ai-edge-torch-nightly 0.2.0.dev20240714__py3-none-any.whl → 0.3.0.dev20240926__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (169) hide show
  1. ai_edge_torch/__init__.py +5 -4
  2. ai_edge_torch/_convert/conversion.py +112 -0
  3. ai_edge_torch/_convert/conversion_utils.py +64 -0
  4. ai_edge_torch/{convert → _convert}/converter.py +94 -48
  5. ai_edge_torch/_convert/fx_passes/__init__.py +22 -0
  6. ai_edge_torch/{convert → _convert}/fx_passes/build_aten_composite_pass.py +107 -44
  7. ai_edge_torch/{convert → _convert}/fx_passes/build_interpolate_composite_pass.py +23 -20
  8. ai_edge_torch/{convert → _convert}/fx_passes/inject_mlir_debuginfo_pass.py +5 -6
  9. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/__init__.py +1 -1
  10. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_check.py +39 -9
  11. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_mark.py +2 -0
  12. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +1 -0
  13. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +17 -8
  14. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +9 -8
  15. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +31 -18
  16. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +2 -2
  17. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/pass_body.py +34 -24
  18. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/utils.py +2 -0
  19. ai_edge_torch/_convert/signature.py +66 -0
  20. ai_edge_torch/_convert/test/test_convert.py +495 -0
  21. ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
  22. ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
  23. ai_edge_torch/{convert → _convert}/test/test_to_channel_last_io.py +5 -5
  24. ai_edge_torch/{convert → _convert}/to_channel_last_io.py +10 -3
  25. ai_edge_torch/config.py +27 -0
  26. ai_edge_torch/conftest.py +20 -0
  27. ai_edge_torch/debug/culprit.py +72 -40
  28. ai_edge_torch/debug/test/test_culprit.py +7 -5
  29. ai_edge_torch/debug/test/test_search_model.py +8 -7
  30. ai_edge_torch/debug/utils.py +14 -3
  31. ai_edge_torch/fx_pass_base.py +101 -0
  32. ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +68 -0
  33. ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +68 -0
  34. ai_edge_torch/generative/examples/gemma/{gemma.py → gemma1.py} +69 -55
  35. ai_edge_torch/generative/examples/gemma/gemma2.py +267 -0
  36. ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
  37. ai_edge_torch/generative/examples/gemma/verify_gemma2.py +57 -0
  38. ai_edge_torch/generative/examples/gemma/verify_util.py +143 -0
  39. ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +68 -0
  40. ai_edge_torch/generative/examples/openelm/openelm.py +206 -0
  41. ai_edge_torch/generative/examples/openelm/verify.py +64 -0
  42. ai_edge_torch/generative/examples/phi/__init__.py +14 -0
  43. ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +68 -0
  44. ai_edge_torch/generative/examples/phi/convert_to_tflite.py +68 -0
  45. ai_edge_torch/generative/examples/{phi2 → phi}/phi2.py +70 -51
  46. ai_edge_torch/generative/examples/phi/phi3.py +286 -0
  47. ai_edge_torch/generative/examples/phi/verify.py +65 -0
  48. ai_edge_torch/generative/examples/phi/verify_phi3.py +70 -0
  49. ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
  50. ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +68 -0
  51. ai_edge_torch/generative/examples/smollm/smollm.py +101 -0
  52. ai_edge_torch/generative/examples/smollm/verify.py +62 -0
  53. ai_edge_torch/generative/examples/stable_diffusion/attention.py +3 -1
  54. ai_edge_torch/generative/examples/stable_diffusion/clip.py +83 -13
  55. ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +27 -14
  56. ai_edge_torch/generative/examples/stable_diffusion/decoder.py +74 -9
  57. ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +179 -37
  58. ai_edge_torch/generative/examples/stable_diffusion/encoder.py +4 -3
  59. ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +83 -58
  60. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +4 -3
  61. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +4 -3
  62. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +4 -3
  63. ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +1 -0
  64. ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +4 -1
  65. ai_edge_torch/generative/examples/stable_diffusion/util.py +9 -3
  66. ai_edge_torch/generative/examples/t5/convert_to_tflite.py +28 -25
