ai-edge-torch-nightly 0.2.0.dev20240714__py3-none-any.whl → 0.3.0.dev20240926__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_edge_torch/__init__.py +5 -4
- ai_edge_torch/_convert/conversion.py +112 -0
- ai_edge_torch/_convert/conversion_utils.py +64 -0
- ai_edge_torch/{convert → _convert}/converter.py +94 -48
- ai_edge_torch/_convert/fx_passes/__init__.py +22 -0
- ai_edge_torch/{convert → _convert}/fx_passes/build_aten_composite_pass.py +107 -44
- ai_edge_torch/{convert → _convert}/fx_passes/build_interpolate_composite_pass.py +23 -20
- ai_edge_torch/{convert → _convert}/fx_passes/inject_mlir_debuginfo_pass.py +5 -6
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/__init__.py +1 -1
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_check.py +39 -9
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_mark.py +2 -0
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +1 -0
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +17 -8
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +9 -8
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +31 -18
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +2 -2
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/pass_body.py +34 -24
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/utils.py +2 -0
- ai_edge_torch/_convert/signature.py +66 -0
- ai_edge_torch/_convert/test/test_convert.py +495 -0
- ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
- ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
- ai_edge_torch/{convert → _convert}/test/test_to_channel_last_io.py +5 -5
- ai_edge_torch/{convert → _convert}/to_channel_last_io.py +10 -3
- ai_edge_torch/config.py +27 -0
- ai_edge_torch/conftest.py +20 -0
- ai_edge_torch/debug/culprit.py +72 -40
- ai_edge_torch/debug/test/test_culprit.py +7 -5
- ai_edge_torch/debug/test/test_search_model.py +8 -7
- ai_edge_torch/debug/utils.py +14 -3
- ai_edge_torch/fx_pass_base.py +101 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/gemma/{gemma.py → gemma1.py} +69 -55
- ai_edge_torch/generative/examples/gemma/gemma2.py +267 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma2.py +57 -0
- ai_edge_torch/generative/examples/gemma/verify_util.py +143 -0
- ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/openelm/openelm.py +206 -0
- ai_edge_torch/generative/examples/openelm/verify.py +64 -0
- ai_edge_torch/generative/examples/phi/__init__.py +14 -0
- ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/phi/convert_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/{phi2 → phi}/phi2.py +70 -51
- ai_edge_torch/generative/examples/phi/phi3.py +286 -0
- ai_edge_torch/generative/examples/phi/verify.py +65 -0
- ai_edge_torch/generative/examples/phi/verify_phi3.py +70 -0
- ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
- ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/smollm/smollm.py +101 -0
- ai_edge_torch/generative/examples/smollm/verify.py +62 -0
- ai_edge_torch/generative/examples/stable_diffusion/attention.py +3 -1
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +83 -13
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +27 -14
- ai_edge_torch/generative/examples/stable_diffusion/decoder.py +74 -9
- ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +179 -37
- ai_edge_torch/generative/examples/stable_diffusion/encoder.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +83 -58
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +1 -0
- ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +4 -1
- ai_edge_torch/generative/examples/stable_diffusion/util.py +9 -3
- ai_edge_torch/generative/examples/t5/convert_to_tflite.py +28 -25
- ai_edge_torch/generative/examples/t5/t5.py +208 -159
- ai_edge_torch/generative/examples/t5/t5_attention.py +45 -30
- ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
- ai_edge_torch/generative/examples/test_models/toy_model.py +69 -41
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +50 -64
- ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +41 -39
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +67 -54
- ai_edge_torch/generative/examples/tiny_llama/verify.py +64 -0
- ai_edge_torch/generative/fx_passes/__init__.py +4 -5
- ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +10 -7
- ai_edge_torch/generative/layers/attention.py +141 -102
- ai_edge_torch/generative/layers/attention_utils.py +53 -12
- ai_edge_torch/generative/layers/builder.py +37 -7
- ai_edge_torch/generative/layers/feed_forward.py +39 -14
- ai_edge_torch/generative/layers/kv_cache.py +162 -50
- ai_edge_torch/generative/layers/model_config.py +84 -30
- ai_edge_torch/generative/layers/normalization.py +185 -7
- ai_edge_torch/generative/layers/rotary_position_embedding.py +6 -4
- ai_edge_torch/generative/layers/scaled_dot_product_attention.py +48 -21
- ai_edge_torch/generative/layers/unet/blocks_2d.py +136 -77
- ai_edge_torch/generative/layers/unet/builder.py +7 -4
- ai_edge_torch/generative/layers/unet/model_config.py +17 -15
- ai_edge_torch/generative/quantize/example.py +7 -8
- ai_edge_torch/generative/quantize/quant_recipe.py +10 -7
- ai_edge_torch/generative/quantize/quant_recipe_utils.py +12 -1
- ai_edge_torch/generative/quantize/quant_recipes.py +8 -0
- ai_edge_torch/generative/test/test_kv_cache.py +120 -0
- ai_edge_torch/generative/test/{loader_test.py → test_loader.py} +9 -7
