ai-edge-torch-nightly 0.2.0.dev20240714__py3-none-any.whl → 0.3.0.dev20240926__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (169) hide show
  1. ai_edge_torch/__init__.py +5 -4
  2. ai_edge_torch/_convert/conversion.py +112 -0
  3. ai_edge_torch/_convert/conversion_utils.py +64 -0
  4. ai_edge_torch/{convert → _convert}/converter.py +94 -48
  5. ai_edge_torch/_convert/fx_passes/__init__.py +22 -0
  6. ai_edge_torch/{convert → _convert}/fx_passes/build_aten_composite_pass.py +107 -44
  7. ai_edge_torch/{convert → _convert}/fx_passes/build_interpolate_composite_pass.py +23 -20
  8. ai_edge_torch/{convert → _convert}/fx_passes/inject_mlir_debuginfo_pass.py +5 -6
  9. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/__init__.py +1 -1
  10. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_check.py +39 -9
  11. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_mark.py +2 -0
  12. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +1 -0
  13. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +17 -8
  14. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +9 -8
  15. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +31 -18
  16. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +2 -2
  17. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/pass_body.py +34 -24
  18. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/utils.py +2 -0
  19. ai_edge_torch/_convert/signature.py +66 -0
  20. ai_edge_torch/_convert/test/test_convert.py +495 -0
  21. ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
  22. ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
  23. ai_edge_torch/{convert → _convert}/test/test_to_channel_last_io.py +5 -5
  24. ai_edge_torch/{convert → _convert}/to_channel_last_io.py +10 -3
  25. ai_edge_torch/config.py +27 -0
  26. ai_edge_torch/conftest.py +20 -0
  27. ai_edge_torch/debug/culprit.py +72 -40
  28. ai_edge_torch/debug/test/test_culprit.py +7 -5
  29. ai_edge_torch/debug/test/test_search_model.py +8 -7
  30. ai_edge_torch/debug/utils.py +14 -3
  31. ai_edge_torch/fx_pass_base.py +101 -0
  32. ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +68 -0
  33. ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +68 -0
  34. ai_edge_torch/generative/examples/gemma/{gemma.py → gemma1.py} +69 -55
  35. ai_edge_torch/generative/examples/gemma/gemma2.py +267 -0
  36. ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
  37. ai_edge_torch/generative/examples/gemma/verify_gemma2.py +57 -0
  38. ai_edge_torch/generative/examples/gemma/verify_util.py +143 -0
  39. ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +68 -0
  40. ai_edge_torch/generative/examples/openelm/openelm.py +206 -0
  41. ai_edge_torch/generative/examples/openelm/verify.py +64 -0
  42. ai_edge_torch/generative/examples/phi/__init__.py +14 -0
  43. ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +68 -0
  44. ai_edge_torch/generative/examples/phi/convert_to_tflite.py +68 -0
  45. ai_edge_torch/generative/examples/{phi2 → phi}/phi2.py +70 -51
  46. ai_edge_torch/generative/examples/phi/phi3.py +286 -0
  47. ai_edge_torch/generative/examples/phi/verify.py +65 -0
  48. ai_edge_torch/generative/examples/phi/verify_phi3.py +70 -0
  49. ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
  50. ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +68 -0
  51. ai_edge_torch/generative/examples/smollm/smollm.py +101 -0
  52. ai_edge_torch/generative/examples/smollm/verify.py +62 -0
  53. ai_edge_torch/generative/examples/stable_diffusion/attention.py +3 -1
  54. ai_edge_torch/generative/examples/stable_diffusion/clip.py +83 -13
  55. ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +27 -14