  67. ai_edge_torch/generative/examples/t5/t5.py +208 -159
  68. ai_edge_torch/generative/examples/t5/t5_attention.py +45 -30
  69. ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
  70. ai_edge_torch/generative/examples/test_models/toy_model.py +69 -41
  71. ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +50 -64
  72. ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
  73. ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +41 -39
  74. ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +67 -54
  75. ai_edge_torch/generative/examples/tiny_llama/verify.py +64 -0
  76. ai_edge_torch/generative/fx_passes/__init__.py +4 -5
  77. ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +10 -7
  78. ai_edge_torch/generative/layers/attention.py +141 -102
  79. ai_edge_torch/generative/layers/attention_utils.py +53 -12
  80. ai_edge_torch/generative/layers/builder.py +37 -7
  81. ai_edge_torch/generative/layers/feed_forward.py +39 -14
  82. ai_edge_torch/generative/layers/kv_cache.py +162 -50
  83. ai_edge_torch/generative/layers/model_config.py +84 -30
  84. ai_edge_torch/generative/layers/normalization.py +185 -7
  85. ai_edge_torch/generative/layers/rotary_position_embedding.py +6 -4
  86. ai_edge_torch/generative/layers/scaled_dot_product_attention.py +48 -21
  87. ai_edge_torch/generative/layers/unet/blocks_2d.py +136 -77
  88. ai_edge_torch/generative/layers/unet/builder.py +7 -4
  89. ai_edge_torch/generative/layers/unet/model_config.py +17 -15
  90. ai_edge_torch/generative/quantize/example.py +7 -8
  91. ai_edge_torch/generative/quantize/quant_recipe.py +10 -7
  92. ai_edge_torch/generative/quantize/quant_recipe_utils.py +12 -1
  93. ai_edge_torch/generative/quantize/quant_recipes.py +8 -0
  94. ai_edge_torch/generative/test/test_kv_cache.py +120 -0
  95. ai_edge_torch/generative/test/{loader_test.py → test_loader.py} +9 -7
  96. ai_edge_torch/generative/test/test_model_conversion.py +124 -188
  97. ai_edge_torch/generative/test/test_model_conversion_large.py +251 -0
  98. ai_edge_torch/generative/test/test_quantize.py +76 -60
  99. ai_edge_torch/generative/test/utils.py +54 -0
  100. ai_edge_torch/generative/utilities/converter.py +82 -0
  101. ai_edge_torch/generative/utilities/loader.py +120 -57
  102. ai_edge_torch/generative/utilities/stable_diffusion_loader.py +165 -57
  103. ai_edge_torch/generative/utilities/t5_loader.py +110 -81
  104. ai_edge_torch/generative/utilities/verifier.py +247 -0
  105. ai_edge_torch/hlfb/__init__.py +1 -1
  106. ai_edge_torch/hlfb/mark_pattern/__init__.py +9 -7
  107. ai_edge_torch/hlfb/mark_pattern/passes.py +23 -3
  108. ai_edge_torch/hlfb/mark_pattern/pattern.py +39 -30
  109. ai_edge_torch/hlfb/test/test_mark_pattern.py +46 -20
  110. ai_edge_torch/hlfb/test/test_stablehlo_composite_builder.py +24 -11
  111. ai_edge_torch/lowertools/__init__.py +18 -0
  112. ai_edge_torch/lowertools/_shim.py +80 -0
  113. ai_edge_torch/lowertools/common_utils.py +142 -0
  114. ai_edge_torch/lowertools/odml_torch_utils.py +255 -0
  115. ai_edge_torch/lowertools/test_utils.py +60 -0
  116. ai_edge_torch/lowertools/torch_xla_utils.py +284 -0
  117. ai_edge_torch/{generative/quantize/ai_edge_quantizer_glue → lowertools}/translate_recipe.py +29 -14
  118. ai_edge_torch/model.py +53 -18
  119. ai_edge_torch/odml_torch/__init__.py +20 -0
  120. ai_edge_torch/odml_torch/_torch_future.py +61 -0
  121. ai_edge_torch/odml_torch/_torch_library.py +19 -0
  122. ai_edge_torch/odml_torch/composite/__init__.py +16 -0
  123. ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
  124. ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
  125. ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
  126. ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
  127. ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
  128. ai_edge_torch/odml_torch/export.py +357 -0
  129. ai_edge_torch/odml_torch/export_utils.py +168 -0
  130. ai_edge_torch/odml_torch/jax_bridge/__init__.py +15 -0
  131. ai_edge_torch/odml_torch/jax_bridge/_wrap.py +150 -0
  132. ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
  133. ai_edge_torch/odml_torch/lowerings/__init__.py +25 -0
  134. ai_edge_torch/odml_torch/lowerings/_basic.py +258 -0
  135. ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
  136. ai_edge_torch/odml_torch/lowerings/_convolution.py +241 -0
  137. ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +252 -0
  138. ai_edge_torch/odml_torch/lowerings/_layer_norm.py +78 -0
