ai-edge-torch-nightly 0.2.0.dev20240714__py3-none-any.whl → 0.3.0.dev20240926__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_edge_torch/__init__.py +5 -4
- ai_edge_torch/_convert/conversion.py +112 -0
- ai_edge_torch/_convert/conversion_utils.py +64 -0
- ai_edge_torch/{convert → _convert}/converter.py +94 -48
- ai_edge_torch/_convert/fx_passes/__init__.py +22 -0
- ai_edge_torch/{convert → _convert}/fx_passes/build_aten_composite_pass.py +107 -44
- ai_edge_torch/{convert → _convert}/fx_passes/build_interpolate_composite_pass.py +23 -20
- ai_edge_torch/{convert → _convert}/fx_passes/inject_mlir_debuginfo_pass.py +5 -6
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/__init__.py +1 -1
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_check.py +39 -9
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_mark.py +2 -0
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +1 -0
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +17 -8
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +9 -8
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +31 -18
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +2 -2
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/pass_body.py +34 -24
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/utils.py +2 -0
- ai_edge_torch/_convert/signature.py +66 -0
- ai_edge_torch/_convert/test/test_convert.py +495 -0
- ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
- ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
- ai_edge_torch/{convert → _convert}/test/test_to_channel_last_io.py +5 -5
- ai_edge_torch/{convert → _convert}/to_channel_last_io.py +10 -3
- ai_edge_torch/config.py +27 -0
- ai_edge_torch/conftest.py +20 -0
- ai_edge_torch/debug/culprit.py +72 -40
- ai_edge_torch/debug/test/test_culprit.py +7 -5
- ai_edge_torch/debug/test/test_search_model.py +8 -7
- ai_edge_torch/debug/utils.py +14 -3
- ai_edge_torch/fx_pass_base.py +101 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/gemma/{gemma.py → gemma1.py} +69 -55
- ai_edge_torch/generative/examples/gemma/gemma2.py +267 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma2.py +57 -0
- ai_edge_torch/generative/examples/gemma/verify_util.py +143 -0
- ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/openelm/openelm.py +206 -0
- ai_edge_torch/generative/examples/openelm/verify.py +64 -0
- ai_edge_torch/generative/examples/phi/__init__.py +14 -0
- ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/phi/convert_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/{phi2 → phi}/phi2.py +70 -51
- ai_edge_torch/generative/examples/phi/phi3.py +286 -0
- ai_edge_torch/generative/examples/phi/verify.py +65 -0
- ai_edge_torch/generative/examples/phi/verify_phi3.py +70 -0
- ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
- ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/smollm/smollm.py +101 -0
- ai_edge_torch/generative/examples/smollm/verify.py +62 -0
- ai_edge_torch/generative/examples/stable_diffusion/attention.py +3 -1
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +83 -13
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +27 -14
- ai_edge_torch/generative/examples/stable_diffusion/decoder.py +74 -9
- ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +179 -37
- ai_edge_torch/generative/examples/stable_diffusion/encoder.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +83 -58
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +1 -0
- ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +4 -1
- ai_edge_torch/generative/examples/stable_diffusion/util.py +9 -3
- ai_edge_torch/generative/examples/t5/convert_to_tflite.py +28 -25
- ai_edge_torch/generative/examples/t5/t5.py +208 -159
- ai_edge_torch/generative/examples/t5/t5_attention.py +45 -30
- ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
- ai_edge_torch/generative/examples/test_models/toy_model.py +69 -41
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +50 -64
- ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +41 -39
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +67 -54
- ai_edge_torch/generative/examples/tiny_llama/verify.py +64 -0
- ai_edge_torch/generative/fx_passes/__init__.py +4 -5
- ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +10 -7
- ai_edge_torch/generative/layers/attention.py +141 -102
- ai_edge_torch/generative/layers/attention_utils.py +53 -12
- ai_edge_torch/generative/layers/builder.py +37 -7
- ai_edge_torch/generative/layers/feed_forward.py +39 -14
- ai_edge_torch/generative/layers/kv_cache.py +162 -50
- ai_edge_torch/generative/layers/model_config.py +84 -30
- ai_edge_torch/generative/layers/normalization.py +185 -7
- ai_edge_torch/generative/layers/rotary_position_embedding.py +6 -4
- ai_edge_torch/generative/layers/scaled_dot_product_attention.py +48 -21
- ai_edge_torch/generative/layers/unet/blocks_2d.py +136 -77
- ai_edge_torch/generative/layers/unet/builder.py +7 -4
- ai_edge_torch/generative/layers/unet/model_config.py +17 -15
- ai_edge_torch/generative/quantize/example.py +7 -8
- ai_edge_torch/generative/quantize/quant_recipe.py +10 -7
- ai_edge_torch/generative/quantize/quant_recipe_utils.py +12 -1
- ai_edge_torch/generative/quantize/quant_recipes.py +8 -0
- ai_edge_torch/generative/test/test_kv_cache.py +120 -0
- ai_edge_torch/generative/test/{loader_test.py → test_loader.py} +9 -7
