @@ def run_tflite_pipeline(
101
127
  input_image: Optional[Image.Image] = None,
102
128
  ):
103
129
  """Run stable diffusion pipeline with tflite model.
104
- model:
105
- StableDiffsuion model.
106
- prompt:
107
- The prompt to guide the image generation.
108
- output_path:
109
- The path to the generated output image.
110
- uncond_prompt:
111
- The prompt not to guide the image generation.
112
- cfg_scale:
113
- Guidance scale of classifier-free guidance. Higher guidance scale encourages to generate
114
- images that are closely linked to the text `prompt`, usually at the expense of lower
115
- image quality.
116
- height:
117
- The height in pixels of the generated image.
118
- width:
119
- The width in pixels of the generated image.
120
- sampler:
121
- A sampler to be used to denoise the encoded image latents. Can be one of `k_lms, `k_euler`,
122
- or `k_euler_ancestral`.
123
- n_inference_steps:
124
- The number of denoising steps. More denoising steps usually lead to a higher quality image at the
125
- expense of slower inference. This parameter will be modulated by `strength`.
126
- seed:
127
- A seed to make generation deterministic.
128
- strength:
129
- Conceptually, indicates how much to transform the reference `input_image`. Must be between 0 and 1.
130
- `input_image` will be used as a starting point, adding more noise to it the larger the `strength`.
131
- The number of denoising steps depends on the amount of noise initially added. When `strength` is 1,
132
- added noise will be maximum and the denoising process will run for the full number of iterations
133
- specified in `n_inference_steps`. A value of 1, therefore, essentially ignores `input_image`.
134
- input_image:
135
- Image which is served as the starting point for the image generation.
130
+
131
+ Args:
132
+ model: StableDiffsuion model.
133
+ prompt: The prompt to guide the image generation.
134
+ output_path: The path to the generated output image.
135
+ uncond_prompt: The prompt not to guide the image generation.
136
+ cfg_scale: Guidance scale of classifier-free guidance. Higher guidance scale
137
+ encourages to generate images that are closely linked to the text
138
+ `prompt`, usually at the expense of lower image quality.
139
+ height: The height in pixels of the generated image.
140
+ width: The width in pixels of the generated image.
141
+ sampler: A sampler to be used to denoise the encoded image latents. Can be
142
+ one of `k_lms, `k_euler`, or `k_euler_ancestral`.
143
+ n_inference_steps: The number of denoising steps. More denoising steps
144
+ usually lead to a higher quality image at the expense of slower inference.
145
+ This parameter will be modulated by `strength`.
146
+ seed: A seed to make generation deterministic.
147
+ strength: Conceptually, indicates how much to transform the reference
148
+ `input_image`. Must be between 0 and 1. `input_image` will be used as a
149
+ starting point, adding more noise to it the larger the `strength`. The
150
+ number of denoising steps depends on the amount of noise initially added.
151
+ When `strength` is 1, added noise will be maximum and the denoising
152
+ process will run for the full number of iterations specified in
153
+ `n_inference_steps`. A value of 1, therefore, essentially ignores
154
+ `input_image`.
155
+ input_image: Image which is served as the starting point for the image
156
+ generation.
136
157
  """
137
158
  if not 0 < strength < 1:
138
159
  raise ValueError('strength must be between 0 and 1')
@@ -148,7 +169,9 @@ def run_tflite_pipeline(
148
169
  elif sampler == 'k_euler':
149
170
  sampler = samplers.KEulerSampler(n_inference_steps=n_inference_steps)
150
171
  elif sampler == 'k_euler_ancestral':
151
- sampler = samplers.KEulerAncestralSampler(n_inference_steps=n_inference_steps)
172
+ sampler = samplers.KEulerAncestralSampler(
173
+ n_inference_steps=n_inference_steps
174
+ )
152
175
  else:
153
176
  raise ValueError(
154
177
  'Unknown sampler value %s. '
@@ -163,14 +186,15 @@ def run_tflite_pipeline(
163
186
  context = np.concatenate([cond_context, uncond_context], axis=0)
164
187
  noise_shape = (1, 4, height // 8, width // 8)
165
188
 
166
- # Initialization starts from input_image if any, otherwise, starts from a random sampling.
189
+ # Initialization starts from input_image if any, otherwise, starts from a
190
+ # random sampling.
167
191
  if input_image:
168
192
  if not hasattr(model, 'encoder'):
169
193
  raise AttributeError(
170
- 'Stable Diffusion must be initialized with encoder to accept input_image.'
194
+ 'Stable Diffusion must be initialized with encoder to accept'
195
+ ' input_image.'
171
196
  )
172
197
  input_image = input_image.resize((width, height))
173
- input_image_np = np.array(input_image).astype(np.float32)
174
198
  input_image_np = util.rescale(input_image, (0, 255), (-1, 1))
175
199
  input_image_np = util.move_channel(input_image_np, to='first')
176
200
  encoder_noise = np.random.normal(size=noise_shape).astype(np.float32)
@@ -183,8 +207,8 @@ def run_tflite_pipeline(
183
207
  latents *= sampler.initial_scale
184
208
 
