ai-edge-torch-nightly 0.2.0.dev20240714__py3-none-any.whl → 0.3.0.dev20240926__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_edge_torch/__init__.py +5 -4
- ai_edge_torch/_convert/conversion.py +112 -0
- ai_edge_torch/_convert/conversion_utils.py +64 -0
- ai_edge_torch/{convert → _convert}/converter.py +94 -48
- ai_edge_torch/_convert/fx_passes/__init__.py +22 -0
- ai_edge_torch/{convert → _convert}/fx_passes/build_aten_composite_pass.py +107 -44
- ai_edge_torch/{convert → _convert}/fx_passes/build_interpolate_composite_pass.py +23 -20
- ai_edge_torch/{convert → _convert}/fx_passes/inject_mlir_debuginfo_pass.py +5 -6
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/__init__.py +1 -1
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_check.py +39 -9
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_mark.py +2 -0
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +1 -0
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +17 -8
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +9 -8
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +31 -18
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +2 -2
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/pass_body.py +34 -24
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/utils.py +2 -0
- ai_edge_torch/_convert/signature.py +66 -0
- ai_edge_torch/_convert/test/test_convert.py +495 -0
- ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
- ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
- ai_edge_torch/{convert → _convert}/test/test_to_channel_last_io.py +5 -5
- ai_edge_torch/{convert → _convert}/to_channel_last_io.py +10 -3
- ai_edge_torch/config.py +27 -0
- ai_edge_torch/conftest.py +20 -0
- ai_edge_torch/debug/culprit.py +72 -40
- ai_edge_torch/debug/test/test_culprit.py +7 -5
- ai_edge_torch/debug/test/test_search_model.py +8 -7
- ai_edge_torch/debug/utils.py +14 -3
- ai_edge_torch/fx_pass_base.py +101 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/gemma/{gemma.py → gemma1.py} +69 -55
- ai_edge_torch/generative/examples/gemma/gemma2.py +267 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma2.py +57 -0
- ai_edge_torch/generative/examples/gemma/verify_util.py +143 -0
- ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/openelm/openelm.py +206 -0
- ai_edge_torch/generative/examples/openelm/verify.py +64 -0
- ai_edge_torch/generative/examples/phi/__init__.py +14 -0
- ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/phi/convert_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/{phi2 → phi}/phi2.py +70 -51
- ai_edge_torch/generative/examples/phi/phi3.py +286 -0
- ai_edge_torch/generative/examples/phi/verify.py +65 -0
- ai_edge_torch/generative/examples/phi/verify_phi3.py +70 -0
- ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
- ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/smollm/smollm.py +101 -0
- ai_edge_torch/generative/examples/smollm/verify.py +62 -0
- ai_edge_torch/generative/examples/stable_diffusion/attention.py +3 -1
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +83 -13
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +27 -14
- ai_edge_torch/generative/examples/stable_diffusion/decoder.py +74 -9
- ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +179 -37
- ai_edge_torch/generative/examples/stable_diffusion/encoder.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +83 -58
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +1 -0
- ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +4 -1
- ai_edge_torch/generative/examples/stable_diffusion/util.py +9 -3
- ai_edge_torch/generative/examples/t5/convert_to_tflite.py +28 -25
- ai_edge_torch/generative/examples/t5/t5.py +208 -159
- ai_edge_torch/generative/examples/t5/t5_attention.py +45 -30
- ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