- ai_edge_torch/generative/test/test_model_conversion.py +124 -188
- ai_edge_torch/generative/test/test_model_conversion_large.py +251 -0
- ai_edge_torch/generative/test/test_quantize.py +76 -60
- ai_edge_torch/generative/test/utils.py +54 -0
- ai_edge_torch/generative/utilities/converter.py +82 -0
- ai_edge_torch/generative/utilities/loader.py +120 -57
- ai_edge_torch/generative/utilities/stable_diffusion_loader.py +165 -57
- ai_edge_torch/generative/utilities/t5_loader.py +110 -81
- ai_edge_torch/generative/utilities/verifier.py +247 -0
- ai_edge_torch/hlfb/__init__.py +1 -1
- ai_edge_torch/hlfb/mark_pattern/__init__.py +9 -7
- ai_edge_torch/hlfb/mark_pattern/passes.py +23 -3
- ai_edge_torch/hlfb/mark_pattern/pattern.py +39 -30
- ai_edge_torch/hlfb/test/test_mark_pattern.py +46 -20
- ai_edge_torch/hlfb/test/test_stablehlo_composite_builder.py +24 -11
- ai_edge_torch/lowertools/__init__.py +18 -0
- ai_edge_torch/lowertools/_shim.py +80 -0
- ai_edge_torch/lowertools/common_utils.py +142 -0
- ai_edge_torch/lowertools/odml_torch_utils.py +255 -0
- ai_edge_torch/lowertools/test_utils.py +60 -0
- ai_edge_torch/lowertools/torch_xla_utils.py +284 -0
- ai_edge_torch/{generative/quantize/ai_edge_quantizer_glue → lowertools}/translate_recipe.py +29 -14
- ai_edge_torch/model.py +53 -18
- ai_edge_torch/odml_torch/__init__.py +20 -0
- ai_edge_torch/odml_torch/_torch_future.py +61 -0
- ai_edge_torch/odml_torch/_torch_library.py +19 -0
- ai_edge_torch/odml_torch/composite/__init__.py +16 -0
- ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
- ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
- ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
- ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
- ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
- ai_edge_torch/odml_torch/export.py +357 -0
- ai_edge_torch/odml_torch/export_utils.py +168 -0
- ai_edge_torch/odml_torch/jax_bridge/__init__.py +15 -0
- ai_edge_torch/odml_torch/jax_bridge/_wrap.py +150 -0
- ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
- ai_edge_torch/odml_torch/lowerings/__init__.py +25 -0
- ai_edge_torch/odml_torch/lowerings/_basic.py +258 -0
- ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
- ai_edge_torch/odml_torch/lowerings/_convolution.py +241 -0
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +252 -0
- ai_edge_torch/odml_torch/lowerings/_layer_norm.py +78 -0
- ai_edge_torch/odml_torch/lowerings/context.py +42 -0
- ai_edge_torch/odml_torch/lowerings/registry.py +96 -0
- ai_edge_torch/odml_torch/lowerings/utils.py +185 -0
- ai_edge_torch/odml_torch/passes/__init__.py +38 -0
- ai_edge_torch/odml_torch/tf_integration.py +194 -0
- ai_edge_torch/quantize/pt2e_quantizer.py +52 -24
- ai_edge_torch/quantize/pt2e_quantizer_utils.py +43 -23
- ai_edge_torch/quantize/quant_config.py +13 -9
- ai_edge_torch/testing/model_coverage/model_coverage.py +29 -16
- ai_edge_torch/version.py +16 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/METADATA +7 -3
- ai_edge_torch_nightly-0.3.0.dev20240926.dist-info/RECORD +177 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/WHEEL +1 -1
- ai_edge_torch/convert/conversion.py +0 -117
- ai_edge_torch/convert/conversion_utils.py +0 -400
- ai_edge_torch/convert/fx_passes/__init__.py +0 -59
- ai_edge_torch/convert/fx_passes/_pass_base.py +0 -49
- ai_edge_torch/convert/fx_passes/canonicalize_pass.py +0 -37
- ai_edge_torch/convert/test/test_convert.py +0 -311
- ai_edge_torch/convert/test/test_convert_composites.py +0 -192
- ai_edge_torch/convert/test/test_convert_multisig.py +0 -139
- ai_edge_torch/generative/examples/gemma/convert_to_tflite.py +0 -66
- ai_edge_torch/generative/examples/phi2/convert_to_tflite.py +0 -64
- ai_edge_torch/generative/examples/test_models/toy_model_with_external_kv_cache.py +0 -161
- ai_edge_torch/generative/quantize/ai_edge_quantizer_glue/__init__.py +0 -0
- ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/RECORD +0 -121
- /ai_edge_torch/{convert → _convert}/__init__.py +0 -0
- /ai_edge_torch/{convert → _convert}/test/__init__.py +0 -0
- /ai_edge_torch/generative/examples/{phi2 → openelm}/__init__.py +0 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/LICENSE +0 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,255 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
import dataclasses
|
17
|
+
import tempfile
|
18
|
+
from typing import Any, Dict, List, Optional, Tuple
|
19
|
+
|
20
|
+
from ai_edge_torch import odml_torch
|
21
|
+
from ai_edge_torch._convert import conversion_utils
|
22
|
+
from ai_edge_torch._convert import signature as signature_module
|
23
|
+
from ai_edge_torch.lowertools import common_utils
|
24
|
+
from ai_edge_torch.lowertools import translate_recipe
|
25
|
+
from ai_edge_torch.odml_torch import export
|
26
|
+
from ai_edge_torch.odml_torch import export_utils
|
27
|
+
from ai_edge_torch.quantize import quant_config as qcfg
|
28
|
+
import tensorflow as tf
|
29
|
+
import torch
|
30
|
+
|
31
|
+
from tensorflow.compiler.tf2xla.python import xla as tfxla
|
32
|
+
from tensorflow.lite.python import conversion_metadata_schema_py_generated as conversion_metadata_fb
|
33
|
+
|
34
|
+
MlirBundle = odml_torch.export.MlirLowered
|
35
|
+
|
36
|
+
|
37
|
+
@dataclasses.dataclass
|
38
|
+
class MergedBundle:
|
39
|
+
"""A bundle of MlirLowered that has been merged."""