- ai_edge_torch/generative/test/test_model_conversion.py +124 -188
- ai_edge_torch/generative/test/test_model_conversion_large.py +251 -0
- ai_edge_torch/generative/test/test_quantize.py +76 -60
- ai_edge_torch/generative/test/utils.py +54 -0
- ai_edge_torch/generative/utilities/converter.py +82 -0
- ai_edge_torch/generative/utilities/loader.py +120 -57
- ai_edge_torch/generative/utilities/stable_diffusion_loader.py +165 -57
- ai_edge_torch/generative/utilities/t5_loader.py +110 -81
- ai_edge_torch/generative/utilities/verifier.py +247 -0
- ai_edge_torch/hlfb/__init__.py +1 -1
- ai_edge_torch/hlfb/mark_pattern/__init__.py +9 -7
- ai_edge_torch/hlfb/mark_pattern/passes.py +23 -3
- ai_edge_torch/hlfb/mark_pattern/pattern.py +39 -30
- ai_edge_torch/hlfb/test/test_mark_pattern.py +46 -20
- ai_edge_torch/hlfb/test/test_stablehlo_composite_builder.py +24 -11
- ai_edge_torch/lowertools/__init__.py +18 -0
- ai_edge_torch/lowertools/_shim.py +80 -0
- ai_edge_torch/lowertools/common_utils.py +142 -0
- ai_edge_torch/lowertools/odml_torch_utils.py +255 -0
- ai_edge_torch/lowertools/test_utils.py +60 -0
- ai_edge_torch/lowertools/torch_xla_utils.py +284 -0
- ai_edge_torch/{generative/quantize/ai_edge_quantizer_glue → lowertools}/translate_recipe.py +29 -14
- ai_edge_torch/model.py +53 -18
- ai_edge_torch/odml_torch/__init__.py +20 -0
- ai_edge_torch/odml_torch/_torch_future.py +61 -0
- ai_edge_torch/odml_torch/_torch_library.py +19 -0
- ai_edge_torch/odml_torch/composite/__init__.py +16 -0
- ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
- ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
- ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
- ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
- ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
- ai_edge_torch/odml_torch/export.py +357 -0
- ai_edge_torch/odml_torch/export_utils.py +168 -0
- ai_edge_torch/odml_torch/jax_bridge/__init__.py +15 -0
- ai_edge_torch/odml_torch/jax_bridge/_wrap.py +150 -0
- ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
- ai_edge_torch/odml_torch/lowerings/__init__.py +25 -0
- ai_edge_torch/odml_torch/lowerings/_basic.py +258 -0
- ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
- ai_edge_torch/odml_torch/lowerings/_convolution.py +241 -0
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +252 -0
- ai_edge_torch/odml_torch/lowerings/_layer_norm.py +78 -0
- ai_edge_torch/odml_torch/lowerings/context.py +42 -0
- ai_edge_torch/odml_torch/lowerings/registry.py +96 -0
- ai_edge_torch/odml_torch/lowerings/utils.py +185 -0
- ai_edge_torch/odml_torch/passes/__init__.py +38 -0
- ai_edge_torch/odml_torch/tf_integration.py +194 -0
- ai_edge_torch/quantize/pt2e_quantizer.py +52 -24
- ai_edge_torch/quantize/pt2e_quantizer_utils.py +43 -23
- ai_edge_torch/quantize/quant_config.py +13 -9
- ai_edge_torch/testing/model_coverage/model_coverage.py +29 -16
- ai_edge_torch/version.py +16 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/METADATA +7 -3
- ai_edge_torch_nightly-0.3.0.dev20240926.dist-info/RECORD +177 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/WHEEL +1 -1
- ai_edge_torch/convert/conversion.py +0 -117
- ai_edge_torch/convert/conversion_utils.py +0 -400
- ai_edge_torch/convert/fx_passes/__init__.py +0 -59
- ai_edge_torch/convert/fx_passes/_pass_base.py +0 -49
- ai_edge_torch/convert/fx_passes/canonicalize_pass.py +0 -37
- ai_edge_torch/convert/test/test_convert.py +0 -311
- ai_edge_torch/convert/test/test_convert_composites.py +0 -192
- ai_edge_torch/convert/test/test_convert_multisig.py +0 -139
- ai_edge_torch/generative/examples/gemma/convert_to_tflite.py +0 -66
- ai_edge_torch/generative/examples/phi2/convert_to_tflite.py +0 -64
- ai_edge_torch/generative/examples/test_models/toy_model_with_external_kv_cache.py +0 -161
- ai_edge_torch/generative/quantize/ai_edge_quantizer_glue/__init__.py +0 -0
- ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/RECORD +0 -121
- /ai_edge_torch/{convert → _convert}/__init__.py +0 -0
- /ai_edge_torch/{convert → _convert}/test/__init__.py +0 -0
- /ai_edge_torch/generative/examples/{phi2 → openelm}/__init__.py +0 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/LICENSE +0 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/top_level.txt +0 -0
@@ -18,11 +18,10 @@ import glob
|
|
18
18
|
import os
|
19
19
|
from typing import Callable, Dict
|
20
20
|
|
21
|
+
from ai_edge_torch.generative.layers import model_config
|
21
22
|
from safetensors import safe_open
|
22
23
|
import torch
|
23
24
|
|
24
|
-
from ai_edge_torch.generative.layers import model_config
|
25
|
-
|
26
25
|
|
27
26
|
def load_safetensors(full_path: str):
|
28
27
|
"""Loads safetensors into a single state dictionary.
|
@@ -71,7 +70,11 @@ def load_pytorch_statedict(full_path: str):
|
|
71
70
|
Raises:
|
72
71
|
ValueError: If no tensors are loaded from the provided directory or file.
|
73
72
|
"""
|
74
|
-
pattern =
|
73
|
+
pattern = (
|
74
|
+
os.path.join(full_path, "*.bin")
|
75
|
+
if os.path.isdir(full_path)
|
76
|
+
else full_path
|
77
|
+
)
|
75
78
|
files = []
|
76
79
|
for file in glob.glob(pattern):
|
77
80
|
files.append(file)
|
@@ -89,9 +92,7 @@ def load_pytorch_statedict(full_path: str):
|
|
89
92
|
|
90
93
|
|
91
94
|
class ModelLoader:
|
92
|
-
"""
|
93
|
-
transformer layer format.