  139. ai_edge_torch/odml_torch/lowerings/context.py +42 -0
  140. ai_edge_torch/odml_torch/lowerings/registry.py +96 -0
  141. ai_edge_torch/odml_torch/lowerings/utils.py +185 -0
  142. ai_edge_torch/odml_torch/passes/__init__.py +38 -0
  143. ai_edge_torch/odml_torch/tf_integration.py +194 -0
  144. ai_edge_torch/quantize/pt2e_quantizer.py +52 -24
  145. ai_edge_torch/quantize/pt2e_quantizer_utils.py +43 -23
  146. ai_edge_torch/quantize/quant_config.py +13 -9
  147. ai_edge_torch/testing/model_coverage/model_coverage.py +29 -16
  148. ai_edge_torch/version.py +16 -0
  149. {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/METADATA +7 -3
  150. ai_edge_torch_nightly-0.3.0.dev20240926.dist-info/RECORD +177 -0
  151. {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/WHEEL +1 -1
  152. ai_edge_torch/convert/conversion.py +0 -117
  153. ai_edge_torch/convert/conversion_utils.py +0 -400
  154. ai_edge_torch/convert/fx_passes/__init__.py +0 -59
  155. ai_edge_torch/convert/fx_passes/_pass_base.py +0 -49
  156. ai_edge_torch/convert/fx_passes/canonicalize_pass.py +0 -37
  157. ai_edge_torch/convert/test/test_convert.py +0 -311
  158. ai_edge_torch/convert/test/test_convert_composites.py +0 -192
  159. ai_edge_torch/convert/test/test_convert_multisig.py +0 -139
  160. ai_edge_torch/generative/examples/gemma/convert_to_tflite.py +0 -66
  161. ai_edge_torch/generative/examples/phi2/convert_to_tflite.py +0 -64
  162. ai_edge_torch/generative/examples/test_models/toy_model_with_external_kv_cache.py +0 -161
  163. ai_edge_torch/generative/quantize/ai_edge_quantizer_glue/__init__.py +0 -0
  164. ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/RECORD +0 -121
  165. /ai_edge_torch/{convert → _convert}/__init__.py +0 -0
  166. /ai_edge_torch/{convert → _convert}/test/__init__.py +0 -0
  167. /ai_edge_torch/generative/examples/{phi2 → openelm}/__init__.py +0 -0
  168. {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/LICENSE +0 -0
  169. {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,252 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ import functools
16
+ import logging
17
+
18
+ from ai_edge_torch.odml_torch import jax_bridge
19
+ import torch
20
+ import torch_xla2.ops.jaten # Import to load torch_xla2 ops
21
+ import torch_xla2.ops.ops_registry # Import to load torch_xla2 ops
22
+
23
+ from . import registry
24
+
25
+
26
+ @functools.cache
27
+ def _log_usage(op):
28
+ logging.warning("Use jax lowering: %s", str(op))
29
+
30
+
31
+ def lower_by_jax(op, ir_input_names=None):
32
+ def inner(lowering):
33
+ bridged = jax_bridge.wrap(lowering, ir_input_names)
34
+
35
+ @registry.lower(op)
36
+ def _jax_lowering(lctx, *args, **kwargs):
37
+ _log_usage(op)
38
+ return bridged(lctx, *args, **kwargs)
39
+
40
+ return lowering
41
+
42
+ return inner
43
+
44
+
45
+ _TORCH_XLA2_IMPLS = {
46
+ key: val.func
47
+ for key, val in torch_xla2.ops.ops_registry.all_aten_ops.items()
48
+ if val.is_jax_function
49
+ }
50
+
51
+
52
+ def lower_by_torch_xla2(op):
53
+ return lower_by_jax(op)(_TORCH_XLA2_IMPLS[op])
54
+
55
+
56
+ lower_by_torch_xla2(torch.ops.aten._adaptive_avg_pool2d)
57
+ lower_by_torch_xla2(torch.ops.aten._adaptive_avg_pool3d)
58
+ lower_by_torch_xla2(torch.ops.aten._cdist_forward)
59
+ lower_by_torch_xla2(torch.ops.aten._local_scalar_dense)
60
+ lower_by_torch_xla2(torch.ops.aten._local_scalar_dense)
61
+ lower_by_torch_xla2(torch.ops.aten._log_softmax)
62
+ lower_by_torch_xla2(torch.ops.aten._native_batch_norm_legit)
63
+ lower_by_torch_xla2(torch.ops.aten._native_batch_norm_legit_no_training)
64
+ lower_by_torch_xla2(torch.ops.aten._pdist_forward)
65
+ lower_by_torch_xla2(torch.ops.aten._softmax)
66
+ lower_by_torch_xla2(torch.ops.aten._to_copy)
67
+ lower_by_torch_xla2(torch.ops.aten._unsafe_index)
68
+ lower_by_torch_xla2(torch.ops.aten._unsafe_view)
69
+ lower_by_torch_xla2(torch.ops.aten.abs)
70
+ lower_by_torch_xla2(torch.ops.aten.acos)
71
+ lower_by_torch_xla2(torch.ops.aten.acosh)
72
+ lower_by_torch_xla2(torch.ops.aten.add.Scalar)
73
+ lower_by_torch_xla2(torch.ops.aten.add.Tensor)
74
+ lower_by_torch_xla2(torch.ops.aten.addbmm.default)
75
+ lower_by_torch_xla2(torch.ops.aten.addmm)
76
+ lower_by_torch_xla2(torch.ops.aten.addmv)
77
+ lower_by_torch_xla2(torch.ops.aten.alias)
78
+ lower_by_torch_xla2(torch.ops.aten.allclose)
79
+ lower_by_torch_xla2(torch.ops.aten.amax)
80
+ lower_by_torch_xla2(torch.ops.aten.amin)
81