|
40
|
+
|
41
|
+
bundles: list[odml_torch.export.MlirLowered]
|
42
|
+
exported_programs: list[torch.export.ExportedProgram]
|
43
|
+
deduped_tf_vars: list[tf.Variable]
|
44
|
+
|
45
|
+
|
46
|
+
def torch_dtype_to_tf(dtype):
|
47
|
+
return {
|
48
|
+
torch.double: tf.float64,
|
49
|
+
torch.float32: tf.float32,
|
50
|
+
torch.half: tf.float16,
|
51
|
+
torch.long: tf.int64,
|
52
|
+
torch.int32: tf.int32,
|
53
|
+
torch.int16: tf.int16,
|
54
|
+
torch.bool: tf.bool,
|
55
|
+
}.get(dtype)
|
56
|
+
|
57
|
+
|
58
|
+
def _get_shape_with_dynamic(signature: export.VariableSignature):
|
59
|
+
return [
|
60
|
+
None if export_utils.is_torch_dynamic(s) else s for s in signature.shape
|
61
|
+
]
|
62
|
+
|
63
|
+
|
64
|
+
def _extract_call_args(
|
65
|
+
bundle: export.MlirLowered,
|
66
|
+
args: Tuple[Any],
|
67
|
+
tf_state_dict: Dict[str, tf.Variable],
|
68
|
+
):
|
69
|
+
call_args = []
|
70
|
+
for sig in bundle.input_signature:
|
71
|
+
if sig.input_spec.is_user_input:
|
72
|
+
call_args.append(args[sig.input_spec.i])
|
73
|
+
elif sig.input_spec.is_parameter:
|
74
|
+
name = sig.input_spec.name
|
75
|
+
call_args.append(tf_state_dict[name])
|
76
|
+
return call_args
|
77
|
+
|
78
|
+
|
79
|
+
def _wrap_as_tf_func(
|
80
|
+
bundle: export.MlirLowered,
|
81
|
+
tf_state_dict: Dict[str, tf.Variable],
|
82
|
+
exported_program: torch.export.ExportedProgram,
|
83
|
+
):
|
84
|
+
def inner(*args):
|
85
|
+
t_outs = [torch_dtype_to_tf(sig.dtype) for sig in bundle.output_signature]
|
86
|
+
s_outs = [_get_shape_with_dynamic(sig) for sig in bundle.output_signature]
|
87
|
+
call_args = _extract_call_args(bundle, args, tf_state_dict)
|
88
|
+
# HACK: In OSS, we use MLIR pybinding and StableHLO dialect from JAX's
|
89
|
+
# build, which may not have the same StableHLO version as what used in
|
90
|
+
# TFLite converter. Therefore we always serialize MLIR module in VHLO.
|
91
|
+
# TODO(b/362798610) Build MLIR pybinding in ai-edge-torch release.
|
92
|
+
call_module_return = tfxla.call_module(
|
93
|
+
tuple(call_args),
|
94
|
+
version=5,
|
95
|
+
Tout=t_outs, # dtype information
|
96
|
+
Sout=s_outs, # Shape information
|
97
|
+
function_list=[],
|
98
|
+
module=bundle.module_bytecode_vhlo,
|
99
|
+
)
