ai-edge-torch-nightly 0.2.0.dev20240714__py3-none-any.whl → 0.3.0.dev20240926__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_edge_torch/__init__.py +5 -4
- ai_edge_torch/_convert/conversion.py +112 -0
- ai_edge_torch/_convert/conversion_utils.py +64 -0
- ai_edge_torch/{convert → _convert}/converter.py +94 -48
- ai_edge_torch/_convert/fx_passes/__init__.py +22 -0
- ai_edge_torch/{convert → _convert}/fx_passes/build_aten_composite_pass.py +107 -44
- ai_edge_torch/{convert → _convert}/fx_passes/build_interpolate_composite_pass.py +23 -20
- ai_edge_torch/{convert → _convert}/fx_passes/inject_mlir_debuginfo_pass.py +5 -6
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/__init__.py +1 -1
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_check.py +39 -9
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_mark.py +2 -0
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +1 -0
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +17 -8
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +9 -8
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +31 -18
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +2 -2
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/pass_body.py +34 -24
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/utils.py +2 -0
- ai_edge_torch/_convert/signature.py +66 -0
- ai_edge_torch/_convert/test/test_convert.py +495 -0
- ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
- ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
- ai_edge_torch/{convert → _convert}/test/test_to_channel_last_io.py +5 -5
- ai_edge_torch/{convert → _convert}/to_channel_last_io.py +10 -3
- ai_edge_torch/config.py +27 -0
- ai_edge_torch/conftest.py +20 -0
- ai_edge_torch/debug/culprit.py +72 -40
- ai_edge_torch/debug/test/test_culprit.py +7 -5
- ai_edge_torch/debug/test/test_search_model.py +8 -7
- ai_edge_torch/debug/utils.py +14 -3
- ai_edge_torch/fx_pass_base.py +101 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/gemma/{gemma.py → gemma1.py} +69 -55
- ai_edge_torch/generative/examples/gemma/gemma2.py +267 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma2.py +57 -0
- ai_edge_torch/generative/examples/gemma/verify_util.py +143 -0
- ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/openelm/openelm.py +206 -0
- ai_edge_torch/generative/examples/openelm/verify.py +64 -0
- ai_edge_torch/generative/examples/phi/__init__.py +14 -0
- ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/phi/convert_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/{phi2 → phi}/phi2.py +70 -51
- ai_edge_torch/generative/examples/phi/phi3.py +286 -0
- ai_edge_torch/generative/examples/phi/verify.py +65 -0
- ai_edge_torch/generative/examples/phi/verify_phi3.py +70 -0
- ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
- ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/smollm/smollm.py +101 -0
- ai_edge_torch/generative/examples/smollm/verify.py +62 -0
- ai_edge_torch/generative/examples/stable_diffusion/attention.py +3 -1
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +83 -13
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +27 -14
- ai_edge_torch/generative/examples/stable_diffusion/decoder.py +74 -9
- ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +179 -37
- ai_edge_torch/generative/examples/stable_diffusion/encoder.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +83 -58
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +1 -0
- ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +4 -1
- ai_edge_torch/generative/examples/stable_diffusion/util.py +9 -3
- ai_edge_torch/generative/examples/t5/convert_to_tflite.py +28 -25
- ai_edge_torch/generative/examples/t5/t5.py +208 -159
- ai_edge_torch/generative/examples/t5/t5_attention.py +45 -30
- ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
- ai_edge_torch/generative/examples/test_models/toy_model.py +69 -41
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +50 -64
- ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +41 -39
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +67 -54
- ai_edge_torch/generative/examples/tiny_llama/verify.py +64 -0
- ai_edge_torch/generative/fx_passes/__init__.py +4 -5
- ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +10 -7
- ai_edge_torch/generative/layers/attention.py +141 -102
- ai_edge_torch/generative/layers/attention_utils.py +53 -12
- ai_edge_torch/generative/layers/builder.py +37 -7
- ai_edge_torch/generative/layers/feed_forward.py +39 -14
- ai_edge_torch/generative/layers/kv_cache.py +162 -50
- ai_edge_torch/generative/layers/model_config.py +84 -30
- ai_edge_torch/generative/layers/normalization.py +185 -7
- ai_edge_torch/generative/layers/rotary_position_embedding.py +6 -4
- ai_edge_torch/generative/layers/scaled_dot_product_attention.py +48 -21
- ai_edge_torch/generative/layers/unet/blocks_2d.py +136 -77