+ lower_by_torch_xla2(torch.ops.aten.any)
82
+ lower_by_torch_xla2(torch.ops.aten.arange.default)
83
+ lower_by_torch_xla2(torch.ops.aten.arange.start)
84
+ lower_by_torch_xla2(torch.ops.aten.arange.start_step)
85
+ lower_by_torch_xla2(torch.ops.aten.argmax)
86
+ lower_by_torch_xla2(torch.ops.aten.argmin)
87
+ lower_by_torch_xla2(torch.ops.aten.as_strided)
88
+ lower_by_torch_xla2(torch.ops.aten.as_strided_copy)
89
+ lower_by_torch_xla2(torch.ops.aten.asin)
90
+ lower_by_torch_xla2(torch.ops.aten.asinh)
91
+ lower_by_torch_xla2(torch.ops.aten.atan)
92
+ lower_by_torch_xla2(torch.ops.aten.atan2)
93
+ lower_by_torch_xla2(torch.ops.aten.atanh)
94
+ lower_by_torch_xla2(torch.ops.aten.avg_pool2d)
95
+ lower_by_torch_xla2(torch.ops.aten.avg_pool3d)
96
+ lower_by_torch_xla2(torch.ops.aten.bitwise_and)
97
+ lower_by_torch_xla2(torch.ops.aten.bitwise_not)
98
+ lower_by_torch_xla2(torch.ops.aten.bitwise_or)
99
+ lower_by_torch_xla2(torch.ops.aten.bitwise_xor)
100
+ lower_by_torch_xla2(torch.ops.aten.bmm)
101
+ lower_by_torch_xla2(torch.ops.aten.cat)
102
+ lower_by_torch_xla2(torch.ops.aten.ceil)
103
+ lower_by_torch_xla2(torch.ops.aten.clamp.Tensor)
104
+ lower_by_torch_xla2(torch.ops.aten.clamp.default)
105
+ lower_by_torch_xla2(torch.ops.aten.clone)
106
+ lower_by_torch_xla2(torch.ops.aten.clone.default)
107
+ lower_by_torch_xla2(torch.ops.aten.constant_pad_nd)
108
+ lower_by_torch_xla2(torch.ops.aten.cos)
109
+ lower_by_torch_xla2(torch.ops.aten.cosh)
110
+ lower_by_torch_xla2(torch.ops.aten.cumsum)
111
+ lower_by_torch_xla2(torch.ops.aten.detach)
112
+ lower_by_torch_xla2(torch.ops.aten.diagonal)
113
+ lower_by_torch_xla2(torch.ops.aten.div)
114
+ lower_by_torch_xla2(torch.ops.aten.dot)
115
+ lower_by_torch_xla2(torch.ops.aten.embedding)
116
+ lower_by_torch_xla2(torch.ops.aten.empty)
117
+ lower_by_torch_xla2(torch.ops.aten.eq)
118
+ lower_by_torch_xla2(torch.ops.aten.erf)
119
+ lower_by_torch_xla2(torch.ops.aten.exp)
120
+ lower_by_torch_xla2(torch.ops.aten.expand)
121
+ lower_by_torch_xla2(torch.ops.aten.expand_copy)
122
+ lower_by_torch_xla2(torch.ops.aten.expm1)
123
+ lower_by_torch_xla2(torch.ops.aten.fill)
124
+ lower_by_torch_xla2(torch.ops.aten.flip)
125
+ lower_by_torch_xla2(torch.ops.aten.floor)
126
+ lower_by_torch_xla2(torch.ops.aten.fmod)
127
+ lower_by_torch_xla2(torch.ops.aten.full)
128
+ lower_by_torch_xla2(torch.ops.aten.full_like)
129
+ lower_by_torch_xla2(torch.ops.aten.gather)
130
+ lower_by_torch_xla2(torch.ops.aten.ge)
131
+ lower_by_torch_xla2(torch.ops.aten.gelu)
132
+ lower_by_torch_xla2(torch.ops.aten.glu)
133
+ lower_by_torch_xla2(torch.ops.aten.glu.default)
134
+ lower_by_torch_xla2(torch.ops.aten.gt)
135
+ lower_by_torch_xla2(torch.ops.aten.hardtanh)
136
+ lower_by_torch_xla2(torch.ops.aten.index)
137
+ lower_by_torch_xla2(torch.ops.aten.index.Tensor)
138
+ lower_by_torch_xla2(torch.ops.aten.index_copy)
139
+ lower_by_torch_xla2(torch.ops.aten.index_put)
140
+ lower_by_torch_xla2(torch.ops.aten.index_select)
141
+ lower_by_torch_xla2(torch.ops.aten.isinf)
142
+ lower_by_torch_xla2(torch.ops.aten.isnan)
143
+ lower_by_torch_xla2(torch.ops.aten.le)
144
+ lower_by_torch_xla2(torch.ops.aten.leaky_relu)
145
+ lower_by_torch_xla2(torch.ops.aten.lift_fresh_copy)
146
+ lower_by_torch_xla2(torch.ops.aten.linalg_vector_norm)
147
+ lower_by_torch_xla2(torch.ops.aten.log)
148
+ lower_by_torch_xla2(torch.ops.aten.log10)
149
+ lower_by_torch_xla2(torch.ops.aten.log1p)
150
+ lower_by_torch_xla2(torch.ops.aten.log2)
151
+ lower_by_torch_xla2(torch.ops.aten.logical_and)
152
+ lower_by_torch_xla2(torch.ops.aten.logical_not)
153
+ lower_by_torch_xla2(torch.ops.aten.logical_or)
154
+ lower_by_torch_xla2(torch.ops.aten.logical_xor)
155
+ lower_by_torch_xla2(torch.ops.aten.lt)
156
+ lower_by_torch_xla2(torch.ops.aten.max)
157
+ lower_by_torch_xla2(torch.ops.aten.max_pool2d_with_indices)
158
+ lower_by_torch_xla2(torch.ops.aten.max_pool2d_with_indices_backward)
159
+ lower_by_torch_xla2(torch.ops.aten.max_pool2d_with_indices_backward)
160
+ lower_by_torch_xla2(torch.ops.aten.max_pool3d_with_indices)
161
+ lower_by_torch_xla2(torch.ops.aten.maximum)
162
+ lower_by_torch_xla2(torch.ops.aten.mean)
163
+ lower_by_torch_xla2(torch.ops.aten.min)
164
+ lower_by_torch_xla2(torch.ops.aten.minimum)
165
+ lower_by_torch_xla2(torch.ops.aten.mm)
166
+ lower_by_torch_xla2(torch.ops.aten.mul.Scalar)
167
+ lower_by_torch_xla2(torch.ops.aten.mul.Tensor)
168
+ lower_by_torch_xla2(torch.ops.aten.native_batch_norm)