- ai_edge_torch/generative/examples/test_models/toy_model.py +69 -41
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +50 -64
- ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +41 -39
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +67 -54
- ai_edge_torch/generative/examples/tiny_llama/verify.py +64 -0
- ai_edge_torch/generative/fx_passes/__init__.py +4 -5
- ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +10 -7
- ai_edge_torch/generative/layers/attention.py +141 -102
- ai_edge_torch/generative/layers/attention_utils.py +53 -12
- ai_edge_torch/generative/layers/builder.py +37 -7
- ai_edge_torch/generative/layers/feed_forward.py +39 -14
- ai_edge_torch/generative/layers/kv_cache.py +162 -50
- ai_edge_torch/generative/layers/model_config.py +84 -30
- ai_edge_torch/generative/layers/normalization.py +185 -7
- ai_edge_torch/generative/layers/rotary_position_embedding.py +6 -4
- ai_edge_torch/generative/layers/scaled_dot_product_attention.py +48 -21
- ai_edge_torch/generative/layers/unet/blocks_2d.py +136 -77
- ai_edge_torch/generative/layers/unet/builder.py +7 -4
- ai_edge_torch/generative/layers/unet/model_config.py +17 -15
- ai_edge_torch/generative/quantize/example.py +7 -8
- ai_edge_torch/generative/quantize/quant_recipe.py +10 -7
- ai_edge_torch/generative/quantize/quant_recipe_utils.py +12 -1
- ai_edge_torch/generative/quantize/quant_recipes.py +8 -0
- ai_edge_torch/generative/test/test_kv_cache.py +120 -0
- ai_edge_torch/generative/test/{loader_test.py → test_loader.py} +9 -7
- ai_edge_torch/generative/test/test_model_conversion.py +124 -188
- ai_edge_torch/generative/test/test_model_conversion_large.py +251 -0
- ai_edge_torch/generative/test/test_quantize.py +76 -60
- ai_edge_torch/generative/test/utils.py +54 -0
- ai_edge_torch/generative/utilities/converter.py +82 -0
- ai_edge_torch/generative/utilities/loader.py +120 -57
- ai_edge_torch/generative/utilities/stable_diffusion_loader.py +165 -57
- ai_edge_torch/generative/utilities/t5_loader.py +110 -81
- ai_edge_torch/generative/utilities/verifier.py +247 -0
- ai_edge_torch/hlfb/__init__.py +1 -1
- ai_edge_torch/hlfb/mark_pattern/__init__.py +9 -7
- ai_edge_torch/hlfb/mark_pattern/passes.py +23 -3
- ai_edge_torch/hlfb/mark_pattern/pattern.py +39 -30
- ai_edge_torch/hlfb/test/test_mark_pattern.py +46 -20
- ai_edge_torch/hlfb/test/test_stablehlo_composite_builder.py +24 -11
- ai_edge_torch/lowertools/__init__.py +18 -0
- ai_edge_torch/lowertools/_shim.py +80 -0
- ai_edge_torch/lowertools/common_utils.py +142 -0
- ai_edge_torch/lowertools/odml_torch_utils.py +255 -0
- ai_edge_torch/lowertools/test_utils.py +60 -0
- ai_edge_torch/lowertools/torch_xla_utils.py +284 -0
- ai_edge_torch/{generative/quantize/ai_edge_quantizer_glue → lowertools}/translate_recipe.py +29 -14
- ai_edge_torch/model.py +53 -18
- ai_edge_torch/odml_torch/__init__.py +20 -0
- ai_edge_torch/odml_torch/_torch_future.py +61 -0
- ai_edge_torch/odml_torch/_torch_library.py +19 -0
- ai_edge_torch/odml_torch/composite/__init__.py +16 -0
- ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
- ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
- ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
- ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
- ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
- ai_edge_torch/odml_torch/export.py +357 -0
- ai_edge_torch/odml_torch/export_utils.py +168 -0
- ai_edge_torch/odml_torch/jax_bridge/__init__.py +15 -0
- ai_edge_torch/odml_torch/jax_bridge/_wrap.py +150 -0
- ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
- ai_edge_torch/odml_torch/lowerings/__init__.py +25 -0
- ai_edge_torch/odml_torch/lowerings/_basic.py +258 -0
- ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
- ai_edge_torch/odml_torch/lowerings/_convolution.py +241 -0