|
94
|
-
"""
|
95
|
+
"""Utility class for loading and converting checkpoints to ODML transformer layer format."""
|
95
96
|
|
96
97
|
@dataclass
|
97
98
|
class TensorNames:
|
@@ -112,18 +113,19 @@ class ModelLoader:
|
|
112
113
|
|
113
114
|
pre_attn_norm: str = None
|
114
115
|
pre_cross_attn_norm: str = None
|
115
|
-
|
116
|
+
post_attn_norm: str = None
|
116
117
|
embedding: str = None
|
117
118
|
final_norm: str = None
|
118
119
|
lm_head: str = None
|
119
120
|
|
120
121
|
def __init__(self, file_name: str, names: TensorNames) -> None:
|
121
|
-
"""ModelLoader constructor.
|
122
|
-
|
122
|
+
"""ModelLoader constructor.
|
123
|
+
|
124
|
+
Can be used to load multiple models of the same type.
|
123
125
|
|
124
126
|
Args:
|
125
|
-
file_name (str): Path to the checkpoint. Can be a directory or an
|
126
|
-
|
127
|
+
file_name (str): Path to the checkpoint. Can be a directory or an exact
|
128
|
+
file.
|
127
129
|
names (TensorNames): An instance of `TensorNames` to determine mappings.
|
128
130
|
"""
|
129
131
|
self._file_name = file_name
|
@@ -131,7 +133,10 @@ class ModelLoader:
|
|
131
133
|
self._loader = self._get_loader()
|
132
134
|
|
133
135
|
def load(
|
134
|
-
self,
|
136
|
+
self,
|
137
|
+
model: torch.nn.Module,
|
138
|
+
strict: bool = True,
|
139
|
+
fuse_attention: bool = True,
|
135
140
|
):
|
136
141
|
"""Load the model from the checkpoint
|
137
142
|
|
@@ -152,7 +157,7 @@ class ModelLoader:
|
|
152
157
|
)
|
153
158
|
elif isinstance(self._names, dict):
|
154
159
|
converted_state = {}
|
155
|
-
for additional_prefix,
|
160
|
+
for additional_prefix, _ in self._names.items():
|
156
161
|
local_converted_state = self._do_load(
|
157
162
|
model,
|
158
163
|
state,
|
@@ -166,11 +171,14 @@ class ModelLoader:
|
|
166
171
|
|
167
172
|
if strict and state:
|
168
173
|
raise ValueError(
|
169
|
-
|
174
|
+
"Failed to map all tensor. Remaining tensor are:"
|
175
|
+
f" {list(state.keys())}"
|
170
176
|
)
|
171
177
|
model.load_state_dict(converted_state, strict=strict)
|
172
178
|
|
173
|
-
def _do_load(
|
179
|
+
def _do_load(
|
180
|
+
self, model, state, names, additional_prefix="", fuse_attention=True
|
181
|
+
):
|
174
182
|
"""Load the model from the checkpoint
|
175
183
|
|
176
184
|
Args:
|
@@ -183,7 +191,9 @@ class ModelLoader:
|
|
183
191
|
"""
|
184
192
|
converted_state = dict()
|
185
193
|
if names.embedding is not None:
|
186
|
-
converted_state["tok_embedding.weight"] = state.pop(
|
194
|
+
converted_state["tok_embedding.weight"] = state.pop(
|
195
|
+
f"{names.embedding}.weight"
|
196
|
+
)
|
187
197
|
if names.lm_head is not None:
|
188
198
|
converted_state["lm_head.weight"] = state.pop(f"{names.lm_head}.weight")
|
189
199
|
if model.config.lm_head_use_bias:
|
@@ -195,17 +205,21 @@ class ModelLoader:
|
|
195
205
|
f"{final_norm_name}.weight"
|
196
206
|
)
|
197
207
|
if f"{final_norm_name}.bias" in state:
|
198
|
-
converted_state["final_norm.bias"] = state.pop(
|
208
|
+
converted_state["final_norm.bias"] = state.pop(
|
209
|
+
f"{final_norm_name}.bias"
|
210
|
+
)
|
199
211
|
|
200
212
|
if names.relative_attn_bias:
|
201
213
|
rel_attn_name = names.relative_attn_bias
|
202
|
-
prefix = additional_prefix +
|
214
|
+
prefix = additional_prefix + "transformer_blocks.0"
|
203
215
|
converted_state[f"{prefix}.atten_func.relative_attention_bias.weight"] = (
|
204
216
|
state.pop(f"{rel_attn_name}.weight")
|
205
217
|
)
|
206
218
|
|
207
219
|
for i in range(model.config.num_layers):
|
208
|
-
self._map_norm(
|
220
|
+
self._map_norm(
|
221
|
+
i, model.config, state, converted_state, names, additional_prefix
|
222
|
+
)
|
209
223
|
self._map_feedforward(
|
210
224
|
i, model.config, state, converted_state, names, additional_prefix
|
211
225
|
)
|
@@ -251,7 +265,7 @@ class ModelLoader:
|
|
251
265
|
if self._file_name.endswith(".bin"):
|
252
266
|
return load_pytorch_statedict
|
253
267
|
|
254
|
-
raise ValueError(
|
268
|
+
raise ValueError("File format not supported.")