- ai_edge_torch/generative/layers/unet/builder.py +7 -4
- ai_edge_torch/generative/layers/unet/model_config.py +17 -15
- ai_edge_torch/generative/quantize/example.py +7 -8
- ai_edge_torch/generative/quantize/quant_recipe.py +10 -7
- ai_edge_torch/generative/quantize/quant_recipe_utils.py +12 -1
- ai_edge_torch/generative/quantize/quant_recipes.py +8 -0
- ai_edge_torch/generative/test/test_kv_cache.py +120 -0
- ai_edge_torch/generative/test/{loader_test.py → test_loader.py} +9 -7
- ai_edge_torch/generative/test/test_model_conversion.py +124 -188
- ai_edge_torch/generative/test/test_model_conversion_large.py +251 -0
- ai_edge_torch/generative/test/test_quantize.py +76 -60
- ai_edge_torch/generative/test/utils.py +54 -0
- ai_edge_torch/generative/utilities/converter.py +82 -0
- ai_edge_torch/generative/utilities/loader.py +120 -57
- ai_edge_torch/generative/utilities/stable_diffusion_loader.py +165 -57
- ai_edge_torch/generative/utilities/t5_loader.py +110 -81
- ai_edge_torch/generative/utilities/verifier.py +247 -0
- ai_edge_torch/hlfb/__init__.py +1 -1
- ai_edge_torch/hlfb/mark_pattern/__init__.py +9 -7
- ai_edge_torch/hlfb/mark_pattern/passes.py +23 -3
- ai_edge_torch/hlfb/mark_pattern/pattern.py +39 -30
- ai_edge_torch/hlfb/test/test_mark_pattern.py +46 -20
- ai_edge_torch/hlfb/test/test_stablehlo_composite_builder.py +24 -11
- ai_edge_torch/lowertools/__init__.py +18 -0
- ai_edge_torch/lowertools/_shim.py +80 -0
- ai_edge_torch/lowertools/common_utils.py +142 -0
- ai_edge_torch/lowertools/odml_torch_utils.py +255 -0
- ai_edge_torch/lowertools/test_utils.py +60 -0
- ai_edge_torch/lowertools/torch_xla_utils.py +284 -0
- ai_edge_torch/{generative/quantize/ai_edge_quantizer_glue → lowertools}/translate_recipe.py +29 -14
- ai_edge_torch/model.py +53 -18
- ai_edge_torch/odml_torch/__init__.py +20 -0
- ai_edge_torch/odml_torch/_torch_future.py +61 -0
- ai_edge_torch/odml_torch/_torch_library.py +19 -0
- ai_edge_torch/odml_torch/composite/__init__.py +16 -0
- ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
- ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
- ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
- ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
- ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
- ai_edge_torch/odml_torch/export.py +357 -0
- ai_edge_torch/odml_torch/export_utils.py +168 -0
- ai_edge_torch/odml_torch/jax_bridge/__init__.py +15 -0
- ai_edge_torch/odml_torch/jax_bridge/_wrap.py +150 -0
- ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
- ai_edge_torch/odml_torch/lowerings/__init__.py +25 -0
- ai_edge_torch/odml_torch/lowerings/_basic.py +258 -0
- ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
- ai_edge_torch/odml_torch/lowerings/_convolution.py +241 -0
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +252 -0
- ai_edge_torch/odml_torch/lowerings/_layer_norm.py +78 -0
- ai_edge_torch/odml_torch/lowerings/context.py +42 -0
- ai_edge_torch/odml_torch/lowerings/registry.py +96 -0
- ai_edge_torch/odml_torch/lowerings/utils.py +185 -0
- ai_edge_torch/odml_torch/passes/__init__.py +38 -0
- ai_edge_torch/odml_torch/tf_integration.py +194 -0
- ai_edge_torch/quantize/pt2e_quantizer.py +52 -24
- ai_edge_torch/quantize/pt2e_quantizer_utils.py +43 -23
- ai_edge_torch/quantize/quant_config.py +13 -9
- ai_edge_torch/testing/model_coverage/model_coverage.py +29 -16
- ai_edge_torch/version.py +16 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/METADATA +7 -3
- ai_edge_torch_nightly-0.3.0.dev20240926.dist-info/RECORD +177 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/WHEEL +1 -1
- ai_edge_torch/convert/conversion.py +0 -117
- ai_edge_torch/convert/conversion_utils.py +0 -400
- ai_edge_torch/convert/fx_passes/__init__.py +0 -59
- ai_edge_torch/convert/fx_passes/_pass_base.py +0 -49
- ai_edge_torch/convert/fx_passes/canonicalize_pass.py +0 -37
- ai_edge_torch/convert/test/test_convert.py +0 -311
- ai_edge_torch/convert/test/test_convert_composites.py +0 -192
- ai_edge_torch/convert/test/test_convert_multisig.py +0 -139
- ai_edge_torch/generative/examples/gemma/convert_to_tflite.py +0 -66
- ai_edge_torch/generative/examples/phi2/convert_to_tflite.py +0 -64
- ai_edge_torch/generative/examples/test_models/toy_model_with_external_kv_cache.py +0 -161
- ai_edge_torch/generative/quantize/ai_edge_quantizer_glue/__init__.py +0 -0
- ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/RECORD +0 -121
- /ai_edge_torch/{convert → _convert}/__init__.py +0 -0
- /ai_edge_torch/{convert → _convert}/test/__init__.py +0 -0
- /ai_edge_torch/generative/examples/{phi2 → openelm}/__init__.py +0 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/LICENSE +0 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/top_level.txt +0 -0
@@ -25,7 +25,8 @@ class LayerQuantRecipe:
|
|
25
25
|
"""Quantization recipe for a single Edge Generative API layer (e.g. Attention).