|
100
|
+
spec = exported_program.call_spec.out_spec
|
101
|
+
|
102
|
+
# The module returning a flat array.
|
103
|
+
if not spec.context:
|
104
|
+
return call_module_return
|
105
|
+
|
106
|
+
flat_names = common_utils.flat_dict_names(spec.children_specs, spec.context)
|
107
|
+
return {name: value for name, value in zip(flat_names, call_module_return)}
|
108
|
+
|
109
|
+
return inner
|
110
|
+
|
111
|
+
|
112
|
+
def _make_tf_signature(
|
113
|
+
input_signature: list[export.VariableSignature],
|
114
|
+
signature: signature_module.Signature,
|
115
|
+
) -> List[tf.TensorSpec]:
|
116
|
+
input_names = signature.flat_arg_names
|
117
|
+
user_input_signature = sorted(
|
118
|
+
[sig for sig in input_signature if sig.input_spec.is_user_input],
|
119
|
+
key=lambda sig: sig.input_spec.i,
|
120
|
+
)
|
121
|
+
tf_signature = []
|
122
|
+
|
123
|
+
for sig in user_input_signature:
|
124
|
+
shape = _get_shape_with_dynamic(sig)
|
125
|
+
tf_signature.append(
|
126
|
+
tf.TensorSpec(
|
127
|
+
shape=shape,
|
128
|
+
dtype=torch_dtype_to_tf(sig.dtype),
|
129
|
+
name=input_names[sig.input_spec.i],
|
130
|
+
)
|
131
|
+
)
|
132
|
+
return tf_signature
|
133
|
+
|
134
|
+
|
135
|
+
def merged_bundle_to_tfl_model(
|
136
|
+
merged_bundle: MergedBundle,
|
137
|
+
signatures: list[signature_module.Signature],
|
138
|
+
*,
|
139
|
+
quant_config: Optional[qcfg.QuantConfig] = None,
|
140
|
+
_tfl_converter_flags: dict = {},
|
141
|
+
):
|
142
|
+
tf_state_dict = merged_bundle.bundles[0].state_dict
|
143
|
+
|
144
|
+
tf_signatures = [
|
145
|
+
_make_tf_signature(bundle.input_signature, sig)
|
146
|
+
for bundle, sig in zip(merged_bundle.bundles, signatures)
|
147
|
+
]
|
148
|
+
tf_functions = [
|
149
|
+
_wrap_as_tf_func(bundle, tf_state_dict, ep)
|
150
|
+
for bundle, ep in zip(
|
151
|
+
merged_bundle.bundles, merged_bundle.exported_programs
|
152
|
+
)
|
153
|
+
]
|
154
|
+
|
155
|
+
tf_module = tf.Module()
|
156
|
+
tf_module.f = []
|
157
|
+
|
158
|
+
for tf_sig, func in zip(tf_signatures, tf_functions):
|
159
|
+
tf_module.f.append(
|
160
|
+
tf.function(
|
161
|
+
func,
|
162
|
+
input_signature=tf_sig,
|
163
|
+
)
|
164
|
+
)
|
165
|
+
|
166
|
+
tf_module._variables = merged_bundle.deduped_tf_vars
|
167
|
+
|
168
|
+
tf_concrete_funcs = [
|
169
|
+
func.get_concrete_function(*tf_sig)
|
170
|
+
for func, tf_sig in zip(tf_module.f, tf_signatures)
|
171
|
+
]
|
172
|
+
|
173
|
+
# We need to temporarily save since TFLite's from_concrete_functions does not
|
174
|
+
# allow providing names for each of the concrete functions.
|
175
|
+
with tempfile.TemporaryDirectory() as temp_dir_path:
|
176
|
+
tf.saved_model.save(
|
177
|
+
tf_module,
|
178
|
+
temp_dir_path,
|
179
|
+
signatures={
|
180
|
+
sig.name: tf_concrete_funcs[idx]
|
181
|
+
for idx, sig in enumerate(signatures)
|
182
|
+
},
|
183
|
+
)
|
184
|
+
|
185
|
+
converter = tf.lite.TFLiteConverter.from_saved_model(temp_dir_path)
|
186
|
+
converter._set_original_model_type(conversion_metadata_fb.ModelType.PYTORCH)
|
187
|
+
converter._experimental_enable_composite_direct_lowering = True
|
188
|
+
converter.model_origin_framework = "PYTORCH"
|
189
|
+
|
190
|
+
conversion_utils.set_tfl_converter_quant_flags(converter, quant_config)
|
191
|
+
if (
|
192
|
+
quant_config is not None
|
193
|
+
and quant_config._quantizer_mode
|
194
|
+
== quant_config._QuantizerMode.AI_EDGE_QUANTIZER
|
195
|
+
):
|
196
|
+
translated_recipe = translate_recipe.translate_to_ai_edge_recipe(
|
197
|
+
quant_config.generative_recipe
|
198
|
+
)
|
199
|
+
|
200
|
+
conversion_utils.apply_tfl_converter_flags(converter, _tfl_converter_flags)
|
201
|
+
|
202
|
+
tflite_model = converter.convert()
|
203
|
+
|
204
|
+
if (
|
205
|
+
quant_config is not None
|
206
|
+
and quant_config._quantizer_mode
|
207
|
+
== quant_config._QuantizerMode.AI_EDGE_QUANTIZER
|
208
|
+
):
|
209
|
+
tflite_model = translate_recipe.quantize_model(
|
210
|
+
tflite_model, translated_recipe
|
211
|
+
)
|
212
|
+
|
213
|
+
return tflite_model
|
214
|
+
|
215
|
+
|
216
|
+
def exported_program_to_mlir_text(
|
217
|
+
exported_program: torch.export.ExportedProgram,
|
218
|
+
) -> str:
|
219
|
+
"""Converts a ExportedProgram to a MLIR text."""
|
220
|
+
return odml_torch.export.exported_program_to_mlir(exported_program).get_text(
|
221
|
+
enable_debug_info=True
|
222
|
+
)
|
223
|
+
|
224
|
+
|
225
|
+
def exported_program_to_mlir(
|
226
|
+
exported_program: torch.export.ExportedProgram,
|
227
|
+
sample_args: tuple[torch.Tensor],
|
228
|
+
) -> export.MlirLowered:
|
229
|
+
"""Converts a ExportedProgram to a MlirLowered."""
|
230
|
+
return odml_torch.export.exported_program_to_mlir(exported_program)
|
231
|
+
|
232
|
+
|
233
|
+
def merge_mlir_bundles(
|
234
|
+
bundles: list[export.MlirLowered],
|
235
|
+
signatures: list[signature_module.Signature],
|
236
|
+
exported_programs: list[torch.export.ExportedProgram],
|
237
|
+
) -> MergedBundle:
|
238
|
+
"""Merges a list of MlirLowered into one."""