|
255
269
|
|
256
270
|
def _map_feedforward(
|
257
271
|
self,
|
@@ -265,16 +279,23 @@ class ModelLoader:
|
|
265
279
|
prefix = additional_prefix + f"transformer_blocks.{idx}"
|
266
280
|
if names.ff_up_proj is None or names.ff_down_proj is None:
|
267
281
|
return
|
268
|
-
|
282
|
+
ff_config = config.block_config(idx).ff_config
|
283
|
+
if ff_config.type == model_config.FeedForwardType.SEQUENTIAL:
|
269
284
|
ff_up_proj_name = names.ff_up_proj.format(idx)
|
270
285
|
ff_down_proj_name = names.ff_down_proj.format(idx)
|
271
|
-
converted_state[f"{prefix}.ff.w1.weight"] = state.pop(
|
286
|
+
converted_state[f"{prefix}.ff.w1.weight"] = state.pop(
|
287
|
+
f"{ff_up_proj_name}.weight"
|
288
|
+
)
|
272
289
|
converted_state[f"{prefix}.ff.w2.weight"] = state.pop(
|
273
290
|
f"{ff_down_proj_name}.weight"
|
274
291
|
)
|
275
|
-
if
|
276
|
-
converted_state[f"{prefix}.ff.w1.bias"] = state.pop(
|
277
|
-
|
292
|
+
if ff_config.use_bias:
|
293
|
+
converted_state[f"{prefix}.ff.w1.bias"] = state.pop(
|
294
|
+
f"{ff_up_proj_name}.bias"
|
295
|
+
)
|
296
|
+
converted_state[f"{prefix}.ff.w2.bias"] = state.pop(
|
297
|
+
f"{ff_down_proj_name}.bias"
|
298
|
+
)
|
278
299
|
else:
|
279
300
|
if names.ff_gate_proj is not None:
|
280
301
|
ff_up_proj_name = names.ff_up_proj.format(idx)
|
@@ -289,8 +310,10 @@ class ModelLoader:
|
|
289
310
|
converted_state[f"{prefix}.ff.w1.weight"] = state.pop(
|
290
311
|
f"{ff_gate_proj_name}.weight"
|
291
312
|
)
|
292
|
-
if
|
293
|
-
converted_state[f"{prefix}.ff.w3.bias"] = state.pop(
|
313
|
+
if ff_config.use_bias:
|
314
|
+
converted_state[f"{prefix}.ff.w3.bias"] = state.pop(
|
315
|
+
f"{ff_up_proj_name}.bias"
|
316
|
+
)
|
294
317
|
converted_state[f"{prefix}.ff.w2.bias"] = state.pop(
|
295
318
|
f"{ff_down_proj_name}.bias"
|
296
319
|
)
|
@@ -315,20 +338,21 @@ class ModelLoader:
|
|
315
338
|
):
|
316
339
|
return
|
317
340
|
prefix = additional_prefix + f"transformer_blocks.{idx}"
|
341
|
+
attn_config = config.block_config(idx).attn_config
|
318
342
|
q_name = names.attn_query_proj.format(idx)
|
319
343
|
k_name = names.attn_key_proj.format(idx)
|
320
344
|
v_name = names.attn_value_proj.format(idx)
|
321
345
|
# model.encoder.transformer_blocks[0].atten_func.q_projection.weight
|
322
346
|
if fuse_attention:
|
323
347
|
converted_state[f"{prefix}.atten_func.attn.weight"] = self._fuse_qkv(
|
324
|
-
|
348
|
+
attn_config,
|
325
349
|
state.pop(f"{q_name}.weight"),
|
326
350
|
state.pop(f"{k_name}.weight"),
|
327
351
|
state.pop(f"{v_name}.weight"),
|
328
352
|
)
|
329
|
-
if
|
353
|
+
if attn_config.qkv_use_bias:
|
330
354
|
converted_state[f"{prefix}.atten_func.attn.bias"] = self._fuse_qkv(
|
331
|
-
|
355
|
+
attn_config,
|
332
356
|
state.pop(f"{q_name}.bias"),
|
333
357
|
state.pop(f"{k_name}.bias"),
|
334
358
|
state.pop(f"{v_name}.bias"),
|
@@ -343,7 +367,7 @@ class ModelLoader:
|
|
343
367
|
converted_state[f"{prefix}.atten_func.v_projection.weight"] = state.pop(
|
344
368
|
f"{v_name}.weight"
|
345
369
|
)
|
346
|
-
if
|
370
|
+
if attn_config.qkv_use_bias:
|
347
371
|
converted_state[f"{prefix}.atten_func.q_projection.bias"] = state.pop(
|
348
372
|
f"{q_name}.bias"
|
349
373
|
)
|
@@ -355,12 +379,12 @@ class ModelLoader:
|
|
355
379
|
)
|
356
380
|
|
357
381
|
o_name = names.attn_output_proj.format(idx)
|
358
|
-
converted_state[f"{prefix}.atten_func.output_projection.weight"] =
|
359
|
-
f"{o_name}.weight"
|
382
|
+
converted_state[f"{prefix}.atten_func.output_projection.weight"] = (
|
383
|
+
state.pop(f"{o_name}.weight")
|
360
384
|
)
|
361
|
-
if
|
362
|
-
converted_state[f"{prefix}.atten_func.output_projection.bias"] =
|
363
|
-
f"{o_name}.bias"
|
385
|
+
if attn_config.output_proj_use_bias:
|
386
|
+
converted_state[f"{prefix}.atten_func.output_projection.bias"] = (
|
387
|
+
state.pop(f"{o_name}.bias")
|
364
388
|
)
|
365
389
|
|
366
390
|
def _map_cross_attention(
|
@@ -380,52 +404,57 @@ class ModelLoader:
|
|
380
404
|
):
|
381
405
|
return
|
382
406
|
prefix = additional_prefix + f"transformer_blocks.{idx}"
|
407
|
+