  56. ai_edge_torch/generative/examples/stable_diffusion/decoder.py +74 -9
  57. ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +179 -37
  58. ai_edge_torch/generative/examples/stable_diffusion/encoder.py +4 -3
  59. ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +83 -58
  60. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +4 -3
  61. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +4 -3
  62. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +4 -3
  63. ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +1 -0
  64. ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +4 -1
  65. ai_edge_torch/generative/examples/stable_diffusion/util.py +9 -3
  66. ai_edge_torch/generative/examples/t5/convert_to_tflite.py +28 -25
  67. ai_edge_torch/generative/examples/t5/t5.py +208 -159
  68. ai_edge_torch/generative/examples/t5/t5_attention.py +45 -30
  69. ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
  70. ai_edge_torch/generative/examples/test_models/toy_model.py +69 -41
  71. ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +50 -64
  72. ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
  73. ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +41 -39
  74. ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +67 -54
  75. ai_edge_torch/generative/examples/tiny_llama/verify.py +64 -0
  76. ai_edge_torch/generative/fx_passes/__init__.py +4 -5
  77. ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +10 -7
  78. ai_edge_torch/generative/layers/attention.py +141 -102
  79. ai_edge_torch/generative/layers/attention_utils.py +53 -12
  80. ai_edge_torch/generative/layers/builder.py +37 -7
  81. ai_edge_torch/generative/layers/feed_forward.py +39 -14
  82. ai_edge_torch/generative/layers/kv_cache.py +162 -50
  83. ai_edge_torch/generative/layers/model_config.py +84 -30
  84. ai_edge_torch/generative/layers/normalization.py +185 -7
  85. ai_edge_torch/generative/layers/rotary_position_embedding.py +6 -4
  86. ai_edge_torch/generative/layers/scaled_dot_product_attention.py +48 -21
  87. ai_edge_torch/generative/layers/unet/blocks_2d.py +136 -77
  88. ai_edge_torch/generative/layers/unet/builder.py +7 -4
  89. ai_edge_torch/generative/layers/unet/model_config.py +17 -15
  90. ai_edge_torch/generative/quantize/example.py +7 -8
  91. ai_edge_torch/generative/quantize/quant_recipe.py +10 -7
  92. ai_edge_torch/generative/quantize/quant_recipe_utils.py +12 -1
  93. ai_edge_torch/generative/quantize/quant_recipes.py +8 -0
  94. ai_edge_torch/generative/test/test_kv_cache.py +120 -0
  95. ai_edge_torch/generative/test/{loader_test.py → test_loader.py} +9 -7
  96. ai_edge_torch/generative/test/test_model_conversion.py +124 -188
  97. ai_edge_torch/generative/test/test_model_conversion_large.py +251 -0
  98. ai_edge_torch/generative/test/test_quantize.py +76 -60
  99. ai_edge_torch/generative/test/utils.py +54 -0
  100. ai_edge_torch/generative/utilities/converter.py +82 -0
  101. ai_edge_torch/generative/utilities/loader.py +120 -57
  102. ai_edge_torch/generative/utilities/stable_diffusion_loader.py +165 -57
  103. ai_edge_torch/generative/utilities/t5_loader.py +110 -81
  104. ai_edge_torch/generative/utilities/verifier.py +247 -0
  105. ai_edge_torch/hlfb/__init__.py +1 -1
  106. ai_edge_torch/hlfb/mark_pattern/__init__.py +9 -7
  107. ai_edge_torch/hlfb/mark_pattern/passes.py +23 -3
  108. ai_edge_torch/hlfb/mark_pattern/pattern.py +39 -30
  109. ai_edge_torch/hlfb/test/test_mark_pattern.py +46 -20
  110. ai_edge_torch/hlfb/test/test_stablehlo_composite_builder.py +24 -11
  111. ai_edge_torch/lowertools/__init__.py +18 -0
  112. ai_edge_torch/lowertools/_shim.py +80 -0