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +252 -0
- ai_edge_torch/odml_torch/lowerings/_layer_norm.py +78 -0
- ai_edge_torch/odml_torch/lowerings/context.py +42 -0
- ai_edge_torch/odml_torch/lowerings/registry.py +96 -0
- ai_edge_torch/odml_torch/lowerings/utils.py +185 -0
- ai_edge_torch/odml_torch/passes/__init__.py +38 -0
- ai_edge_torch/odml_torch/tf_integration.py +194 -0
- ai_edge_torch/quantize/pt2e_quantizer.py +52 -24
- ai_edge_torch/quantize/pt2e_quantizer_utils.py +43 -23
- ai_edge_torch/quantize/quant_config.py +13 -9
- ai_edge_torch/testing/model_coverage/model_coverage.py +29 -16
- ai_edge_torch/version.py +16 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/METADATA +7 -3
- ai_edge_torch_nightly-0.3.0.dev20240926.dist-info/RECORD +177 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/WHEEL +1 -1
- ai_edge_torch/convert/conversion.py +0 -117
- ai_edge_torch/convert/conversion_utils.py +0 -400
- ai_edge_torch/convert/fx_passes/__init__.py +0 -59
- ai_edge_torch/convert/fx_passes/_pass_base.py +0 -49
- ai_edge_torch/convert/fx_passes/canonicalize_pass.py +0 -37
- ai_edge_torch/convert/test/test_convert.py +0 -311
- ai_edge_torch/convert/test/test_convert_composites.py +0 -192
- ai_edge_torch/convert/test/test_convert_multisig.py +0 -139
- ai_edge_torch/generative/examples/gemma/convert_to_tflite.py +0 -66
- ai_edge_torch/generative/examples/phi2/convert_to_tflite.py +0 -64
- ai_edge_torch/generative/examples/test_models/toy_model_with_external_kv_cache.py +0 -161
- ai_edge_torch/generative/quantize/ai_edge_quantizer_glue/__init__.py +0 -0
- ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/RECORD +0 -121
- /ai_edge_torch/{convert → _convert}/__init__.py +0 -0
- /ai_edge_torch/{convert → _convert}/test/__init__.py +0 -0
- /ai_edge_torch/generative/examples/{phi2 → openelm}/__init__.py +0 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/LICENSE +0 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/top_level.txt +0 -0
ai_edge_torch/model.py
CHANGED
@@ -15,17 +15,21 @@
|
|
15
15
|
|
16
16
|
"""Represents an ai_edge_torch model.
|
17
17
|
|
18
|
-
PyTorch models can be converted to this representation through
|
18
|
+
PyTorch models can be converted to this representation through
|
19
|
+
`ai_edge_torch.convert`.
|
19
20
|
"""
|
20
21
|
from __future__ import annotations
|
21
22
|
|
22
23
|
import abc
|
24
|
+
import re
|
25
|
+
from typing import Callable
|
23
26
|
|
24
|
-
import numpy as np
|
25
27
|
import numpy.typing as npt
|
26
28
|
import tensorflow as tf
|
27
29
|
|
28
|
-
from
|
30
|
+
from ai_edge_litert import interpreter as tfl_interpreter # pylint: disable=g-direct-tensorflow-import
|
31
|
+
|
32
|
+
DEFAULT_SIGNATURE_NAME = tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY
|
29
33
|
|
30
34
|
|
31
35
|
class Model(abc.ABC):
|
@@ -35,7 +39,7 @@ class Model(abc.ABC):
|
|
35
39
|
def __call__(
|
36
40
|
self,
|
37
41
|
*args: npt.ArrayLike,
|
38
|
-
signature_name: str =
|
42
|
+
signature_name: str = DEFAULT_SIGNATURE_NAME,
|
39
43
|
**kwargs,
|
40
44
|
) -> npt.ArrayLike | tuple[npt.ArrayLike]:
|
41
45
|
raise NotImplementedError()
|
@@ -63,28 +67,49 @@ class TfLiteModel(Model):
|
|
63
67
|
tflite_model: A TFlite serialized object.
|
64
68
|
"""
|
65
69
|
self._tflite_model = tflite_model
|
70
|
+
self._interpreter_builder = lambda: tfl_interpreter.Interpreter(
|
71
|
+
model_content=self._tflite_model,
|
72
|
+
experimental_default_delegate_latest_features=True,
|
73
|
+
)
|
74
|
+
|
75
|
+
def tflite_model(self) -> bytes:
|
76
|
+
"""Returns the wrapped tflite model."""
|
77
|
+
return self._tflite_model
|
78
|
+
|
79
|
+
def set_interpreter_builder(
|
80
|
+
self, builder: Callable[[], tfl_interpreter.Interpreter]
|
81
|
+
) -> None:
|
82
|
+
"""Sets a custom interpreter builder.