attn_config = config.block_config(idx).attn_config
|
383
408
|
q_name = names.cross_attn_query_proj.format(idx)
|
384
409
|
k_name = names.cross_attn_key_proj.format(idx)
|
385
410
|
v_name = names.cross_attn_value_proj.format(idx)
|
386
411
|
|
387
412
|
if fuse_attention:
|
388
|
-
converted_state[f"{prefix}.cross_atten_func.attn.weight"] =
|
389
|
-
|
390
|
-
|
391
|
-
|
392
|
-
|
413
|
+
converted_state[f"{prefix}.cross_atten_func.attn.weight"] = (
|
414
|
+
self._fuse_qkv(
|
415
|
+
attn_config,
|
416
|
+
state.pop(f"{q_name}.weight"),
|
417
|
+
state.pop(f"{k_name}.weight"),
|
418
|
+
state.pop(f"{v_name}.weight"),
|
419
|
+
)
|
393
420
|
)
|
394
|
-
if
|
395
|
-
converted_state[f"{prefix}.cross_atten_func.attn.bias"] =
|
396
|
-
|
397
|
-
|
398
|
-
|
399
|
-
|
421
|
+
if attn_config.qkv_use_bias:
|
422
|
+
converted_state[f"{prefix}.cross_atten_func.attn.bias"] = (
|
423
|
+
self._fuse_qkv(
|
424
|
+
attn_config,
|
425
|
+
state.pop(f"{q_name}.bias"),
|
426
|
+
state.pop(f"{k_name}.bias"),
|
427
|
+
state.pop(f"{v_name}.bias"),
|
428
|
+
)
|
400
429
|
)
|
401
430
|
else:
|
402
|
-
converted_state[f"{prefix}.cross_atten_func.q_projection.weight"] =
|
403
|
-
f"{q_name}.weight"
|
431
|
+
converted_state[f"{prefix}.cross_atten_func.q_projection.weight"] = (
|
432
|
+
state.pop(f"{q_name}.weight")
|
404
433
|
)
|
405
|
-
converted_state[f"{prefix}.cross_atten_func.k_projection.weight"] =
|
406
|
-
f"{k_name}.weight"
|
434
|
+
converted_state[f"{prefix}.cross_atten_func.k_projection.weight"] = (
|
435
|
+
state.pop(f"{k_name}.weight")
|
407
436
|
)
|
408
|
-
converted_state[f"{prefix}.cross_atten_func.v_projection.weight"] =
|
409
|
-
f"{v_name}.weight"
|
437
|
+
converted_state[f"{prefix}.cross_atten_func.v_projection.weight"] = (
|
438
|
+
state.pop(f"{v_name}.weight")
|
410
439
|
)
|
411
|
-
if
|
412
|
-
converted_state[f"{prefix}.cross_atten_func.q_projection.bias"] =
|
413
|
-
f"{q_name}.bias"
|
440
|
+
if attn_config.qkv_use_bias:
|
441
|
+
converted_state[f"{prefix}.cross_atten_func.q_projection.bias"] = (
|
442
|
+
state.pop(f"{q_name}.bias")
|
414
443
|
)
|
415
|
-
converted_state[f"{prefix}.cross_atten_func.k_projection.bias"] =
|
416
|
-
f"{k_name}.bias"
|
444
|
+
converted_state[f"{prefix}.cross_atten_func.k_projection.bias"] = (
|
445
|
+
state.pop(f"{k_name}.bias")
|
417
446
|
)
|
418
|
-
converted_state[f"{prefix}.cross_atten_func.v_projection.bias"] =
|
419
|
-
f"{v_name}.bias"
|
447
|
+
converted_state[f"{prefix}.cross_atten_func.v_projection.bias"] = (
|
448
|
+
state.pop(f"{v_name}.bias")
|
420
449
|
)
|
421
450
|
|
422
451
|
o_name = names.cross_attn_output_proj.format(idx)
|
423
|
-
converted_state[f"{prefix}.cross_atten_func.output_projection.weight"] =
|
424
|
-
f"{o_name}.weight"
|
452
|
+
converted_state[f"{prefix}.cross_atten_func.output_projection.weight"] = (
|
453
|
+
state.pop(f"{o_name}.weight")
|
425
454
|
)
|
426
|
-
if
|
427
|
-
converted_state[f"{prefix}.cross_atten_func.output_projection.bias"] =
|
428
|
-
f"{o_name}.bias"
|
455
|
+
if attn_config.output_proj_use_bias:
|
456
|
+
converted_state[f"{prefix}.cross_atten_func.output_projection.bias"] = (
|
457
|
+
state.pop(f"{o_name}.bias")
|
429
458
|
)
|
430
459
|
|
431
460
|
def _map_norm(
|
@@ -450,34 +479,34 @@ class ModelLoader:
|
|
450
479
|
|
451
480
|
if names.pre_cross_attn_norm:
|
452
481
|
pre_cross_attn_norm_name = names.pre_cross_attn_norm.format(idx)
|
453
|
-
converted_state[f"{prefix}.cross_atten_func.pre_atten_norm.weight"] =
|
454
|
-
f"{pre_cross_attn_norm_name}.weight"
|
482
|
+
converted_state[f"{prefix}.cross_atten_func.pre_atten_norm.weight"] = (
|
483
|
+
state.pop(f"{pre_cross_attn_norm_name}.weight")
|
455
484
|
)
|
456
485
|
if f"{pre_cross_attn_norm_name}.bias" in state:
|
457
|
-
converted_state[f"{prefix}.cross_atten_func.pre_atten_norm.bias"] =
|
458
|
-
f"{pre_cross_attn_norm_name}.bias"
|
486
|
+
converted_state[f"{prefix}.cross_atten_func.pre_atten_norm.bias"] = (
|
487
|
+
state.pop(f"{pre_cross_attn_norm_name}.bias")
|
459
488
|
)
|
460
489
|
|
461
|
-
if names.