169
+ lower_by_torch_xla2(torch.ops.aten.native_group_norm)
170
+ lower_by_torch_xla2(torch.ops.aten.native_layer_norm_backward)
171
+ lower_by_torch_xla2(torch.ops.aten.ne)
172
+ lower_by_torch_xla2(torch.ops.aten.neg)
173
+ lower_by_torch_xla2(torch.ops.aten.nonzero)
174
+ lower_by_torch_xla2(torch.ops.aten.outer)
175
+ lower_by_torch_xla2(torch.ops.aten.permute)
176
+ lower_by_torch_xla2(torch.ops.aten.permute_copy)
177
+ lower_by_torch_xla2(torch.ops.aten.pixel_shuffle)
178
+ lower_by_torch_xla2(torch.ops.aten.pow)
179
+ lower_by_torch_xla2(torch.ops.aten.prod)
180
+ lower_by_torch_xla2(torch.ops.aten.rand)
181
+ lower_by_torch_xla2(torch.ops.aten.randn)
182
+ lower_by_torch_xla2(torch.ops.aten.reciprocal)
183
+ lower_by_torch_xla2(torch.ops.aten.reflection_pad1d)
184
+ lower_by_torch_xla2(torch.ops.aten.relu)
185
+ lower_by_torch_xla2(torch.ops.aten.remainder)
186
+ lower_by_torch_xla2(torch.ops.aten.repeat)
187
+ lower_by_torch_xla2(torch.ops.aten.reshape)
188
+ lower_by_torch_xla2(torch.ops.aten.roll)
189
+ lower_by_torch_xla2(torch.ops.aten.round)
190
+ lower_by_torch_xla2(torch.ops.aten.rsqrt)
191
+ lower_by_torch_xla2(torch.ops.aten.scalar_tensor)
192
+ lower_by_torch_xla2(torch.ops.aten.scatter.src)
193
+ lower_by_torch_xla2(torch.ops.aten.scatter.value)
194
+ lower_by_torch_xla2(torch.ops.aten.scatter_add)
195
+ lower_by_torch_xla2(torch.ops.aten.scatter_reduce)
196
+ lower_by_torch_xla2(torch.ops.aten.select)
197
+ lower_by_torch_xla2(torch.ops.aten.select_copy)
198
+ lower_by_torch_xla2(torch.ops.aten.select_scatter)
199
+ lower_by_torch_xla2(torch.ops.aten.sigmoid)
200
+ lower_by_torch_xla2(torch.ops.aten.sign)
201
+ lower_by_torch_xla2(torch.ops.aten.silu)
202
+ lower_by_torch_xla2(torch.ops.aten.sin)
203
+ lower_by_torch_xla2(torch.ops.aten.sinh)
204
+ lower_by_torch_xla2(torch.ops.aten.slice)
205
+ lower_by_torch_xla2(torch.ops.aten.slice_copy)
206
+ lower_by_torch_xla2(torch.ops.aten.sort)
207
+ lower_by_torch_xla2(torch.ops.aten.split)
208
+ lower_by_torch_xla2(torch.ops.aten.split_copy)
209
+ lower_by_torch_xla2(torch.ops.aten.split_with_sizes)
210
+ lower_by_torch_xla2(torch.ops.aten.sqrt)
211
+ lower_by_torch_xla2(torch.ops.aten.squeeze)
212
+ lower_by_torch_xla2(torch.ops.aten.squeeze_copy)
213
+ lower_by_torch_xla2(torch.ops.aten.stack)
214
+ lower_by_torch_xla2(torch.ops.aten.sub.Scalar)
215
+ lower_by_torch_xla2(torch.ops.aten.sub.Tensor)
216
+ lower_by_torch_xla2(torch.ops.aten.sum)
217
+ lower_by_torch_xla2(torch.ops.aten.sym_size)
218
+ lower_by_torch_xla2(torch.ops.aten.t)
219
+ lower_by_torch_xla2(torch.ops.aten.tan)
220
+ lower_by_torch_xla2(torch.ops.aten.tanh)
221
+ lower_by_torch_xla2(torch.ops.aten.tensor_split.sections)
222
+ lower_by_torch_xla2(torch.ops.aten.tensor_split.sections)
223
+ lower_by_torch_xla2(torch.ops.aten.to.device)
224
+ lower_by_torch_xla2(torch.ops.aten.to.device)
225
+ lower_by_torch_xla2(torch.ops.aten.to.dtype)
226
+ lower_by_torch_xla2(torch.ops.aten.topk)
227
+ lower_by_torch_xla2(torch.ops.aten.transpose)
228
+ lower_by_torch_xla2(torch.ops.aten.transpose_copy)
229
+ lower_by_torch_xla2(torch.ops.aten.triu)
230
+ lower_by_torch_xla2(torch.ops.aten.true_divide)
231
+ lower_by_torch_xla2(torch.ops.aten.trunc)
232
+ lower_by_torch_xla2(torch.ops.aten.unbind)
233
+ lower_by_torch_xla2(torch.ops.aten.unbind_copy)
234
+ lower_by_torch_xla2(torch.ops.aten.unsqueeze)
235
+ lower_by_torch_xla2(torch.ops.aten.unsqueeze.default)
236
+ lower_by_torch_xla2(torch.ops.aten.unsqueeze_copy)
237
+ lower_by_torch_xla2(torch.ops.aten.var.correction)
238
+ lower_by_torch_xla2(torch.ops.aten.var_mean.correction)
239
+ lower_by_torch_xla2(torch.ops.aten.view)
240
+ lower_by_torch_xla2(torch.ops.aten.view_as_complex)
241
+ lower_by_torch_xla2(torch.ops.aten.view_as_real)
242
+ lower_by_torch_xla2(torch.ops.aten.view_copy)
243
+ lower_by_torch_xla2(torch.ops.aten.where.ScalarOther)
244
+ lower_by_torch_xla2(torch.ops.aten.where.ScalarSelf)
245
+ lower_by_torch_xla2(torch.ops.aten.where.self)
246
+ lower_by_torch_xla2(torch.ops.prims.broadcast_in_dim)
247
+ lower_by_torch_xla2(torch.ops.prims.var)
248
+
249
+
250
+ @lower_by_jax(torch.ops.aten.copy, ir_input_names=["src"])
251
+ def _aten_copy(self, src, **kwargs):
252
+ return _TORCH_XLA2_IMPLS[torch.ops.aten.copy](self, src)
@@ -0,0 +1,78 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Provides lowering for coreaten to stablehlo for LayerNorm."""