  113. ai_edge_torch/lowertools/common_utils.py +142 -0
  114. ai_edge_torch/lowertools/odml_torch_utils.py +255 -0
  115. ai_edge_torch/lowertools/test_utils.py +60 -0
  116. ai_edge_torch/lowertools/torch_xla_utils.py +284 -0
  117. ai_edge_torch/{generative/quantize/ai_edge_quantizer_glue → lowertools}/translate_recipe.py +29 -14
  118. ai_edge_torch/model.py +53 -18
  119. ai_edge_torch/odml_torch/__init__.py +20 -0
  120. ai_edge_torch/odml_torch/_torch_future.py +61 -0
  121. ai_edge_torch/odml_torch/_torch_library.py +19 -0
  122. ai_edge_torch/odml_torch/composite/__init__.py +16 -0
  123. ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
  124. ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
  125. ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
  126. ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
  127. ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
  128. ai_edge_torch/odml_torch/export.py +357 -0
  129. ai_edge_torch/odml_torch/export_utils.py +168 -0
  130. ai_edge_torch/odml_torch/jax_bridge/__init__.py +15 -0
  131. ai_edge_torch/odml_torch/jax_bridge/_wrap.py +150 -0
  132. ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
  133. ai_edge_torch/odml_torch/lowerings/__init__.py +25 -0
  134. ai_edge_torch/odml_torch/lowerings/_basic.py +258 -0
  135. ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
  136. ai_edge_torch/odml_torch/lowerings/_convolution.py +241 -0
  137. ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +252 -0
  138. ai_edge_torch/odml_torch/lowerings/_layer_norm.py +78 -0
  139. ai_edge_torch/odml_torch/lowerings/context.py +42 -0
  140. ai_edge_torch/odml_torch/lowerings/registry.py +96 -0
  141. ai_edge_torch/odml_torch/lowerings/utils.py +185 -0
  142. ai_edge_torch/odml_torch/passes/__init__.py +38 -0
  143. ai_edge_torch/odml_torch/tf_integration.py +194 -0
  144. ai_edge_torch/quantize/pt2e_quantizer.py +52 -24
  145. ai_edge_torch/quantize/pt2e_quantizer_utils.py +43 -23
  146. ai_edge_torch/quantize/quant_config.py +13 -9
  147. ai_edge_torch/testing/model_coverage/model_coverage.py +29 -16
  148. ai_edge_torch/version.py +16 -0
  149. {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/METADATA +7 -3
  150. ai_edge_torch_nightly-0.3.0.dev20240926.dist-info/RECORD +177 -0
  151. {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/WHEEL +1 -1
  152. ai_edge_torch/convert/conversion.py +0 -117
  153. ai_edge_torch/convert/conversion_utils.py +0 -400
  154. ai_edge_torch/convert/fx_passes/__init__.py +0 -59
  155. ai_edge_torch/convert/fx_passes/_pass_base.py +0 -49
  156. ai_edge_torch/convert/fx_passes/canonicalize_pass.py +0 -37
  157. ai_edge_torch/convert/test/test_convert.py +0 -311
  158. ai_edge_torch/convert/test/test_convert_composites.py +0 -192
  159. ai_edge_torch/convert/test/test_convert_multisig.py +0 -139
  160. ai_edge_torch/generative/examples/gemma/convert_to_tflite.py +0 -66
  161. ai_edge_torch/generative/examples/phi2/convert_to_tflite.py +0 -64
  162. ai_edge_torch/generative/examples/test_models/toy_model_with_external_kv_cache.py +0 -161
  163. ai_edge_torch/generative/quantize/ai_edge_quantizer_glue/__init__.py +0 -0
  164. ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/RECORD +0 -121
  165. /ai_edge_torch/{convert → _convert}/__init__.py +0 -0
  166. /ai_edge_torch/{convert → _convert}/test/__init__.py +0 -0
  167. /ai_edge_torch/generative/examples/{phi2 → openelm}/__init__.py +0 -0
  168. {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/LICENSE +0 -0
  169. {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,495 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Tests for ai_edge_torch.convert."""