|
26
26
|
|
27
27
|
Generic layer-scoped quantization recipe that specifies how this layer should
|
28
|
-
be quantized by the Edge Generative API. This is applicable to layers
|
28
|
+
be quantized by the Edge Generative API. This is applicable to layers
|
29
|
+
implemented
|
29
30
|
in ai_edge_torch/generative/layers/. Combinations of attributes that are not
|
30
31
|
supported during runtime will be detected when .verify() is called.
|
31
32
|
|
@@ -74,7 +75,8 @@ class LayerQuantRecipe:
|
|
74
75
|
|
75
76
|
if not is_valid:
|
76
77
|
raise ValueError(
|
77
|
-
'Unsupported LayerQuantRecipe configuration. See
|
78
|
+
'Unsupported LayerQuantRecipe configuration. See'
|
79
|
+
' get_supported_recipe_matrix()'
|
78
80
|
)
|
79
81
|
|
80
82
|
|
@@ -82,7 +84,8 @@ class LayerQuantRecipe:
|
|
82
84
|
class GenerativeQuantRecipe:
|
83
85
|
"""Quantization recipe for a model composed of the Edge Generative API layers.
|
84
86
|
|
85
|
-
Some layers can be specified with different `LayerQuantRecipe` for each block
|
87
|
+
Some layers can be specified with different `LayerQuantRecipe` for each block
|
88
|
+
by
|
86
89
|
providing a dictionary keyed by the TransformerBlock index, e.g. attention
|
87
90
|
and feedforward. For example,
|
88
91
|
|
@@ -101,11 +104,11 @@ class GenerativeQuantRecipe:
|
|
101
104
|
default: The quantization recipe for global scope of the model.
|
102
105
|
embedding: Recipe for the embedding table.
|
103
106
|
attention: Recipe for the attention blocks. This could be specified with
|
104
|
-
different LayerQuantRecipe for each block by providing a dictionary
|
105
|
-
|
107
|
+
different LayerQuantRecipe for each block by providing a dictionary keyed
|
108
|
+
by the TransformerBlock index.
|
106
109
|
feedforward: Recipe for the feedforward layers. This could be specified with
|
107
|
-
different LayerQuantRecipe for each block by providing a dictionary
|
108
|
-
|
110
|
+
different LayerQuantRecipe for each block by providing a dictionary keyed
|
111
|
+
by the TransformerBlock index.
|
109
112
|
"""
|
110
113
|
|
111
114
|
default: Optional[LayerQuantRecipe] = None
|
@@ -16,7 +16,8 @@
|
|
16
16
|
"""Helper functions to construct custom quantization recipes.
|
17
17
|
|
18
18
|
These are intended for more advanced users who want to configure their own
|
19
|
-
quantization recipes. For pre-constructed recipes, use `quant_recipes.py`
|
19
|
+
quantization recipes. For pre-constructed recipes, use `quant_recipes.py`
|
20
|
+
instead.
|
20
21
|
|
21
22
|
Typical usage example:
|
22
23
|
|
@@ -41,6 +42,16 @@ def create_layer_quant_int8_dynamic() -> quant_recipe.LayerQuantRecipe:
|
|
41
42
|
)
|
42
43
|
|
43
44
|
|
45
|
+
def create_layer_quant_int8_weight_only() -> quant_recipe.LayerQuantRecipe:
|
46
|
+
return quant_recipe.LayerQuantRecipe(
|
47
|
+
activation_dtype=quant_attrs.Dtype.FP32,
|
48
|
+
weight_dtype=quant_attrs.Dtype.INT8,
|
49
|
+
mode=quant_attrs.Mode.WEIGHT_ONLY,
|
50
|
+
algorithm=quant_attrs.Algorithm.MIN_MAX,
|
51
|
+
granularity=quant_attrs.Granularity.CHANNELWISE,
|
52
|
+
)
|
53
|
+
|
54
|
+
|
44
55
|
def create_layer_quant_fp16() -> quant_recipe.LayerQuantRecipe:
|
45
56
|
return quant_recipe.LayerQuantRecipe(
|
46
57
|
activation_dtype=quant_attrs.Dtype.FP32,
|
@@ -40,6 +40,14 @@ def full_int8_dynamic_recipe() -> quant_config.QuantConfig:
|
|
40
40
|
)
|
41
41
|
|
42
42
|
|
43
|
+
def full_int8_weight_only_recipe() -> quant_config.QuantConfig:
|
44
|
+
return quant_config.QuantConfig(
|
45
|
+
generative_recipe=quant_recipe.GenerativeQuantRecipe(
|
46
|
+
default=quant_recipe_utils.create_layer_quant_int8_weight_only(),
|
47
|
+
)
|
48
|
+
)
|
49
|
+
|
50
|
+
|
43
51
|
def full_fp16_recipe() -> quant_config.QuantConfig:
|
44
52
|
return quant_config.QuantConfig(
|
45
53
|
generative_recipe=quant_recipe.GenerativeQuantRecipe(
|
@@ -0,0 +1,120 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""A suite of tests to validate KV Cache layer."""