16
+
17
+ import math
18
+ from typing import Optional
19
+ from ai_edge_torch.odml_torch.lowerings import registry
20
+ from ai_edge_torch.odml_torch.lowerings import utils
21
+ from jax._src.lib.mlir import ir
22
+ from jax._src.lib.mlir.dialects import hlo as stablehlo
23
+ import torch
24
+
25
+
26
+ # native_layer_norm(Tensor input, SymInt[] normalized_shape, Tensor? weight,
27
+ # Tensor? bias, float eps) -> (Tensor, Tensor, Tensor)
28
+ @registry.lower(torch.ops.aten.native_layer_norm)
29
+ def _aten_native_layer_norm(
30
+ lctx,
31
+ data: ir.Value,
32
+ normalized_shape: list[int],
33
+ weight: Optional[ir.Value],
34
+ bias: Optional[ir.Value],
35
+ eps: float,
36
+ ):
37
+ data_type: ir.RankedTensorType = data.type
38
+ unnormalized_count = math.prod(data_type.shape) // math.prod(normalized_shape)
39
+ dest_shape = [
40
+ 1,
41
+ unnormalized_count,
42
+ math.prod(normalized_shape),
43
+ ]
44
+ dest_type = ir.RankedTensorType.get(dest_shape, data_type.element_type)
45
+
46
+ reshaped_data = stablehlo.reshape(dest_type, data)
47
+
48
+ one = utils.splat(1, data_type.element_type, [unnormalized_count])
49
+ zero = utils.splat(0, data_type.element_type, [unnormalized_count])
50
+ output, mean, var = stablehlo.batch_norm_training(
51
+ reshaped_data, one, zero, eps, 1
52
+ )
53
+ eps_splat = utils.splat(eps, var.type.element_type, var.type.shape)
54
+ rstd = stablehlo.rsqrt(stablehlo.add(var, eps_splat))
55
+
56
+ stats_shape = data_type.shape[: -1 * len(normalized_shape)] + [1] * len(
57
+ normalized_shape
58
+ )
59
+ stats_type = ir.RankedTensorType.get(stats_shape, data_type.element_type)
60
+ mean = stablehlo.reshape(stats_type, mean)
61
+ rstd = stablehlo.reshape(stats_type, rstd)
62
+
63
+ output = stablehlo.reshape(data_type, output)
64
+
65
+ data_rank = len(data_type.shape)
66
+ normalized_rank = len(normalized_shape)
67
+ if weight is not None:
68
+ weight = stablehlo.broadcast_in_dim(
69
+ data_type, weight, list(range(data_rank - normalized_rank, data_rank))
70
+ )
71
+ output = stablehlo.multiply(weight, output)
72
+ if bias is not None:
73
+ bias = stablehlo.broadcast_in_dim(
74
+ data_type, bias, list(range(data_rank - normalized_rank, data_rank))
75
+ )
76
+ output = stablehlo.add(bias, output)
77
+
78
+ return output, mean, rstd
@@ -0,0 +1,42 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Define context object for export and MLIR lowerings."""
16
+
17
+ import dataclasses
18
+ from jax._src.lib.mlir import ir
19
+ import torch
20
+
21
+
22
+ @dataclasses.dataclass
23
+ class LoweringContext:
24
+ """The context object used in export interpreter and MLIR lowerings."""
25
+
26
+ ir_context: ir.Context
27
+ ir_module: ir.Module
28
+ ir_location: ir.Location = None
29
+ node: torch.fx.Node = None
30
+
31
+ @property
32
+ def ctx(self):
33
+ """Shortcut for ir_context."""
34
+ return self.ir_context
35
+
36
+ @property
37
+ def loc(self):
38
+ """Shortcut for ir_location."""
39
+ return self.ir_location
40
+
41
+ def replace(self, **kwargs):
42
+ return dataclasses.replace(self, **kwargs)
@@ -0,0 +1,96 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Torch op decompositions and MLIR lowerings registry."""
16
+
17
+ from typing import Any, Callable
18
+
19
+ import torch
20
+
21
+ from . import context
22
+
23
+
24
+ class LoweringRegistry:
25
+ """Registry object for torch op decompositions and to-MLIR lowerings."""