16
+
17
+ import dataclasses
18
+ import os
19
+ from typing import Tuple
20
+
21
+ import ai_edge_torch
22
+ from ai_edge_torch import config
23
+ from ai_edge_torch._convert import conversion_utils
24
+ from ai_edge_torch.testing import model_coverage
25
+ import numpy as np
26
+ import torch
27
+ from torch import nn
28
+ import torchvision
29
+
30
+ from absl.testing import absltest as googletest
31
+ from ai_edge_litert import interpreter as tfl_interpreter # pylint: disable=g-direct-tensorflow-import
32
+
33
+
34
+ @dataclasses.dataclass
35
+ class TestContainer1:
36
+ data_1: torch.Tensor
37
+ data_2: Tuple[torch.Tensor, torch.Tensor]
38
+
39
+
40
+ torch.export.register_dataclass(
41
+ TestContainer1, serialized_type_name="TestContainer1"
42
+ )
43
+
44
+
45
+ class TestConvert(googletest.TestCase):
46
+ """Tests conversion of various modules."""
47
+
48
+ def setUp(self):
49
+ super().setUp()
50
+ torch.manual_seed(0)
51
+
52
+ def test_convert_add(self):
53
+ """Tests conversion of a simple Add module."""
54
+
55
+ class Add(nn.Module):
56
+
57
+ def forward(self, a, b):
58
+ return a + b
59
+
60
+ args = (
61
+ torch.randn((5, 10)),
62
+ torch.randn((5, 10)),
63
+ )
64
+ torch_module = Add().eval()
65
+ edge_model = ai_edge_torch.convert(torch_module, args)
66
+
67
+ self.assertTrue(
68
+ model_coverage.compare_tflite_torch(edge_model, torch_module, args)
69
+ )
70
+
71
+ def test_convert_dot_add(self):
72
+ """Tests conversion of a matrix multiplication followed by an add."""
73
+
74
+ class DotAdd(nn.Module):
75
+
76
+ def forward(self, a, b, c):
77
+ return a @ b + c
78
+
79
+ args = (
80
+ torch.randn((5, 10)),
81
+ torch.randn((10, 5)),
82
+ torch.randn((5, 5)),
83
+ )
84
+ torch_module = DotAdd().eval()
85
+ edge_model = ai_edge_torch.convert(torch_module, args)
86
+
87
+ self.assertTrue(
88
+ model_coverage.compare_tflite_torch(edge_model, torch_module, args)
89
+ )
90
+
91
+ def test_convert_resnet18(self):
92
+ args = (torch.randn(4, 3, 224, 224),)
93
+ torch_module = torchvision.models.resnet18().eval()
94
+ edge_model = ai_edge_torch.convert(torch_module, args)
95
+
96
+ self.assertTrue(
97
+ model_coverage.compare_tflite_torch(edge_model, torch_module, args)
98
+ )
99
+
100
+ def test_signature_args_ordering(self):
101
+ """Tests conversion of a model with more than 10 arguments."""
102
+
103
+ class AddChainWith11Args(nn.Module):
104
+ """A model with 11 arguments."""