|
17
|
+
|
18
|
+
from ai_edge_torch.generative.layers import kv_cache as kv_utils
|
19
|
+
import ai_edge_torch.generative.layers.model_config as cfg
|
20
|
+
import torch
|
21
|
+
|
22
|
+
from absl.testing import absltest as googletest
|
23
|
+
|
24
|
+
|
25
|
+
class TestKVLayers(googletest.TestCase):
|
26
|
+
|
27
|
+
def _get_test_config(
|
28
|
+
self, num_layers, head_dim, num_query_groups, kv_cache_max_len
|
29
|
+
):
|
30
|
+
attn_config = cfg.AttentionConfig(
|
31
|
+
num_heads=1, head_dim=head_dim, num_query_groups=num_query_groups
|
32
|
+
)
|
33
|
+
block_config = cfg.TransformerBlockConfig(
|
34
|
+
attn_config=attn_config, ff_config=None
|
35
|
+
)
|
36
|
+
config = cfg.ModelConfig(
|
37
|
+
kv_cache_max_len=kv_cache_max_len,
|
38
|
+
embedding_dim=head_dim,
|
39
|
+
block_configs=block_config,
|
40
|
+
num_layers=num_layers,
|
41
|
+
max_seq_len=None,
|
42
|
+
vocab_size=None,
|
43
|
+
)
|
44
|
+
return config
|
45
|
+
|
46
|
+
def test_cache_udpate(self):
|
47
|
+
N = 1
|
48
|
+
HEAD_DIM = 2
|
49
|
+
NUM_QG = 1
|
50
|
+
KV_LEN = 4
|
51
|
+
config = self._get_test_config(
|
52
|
+
num_layers=N,
|
53
|
+
head_dim=HEAD_DIM,
|
54
|
+
num_query_groups=NUM_QG,
|
55
|
+
kv_cache_max_len=KV_LEN,
|
56
|
+
)
|
57
|
+
kv = kv_utils.KVCache.from_model_config(config)
|
58
|
+
entry = kv.caches[0]
|
59
|
+
# single-slice update
|
60
|
+
input_pos = torch.tensor([1])
|
61
|
+
k_slice = v_slice = torch.full(
|
62
|
+
(1, 1, NUM_QG, HEAD_DIM), 5, dtype=torch.float
|
63
|
+
)
|
64
|
+
updated_entry = kv_utils.update(entry, input_pos, k_slice, v_slice)
|
65
|
+
self.assertEqual(
|
66
|
+
updated_entry.k_cache.numpy().flatten().tolist(),
|
67
|
+
[0, 0, 5, 5, 0, 0, 0, 0],
|
68
|
+
)
|
69
|
+
self.assertEqual(
|
70
|
+
updated_entry.v_cache.numpy().flatten().tolist(),
|
71
|
+
[0, 0, 5, 5, 0, 0, 0, 0],
|
72
|
+
)
|
73
|
+
# multi-slice update
|
74
|
+
input_pos = torch.tensor([0, 3])
|
75
|
+
k_slice = v_slice = torch.full(
|
76
|
+
(1, 2, NUM_QG, HEAD_DIM), 7, dtype=torch.float
|
77
|
+
)
|
78
|
+
updated_entry = kv_utils.update(entry, input_pos, k_slice, v_slice)
|
79
|
+
self.assertEqual(
|
80
|
+
updated_entry.k_cache.numpy().flatten().tolist(),
|
81
|
+
[7, 7, 0, 0, 0, 0, 7, 7],
|
82
|
+
)
|
83
|
+
self.assertEqual(
|
84
|
+
updated_entry.v_cache.numpy().flatten().tolist(),
|
85
|
+
[7, 7, 0, 0, 0, 0, 7, 7],
|
86
|
+
)
|
87
|
+
|
88
|
+
def test_serialization(self):
|
89
|
+
class TestModel(torch.nn.Module):
|
90
|
+
|
91
|
+
def forward(self, kv: kv_utils.KVCache) -> kv_utils.KVCache:
|
92
|
+
updated_kv_entries = [
|
93
|
+
kv_utils.KVCacheEntry(
|
94
|
+
torch.zeros_like(entry.k_cache), torch.zeros_like(entry.v_cache)
|
95
|
+
)
|
96
|
+
for entry in kv.caches
|
97
|
+
]
|
98
|
+
return kv_utils.KVCache(updated_kv_entries)
|
99
|
+
|
100
|
+
N = 1
|
101
|
+
HEAD_DIM = 2
|
102
|
+
NUM_QG = 1
|
103
|
+
KV_LEN = 4
|
104
|
+
config = self._get_test_config(
|
105
|
+
num_layers=N,
|
106
|
+
head_dim=HEAD_DIM,
|
107
|
+