26
+
27
+ def __init__(self):
28
+ self.registered_ops = {}
29
+ self.decompositions = {}
30
+
31
+ def lookup(self, op_or_name):
32
+ candidate = self._get_lowering(op_or_name)
33
+ if candidate is None:
34
+ if isinstance(op_or_name, torch._ops.OpOverloadPacket):
35
+ candidate = self._get_lowering(op_or_name.default)
36
+ if isinstance(op_or_name, torch._ops.OpOverload):
37
+ candidate = self._get_lowering(op_or_name.overloadpacket)
38
+ return candidate
39
+
40
+ def _get_lowering(self, op):
41
+ candidate = self.registered_ops.get(op)
42
+ return candidate
43
+
44
+ def register(self, op, lowering):
45
+ if isinstance(op, torch._ops.OpOverloadPacket):
46
+ ops = [getattr(op, overload) for overload in op.overloads()]
47
+ else:
48
+ ops = [op]
49
+
50
+ for op in ops:
51
+ self.registered_ops[op] = lowering
52
+
53
+
54
+ global_registry = LoweringRegistry()
55
+ global_registry.decompositions.update(torch._decomp.core_aten_decompositions())
56
+ global_registry.decompositions.update(
57
+ torch._decomp.get_decompositions([
58
+ torch.ops.aten.upsample_nearest2d,
59
+ torch.ops.aten._native_batch_norm_legit.no_stats,
60
+ torch.ops.aten._native_batch_norm_legit_functional,
61
+ torch.ops.aten._adaptive_avg_pool2d,
62
+ torch.ops.aten._adaptive_avg_pool3d,
63
+ torch.ops.aten.grid_sampler_2d,
64
+ torch.ops.aten.native_dropout,
65
+ torch.ops.aten.reflection_pad1d,
66
+ torch.ops.aten.reflection_pad2d,
67
+ torch.ops.aten.reflection_pad3d,
68
+ torch.ops.aten.replication_pad1d,
69
+ torch.ops.aten.replication_pad2d,
70
+ torch.ops.aten.replication_pad3d,
71
+ torch.ops.aten.addmm,
72
+ ])
73
+ )
74
+
75
+ torch._decomp.remove_decompositions(
76
+ global_registry.decompositions,
77
+ [
78
+ torch.ops.aten.roll,
79
+ ],
80
+ )
81
+
82
+
83
+ def lookup(op):
84
+ return global_registry.lookup(op)
85
+
86
+
87
+ def lower(op):
88
+ def inner(lowering: Callable[[context.LoweringContext, ...], Any]):
89
+ global_registry.register(op, lowering)
90
+ return lowering
91
+
92
+ return inner
93
+
94
+
95
+ def decompositions():
96
+ return global_registry.decompositions
@@ -0,0 +1,185 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Utilities for building MLIR lowerings."""
16
+
17
+ import numbers
18
+ from typing import Any
19
+ from typing import Optional
20
+
21
+ from jax._src.lib.mlir import ir
22
+ from jax._src.lib.mlir.dialects import hlo as stablehlo
23
+ import numpy as np
24
+
25
+
26
+ def splat(val, ty, shape=tuple(), *, loc: Optional[Any] = None):
27
+ if isinstance(ty, ir.IntegerType):
28
+ if ty.width == 1:
29
+ attr = ir.BoolAttr.get(bool(val))
30
+ else:
31
+ attr = ir.IntegerAttr.get(ty, int(val))
32
+ elif isinstance(ty, ir.FloatType):
33
+ attr = ir.FloatAttr.get(ty, val)
34
+ else:
35
+ raise ValueError("Unsupported type: %s" % str(ty))
36
+
37
+ return stablehlo.constant(
38
+ ir.DenseElementsAttr.get_splat(
39
+ ir.RankedTensorType.get(shape, ty),
40
+ attr,
41
+ ),
42
+ loc=loc,
43
+ )
44
+
45
+
46
+ def get_common_broadcast_shape(
47
+ shape_1: list[int], shape_2: list[int]
48
+ ) -> Optional[list[int]]:
49
+ if not shape_1 and not shape_2:
50
+ return None
51
+
52
+ shape_1 = shape_1 if shape_1 else [1]
53
+ shape_2 = shape_2 if shape_2 else [1]
54
+
55
+ length_diff = abs(len(shape_1) - len(shape_2))
56
+ if len(shape_1) < len(shape_2):
57
+ shape_1 = [1] * length_diff + shape_1
58
+ elif len(shape_1) > len(shape_2):
59
+ shape_2 = [1] * length_diff + shape_2
60
+
61
+ common_broadcast_shape = []
62
+ for idx in reversed(range(len(shape_1))):
63
+ dim_size1 = shape_1[idx]
64
+ dim_size2 = shape_2[idx]
65
+
66
+ if dim_size1 == dim_size2:
67
+ common_broadcast_shape.insert(0, dim_size1)
68
+ elif dim_size1 == 1 or dim_size2 == 1:
69
+ common_broadcast_shape.insert(0, max(dim_size1, dim_size2))
70
+ else:
71
+ return None
72
+
73
+ return common_broadcast_shape
74
+
75
+
76
+ def get_broadcast_dimensions(
77
+ shape_from: list[int], shape_to: list[int]
78
+ ) -> list[int]:
79
+ assert get_common_broadcast_shape(shape_from, shape_to) == shape_to
80
+
81
+ ret = []
82