|
83
|
+
|
84
|
+
Args:
|
85
|
+
builder: A function that returns a `tfl_interpreter.Interpreter` or its
|
86
|
+
subclass.
|
87
|
+
"""
|
88
|
+
self._interpreter_builder = builder
|
66
89
|
|
67
90
|
def __call__(
|
68
91
|
self,
|
69
92
|
*args: npt.ArrayLike,
|
70
|
-
signature_name: str =
|
93
|
+
signature_name: str = DEFAULT_SIGNATURE_NAME,
|
71
94
|
**kwargs,
|
72
95
|
) -> npt.ArrayLike | tuple[npt.ArrayLike]:
|
73
96
|
"""Runs inference on the edge model using the provided arguments.
|
74
97
|
|
75
98
|
Args:
|
76
99
|
*args: The arguments to be passed to the model for inference.
|
77
|
-
**kwargs: The arguments with specific names to be passed to the model for
|
78
|
-
|
79
|
-
|
100
|
+
**kwargs: The arguments with specific names to be passed to the model for
|
101
|
+
inference.
|
102
|
+
signature_name: The name of the signature to be used for inference. The
|
103
|
+
default signature is used if not provided.
|
80
104
|
"""
|
81
|
-
interpreter =
|
105
|
+
interpreter = self._interpreter_builder()
|
82
106
|
interpreter.allocate_tensors()
|
83
107
|
|
84
108
|
signature_list = interpreter.get_signature_list()
|
85
109
|
if signature_name not in signature_list:
|
86
110
|
raise ValueError(
|
87
|
-
|
111
|
+
'Invalid signature name provided. Available signatures:'
|
112
|
+
f' {", ".join(signature_list.keys())}'
|
88
113
|
)
|
89
114
|
|
90
115
|
try:
|
@@ -92,14 +117,17 @@ class TfLiteModel(Model):
|
|
92
117
|
except ValueError as exception:
|
93
118
|
if 'Invalid signature_key provided.' in str(exception):
|
94
119
|
raise ValueError(
|
95
|
-
|
120
|
+
'Invalid signature key provided. Available signatures:'
|
121
|
+
f' {list(signature_list.keys())}'
|
96
122
|
)
|
97
123
|
else:
|
98
124
|
raise exception
|
99
125
|
|
100
126
|
if len(signature_list[signature_name]['inputs']) != len(args) + len(kwargs):
|
101
127
|
raise ValueError(
|
102
|
-
|
128
|
+
'The model requires'
|
129
|
+
f' {len(signature_list[signature_name]["inputs"])} arguments but'
|
130
|
+
f' {len(args)} was provided.'
|
103
131
|
)
|
104
132
|
|
105
133
|
# Gather the input dictionary based on the signature.
|
@@ -107,11 +135,18 @@ class TfLiteModel(Model):
|
|
107
135
|
inputs = {**inputs, **kwargs}
|
108
136
|
outputs = runner(**inputs)
|
109
137
|
|
110
|
-
|
111
|
-
|
112
|
-
|
113
|
-
|
114
|
-
)
|
138
|
+
# When attempting to run a model, check if all the output tensors are named
|
139
|
+
# output_<number>. If so, assume the pytorch model returned a tuple and not
|
140
|
+
# a dictionary.
|
141
|
+
output_heuristic = lambda key: bool(re.search(r'output_\d+', key))
|
142
|
+
if all(output_heuristic(key) for key in outputs.keys()):
|
143
|
+
return (
|
144
|
+
outputs['output_0']
|
145
|
+
if len(outputs) == 1
|
146
|
+
else [outputs[f'output_{idx}'] for idx in range(len(outputs))]
|
147
|
+
)
|
148
|
+
|
149
|
+
return outputs
|
115
150
|
|
116
151
|
def export(self, path: str) -> None:
|
117
152
|
"""Serializes the edge model to disk.