|
462
|
-
|
463
|
-
converted_state[f"{prefix}.
|
464
|
-
f"{
|
490
|
+
if names.post_attn_norm is not None:
|
491
|
+
post_attn_norm_name = names.post_attn_norm.format(idx)
|
492
|
+
converted_state[f"{prefix}.post_atten_norm.weight"] = state.pop(
|
493
|
+
f"{post_attn_norm_name}.weight"
|
465
494
|
)
|
466
|
-
if f"{
|
467
|
-
converted_state[f"{prefix}.
|
468
|
-
f"{
|
495
|
+
if f"{post_attn_norm_name}.bias" in state:
|
496
|
+
converted_state[f"{prefix}.post_atten_norm.bias"] = state.pop(
|
497
|
+
f"{post_attn_norm_name}.bias"
|
469
498
|
)
|
470
499
|
|
471
500
|
def _fuse_qkv(
|
472
501
|
self,
|
473
|
-
|
502
|
+
attn_config: model_config.AttentionConfig,
|
474
503
|
q: torch.Tensor,
|
475
504
|
k: torch.Tensor,
|
476
505
|
v: torch.Tensor,
|
477
506
|
) -> torch.Tensor:
|
478
|
-
q_per_kv =
|
479
|
-
qs = torch.split(q,
|
480
|
-
ks = torch.split(k,
|
481
|
-
vs = torch.split(v,
|
507
|
+
q_per_kv = attn_config.num_heads // attn_config.num_query_groups
|
508
|
+
qs = torch.split(q, attn_config.head_dim * q_per_kv)
|
509
|
+
ks = torch.split(k, attn_config.head_dim)
|
510
|
+
vs = torch.split(v, attn_config.head_dim)
|
482
511
|
cycled = [t for group in zip(qs, ks, vs) for t in group]
|
483
512
|
return torch.cat(cycled)
|
@@ -0,0 +1,247 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Common utility functions to verify the reauthored models."""
|
17
|
+
|
18
|
+
import logging
|
19
|
+
from typing import List, Optional, Union
|
20
|
+
|
21
|
+
from ai_edge_torch.generative.layers import kv_cache as kv_utils
|
22
|
+
import torch
|
23
|
+
import transformers
|
24
|
+
|
25
|
+
|
26
|
+
class ModelWrapper(torch.nn.Module):
|
27
|
+
"""A wrapper for the model to be verified, this could be a HuggingFace model
|
28
|
+
|
29
|
+
or a regular PyTorch model.
|
30
|
+
"""
|
31
|
+
|
32
|
+
def __init__(
|
33
|
+
self,
|
34
|
+
model: torch.nn.Module,
|
35
|
+
model_format: str = "huggingface",
|
36
|
+
hf_generation_config: Optional[transformers.GenerationConfig] = None,
|
37
|
+
):
|
38
|
+
"""Initializes the wrapper.
|
39
|
+
|
40
|
+
Args:
|
41
|
+
model (torch.nn.Module): The original model. This could be a model built
|
42
|
+
from HuggingFace transformers, or a regular PyTorch model.
|
43
|
+
model_format (str): The format of the model. It should be either
|
44
|
+
"huggingface" or "pytorch".
|
45
|
+
hf_generation_config (transformers.GenerationConfig): The HuggingFace
|
46
|
+
generation config. This config will only be used if the underlying model
|
47
|
+
is built from HuggingFace transformers.
|
48
|
+
"""
|
49
|
+
super().__init__()
|
50
|
+
self.model = model
|
51
|
+
self.model_format = model_format
|
52
|
+
self.hf_generation_config = hf_generation_config
|
53
|
+
|
54
|
+
def generate(
|
55
|
+
self, inputs: torch.Tensor
|
56
|
+
) -> Union[transformers.utils.ModelOutput, torch.LongTensor]:
|
57
|
+
if self.model_format == "huggingface":
|
58
|
+
return self.model.generate(
|
59
|
+
inputs=inputs, generation_config=self.hf_generation_config
|
60
|
+
)
|
61
|
+
else:
|
62
|
+
raise NotImplementedError(
|
63
|
+
"generate() is not implemented for model format: %s"
|
64
|
+
% self.model_format
|
65
|
+
)
|
66
|
+
|
67
|
+
def forward(
|
68
|
+
self,
|
69
|
+
inputs: torch.Tensor,
|
70
|
+
):
|
71
|
+
return self.model.forward(inputs)
|
72
|
+
|
73
|
+
|
74
|
+
def forward(
|
75
|
+
model: torch.nn.Module,
|
76
|
+
tokens: torch.Tensor,
|
77
|
+
kv_cache: kv_utils.KVCache,
|
78
|
+
) -> tuple[torch.Tensor, kv_utils.KVCache]:
|
79
|
+
"""Forwards the model reauthored with ai_edge_torch Generative API.
|
80
|
+
|
81
|
+
Args:
|
82
|
+
model (torch.nn.Module): The model to forward. It should be a model built
|
83
|
+
with ai_edge_torch Generative API.
|
84
|
+
tokens (torch.Tensor): The input tokens to forward.
|
85
|
+
kv_cache (KVCache): The KV cache to forward.
|
86
|
+
|
87
|
+
Returns:
|
88
|
+
The output logits and the updated KV cache.