num_query_groups=NUM_QG,
|
108
|
+
kv_cache_max_len=KV_LEN,
|
109
|
+
)
|
110
|
+
kv = kv_utils.KVCache.from_model_config(config)
|
111
|
+
model = TestModel()
|
112
|
+
exported_program = torch.export.export(model, (kv,))
|
113
|
+
input_specs = exported_program.graph_signature.input_specs
|
114
|
+
self.assertEqual(len(input_specs), 2)
|
115
|
+
self.assertEqual(input_specs[0].arg.name, "kv_k_0")
|
116
|
+
self.assertEqual(input_specs[1].arg.name, "kv_v_0")
|
117
|
+
|
118
|
+
|
119
|
+
if __name__ == "__main__":
|
120
|
+
googletest.main()
|
@@ -16,16 +16,16 @@
|
|
16
16
|
|
17
17
|
import os
|
18
18
|
import tempfile
|
19
|
-
import unittest
|
20
19
|
|
20
|
+
from ai_edge_torch.generative.examples.tiny_llama import tiny_llama
|
21
|
+
from ai_edge_torch.generative.utilities import loader as loading_utils
|
21
22
|
import safetensors.torch
|
22
23
|
import torch
|
23
24
|
|
24
|
-
from
|
25
|
-
from ai_edge_torch.generative.utilities import loader as loading_utils
|
25
|
+
from absl.testing import absltest as googletest
|
26
26
|
|
27
27
|
|
28
|
-
class TestLoader(
|
28
|
+
class TestLoader(googletest.TestCase):
|
29
29
|
"""Unit tests that check weight loader."""
|
30
30
|
|
31
31
|
def test_load_safetensors(self):
|
@@ -59,7 +59,9 @@ class TestLoader(unittest.TestCase):
|
|
59
59
|
"model.layers.0.mlp.down_proj.weight": torch.randn((2048, 5632)),
|
60
60
|
"model.layers.0.mlp.gate_proj.weight": torch.randn((5632, 2048)),
|
61
61
|
"model.layers.0.mlp.up_proj.weight": torch.randn((5632, 2048)),
|
62
|
-
"model.layers.0.post_attention_layernorm.weight": torch.randn((
|
62
|
+
"model.layers.0.post_attention_layernorm.weight": torch.randn((
|
63
|
+
2048,
|
64
|
+
)),
|
63
65
|
"model.layers.0.self_attn.k_proj.weight": torch.randn((256, 2048)),
|
64
66
|
"model.layers.0.self_attn.o_proj.weight": torch.randn((2048, 2048)),
|
65
67
|
"model.layers.0.self_attn.q_proj.weight": torch.randn((2048, 2048)),
|
@@ -69,7 +71,7 @@ class TestLoader(unittest.TestCase):
|
|
69
71
|
safetensors.torch.save_file(test_weights, file_path)
|
70
72
|
cfg = tiny_llama.get_model_config()
|
71
73
|
cfg.num_layers = 1
|
72
|
-
model = tiny_llama.
|
74
|
+
model = tiny_llama.TinyLlama(cfg)
|
73
75
|
|
74
76
|
loader = loading_utils.ModelLoader(file_path, tiny_llama.TENSOR_NAMES)
|
75
77
|
# if returns successfully, it means all the tensors were initiallized.
|
@@ -77,4 +79,4 @@ class TestLoader(unittest.TestCase):
|
|
77
79
|
|
78
80
|
|
79
81
|
if __name__ == "__main__":
|
80
|
-
|
82
|
+
googletest.main()
|
@@ -12,224 +12,160 @@
|
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
|
-
# Testing model conversion for a few gen-ai models.
|
16
|
-
import copy
|
17
|
-
import os
|
18
|
-
import tempfile
|
19
|
-
import unittest
|
20
15
|
|
21
|
-
|
22
|
-
import torch
|
16
|
+
"""Testing model conversion for a few gen-ai models."""
|
23
17
|
|
24
18
|
import ai_edge_torch
|
25
|
-
from ai_edge_torch
|
26
|
-
from ai_edge_torch.generative.examples.