105
+
106
+ def forward(
107
+ self,
108
+ arg0: torch.Tensor,
109
+ arg1: torch.Tensor,
110
+ arg2: torch.Tensor,
111
+ arg3: torch.Tensor,
112
+ arg4: torch.Tensor,
113
+ arg5: torch.Tensor,
114
+ arg6: torch.Tensor,
115
+ arg7: torch.Tensor,
116
+ arg8: torch.Tensor,
117
+ arg9: torch.Tensor,
118
+ arg10: torch.Tensor,
119
+ ):
120
+ add0 = torch.add(arg0, arg1)
121
+ add1 = torch.add(add0, arg2)
122
+ add2 = torch.add(add1, arg3)
123
+ add3 = torch.add(add2, arg4)
124
+ add4 = torch.add(add3, arg5)
125
+ add5 = torch.add(add4, arg6)
126
+ add6 = torch.add(add5, arg7)
127
+ add7 = torch.add(add6, arg8)
128
+ add8 = torch.add(add7, arg9)
129
+ add9 = torch.add(add8, arg10)
130
+ return add9
131
+
132
+ sample_input = lambda: (
133
+ torch.rand((64,), dtype=torch.float32),
134
+ torch.rand((64,), dtype=torch.float32),
135
+ torch.rand((64,), dtype=torch.float32),
136
+ torch.rand((64,), dtype=torch.float32),
137
+ torch.rand((64,), dtype=torch.float32),
138
+ torch.rand((64,), dtype=torch.float32),
139
+ torch.rand((64,), dtype=torch.float32),
140
+ torch.rand((64,), dtype=torch.float32),
141
+ torch.rand((64,), dtype=torch.float32),
142
+ torch.rand((64,), dtype=torch.float32),
143
+ torch.rand((64,), dtype=torch.float32),
144
+ )
145
+ torch_model = AddChainWith11Args().eval()
146
+ edge_model = ai_edge_torch.convert(torch_model, sample_input())
147
+
148
+ result = model_coverage.compare_tflite_torch(
149
+ edge_model, torch_model, sample_input, num_valid_inputs=10
150
+ )
151
+ self.assertTrue(result)
152
+
153
+ def test_multi_output_model(self):
154
+ """Tests conversion of a model that returns multiple outputs."""
155
+
156
+ class BasicAddModelWithMultipleOutputs(nn.Module):
157
+ """A model that returns multiple outputs."""
158
+
159
+ def forward(self, arg0, arg1):
160
+ add0 = arg0 + arg1
161
+ mul0 = arg0 * arg1
162
+ return add0, mul0
163
+
164
+ sample_input = (
165
+ torch.rand((64,), dtype=torch.float32),
166
+ torch.rand((64,), dtype=torch.float32),
167
+ )
168
+
169
+ torch_model = BasicAddModelWithMultipleOutputs().eval()
170
+ edge_model = ai_edge_torch.convert(torch_model, sample_input)
171
+
172
+ result = model_coverage.compare_tflite_torch(
173
+ edge_model, torch_model, sample_input
174
+ )
175
+ self.assertTrue(result)
176
+
177
+ def test_12_outputs_model(self):
178
+ """Tests conversion of a model that returns more than 10 outputs."""
179
+
180
+ class BasicAddModelWithMultipleOutputs(nn.Module):
181
+ """A model that returns multiple outputs."""
182
+
183
+ def forward(self, arg0, arg1):
184
+ add0 = arg0 + arg1
185
+ mul0 = arg0 * arg1
186
+ add1 = add0 + mul0
187
+ mul1 = add0 * mul0
188
+ add2 = add1 + mul1
189
+ mul2 = add1 * mul1
190
+ add3 = add2 + mul2
191
+ mul3 = add2 * mul2
192
+ add4 = add3 + mul3
193
+ mul4 = add3 * mul3
194
+ add5 = add4 + mul4
195
+ mul5 = add4 * mul4
196
+
197
+ return (
198
+ add0,
199
+ mul0,
200
+ add1,
201
+ mul1,
202
+ add2,
203
+ mul2,
204
+ add3,
205
+ mul3,
206
+ add4,
207
+ mul4,
208
+ add5,
209
+ mul5,
210
+ )
211
+
212
+ sample_input = (
213
+ torch.rand((64,), dtype=torch.float32),
214
+ torch.rand((64,), dtype=torch.float32),
215
+ )
216
+
217
+ torch_model = BasicAddModelWithMultipleOutputs().eval()
218
+ edge_model = ai_edge_torch.convert(torch_model, sample_input)
219
+
220
+ result = model_coverage.compare_tflite_torch(
221
+ edge_model, torch_model, sample_input
222
+ )
223
+ self.assertTrue(result)
224
+
225
+ def test_apply_tfl_converter_flags(self):
226
+ """Tests if _apply_tfl_converter_flags correctly sets the values in a Converter object."""