|
@@ -134,7 +169,7 @@ class TfLiteModel(Model):
|
|
134
169
|
|
135
170
|
# Check if this is indeed a tflite model:
|
136
171
|
try:
|
137
|
-
interpreter =
|
172
|
+
interpreter = tfl_interpreter.Interpreter(model_content=model_content)
|
138
173
|
interpreter.get_signature_list()
|
139
174
|
except:
|
140
175
|
return None
|
@@ -0,0 +1,20 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
from . import composite
|
16
|
+
from . import debuginfo
|
17
|
+
from . import export
|
18
|
+
from . import export_utils
|
19
|
+
from . import lowerings
|
20
|
+
from . import passes
|
@@ -0,0 +1,61 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
"""Wrappers for latest torch APIs/utilities to maintain backward compatibility with older torch releases."""
|
16
|
+
|
17
|
+
import torch
|
18
|
+
from torch.fx import _pytree as fx_pytree
|
19
|
+
|
20
|
+
|
21
|
+
def graph_module_flat_inputs(ep: torch.export.ExportedProgram, args, kwargs):
|
22
|
+
"""Transform args, kwargs of __call__ to args for graph_module.
|
23
|
+
|
24
|
+
self.graph_module takes stuff from state dict as inputs.
|
25
|
+
The invariant is for ep: ExportedProgram is
|
26
|
+
ep(args, kwargs) ==
|
27
|
+
ep.postprocess(ep.graph_module(ep.graph_module_flat_inputs(args, kwargs)))
|
28
|
+
"""
|
29
|
+
if hasattr(ep, "_graph_module_flat_inputs"):
|
30
|
+
return ep._graph_module_flat_inputs(args, kwargs)
|
31
|
+
|
32
|
+
if args is None:
|
33
|
+
args = tuple()
|
34
|
+
if kwargs is None:
|
35
|
+
kwargs = {}
|
36
|
+
|
37
|
+
flat_args = args
|
38
|
+
if (in_spec := ep.call_spec.in_spec) is not None:
|
39
|
+
if (
|
40
|
+
in_spec.type == tuple
|
41
|
+
and len(in_spec.children_specs) == 2
|
42
|
+
and in_spec.children_specs[0].type == tuple
|
43
|
+
and in_spec.children_specs[1].type == dict
|
44
|
+
):
|
45
|
+
# NOTE: this is the case where in_spec is for both args and kwargs
|
46
|
+
flat_args = fx_pytree.tree_flatten_spec((args, kwargs), in_spec)
|
47
|
+
else:
|
48
|
+
flat_args = fx_pytree.tree_flatten_spec(args, in_spec)
|
49
|
+
|
50
|
+
param_buffer_keys = ep.graph_signature.parameters + ep.graph_signature.buffers
|
51
|
+
param_buffer_values = tuple(ep.state_dict[key] for key in param_buffer_keys)
|
52
|
+
|
53
|
+
if hasattr(ep.graph_signature, "lifted_tensor_constants"):
|
54
|
+
ordered_tensor_constants = tuple(
|
55
|
+
ep.tensor_constants[name]
|
56
|
+
for name in ep.graph_signature.lifted_tensor_constants
|
57
|
+
)
|
58
|
+
else:
|
59
|
+
ordered_tensor_constants = tuple()
|
60
|
+
|
61
|
+
return (*param_buffer_values, *flat_args, *ordered_tensor_constants)
|
@@ -0,0 +1,19 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
"""Torch library for registering ODML Torch custom ops."""
|
16
|
+
|
17
|
+
import torch
|
18
|
+
|
19
|
+
ODML_TORCH_LIB = torch.library.Library("odml_torch", "DEF")
|
@@ -0,0 +1,16 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
from .mark_tensor import mark_tensor_op
|
16
|
+
from .stablehlo_composite_builder import StableHLOCompositeBuilder
|
@@ -0,0 +1,120 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
import json
|
16
|
+
from typing import Sequence, Union
|
17
|
+
|
18
|
+
from jax._src.lib.mlir import ir
|
19
|
+
from jax._src.lib.mlir.dialects import hlo as stablehlo
|
20
|
+
import torch
|
21
|
+
|
22
|
+
from .. import _torch_library
|
23
|
+
from .. import lowerings
|
24
|
+
|
25
|
+
CompositeAttrType = dict[
|
26
|
+
str,
|
27
|
+
Union[
|
28
|
+
int,
|
29
|
+
float,
|
30
|
+
bool,
|
31
|
+
str,
|
32
|
+
Sequence[int],
|
33
|
+
Sequence[float],
|
34
|
+
Sequence[bool],
|
35
|
+
],
|
36
|
+
]
|
37
|
+
|
38
|
+
|
39
|
+
def _assert_valid_composite_attr(attr: CompositeAttrType):
|
40
|
+
if attr is None:
|
41
|
+
return
|
42
|
+
if not isinstance(attr, dict):
|
43
|
+
raise ValueError("Composite attr must be a Python dictionary.")