|
27
|
-
from ai_edge_torch.generative.examples.test_models import toy_model_with_kv_cache # NOQA
|
19
|
+
from ai_edge_torch import config as ai_edge_config
|
20
|
+
from ai_edge_torch.generative.examples.test_models import toy_model_with_kv_cache
|
28
21
|
from ai_edge_torch.generative.examples.tiny_llama import tiny_llama
|
29
|
-
from ai_edge_torch.
|
22
|
+
from ai_edge_torch.generative.layers import kv_cache
|
23
|
+
from ai_edge_torch.generative.test import utils as test_utils
|
24
|
+
import numpy as np
|
25
|
+
import torch
|
30
26
|
|
27
|
+
from absl.testing import absltest as googletest
|
28
|
+
from ai_edge_litert import interpreter
|
31
29
|
|
32
|
-
|
30
|
+
|
31
|
+
class TestModelConversion(googletest.TestCase):
|
33
32
|
"""Unit tests that check for model conversion and correctness."""
|
34
33
|
|
35
|
-
def
|
36
|
-
|
37
|
-
|
38
|
-
|
39
|
-
|
34
|
+
def setUp(self):
|
35
|
+
super().setUp()
|
36
|
+
# Builder function for an Interpreter that supports custom ops.
|
37
|
+
self._interpreter_builder = (
|
38
|
+
lambda tflite_model: lambda: interpreter.InterpreterWithCustomOps(
|
39
|
+
custom_op_registerers=["GenAIOpsRegisterer"],
|
40
|
+
model_content=tflite_model,
|
41
|
+
experimental_default_delegate_latest_features=True,
|
42
|
+
)
|
40
43
|
)
|
41
44
|
|
42
|
-
|
43
|
-
|
44
|
-
|
45
|
-
|
46
|
-
|
47
|
-
|
48
|
-
|
49
|
-
|
50
|
-
|
51
|
-
|
52
|
-
|
53
|
-
|
54
|
-
|
55
|
-
|
56
|
-
|
57
|
-
|
58
|
-
def test_toy_model_with_multi_batches(self):
|
59
|
-
config = toy_model_with_kv_cache.get_model_config()
|
60
|
-
config.batch_size = 2
|
61
|
-
pytorch_model = toy_model_with_kv_cache.ToyModelWithKV(config)
|
62
|
-
idx, input_pos = torch.tensor([[1], [2]], dtype=torch.long), torch.tensor(
|
63
|
-
[10], dtype=torch.int64
|
45
|
+
def _test_model_with_kv_cache(self, config, pytorch_model):
|
46
|
+
tokens, input_pos = torch.tensor([[1]], dtype=torch.int), torch.tensor(
|
47
|
+
[10], dtype=torch.int
|
48
|
+
)
|
49
|
+
kv = kv_cache.KVCache.from_model_config(config)
|
50
|
+
|
51
|
+
edge_model = ai_edge_torch.convert(
|
52
|
+
pytorch_model,
|
53
|
+
sample_kwargs={
|
54
|
+
"tokens": tokens,
|
55
|
+
"input_pos": input_pos,
|
56
|
+
"kv_cache": kv,
|
57
|
+
},
|
58
|
+
)
|
59
|
+
edge_model.set_interpreter_builder(
|
60
|
+
self._interpreter_builder(edge_model.tflite_model())
|
64
61
|
)
|
65
62
|
|
66
|
-
|
67
|
-
|
68
|
-
|
69
|
-
|
70
|
-
|
71
|
-
|
72
|
-
|
73
|
-
|
74
|
-
|
75
|
-
|
76
|
-
|
77
|
-
|
78
|
-
|
79
|
-
|
80
|
-
|
63
|
+
self.assertTrue(
|
64
|
+
test_utils.compare_tflite_torch(
|
65
|
+
edge_model,
|
66
|
+
pytorch_model,
|
67
|
+
tokens,
|
68
|
+
input_pos,
|
69
|
+
kv,
|
70
|
+
signature_name="serving_default",
|
71
|
+
atol=1e-5,
|
72
|
+
rtol=1e-5,
|
73
|
+
)
|
74
|
+
)
|
75
|
+
|
76
|
+
@googletest.skipIf(
|
77
|
+
ai_edge_config.Config.use_torch_xla,
|
78
|
+
reason="tests with custom ops are not supported on oss",
|
79
|
+
)
|
80
|
+
def test_toy_model_with_kv_cache(self):
|
81
|
+
config = toy_model_with_kv_cache.get_model_config()
|
82
|
+
pytorch_model = toy_model_with_kv_cache.ToyModelWithKVCache(config).eval()
|
83
|
+
self._test_model_with_kv_cache(config, pytorch_model)
|
81
84
|
|
85
|
+
@googletest.skipIf(
|
86
|
+
ai_edge_config.Config.use_torch_xla,
|
87
|
+
reason="tests with custom ops are not supported on oss",
|
88
|
+
)
|
82
89
|
def test_toy_model_with_kv_cache_with_hlfb(self):
|
83
90
|
config = toy_model_with_kv_cache.get_model_config()
|
84
91
|
config.enable_hlfb = True
|
85
|
-
pytorch_model = toy_model_with_kv_cache.