227
+
228
+ class MockConverterInternalObject:
229
+
230
+ def __init__(self):
231
+ self.subkey2 = "original_subvalue2"
232
+
233
+ class MockConverter:
234
+
235
+ def __init__(self):
236
+ self.key1 = "original_value1"
237
+ self.key2 = MockConverterInternalObject()
238
+
239
+ mock_converter = MockConverter()
240
+ flags = {"key1": "new_value1", "key2": {"subkey2": "new_subvalue2"}}
241
+ conversion_utils.apply_tfl_converter_flags(mock_converter, flags)
242
+
243
+ self.assertTrue(flags["key1"], "new_value1")
244
+ self.assertTrue(flags["key2"]["subkey2"], "new_subvalue2")
245
+
246
+ def test_convert_add_converter_flags(self):
247
+ """Tests conversion of an add module setting a tflite converter flag."""
248
+
249
+ class Add(nn.Module):
250
+
251
+ def forward(self, a, b):
252
+ return a + b
253
+
254
+ args = (
255
+ torch.randn((5, 10)),
256
+ torch.randn((5, 10)),
257
+ )
258
+ torch_module = Add().eval()
259
+
260
+ tmp_dir_path = self.create_tempdir()
261
+ ir_dump_path = os.path.join(
262
+ tmp_dir_path, "test_convert_add_converter_flags_mlir_dump"
263
+ )
264
+ ai_edge_torch.convert(
265
+ torch_module,
266
+ args,
267
+ _ai_edge_converter_flags={"ir_dump_dir": ir_dump_path},
268
+ )
269
+ self.assertTrue(os.path.isdir(ir_dump_path))
270
+
271
+ def test_convert_conv_transpose_batch_norm(self):
272
+ """Tests conversion of a model with ConvTranspose2d and BatchNorm2d."""
273
+
274
+ channels = 2
275
+ size = 2
276
+ torch_model = nn.Sequential(
277
+ nn.ConvTranspose2d(
278
+ channels, channels, 1, stride=2, dilation=1, bias=False
279
+ ),
280
+ nn.BatchNorm2d(channels),
281
+ )
282
+
283
+ torch_model.eval()
284
+ sample_input = (torch.rand(1, channels, size, size),)
285
+ edge_model = ai_edge_torch.convert(torch_model, sample_input)
286
+
287
+ result = model_coverage.compare_tflite_torch(
288
+ edge_model, torch_model, sample_input
289
+ )
290
+ self.assertTrue(result)
291
+
292
+ @googletest.skipIf(
293
+ not config.Config.use_torch_xla,
294
+ reason="Shape polymorphism is not yet support with odml_torch.",
295
+ )
296
+ def test_convert_model_with_dynamic_batch(self):
297
+ """Test converting a simple model with dynamic batch size."""
298
+
299
+ class SampleModel(nn.Module):
300
+
301
+ def __init__(self):
302
+ super().__init__()
303
+ self.w = torch.ones((10, 10)) * 2.7
304
+
305
+ def forward(self, x, y):
306
+ return x + y + self.w
307
+
308
+ sample_input = (torch.randn(4, 3, 10, 10), torch.randn(4, 3, 10, 10))
309
+ batch = torch.export.Dim("batch")
310
+ dynamic_shapes = ({0: batch}, {0: batch})
311
+
312
+ model = SampleModel().eval()
313
+ edge_model = ai_edge_torch.convert(
314
+ model, sample_input, dynamic_shapes=dynamic_shapes
315
+ )
316
+
317
+ for batch_size in [2, 4, 10]:
318
+ validate_input = (
319
+ torch.randn(batch_size, 3, 10, 10),
320
+ torch.randn(batch_size, 3, 10, 10),
321
+ )
322
+ self.assertTrue(
323
+ model_coverage.compare_tflite_torch(edge_model, model, validate_input)
324
+ )
325
+
326
+ def test_convert_model_with_kwargs(self):
327
+ """Test converting a simple model with sample_kwargs."""