|
44
|
+
|
45
|
+
for k, v in attr.items():
|
46
|
+
if not isinstance(k, str):
|
47
|
+
raise ValueError("Composite attr name must be a Python str.")
|
48
|
+
|
49
|
+
invalid_attr_value_error = ValueError(
|
50
|
+
"Composite attr value must be either Python str, float, int, bool,"
|
51
|
+
" list[int], list[float], list[bool]."
|
52
|
+
)
|
53
|
+
if isinstance(v, (list, tuple)):
|
54
|
+
eltys = {type(el) for el in v}
|
55
|
+
if len(eltys) > 1 or next(iter(eltys)) not in (int, float, bool):
|
56
|
+
raise invalid_attr_value_error
|
57
|
+
elif type(v) not in (str, float, int, bool):
|
58
|
+
raise invalid_attr_value_error
|
59
|
+
|
60
|
+
|
61
|
+
@torch._dynamo.assume_constant_result
|
62
|
+
def serialize_composite_attr(attr: Union[CompositeAttrType, None]):
|
63
|
+
"""Serialize the composite attr into a dynamo-tracable value."""
|
64
|
+
if attr is None:
|
65
|
+
return None
|
66
|
+
_assert_valid_composite_attr(attr)
|
67
|
+
return tuple(attr.items())
|
68
|
+
|
69
|
+
|
70
|
+
@torch._dynamo.assume_constant_result
|
71
|
+
def deserialize_composite_attr(serialized_attr) -> CompositeAttrType:
|
72
|
+
"""Deserialize dynamo-tracable composite attribute into its raw value."""
|
73
|
+
if serialized_attr is None:
|
74
|
+
return None
|
75
|
+
return dict(serialized_attr)
|
76
|
+
|
77
|
+
|
78
|
+
_torch_library.ODML_TORCH_LIB.define(
|
79
|
+
"mark_tensor(Tensor x, str name, int pos, str id, bool is_input, Any?"
|
80
|
+
" attr=None) -> Tensor"
|
81
|
+
)
|
82
|
+
|
83
|
+
mark_tensor_op = torch.ops.odml_torch.mark_tensor.default
|
84
|
+
|
85
|
+
|
86
|
+
@torch.library.impl(
|
87
|
+
_torch_library.ODML_TORCH_LIB, "mark_tensor", "CompositeExplicitAutograd"
|
88
|
+
)
|
89
|
+
def mark_tensor(
|
90
|
+
x: torch.Tensor, name: str, pos: int, id: str, is_input: bool, attr=None
|
91
|
+
):
|
92
|
+
return x
|
93
|
+
|
94
|
+
|
95
|
+
@torch.library.impl(_torch_library.ODML_TORCH_LIB, "mark_tensor", "Meta")
|
96
|
+
def mark_tensor_meta(
|
97
|
+
x: torch.Tensor, name: str, pos: int, id: str, is_input: bool, attr=None
|
98
|
+
):
|
99
|
+
return torch.empty_like(x)
|
100
|
+
|
101
|
+
|
102
|
+
@lowerings.lower(torch.ops.odml_torch.mark_tensor)
|
103
|
+
def mark_tensor_lowering(
|
104
|
+
lctx, x: ir.Value, name: str, pos: int, id: str, is_input: bool, attr=None
|
105
|
+
):
|
106
|
+
attr = deserialize_composite_attr(attr)
|
107
|
+
return stablehlo.custom_call(
|
108
|
+
[x.type],
|
109
|
+
inputs=[x],
|
110
|
+
call_target_name="mark_tensor",
|
111
|
+
backend_config=ir.StringAttr.get(
|
112
|
+
json.dumps({
|
113
|
+
"name": name,
|
114
|
+
"pos": pos,
|
115
|
+
"id": id,
|
116
|
+
"is_input": is_input,
|
117
|
+
"attr": attr,
|
118
|
+
})
|
119
|
+
),
|
120
|
+
)
|
@@ -0,0 +1,106 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
import uuid
|
16
|
+
|
17
|
+
import torch
|
18
|
+
|
19
|
+
from . import mark_tensor
|
20
|
+
|
21
|
+
|
22
|
+
@torch._dynamo.assume_constant_result
|
23
|
+
def _get_uuid() -> str:
|
24
|
+
return uuid.uuid4().hex
|
25
|
+
|
26
|
+
|
27
|
+
class StableHLOCompositeBuilder:
|
28
|
+
"""Builder class for building a StableHLO composite in the lowering."""