185
209
  # Diffusion process.
186
- timesteps = tqdm(sampler.timesteps)
187
- for i, timestep in enumerate(timesteps):
210
+ timesteps = tqdm.tqdm(sampler.timesteps)
211
+ for _, timestep in enumerate(timesteps):
188
212
  time_embedding = util.get_time_embedding(timestep)
189
213
 
190
214
  input_latents = latents * sampler.get_input_scale()
@@ -202,7 +226,7 @@ def run_tflite_pipeline(
202
226
  images = util.rescale(images, (-1, 1), (0, 255), clamp=True)
203
227
  images = util.move_channel(images, to='last')
204
228
  if not os.path.exists(output_path):
205
- Path(output_path).parent.mkdir(parents=True, exist_ok=True)
229
+ pathlib.Path(output_path).parent.mkdir(parents=True, exist_ok=True)
206
230
  Image.fromarray(images[0].astype(np.uint8)).save(output_path)
207
231
 
208
232
 
@@ -219,4 +243,5 @@ if __name__ == '__main__':
219
243
  output_path=args.output_path,
220
244
  sampler=args.sampler,
221
245
  n_inference_steps=args.n_inference_steps,
246
+ seed=args.seed,
222
247
  )
@@ -13,10 +13,9 @@
13
13
  # limitations under the License.
14
14
  # ==============================================================================
15
15
 
16
- import numpy as np
17
-
18
16
  from ai_edge_torch.generative.examples.stable_diffusion import util
19
17
  from ai_edge_torch.generative.examples.stable_diffusion.samplers.sampler import SamplerInterface # NOQA
18
+ import numpy as np
20
19
 
21
20
 
22
21
  class KEulerSampler(SamplerInterface):
@@ -46,7 +45,9 @@ class KEulerSampler(SamplerInterface):
46
45
 
47
46
  def set_strength(self, strength=1):
48
47
  start_step = self.n_inference_steps - int(self.n_inference_steps * strength)
49
- self.timesteps = np.linspace(self.n_training_steps - 1, 0, self.n_inference_steps)
48
+ self.timesteps = np.linspace(
49
+ self.n_training_steps - 1, 0, self.n_inference_steps
50
+ )
50
51
  self.timesteps = self.timesteps[start_step:]
51
52
  self.initial_scale = self.sigmas[start_step]
52
53
  self.step_count = start_step
@@ -13,10 +13,9 @@
13
13
  # limitations under the License.
14
14
  # ==============================================================================
15
15
 
16
- import numpy as np
17
-
18
16
  from ai_edge_torch.generative.examples.stable_diffusion import util
19
17
  from ai_edge_torch.generative.examples.stable_diffusion.samplers.sampler import SamplerInterface # NOQA
18
+ import numpy as np
20
19
 
21
20
 
22
21
  class KEulerAncestralSampler(SamplerInterface):
@@ -46,7 +45,9 @@ class KEulerAncestralSampler(SamplerInterface):
46
45
 
47
46
  def set_strength(self, strength=1):
48
47
  start_step = self.n_inference_steps - int(self.n_inference_steps * strength)
49
- self.timesteps = np.linspace(self.n_training_steps - 1, 0, self.n_inference_steps)
48
+ self.timesteps = np.linspace(
49
+ self.n_training_steps - 1, 0, self.n_inference_steps
50
+ )
50
51
  self.timesteps = self.timesteps[start_step:]
51
52
  self.initial_scale = self.sigmas[start_step]
52
53
  self.step_count = start_step
@@ -13,10 +13,9 @@
13
13
  # limitations under the License.
14
14
  # ==============================================================================
15
15
 
16
- import numpy as np
17
-
18
16
  from ai_edge_torch.generative.examples.stable_diffusion import util
19
17
  from ai_edge_torch.generative.examples.stable_diffusion.samplers.sampler import SamplerInterface # NOQA
18
+ import numpy as np
20
19
 
21
20
 
22
21
  class KLMSSampler(SamplerInterface):
@@ -48,7 +47,9 @@ class KLMSSampler(SamplerInterface):
48
47
 
49
48
  def set_strength(self, strength=1):
50
49
  start_step = self.n_inference_steps - int(self.n_inference_steps * strength)
51
- self.timesteps = np.linspace(self.n_training_steps - 1, 0, self.n_inference_steps)
50
+ self.timesteps = np.linspace(
51
+ self.n_training_steps - 1, 0, self.n_inference_steps
52
+ )
52
53
  self.timesteps = self.timesteps[start_step:]
53
54
  self.initial_scale = self.sigmas[start_step]
54
55
  self.step_count = start_step