328
+
329
+ class SampleModel(nn.Module):
330
+
331
+ def forward(self, x, y):
332
+ return x + y
333
+
334
+ kwargs_gen = lambda: dict(x=torch.randn(10, 10), y=torch.randn(10, 10))
335
+
336
+ model = SampleModel().eval()
337
+ edge_model = ai_edge_torch.convert(model, sample_kwargs=kwargs_gen())
338
+
339
+ self.assertTrue(
340
+ model_coverage.compare_tflite_torch(
341
+ edge_model, model, kwargs=kwargs_gen
342
+ )
343
+ )
344
+
345
+ def test_convert_model_with_args_kwargs(self):
346
+ """Test converting a simple model with both sample_args and sample_kwargs."""
347
+
348
+ class SampleModel(nn.Module):
349
+
350
+ def forward(self, x, y):
351
+ return x + y
352
+
353
+ args_gen = lambda: (torch.randn(10, 10),)
354
+ kwargs_gen = lambda: dict(y=torch.randn(10, 10))
355
+
356
+ model = SampleModel().eval()
357
+ edge_model = ai_edge_torch.convert(model, args_gen(), kwargs_gen())
358
+
359
+ self.assertTrue(
360
+ model_coverage.compare_tflite_torch(
361
+ edge_model, model, args_gen, kwargs_gen
362
+ )
363
+ )
364
+
365
+ def test_convert_model_with_args_nested_kwargs_1(self):
366
+ """Test converting a simple model with both sample_args and nested sample_kwargs."""
367
+
368
+ class SampleModel(nn.Module):
369
+
370
+ def forward(self, x: torch.Tensor, y: torch.Tensor, z: TestContainer1):
371
+ return x + y + z.data_1 + z.data_2[0] + z.data_2[1]
372
+
373
+ args = (torch.randn(10, 10),)
374
+ kwargs = dict(
375
+ y=torch.randn(10, 10),
376
+ z=TestContainer1(
377
+ data_1=torch.randn(10, 10),
378
+ data_2=(torch.randn(10, 10), torch.randn(10, 10)),
379
+ ),
380
+ )
381
+ flat_inputs = {
382
+ "args_0": args[0].numpy(),
383
+ "y": kwargs["y"].numpy(),
384
+ "z_data_1": kwargs["z"].data_1.numpy(),
385
+ "z_data_2_0": kwargs["z"].data_2[0].numpy(),
386
+ "z_data_2_1": kwargs["z"].data_2[1].numpy(),
387
+ }
388
+ self._compare_tflite_torch_args_kwargs(
389
+ SampleModel(), args, kwargs, flat_inputs
390
+ )
391
+
392
+ def test_convert_model_with_args_nested_kwargs_2(self):
393
+ """Test converting a simple model with both sample_args and nested sample_kwargs."""
394
+
395
+ class SampleModel(nn.Module):
396
+
397
+ def forward(self, x, y, z):
398
+ return x + y + z.data_1 + z.data_2[0][0] + z.data_2[1]
399
+
400
+ args = (torch.randn(10, 10),)
401
+ kwargs = dict(
402
+ y=torch.randn(10, 10),
403
+ z=TestContainer1(
404
+ data_1=torch.randn(10, 10),
405
+ data_2=[(torch.randn(10, 10),), torch.randn(10, 10)],
406
+ ),
407
+ )
408
+ flat_inputs = {
409
+ "args_0": args[0].numpy(),
410
+ "y": kwargs["y"].numpy(),
411
+ "z_data_1": kwargs["z"].data_1.numpy(),
412
+ "z_data_2_0_0": kwargs["z"].data_2[0][0].numpy(),
413
+ "z_data_2_1": kwargs["z"].data_2[1].numpy(),
414
+ }
415
+ self._compare_tflite_torch_args_kwargs(
416
+ SampleModel(), args, kwargs, flat_inputs
417
+ )
418
+
419
+ def test_convert_model_with_args_nested_kwargs_3(self):
420
+ """Test converting a simple model with both sample_args and nested sample_kwargs."""