|
89
|
+
"""
|
90
|
+
input_pos = torch.arange(0, tokens.shape[1], dtype=torch.int)
|
91
|
+
output = model.forward(tokens, input_pos, kv_cache)
|
92
|
+
return output["logits"], output["kv_cache"]
|
93
|
+
|
94
|
+
|
95
|
+
def generate(
|
96
|
+
model: torch.nn.Module, prompts: torch.Tensor, response_len: int
|
97
|
+
) -> torch.Tensor:
|
98
|
+
"""Generates the response to the prompts.
|
99
|
+
|
100
|
+
It appends tokens output by the model to the prompts and feeds them back to
|
101
|
+
the model up to decode_len.
|
102
|
+
|
103
|
+
Args:
|
104
|
+
model (torch.nn.Module): The model to generate. It should be a model built
|
105
|
+
with ai_edge_torch Generative API.
|
106
|
+
prompts (torch.Tensor): The prompts to generate.
|
107
|
+
response_len (int): The number of tokens to generate.
|
108
|
+
|
109
|
+
Returns:
|
110
|
+
The generated tokens.
|
111
|
+
"""
|
112
|
+
input_ids = prompts[0].int().tolist()
|
113
|
+
kv_cache = kv_utils.KVCache.from_model_config(model.config)
|
114
|
+
for _ in range(response_len - len(input_ids)):
|
115
|
+
logits, kv_cache = forward(model, torch.tensor([input_ids]), kv_cache)
|
116
|
+
generated_token = logits[0][-1].argmax().item()
|
117
|
+
input_ids.append(generated_token)
|
118
|
+
return torch.tensor([input_ids])
|
119
|
+
|
120
|
+
|
121
|
+
def verify_with_input_ids(
|
122
|
+
original_model: ModelWrapper,
|
123
|
+
reauthored_model: torch.nn.Module,
|
124
|
+
input_ids: List[int],
|
125
|
+
kv_cache_max_len: int = 1024,
|
126
|
+
rtol: float = 1e-05,
|
127
|
+
atol: float = 1e-05,
|
128
|
+
) -> bool:
|
129
|
+
"""Verifies if the model reauthored generates the same output of the oringal.
|
130
|
+
|
131
|
+
It compares only one outputs from the original and the reauthored model.
|
132
|
+
|
133
|
+
Args:
|
134
|
+
original_model (ModelWrapper): The original model.
|
135
|
+
reauthored_model (torch.nn.Module): The model reauthored with ai_edge_torch
|
136
|
+
Generative API.
|
137
|
+
input_ids (List[int]): The input token IDs to forward with.
|
138
|
+
kv_cache_max_len (int): The maximum sequence length of the KV cache.
|
139
|
+
rtol (float): The relative tolerance for the comparison.
|
140
|
+
atol (float): The absolute tolerance for the comparison.
|
141
|
+
|
142
|
+
Returns:
|
143
|
+
True if the model reauthored generates the same output of the original.
|
144
|
+
"""
|
145
|
+
tokens = torch.full((1, kv_cache_max_len), 0, dtype=torch.int, device="cpu")
|
146
|
+
tokens[0, : len(input_ids)] = torch.tensor([input_ids]).int()
|
147
|
+
|
148
|
+
logging.info("Forwarding the original model...")
|
149
|
+
outputs_original = original_model.forward(tokens)
|
150
|
+
logits_original = outputs_original.logits[0, len(input_ids) - 1, :]
|
151
|
+
logging.info("logits_original: %s", logits_original)
|
152
|
+
|
153
|
+
logging.info("Forwarding the reauthored model...")
|
154
|
+
kv_cache = kv_utils.KVCache.from_model_config(reauthored_model.config)
|
155
|
+
outputs_reauthored = forward(reauthored_model, tokens, kv_cache)
|
156
|
+
logits_reauthored = outputs_reauthored[0][0, len(input_ids) - 1, :]
|
157
|
+
logging.info("logits_reauthored: %s", logits_reauthored)
|
158
|
+
|
159
|
+
return torch.allclose(
|
160
|
+
logits_original, logits_reauthored, rtol=rtol, atol=atol
|
161
|
+
)
|
162
|
+
|
163
|
+
|
164
|
+
def verify_model_with_prompts(
|
165
|
+
original_model: ModelWrapper,
|
166
|
+
reauthored_model: torch.nn.Module,
|
167
|
+
tokenizer: torch.nn.Module,
|
168
|
+
prompts: str,
|
169
|
+
) -> bool:
|
170
|
+
"""Verifies if the model reauthored generates the same answer of the oringal.
|
171
|
+
|
172
|
+
It compares an answer, i.e. multiple continuous outputs generated by the
|
173
|
+
original and the reauthored model.
|
174
|
+
|
175
|
+
Args:
|
176
|
+
original_model (ModelWrapper): The original model.
|
177
|
+
reauthored_model (torch.nn.Module): The model reauthored with ai_edge_torch
|
178
|
+
Generative API.
|
179
|
+
tokenizer (torch.nn.Module): The tokenizer.
|
180
|
+
prompts (str): The input prompts to generate answers.
|
181
|
+
|
182
|
+
Returns:
|
183
|
+
True if the model reauthored generates the same answer of the original.
|
184
|
+
"""
|
185
|
+
prompt_tokens = tokenizer.encode(prompts, return_tensors="pt")
|
186
|
+
|
187
|
+
logging.info("Generating answer with the original model...")
|
188
|
+
outputs_original = original_model.generate(prompt_tokens)
|
189
|
+
response_original = tokenizer.decode(outputs_original[0])
|
190
|
+
logging.info("outputs_from_original_model: [[%s]]", response_original)
|
191
|
+
|
192
|
+
logging.info("Generating answer with the reauthored model...")