|
239
|
+
state_dict, deduped_vars = common_utils.gather_state_dict(
|
240
|
+
exported_programs, signatures
|
241
|
+
)
|
242
|
+
|
243
|
+
merged_bundle = MergedBundle(
|
244
|
+
bundles=bundles.copy(),
|
245
|
+
exported_programs=exported_programs,
|
246
|
+
deduped_tf_vars=deduped_vars,
|
247
|
+
)
|
248
|
+
for bundle, signature in zip(merged_bundle.bundles, signatures):
|
249
|
+
bundle.state_dict = state_dict
|
250
|
+
|
251
|
+
for var_sig in bundle.input_signature:
|
252
|
+
if var_sig.input_spec.is_parameter:
|
253
|
+
var_sig.input_spec.name = signature.name + "_" + var_sig.input_spec.name
|
254
|
+
|
255
|
+
return merged_bundle
|
@@ -0,0 +1,60 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
import re
|
17
|
+
from typing import Optional
|
18
|
+
from ai_edge_torch import config
|
19
|
+
from absl.testing import absltest as googletest
|
20
|
+
|
21
|
+
|
22
|
+
def _extract_backend_configs(mlir):
|
23
|
+
mlir = mlir.replace("\\22", '"')
|
24
|
+
configs = []
|
25
|
+
for match in re.finditer(r"backend_config\s*=\s*\"(\{.*\})\"", mlir):
|
26
|
+
configs.append(match.group(1))
|
27
|
+
return "\n".join(configs)
|
28
|
+
|
29
|
+
|
30
|
+
def assert_string_count(
|
31
|
+
test_case: googletest.TestCase,
|
32
|
+
mlir: str,
|
33
|
+
torch_xla_pattern_counter: dict[str, int],
|
34
|
+
odml_torch_pattern_counter: dict[str, int],
|
35
|
+
odml_torch_attr_counter: Optional[dict[str, int]] = None,
|
36
|
+
):
|
37
|
+
|
38
|
+
if odml_torch_attr_counter is None:
|
39
|
+
odml_torch_attr_counter = {}
|
40
|
+
|
41
|
+
if config.Config.use_torch_xla:
|
42
|
+
for key in torch_xla_pattern_counter:
|
43
|
+
test_case.assertEqual(
|
44
|
+
mlir.count(key),
|
45
|
+
torch_xla_pattern_counter[key],
|
46
|
+
)
|
47
|
+
else:
|
48
|
+
for key in odml_torch_pattern_counter:
|
49
|
+
test_case.assertEqual(
|
50
|
+
mlir.count(key),
|
51
|
+
odml_torch_pattern_counter[key],
|
52
|
+
)
|
53
|
+
backend_configs = _extract_backend_configs(mlir)
|
54
|
+
print("backend_configs:")
|
55
|
+
print(backend_configs)
|
56
|
+
for key in odml_torch_attr_counter:
|
57
|
+
test_case.assertEqual(
|
58
|
+
backend_configs.count(key),
|
59
|
+
odml_torch_attr_counter[key],
|
60
|
+
)
|
@@ -0,0 +1,284 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
import copy
|
17
|
+
import dataclasses
|
18
|
+
from dataclasses import dataclass
|
19
|
+
import gc
|
20
|
+
import itertools
|
21
|
+
import logging
|
22
|
+
import tempfile
|
23
|
+
from typing import Any, Dict, Optional, Tuple, Union
|
24
|
+
|
25
|
+
from ai_edge_torch import model
|
26
|
+
from ai_edge_torch._convert import conversion_utils
|
27
|
+
from ai_edge_torch._convert import signature as signature_module
|
28
|
+
from ai_edge_torch.lowertools import common_utils
|
29
|
+
from ai_edge_torch.lowertools import translate_recipe
|
30
|
+
from ai_edge_torch.quantize import quant_config as qcfg
|
31
|
+
import torch
|
32
|
+
from torch_xla import stablehlo
|
33
|
+
|
34
|
+
try:
|
35
|
+
import tensorflow as tf
|
36
|
+
|
37
|
+
from tensorflow.compiler.tf2xla.python import xla as tfxla
|
38
|
+
|
39
|
+
from tensorflow.lite.python import conversion_metadata_schema_py_generated as conversion_metadata_fb # isort:skip
|
40
|
+
except ImportError:
|
41
|
+
logging.error(
|
42
|
+
"This module needs tensorflow with xla support.\n"
|
43
|
+
"Please install tensorflow with `pip install tf-nightly`.\n"
|
44
|
+
)
|
45
|
+
raise
|
46
|
+
|
47
|
+
MlirBundle = stablehlo.StableHLOModelBundle
|
48
|
+
|
49
|
+
|
50
|
+
@dataclasses.dataclass
|
51
|
+
class MergedBundle:
|
52
|
+
|
53
|
+
bundle: stablehlo.StableHLOModelBundle
|
54
|
+
exported_programs: list[torch.export.ExportedProgram]
|
55
|
+
deduped_tf_vars: list[tf.Variable]
|
56
|
+
|
57
|
+
|
58
|
+
def exported_program_to_mlir(
|
59
|
+
exported_program: torch.export.ExportedProgram,
|
60
|
+
sample_args: tuple[torch.Tensor],
|
61
|
+
) -> stablehlo.StableHLOModelBundle:
|
62
|
+
# Setting export_weights to False here so that pytorch/xla avoids copying the
|
63
|
+
# weights to a numpy array which would lead to memory bloat. This means that
|
64
|
+
# the state_dict in the returned bundle is going to be empty.
|
65
|
+
return stablehlo.exported_program_to_stablehlo(
|
66
|
+
exported_program,
|
67
|
+
stablehlo.StableHLOExportOptions(
|
68
|
+
override_tracing_arguments=sample_args, export_weights=False
|
69
|
+
),
|
70
|
+
)._bundle
|
71
|
+
|
72
|
+
|
73
|
+
def merge_mlir_bundles(
|
74
|
+
bundles: list[stablehlo.StableHLOModelBundle],
|
75
|
+
signatures: list[signature_module.Signature],
|
76
|
+
exported_programs: list[torch.export.ExportedProgram],
|
77
|
+
) -> stablehlo.StableHLOGraphModule:
|
78
|
+
state_dict, deduped_tf_vars = common_utils.gather_state_dict(
|
79
|
+
exported_programs, signatures
|
80
|
+
)
|
81
|
+
|
82
|
+
new_shlo_model_bundle = stablehlo.StableHLOModelBundle(
|
83
|
+
state_dict=state_dict, additional_constants=[], stablehlo_funcs=[]
|
84
|
+
)
|
85
|
+
|
86
|
+
for bundle, signature in zip(bundles, signatures):
|
87
|
+
const_offset = len(new_shlo_model_bundle.additional_constants)
|
88
|
+
for func in bundle.stablehlo_funcs:
|
89
|
+
func.meta.name = signature.name + "_" + func.meta.name
|
90
|
+
for loc in func.meta.input_locations:
|
91
|
+
if loc.type_ == stablehlo.VariableType.CONSTANT:
|
92
|
+
loc.position += const_offset
|
93
|
+
elif loc.type_ == stablehlo.VariableType.PARAMETER:
|
94
|
+
loc.name = signature.name + "_" + loc.name
|
95
|
+
new_shlo_model_bundle.stablehlo_funcs.append(func)
|
96
|
+
new_shlo_model_bundle.additional_constants.extend(
|
97
|
+
bundle.additional_constants
|
98
|
+
)
|
99
|
+
return MergedBundle(
|
100
|
+
bundle=new_shlo_model_bundle,
|
101
|
+
exported_programs=exported_programs,
|
102
|
+
deduped_tf_vars=deduped_tf_vars,
|
103
|
+
)
|
104
|
+
|
105
|
+
|
106
|
+
def _get_shape_with_dynamic(signature: stablehlo.VariableSignature):
|
107
|
+
shape = copy.copy(signature.shape)
|
108
|
+
for i in signature.dynamic_dims:
|
109
|
+
shape[i] = None
|
110
|
+
return shape
|
111
|
+
|
112
|
+
|
113
|
+
def _wrap_as_tf_func(
|
114
|
+
func: stablehlo.StableHLOFunc,
|
115
|
+
bundle: stablehlo.StableHLOModelBundle,
|
116
|
+
exported_program: torch.export.ExportedProgram,
|
117
|
+
):
|
118
|
+
def inner(*args):
|
119
|
+
type_info = [sig.dtype for sig in func.meta.output_signature]
|
120
|
+
shape_info = [
|
121
|
+
_get_shape_with_dynamic(sig) for sig in func.meta.output_signature
|
122
|
+
]
|
123
|
+
call_args = stablehlo._extract_call_parameters(args, func.meta, bundle)
|
124
|
+
call_module_return = tfxla.call_module(
|
125
|
+
tuple(call_args),
|
126
|
+
version=5,
|
127
|
+
Tout=type_info,
|
128
|
+
Sout=shape_info,
|
129
|
+
function_list=[],
|
130
|
+
module=func.bytecode,
|
131
|
+
)
|
132
|
+
spec = exported_program.call_spec.out_spec
|
133
|
+
|
134
|
+
# The module returning a flat array.
|
135
|
+
if not spec.context:
|
136
|
+
return call_module_return
|
137
|
+
|
138
|
+
flat_names = common_utils.flat_dict_names(spec.children_specs, spec.context)
|
139
|
+
return {name: value for name, value in zip(flat_names, call_module_return)}
|
140
|
+
|
141
|
+
return inner
|
142
|
+
|
143
|
+
|
144
|
+
def _make_tf_signature(
|
145
|
+
meta: stablehlo.StableHLOFunctionMeta,
|
146
|
+
signature: signature_module.Signature,
|
147
|
+
) -> list[tf.TensorSpec]:
|
148
|
+
input_names = signature.flat_arg_names
|
149
|
+
input_pos_to_spec = {
|
150
|
+
loc.position: spec
|
151
|
+
for loc, spec in itertools.chain(
|
152
|
+
zip(meta.input_locations, meta.input_signature), meta.unused_inputs
|
153
|
+
)
|
154
|
+
if loc.type_ == stablehlo.VariableType.INPUT_ARG
|
155
|
+
}
|
156
|
+
assert len(input_pos_to_spec) == len(input_names)
|
157
|
+
|
158
|
+
primitive_type_to_tf_type = {"int": "int32", "float": "float32"}
|
159
|
+
ret: list[tf.TensorSpec] = []
|
160
|
+
for i, name in enumerate(input_names):
|
161
|
+
spec = input_pos_to_spec[i]
|
162
|
+
shape = _get_shape_with_dynamic(spec)
|
163
|
+
ret.append(
|
164
|
+
tf.TensorSpec(
|
165
|
+
shape=shape,
|
166
|
+
dtype=primitive_type_to_tf_type[spec.dtype]
|
167
|
+
if spec.dtype in primitive_type_to_tf_type
|
168
|
+
else spec.dtype,
|
169
|
+
name=name,
|
170
|
+
)
|
171
|
+
)
|
172
|
+
return ret
|
173
|
+
|
174
|
+
|
175
|
+
def exported_program_to_mlir_text(
|
176
|
+
exported_program: torch.export.ExportedProgram,
|
177
|
+
) -> str:
|
178
|
+
"""Converts a ExportedProgram to a MLIR text."""