|
29
|
+
|
30
|
+
def __init__(self, name: str, attr: mark_tensor.CompositeAttrType = None):
|
31
|
+
"""Helper for building a StableHLO Composite by marking input and output tensors.
|
32
|
+
|
33
|
+
It should be used with the StableHLO converters from `torch_xla.stablehlo`.
|
34
|
+
|
35
|
+
Args:
|
36
|
+
name (str): The name of the built StableHLO Composite op.
|
37
|
+
attr (mark_tensor.CompositeAttrType): Attributes of the StableHLO
|
38
|
+
Composite op.
|
39
|
+
"""
|
40
|
+
|
41
|
+
self.attr = attr
|
42
|
+
self.name = name
|
43
|
+
self.id = _get_uuid()
|
44
|
+
self._inputs = []
|
45
|
+
self._outputs = []
|
46
|
+
|
47
|
+
def _mark_tensor(self, *tensors: torch.Tensor, is_input: bool):
|
48
|
+
"""Mark the input/output tensors of the StableHLO Composite."""
|
49
|
+
marked_tensors = []
|
50
|
+
serialized_attr = (
|
51
|
+
mark_tensor.serialize_composite_attr(self.attr)
|
52
|
+
if not is_input
|
53
|
+
else None
|
54
|
+
)
|
55
|
+
|
56
|
+
for pos, tensor in enumerate(tensors):
|
57
|
+
if not isinstance(tensor, torch.Tensor):
|
58
|
+
raise ValueError(f"input must be a torch tensor. Got {type(tensor)}.")
|
59
|
+
marked_tensors.append(
|
60
|
+
mark_tensor.mark_tensor_op(
|
61
|
+
tensor,
|
62
|
+
name=self.name,
|
63
|
+
pos=pos,
|
64
|
+
id=self.id,
|
65
|
+
is_input=is_input,
|
66
|
+
attr=serialized_attr,
|
67
|
+
)
|
68
|
+
)
|
69
|
+
|
70
|
+
if len(marked_tensors) == 1:
|
71
|
+
return marked_tensors[0]
|
72
|
+
return tuple(marked_tensors)
|
73
|
+
|
74
|
+
def mark_inputs(self, *tensors: torch.Tensor):
|
75
|
+
"""Mark the input tensors of the StableHLO Composite.
|
76
|
+
|
77
|
+
This method must only be called once per builder.
|
78
|
+
|
79
|
+
Args:
|
80
|
+
*tensors (torch.Tensor): Torch tensors to mark.
|
81
|
+
|
82
|
+
Returns:
|
83
|
+
marked_tensors (torch.Tensor or Tuple[torch.Tensor]):
|
84
|
+
Torch tensors marked as composite inputs. The tensor inputs of this
|
85
|
+
method
|
86
|
+
should be replaced by the marked tensors in later usages.
|
87
|
+
"""
|
88
|
+
|
89
|
+
return self._mark_tensor(*tensors, is_input=True)
|
90
|
+
|
91
|
+
def mark_outputs(self, *tensors: torch.Tensor):
|
92
|
+
"""Mark the output tensors of the StableHLO Composite.
|
93
|
+
|
94
|
+
This method must only be called once per builder.
|
95
|
+
|
96
|
+
Args:
|
97
|
+
*tensors (torch.Tensor): Torch tensors to mark.