421
+
422
+ class SampleModel(nn.Module):
423
+
424
+ def forward(self, x, y, z):
425
+ return x + y + z.data_1 + z.data_2[0]["foo"] + z.data_2[1]
426
+
427
+ args = (torch.randn(10, 10),)
428
+ kwargs = dict(
429
+ y=torch.randn(10, 10),
430
+ z=TestContainer1(
431
+ data_1=torch.randn(10, 10),
432
+ data_2=(dict(foo=torch.randn(10, 10)), torch.randn(10, 10)),
433
+ ),
434
+ )
435
+ flat_inputs = {
436
+ "args_0": args[0].numpy(),
437
+ "y": kwargs["y"].numpy(),
438
+ "z_data_1": kwargs["z"].data_1.numpy(),
439
+ "z_data_2_0_foo": kwargs["z"].data_2[0]["foo"].numpy(),
440
+ "z_data_2_1": kwargs["z"].data_2[1].numpy(),
441
+ }
442
+ self._compare_tflite_torch_args_kwargs(
443
+ SampleModel(), args, kwargs, flat_inputs
444
+ )
445
+
446
+ def test_convert_model_non_flat_output_dict(self):
447
+ """Test converting a model with non-flat output structure."""
448
+
449
+ class SampleModel(nn.Module):
450
+
451
+ def forward(self, x, y, z):
452
+ return {"x": x, "y": TestContainer1(data_1=y, data_2=[y, z])}
453
+
454
+ args = (torch.randn(10, 10), torch.randn(10, 10), torch.randn(10, 10))
455
+ kwargs = dict()
456
+ flat_inputs = {
457
+ "args_0": args[0].numpy(),
458
+ "args_1": args[1].numpy(),
459
+ "args_2": args[2].numpy(),
460
+ }
461
+
462
+ edge_model = ai_edge_torch.convert(SampleModel().eval(), args, kwargs)
463
+ edge_output = edge_model(**flat_inputs)
464
+ np.testing.assert_almost_equal(edge_output["x"], args[0])
465
+ np.testing.assert_almost_equal(edge_output["y_data_1"], args[1])
466
+ np.testing.assert_almost_equal(edge_output["y_data_2_0"], args[1])
467
+ np.testing.assert_almost_equal(edge_output["y_data_2_1"], args[2])
468
+
469
+ interpreter = tfl_interpreter.Interpreter(
470
+ model_content=edge_model._tflite_model
471
+ )
472
+ runner = interpreter.get_signature_runner("serving_default")
473
+ output_details = runner.get_output_details()
474
+ self.assertIn("x", output_details.keys())
475
+ self.assertIn("y_data_1", output_details.keys())
476
+ self.assertIn("y_data_2_0", output_details.keys())
477
+ self.assertIn("y_data_2_1", output_details.keys())
478
+
479
+ def _compare_tflite_torch_args_kwargs(self, model, args, kwargs, flat_inputs):
480
+ model.eval()
481
+ edge_model = ai_edge_torch.convert(model, args, kwargs)
482
+ interpreter = tfl_interpreter.Interpreter(
483
+ model_content=edge_model._tflite_model
484
+ )
485
+ runner = interpreter.get_signature_runner("serving_default")
486
+ input_details = runner.get_input_details()
487
+ self.assertEqual(input_details.keys(), flat_inputs.keys())
488
+
489
+ reference_output = model(*args, **kwargs)
490
+ tflite_output = edge_model(**flat_inputs)
491
+ np.testing.assert_almost_equal(reference_output, tflite_output)
492
+
493
+
494
+ if __name__ == "__main__":
495
+ googletest.main()