|
179
|
+
return stablehlo.exported_program_to_stablehlo(
|
180
|
+
exported_program
|
181
|
+
).get_stablehlo_text()
|
182
|
+
|
183
|
+
|
184
|
+
def merged_bundle_to_tfl_model(
|
185
|
+
merged_bundle: MergedBundle,
|
186
|
+
signatures: list[signature_module.Signature],
|
187
|
+
*,
|
188
|
+
quant_config: Optional[qcfg.QuantConfig] = None,
|
189
|
+
_tfl_converter_flags: dict = {},
|
190
|
+
) -> None:
|
191
|
+
"""Converts a StableHLOGraphModule to a tflite model.
|
192
|
+
|
193
|
+
Args: shlo_bundle - model to export and save
|
194
|
+
|
195
|
+
signatures: List of signatures from which names of the signatures is
|
196
|
+
extracted.
|
197
|
+
quant_config: User-defined quantization method and scheme of the model.
|
198
|
+
_tfl_converter_flags: A nested dictionary allowing setting flags for the
|
199
|
+
underlying tflite converter.
|
200
|
+
"""
|
201
|
+
|
202
|
+
tf_module = tf.Module()
|
203
|
+
|
204
|
+
shlo_bundle = merged_bundle.bundle
|
205
|
+
|
206
|
+
shlo_bundle.additional_constants = [
|
207
|
+
tf.Variable(v, trainable=False) for v in shlo_bundle.additional_constants
|
208
|
+
]
|
209
|
+
tf_signatures: list[list[tf.TensorSpec]] = list(
|
210
|
+
_make_tf_signature(func.meta, sig)
|
211
|
+
for func, sig in zip(shlo_bundle.stablehlo_funcs, signatures)
|
212
|
+
)
|
213
|
+
|
214
|
+
tf_functions = [
|
215
|
+
_wrap_as_tf_func(func, shlo_bundle, ep)
|
216
|
+
for func, ep in zip(
|
217
|
+
shlo_bundle.stablehlo_funcs, merged_bundle.exported_programs
|
218
|
+
)
|
219
|
+
]
|
220
|
+
|
221
|
+
tf_module.f = []
|
222
|
+
for tf_sig, func in zip(tf_signatures, tf_functions):
|
223
|
+
tf_module.f.append(
|
224
|
+
tf.function(
|
225
|
+
func,
|
226
|
+
input_signature=tf_sig,
|
227
|
+
)
|
228
|
+
)
|
229
|
+
|
230
|
+
tf_module._variables = (
|
231
|
+
merged_bundle.deduped_tf_vars + shlo_bundle.additional_constants
|
232
|
+
)
|
233
|
+
del shlo_bundle
|
234
|
+
gc.collect()
|
235
|
+
|
236
|
+
tf_concrete_funcs = [
|
237
|
+
func.get_concrete_function(*tf_sig)
|
238
|
+
for func, tf_sig in zip(tf_module.f, tf_signatures)
|
239
|
+
]
|
240
|
+
|
241
|
+
# We need to temporarily save since TFLite's from_concrete_functions does not
|
242
|
+
# allow providing names for each of the concrete functions.
|
243
|
+
with tempfile.TemporaryDirectory() as temp_dir_path:
|
244
|
+
tf.saved_model.save(
|
245
|
+
tf_module,
|
246
|
+
temp_dir_path,
|
247
|
+
signatures={
|
248
|
+
sig.name: tf_concrete_funcs[idx]
|
249
|
+
for idx, sig in enumerate(signatures)
|
250
|
+
},
|
251
|
+
)