|
86
|
-
|
87
|
-
[10], dtype=torch.int64
|
88
|
-
)
|
89
|
-
|
90
|
-
edge_model = ai_edge_torch.convert(pytorch_model, (idx, input_pos))
|
91
|
-
|
92
|
-
# TODO(b/338288901): re-enable test to check output tensors.
|
93
|
-
skip_output_check = True
|
94
|
-
if skip_output_check is False:
|
95
|
-
self.assertTrue(
|
96
|
-
model_coverage.compare_tflite_torch(
|
97
|
-
edge_model,
|
98
|
-
pytorch_model,
|
99
|
-
(idx, input_pos),
|
100
|
-
num_valid_inputs=1,
|
101
|
-
atol=1e-5,
|
102
|
-
rtol=1e-5,
|
103
|
-
)
|
104
|
-
)
|
105
|
-
|
106
|
-
def test_tiny_llama(self):
|
107
|
-
self.skipTest("b/338288901")
|
108
|
-
config = tiny_llama.get_fake_model_config_for_test()
|
109
|
-
pytorch_model = tiny_llama.TinyLLamma(config)
|
110
|
-
|
111
|
-
idx = torch.from_numpy(np.array([[1, 2, 3, 4]]))
|
112
|
-
tokens = torch.full((1, 10), 0, dtype=torch.long, device="cpu")
|
113
|
-
tokens[0, :4] = idx
|
114
|
-
input_pos = torch.arange(0, 10)
|
115
|
-
|
116
|
-
edge_model = ai_edge_torch.convert(pytorch_model, (tokens, input_pos))
|
117
|
-
|
118
|
-
# TODO(b/338288901): re-enable test to check output tensors.
|
119
|
-
skip_output_check = True
|
120
|
-
if skip_output_check is False:
|
121
|
-
self.assertTrue(
|
122
|
-
model_coverage.compare_tflite_torch(
|
123
|
-
edge_model,
|
124
|
-
pytorch_model,
|
125
|
-
(tokens, input_pos),
|
126
|
-
num_valid_inputs=1,
|
127
|
-
atol=1e-5,
|
128
|
-
rtol=1e-5,
|
129
|
-
)
|
130
|
-
)
|
131
|
-
|
132
|
-
def test_tiny_llama_multisig(self):
|
133
|
-
config = tiny_llama.get_fake_model_config_for_test()
|
134
|
-
pytorch_model = tiny_llama.TinyLLamma(config)
|
92
|
+
pytorch_model = toy_model_with_kv_cache.ToyModelWithKVCache(config).eval()
|
93
|
+
self._test_model_with_kv_cache(config, pytorch_model)
|
135
94
|
|
95
|
+
def _test_multisig_model(self, config, pytorch_model, atol, rtol):
|
136
96
|
# prefill
|
137
97
|
seq_len = 10
|
138
|
-
prefill_tokens = torch.full((1, seq_len), 0, dtype=torch.
|
98
|
+
prefill_tokens = torch.full((1, seq_len), 0, dtype=torch.int, device="cpu")
|
139
99
|
prompt_token = torch.from_numpy(np.array([1, 2, 3, 4]))
|
140
100
|
prefill_tokens[0, : len(prompt_token)] = prompt_token
|
141
|
-
prefill_input_pos = torch.arange(0, seq_len)
|
101
|
+
prefill_input_pos = torch.arange(0, seq_len, dtype=torch.int)
|
142
102
|
|
143
103
|
# decode
|
144
|
-
decode_token = torch.tensor([[1]], dtype=torch.
|
145
|
-
decode_input_pos = torch.tensor([5], dtype=torch.