|
98
|
+
|
99
|
+
Returns:
|
100
|
+
marked_tensors (torch.Tensor or Tuple[torch.Tensor]):
|
101
|
+
Torch tensors marked as composite outputs. The tensor inputs of this
|
102
|
+
method
|
103
|
+
should be replaced by the marked tensors in later usages.
|
104
|
+
"""
|
105
|
+
|
106
|
+
return self._mark_tensor(*tensors, is_input=False)
|
@@ -0,0 +1,16 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
from ._build import build_mlir_debuginfo
|
16
|
+
from ._op_polyfill import write_mlir_debuginfo_op
|
@@ -0,0 +1,43 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
import torch
|
16
|
+
|
17
|
+
|
18
|
+
def _class_fullname(cls):
|
19
|
+
module = cls.__module__
|
20
|
+
if module == "builtins":
|
21
|
+
return cls.__qualname__
|
22
|
+
return module + "." + cls.__qualname__
|
23
|
+
|
24
|
+
|
25
|
+
def _get_hierarchy(node: torch.fx.Node):
|
26
|
+
nn_module_stack = node.meta.get("nn_module_stack", {})
|
27
|
+
layers = []
|
28
|
+
for name, layer in nn_module_stack.values():
|
29
|
+
iid = ("_" + name.split(".")[-1]) if name else ""
|
30
|
+
layer_str = layer if isinstance(layer, str) else _class_fullname(layer)
|
31
|
+
layers.append(layer_str + iid)
|
32
|
+
|
33
|
+
hierachy_str = "/".join(layers) + ";"
|
34
|
+
return hierachy_str
|
35
|
+
|
36
|
+
|
37
|
+
def build_mlir_debuginfo(node: torch.fx.Node):
|
38
|
+
"""Build the debuginfo string for the given node's lowerings in MLIR."""
|
39
|
+
|
40
|
+
if not hasattr(node, "meta") or "nn_module_stack" not in node.meta:
|
41
|
+
return None
|
42
|
+
|
43
|
+
return _get_hierarchy(node)
|
@@ -0,0 +1,55 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
"""Polyfill op for torch.ops.xla.write_mlir_debuginfo.
|
16
|
+
|
17
|
+
In odml-torch, MLIR debuginfo is generated in the lowering framework directly
|
18
|
+
without the need of an additional torch op to write. This file register a no-op
|
19
|
+
placeholder torch op to replace torch.ops.xla.write_mlir_debuginfo in
|
20
|
+
ai-edge-torch.
|
21
|
+
"""
|
22
|
+
|
23
|
+
from jax._src.lib.mlir import ir
|
24
|
+
import torch
|
25
|
+
|
26
|
+
from .. import _torch_library
|
27
|
+
from .. import lowerings
|
28
|
+
|
29
|
+
|
30
|
+
_torch_library.ODML_TORCH_LIB.define(
|
31
|
+
"write_mlir_debuginfo(Tensor x, str data) -> Tensor"
|
32
|
+
)
|
33
|
+
|
34
|
+
write_mlir_debuginfo_op = torch.ops.odml_torch.write_mlir_debuginfo
|
35
|
+
|
36
|
+
|
37
|
+
@torch.library.impl(
|
38
|
+
_torch_library.ODML_TORCH_LIB,
|
39
|
+
"write_mlir_debuginfo",
|
40
|
+
"CompositeExplicitAutograd",
|
41
|
+
)
|
42
|
+
def write_mlir_debuginfo(x: torch.Tensor, _: str):
|
43
|
+
return x
|
44
|
+
|
45
|
+
|
46
|
+
@torch.library.impl(
|
47
|
+
_torch_library.ODML_TORCH_LIB, "write_mlir_debuginfo", "Meta"
|
48
|
+
)
|
49
|
+
def write_mlir_debuginfo_meta(x: torch.Tensor, _: str):
|
50
|
+
return torch.empty_like(x)
|
51
|
+
|
52
|
+
|
53
|
+
@lowerings.lower(torch.ops.odml_torch.write_mlir_debuginfo)
|
54
|
+
def write_mlir_debuginfo_lowering(lctx, x: ir.Value, _: str):
|
55
|
+
return x
|