|
252
|
+
# Clean up intermediate memory early.
|
253
|
+
del tf_module
|
254
|
+
del tf_concrete_funcs
|
255
|
+
gc.collect()
|
256
|
+
|
257
|
+
converter = tf.lite.TFLiteConverter.from_saved_model(temp_dir_path)
|
258
|
+
converter._set_original_model_type(conversion_metadata_fb.ModelType.PYTORCH)
|
259
|
+
converter._experimental_enable_composite_direct_lowering = True
|
260
|
+
|
261
|
+
conversion_utils.set_tfl_converter_quant_flags(converter, quant_config)
|
262
|
+
if (
|
263
|
+
quant_config is not None
|
264
|
+
and quant_config._quantizer_mode
|
265
|
+
== quant_config._QuantizerMode.AI_EDGE_QUANTIZER
|
266
|
+
):
|
267
|
+
translated_recipe = translate_recipe.translate_to_ai_edge_recipe(
|
268
|
+
quant_config.generative_recipe
|
269
|
+
)
|
270
|
+
|
271
|
+
conversion_utils.apply_tfl_converter_flags(converter, _tfl_converter_flags)
|
272
|
+
|
273
|
+
tflite_model = converter.convert()
|
274
|
+
|
275
|
+
if (
|
276
|
+
quant_config is not None
|
277
|
+
and quant_config._quantizer_mode
|
278
|
+
== quant_config._QuantizerMode.AI_EDGE_QUANTIZER
|
279
|
+
):
|
280
|
+
tflite_model = translate_recipe.quantize_model(
|
281
|
+
tflite_model, translated_recipe
|
282
|
+
)
|
283
|
+
|
284
|
+
return tflite_model
|
@@ -13,14 +13,12 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
15
|
|
16
|
-
import json
|
17
|
-
|
18
16
|
from ai_edge_quantizer import quantizer
|
19
|
-
|
20
17
|
from ai_edge_torch.generative.quantize import quant_attrs
|
21
18
|
from ai_edge_torch.generative.quantize import quant_recipe
|
22
19
|
|
23
|
-
|
20
|
+
_ComputePrecision = quantizer.qtyping.ComputePrecision
|
21
|
+
_QuantGranularity = quantizer.qtyping.QuantGranularity
|
24
22
|
_OpName = quantizer.qtyping.TFLOperationName
|
25
23
|
_TensorQuantConfig = quantizer.qtyping.TensorQuantizationConfig
|
26
24
|
_OpQuantConfig = quantizer.qtyping.OpQuantizationConfig
|
@@ -44,26 +42,40 @@ def _get_nbits_from_dtype(dtype: quant_attrs.Dtype) -> int:
|
|
44
42
|
raise ValueError('Unimplemented number of bits')
|
45
43
|
|
46
44
|
|
47
|
-
def _get_dtype_from_dtype(
|
45
|
+
def _get_dtype_from_dtype(
|
46
|
+
dtype: quant_attrs.Dtype,
|
47
|
+
) -> quantizer.qtyping.TensorDataType:
|
48
48
|
if dtype == quant_attrs.Dtype.FP32 or dtype == quant_attrs.Dtype.FP16:
|
49
49
|
return quantizer.qtyping.TensorDataType.FLOAT
|
50
50
|
else:
|
51
51
|
return quantizer.qtyping.TensorDataType.INT
|
52
52
|
|
53
53
|
|
54
|
-
def
|
54
|
+
def _get_compute_precision_from_mode(
|
55
|
+
mode: quant_attrs.Mode,
|
56
|
+
) -> _ComputePrecision:
|
55
57
|
if mode == quant_attrs.Mode.DYNAMIC_RANGE:
|
56
|
-
return
|
58
|
+
return _ComputePrecision.INTEGER
|
57
59
|
elif mode == quant_attrs.Mode.WEIGHT_ONLY:
|
58
|
-
return
|
60
|
+
return _ComputePrecision.FLOAT
|
59
61
|
raise ValueError('Unimplemented execution mode')
|
60
62
|
|
61
63
|
|
62
|
-
def
|
63
|
-
if
|
64
|
-
return True
|
65
|
-
elif granularity == quant_attrs.Granularity.NONE:
|
64
|
+
def _get_explicit_dequant_from_mode(mode: quant_attrs.Mode) -> bool:
|
65
|
+
if mode == quant_attrs.Mode.DYNAMIC_RANGE:
|
66
66
|
return False
|
67
|
+
elif mode == quant_attrs.Mode.WEIGHT_ONLY:
|
68
|
+
return True
|
69
|
+
raise ValueError('Unimplemented execution mode')
|
70
|
+
|
71
|
+
|
72
|
+
def _get_granularity(
|
73
|
+
granularity: quant_attrs.Granularity,
|
74
|
+
) -> bool:
|
75
|
+
if granularity == quant_attrs.Granularity.CHANNELWISE:
|
76
|
+
return _QuantGranularity.CHANNELWISE
|
77
|
+
if granularity == quant_attrs.Granularity.NONE:
|
78
|
+
return _QuantGranularity.TENSORWISE
|
67
79
|
raise ValueError('Unimplemented granularity')
|
68
80
|
|
69
81
|
|
@@ -87,10 +99,13 @@ def _set_quant_config(
|
|
87
99
|
weight_tensor_config=_TensorQuantConfig(
|
88
100
|
num_bits=_get_nbits_from_dtype(layer_recipe.weight_dtype),
|
89
101
|
symmetric=True,
|
90
|
-
|
102
|
+
granularity=_get_granularity(layer_recipe.granularity),
|
91
103
|
dtype=_get_dtype_from_dtype(layer_recipe.weight_dtype),
|
92
104
|
),
|
93
|
-
|
105
|
+
compute_precision=_get_compute_precision_from_mode(layer_recipe.mode),
|
106
|
+
explicit_dequantize=_get_explicit_dequant_from_mode(
|
107
|
+
layer_recipe.mode
|
108
|
+
),
|
94
109
|
),
|
95
110
|
algorithm_key=_get_algorithm_key_from_algorithm(layer_recipe.algorithm),
|
96
111
|
)
|