|
193
|
+
generate_len = len(outputs_original[0])
|
194
|
+
outputs_reauthored = generate(reauthored_model, prompt_tokens, generate_len)
|
195
|
+
response_reauthored = tokenizer.decode(outputs_reauthored[0])
|
196
|
+
logging.info("outputs from reauthored model: [[%s]]", response_reauthored)
|
197
|
+
|
198
|
+
return response_original == response_reauthored
|
199
|
+
|
200
|
+
|
201
|
+
def verify_reauthored_model(
|
202
|
+
original_model: ModelWrapper,
|
203
|
+
reauthored_model: torch.nn.Module,
|
204
|
+
tokenizer: torch.nn.Module,
|
205
|
+
generate_prompts: List[str],
|
206
|
+
forward_input_ids: List[List[int]] = [[1, 2, 3, 4]],
|
207
|
+
rtol: float = 1e-05,
|
208
|
+
atol: float = 1e-05,
|
209
|
+
):
|
210
|
+
"""Verifies the reauthored model against the original model.
|
211
|
+
|
212
|
+
It verifies the reauthored model with two methods:
|
213
|
+
1. It compares the output of the original and the reauthored model with an
|
214
|
+
arbitrary input.
|
215
|
+
2. It compares the answer generated by the original and the reauthored model
|
216
|
+
with a prompt.
|
217
|
+
|
218
|
+
It prints out "PASS" or "FAILED" to the console.
|
219
|
+
|
220
|
+
Args:
|
221
|
+
original_model (ModelWrapper): The original model.
|
222
|
+
reauthored_model (torch.nn.Module): The model reauthored with ai_edge_torch
|
223
|
+
Generative API.
|
224
|
+
tokenizer (torch.nn.Module): The tokenizer.
|
225
|
+
generate_prompts (List[str]): List of the input prompts to generate answers.
|
226
|
+
forward_input_ids (List[torch.Tensor]): List if ihe input token IDs to
|
227
|
+
forward with.
|
228
|
+
rtol (float): The relative tolerance for the comparison.
|
229
|
+
atol (float): The absolute tolerance for the comparison.
|
230
|
+
"""
|
231
|
+
for input_ids in forward_input_ids:
|
232
|
+
logging.info("Verifying the reauthored model with input IDs: %s", input_ids)
|
233
|
+
if verify_with_input_ids(
|
234
|
+
original_model, reauthored_model, input_ids, rtol=rtol, atol=atol
|
235
|
+
):
|
236
|
+
logging.info("PASS")
|
237
|
+
else:
|
238
|
+
logging.info("FAILED")
|
239
|
+
|
240
|
+
for prompts in generate_prompts:
|
241
|
+
logging.info("Verifying the reauthored model with prompts:%s", prompts)
|
242
|
+
if verify_model_with_prompts(
|
243
|
+
original_model, reauthored_model, tokenizer, prompts
|
244
|
+
):
|
245
|
+
logging.info("PASS")
|
246
|
+
else:
|
247
|
+
logging.info("FAILED")
|
ai_edge_torch/hlfb/__init__.py
CHANGED
@@ -13,4 +13,4 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
15
|
|
16
|
-
from
|
16
|
+
from ai_edge_torch.lowertools import StableHLOCompositeBuilder
|
@@ -16,11 +16,10 @@ import copy
|
|
16
16
|
from typing import Any
|
17
17
|
import uuid
|
18
18
|
|
19
|
+
from ai_edge_torch import lowertools
|
20
|
+
from ai_edge_torch.hlfb.mark_pattern import passes
|
21
|
+
from ai_edge_torch.hlfb.mark_pattern import pattern as pattern_module
|
19
22
|
import torch
|
20
|
-
from torch_xla.experimental import xla_marker
|
21
|
-
|
22
|
-
from ai_edge_torch.hlfb.mark_pattern.pattern import Pattern
|
23
|
-
from ai_edge_torch.hlfb.mark_pattern.pattern import ScalarAttrTracker # NOQA
|
24
23
|
|
25
24
|
|
26
25
|
@torch._dynamo.assume_constant_result
|
@@ -49,10 +48,10 @@ def _insert_marker(
|
|
49
48
|
is_input: bool,
|
50
49
|
attr: dict[str, Any] = None,
|
51
50
|
):
|
52
|
-
attr =
|
51
|
+
attr = lowertools.serialize_composite_attr(attr) if attr else None
|
53
52
|
with graph_module.graph.inserting_after(node):
|
54
53
|
new_node = graph_module.graph.call_function(
|
55
|
-
|
54
|
+
lowertools.mark_tensor_op,
|
56
55
|
args=(node,),
|
57
56
|
kwargs={
|
58
57
|
"name": name,
|
@@ -69,13 +68,16 @@ def _insert_marker(
|
|
69
68
|
|
70
69
|
def mark_pattern(
|
71
70
|
graph_module: torch.fx.GraphModule,
|
72
|
-
pattern: Pattern,
|
71
|
+
pattern: pattern_module.Pattern,
|
73
72
|
) -> torch.fx.GraphModule:
|
74
73
|
"""Mark all existences of pattern graph in the GraphModule with fx pattern matching.
|
74
|
+
|
75
75
|
The marked subgraphs will be lowered in StableHLO composite ops.
|
76
|
+
|
76
77
|
Args:
|
77
78
|
graph_module (torch.fx.GraphModule): GraphModule to be matched and marked.
|
78
79
|
pattern (ai_edge_torch.hlfb.mark_pattern.Pattern): Pattern to match.
|
80
|
+
|
79
81
|
Returns:
|
80
82
|
The modified graph_module with additional marker ops in graph.
|
81
83
|
"""
|