|
104
|
+
decode_token = torch.tensor([[1]], dtype=torch.int)
|
105
|
+
decode_input_pos = torch.tensor([5], dtype=torch.int)
|
106
|
+
|
107
|
+
kv = kv_cache.KVCache.from_model_config(config)
|
146
108
|
|
147
109
|
edge_model = (
|
148
110
|
ai_edge_torch.signature(
|
149
|
-
"prefill",
|
111
|
+
"prefill",
|
112
|
+
pytorch_model,
|
113
|
+
sample_kwargs={
|
114
|
+
"tokens": prefill_tokens,
|
115
|
+
"input_pos": prefill_input_pos,
|
116
|
+
"kv_cache": kv,
|
117
|
+
},
|
118
|
+
)
|
119
|
+
.signature(
|
120
|
+
"decode",
|
121
|
+
pytorch_model,
|
122
|
+
sample_kwargs={
|
123
|
+
"tokens": decode_token,
|
124
|
+
"input_pos": decode_input_pos,
|
125
|
+
"kv_cache": kv,
|
126
|
+
},
|
150
127
|
)
|
151
|
-
.signature("decode", pytorch_model, (decode_token, decode_input_pos))
|
152
128
|
.convert()
|
153
129
|
)
|
130
|
+
edge_model.set_interpreter_builder(
|
131
|
+
self._interpreter_builder(edge_model.tflite_model())
|
132
|
+
)
|
154
133
|
|
155
|
-
|
156
|
-
|
157
|
-
|
158
|
-
|
159
|
-
|
160
|
-
|
161
|
-
|
162
|
-
|
163
|
-
|
164
|
-
|
165
|
-
|
166
|
-
|
167
|
-
|
168
|
-
|
169
|
-
|
170
|
-
|
171
|
-
|
172
|
-
|
173
|
-
|
174
|
-
|
175
|
-
|
176
|
-
|
177
|
-
|
178
|
-
|
179
|
-
|
180
|
-
|
181
|
-
|
182
|
-
|
183
|
-
|
184
|
-
|
185
|
-
|
186
|
-
|
187
|
-
|
188
|
-
|
189
|
-
|
190
|
-
edge_model = ai_edge_torch.convert(model, (tokens, input_pos))
|
191
|
-
|
192
|
-
# TODO(b/338288901): re-enable test to check output tensors.
|
193
|
-
skip_output_check = True
|
194
|
-
if skip_output_check is False:
|
195
|
-
# TODO(talumbau, haoliang): debug numerical diff.
|
196
|
-
self.assertTrue(
|
197
|
-
model_coverage.compare_tflite_torch(
|
198
|
-
edge_model,
|
199
|
-
model,
|
200
|
-
(tokens, input_pos),
|
201
|
-
num_valid_inputs=1,
|
202
|
-
atol=1e-2,
|
203
|
-
rtol=1e-5,
|
204
|
-
)
|
205
|
-
)
|
206
|
-
|
207
|
-
def test_phi2(self):
|
208
|
-
self.skipTest("b/338288901")
|
209
|
-
config = phi2.get_fake_model_config_for_test()
|
210
|
-
pytorch_model = phi2.Phi2(config)
|
211
|
-
|
212
|
-
idx = torch.from_numpy(np.array([[1, 2, 3, 4]]))
|
213
|
-
tokens = torch.full((1, 10), 0, dtype=torch.long, device="cpu")
|
214
|
-
tokens[0, :4] = idx
|
215
|
-
input_pos = torch.arange(0, 10)
|
216
|
-
|
217
|
-
edge_model = ai_edge_torch.convert(pytorch_model, (tokens, input_pos))
|
218
|
-
|
219
|
-
# TODO(b/338288901): re-enable test to check output tensors.
|
220
|
-
skip_output_check = True
|
221
|
-
if skip_output_check is False:
|
222
|
-
self.assertTrue(
|
223
|
-
model_coverage.compare_tflite_torch(
|
224
|
-
edge_model,
|
225
|
-
pytorch_model,
|
226
|
-
(tokens, input_pos),
|
227
|
-
num_valid_inputs=1,
|
228
|
-
atol=1e-5,
|
229
|
-
rtol=1e-5,
|
230
|
-
)
|
231
|
-
)
|
134
|
+
self.assertTrue(
|
135
|
+
test_utils.compare_tflite_torch(
|
136
|
+
edge_model,
|
137
|
+
pytorch_model,
|
138
|
+
prefill_tokens,
|
139
|
+
prefill_input_pos,
|
140
|
+
kv,
|
141
|
+
signature_name="prefill",
|
142
|
+
atol=atol,
|
143
|
+
rtol=atol,
|
144
|
+
)
|
145
|
+
)
|
146
|
+
|
147
|
+
self.assertTrue(
|
148
|
+
test_utils.compare_tflite_torch(
|
149
|
+
edge_model,
|
150
|
+
pytorch_model,
|
151
|
+
decode_token,
|
152
|
+
decode_input_pos,
|
153
|
+
kv,
|
154
|
+
signature_name="decode",
|
155
|
+
atol=atol,
|
156
|
+
rtol=atol,
|
157
|
+
)
|
158
|
+
)
|
159
|
+
|
160
|
+
@googletest.skipIf(
|
161
|
+
ai_edge_config.Config.use_torch_xla,
|
162
|
+
reason="tests with custom ops are not supported on oss",
|
163
|
+
)
|
164
|
+
def test_tiny_llama_multisig(self):
|
165
|
+
config = tiny_llama.get_fake_model_config()
|
166
|
+
pytorch_model = tiny_llama.TinyLlama(config).eval()
|
167
|
+
self._test_multisig_model(config, pytorch_model, atol=1e-5, rtol=1e-5)
|
232
168
|
|
233
169
|
|
234
170
|
if __name__ == "__main__":
|
235
|
-
|
171
|
+
googletest.main()
|