+ for val in range(len(shape_to) - len(shape_from), len(shape_to)):
83
+ ret.append(val)
84
+
85
+ return ir.DenseI64ArrayAttr.get(np.asarray(ret, np.int64))
86
+
87
+
88
+ def broadcast_args_if_needed(
89
+ val_1: ir.Value, val_2: ir.Value
90
+ ) -> tuple[Optional[ir.Value], Optional[ir.Value]]:
91
+ broadcast_shape = get_common_broadcast_shape(
92
+ val_1.type.shape, val_2.type.shape
93
+ )
94
+ if broadcast_shape is None:
95
+ return None, None
96
+
97
+ new_val_1, new_val_2 = val_1, val_2
98
+
99
+ if val_1.type.shape != broadcast_shape:
100
+ new_val_1 = stablehlo.broadcast_in_dim(
101
+ result=ir.RankedTensorType.get(
102
+ broadcast_shape, val_1.type.element_type
103
+ ),
104
+ operand=val_1,
105
+ broadcast_dimensions=get_broadcast_dimensions(
106
+ val_1.type.shape, broadcast_shape
107
+ ),
108
+ )
109
+ if val_2.type.shape != broadcast_shape:
110
+ new_val_2 = stablehlo.broadcast_in_dim(
111
+ result=ir.RankedTensorType.get(
112
+ broadcast_shape, val_2.type.element_type
113
+ ),
114
+ operand=val_2,
115
+ broadcast_dimensions=get_broadcast_dimensions(
116
+ val_2.type.shape, broadcast_shape
117
+ ),
118
+ )
119
+ return new_val_1, new_val_2
120
+
121
+
122
+ def upcast_to_same_type(*vals: ir.Value):
123
+ if not vals:
124
+ return None
125
+ if len(vals) == 1:
126
+ return vals[0]
127
+
128
+ def get_priority(ty: ir.Type):
129
+ priorities = [
130
+ ir.IntegerType.get_signless(1),
131
+ ir.IntegerType.get_signless(16),
132
+ ir.IntegerType.get_signless(32),
133
+ ir.IntegerType.get_signless(64),
134
+ ir.F16Type,
135
+ ir.F32Type,
136
+ ir.F64Type,
137
+ ]
138
+ for i, tycls in enumerate(priorities):
139
+ if tycls.isinstance(ty):
140
+ return i
141
+ raise ValueError("Unsupported type: %s" % str(ty))
142
+
143
+ cast_tycls = type(max([v.type.element_type for v in vals], key=get_priority))
144
+ new_vals = []
145
+ for val in vals:
146
+ if not cast_tycls.isinstance(val.type.element_type):
147
+ val = stablehlo.convert(
148
+ ir.RankedTensorType.get(val.type.shape, cast_tycls.get()), val
149
+ )
150
+ new_vals.append(val)
151
+ return tuple(new_vals)
152
+
153
+
154
+ def minmax(ty: ir.Type) -> tuple[numbers.Number, numbers.Number]:
155
+ if isinstance(ty, ir.IntegerType):
156
+ if ty.is_unsigned:
157
+ return (0, 1 << ty.width)
158
+ else:
159
+ return (-(1 << (ty.width - 1)), (1 << (ty.width - 1)) - 1)
160
+ elif isinstance(ty, ir.F16Type):
161
+ return (np.finfo(np.float16).min, np.finfo(np.float16).max)
162
+ elif isinstance(ty, ir.F32Type):
163
+ return (np.finfo(np.float32).min, np.finfo(np.float32).max)
164
+ elif isinstance(ty, ir.F64Type):
165
+ return (np.finfo(np.float64).min, np.finfo(np.float64).max)
166
+ else:
167
+ raise ValueError("Unsupported type: %s" % ty)
168
+
169
+
170
+ def convert_int_to_float(t: ir.Value) -> ir.Value:
171
+ """Converts an input with type ir.IntegerType to an ir.FloatType of equivalent width."""
172
+ elty = t.type.element_type
173
+ if not isinstance(elty, ir.IntegerType):
174
+ raise ValueError(
175
+ "Expected input with integer type, received %s" % type(elty)
176
+ )
177
+
178
+ if elty.width == 32:
179
+ return stablehlo.convert(
180
+ ir.RankedTensorType.get(t.type.shape, ir.F32Type.get()), t
181
+ )
182
+ elif elty.width == 64:
183
+ return stablehlo.convert(
184
+ ir.RankedTensorType.get(t.type.shape, ir.F64Type.get()), t
185
+ )
@@ -0,0 +1,38 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ from jax._src.lib.mlir import ir
16
+ from jax._src.lib.mlir import passmanager
17
+
18
+
19
+ def run_pass(pipeline, module: ir.Module):
20
+ pm = passmanager.PassManager.parse(pipeline)
21
+ pm.run(module.operation)
22
+ return module
23
+
24
+
25
+ def canonicalize(module: ir.Module):
26
+ return run_pass("builtin.module(canonicalize)", module)
27
+
28
+
29
+ def cse(module: ir.Module):
30
+ return run_pass("builtin.module(cse)", module)
31
+
32
+
33
+ def inline(module: ir.Module):
34
+ return run_pass("builtin.module(inline)", module)
35
+
36
+
37
+ def strip_debuginfo(module: ir.Module):
38
+ return run_pass("builtin.module(strip-debuginfo)", module)