ai-edge-torch-nightly 0.2.0.dev20240714__py3-none-any.whl → 0.3.0.dev20240926__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_edge_torch/__init__.py +5 -4
- ai_edge_torch/_convert/conversion.py +112 -0
- ai_edge_torch/_convert/conversion_utils.py +64 -0
- ai_edge_torch/{convert → _convert}/converter.py +94 -48
- ai_edge_torch/_convert/fx_passes/__init__.py +22 -0
- ai_edge_torch/{convert → _convert}/fx_passes/build_aten_composite_pass.py +107 -44
- ai_edge_torch/{convert → _convert}/fx_passes/build_interpolate_composite_pass.py +23 -20
- ai_edge_torch/{convert → _convert}/fx_passes/inject_mlir_debuginfo_pass.py +5 -6
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/__init__.py +1 -1
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_check.py +39 -9
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_mark.py +2 -0
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +1 -0
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +17 -8
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +9 -8
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +31 -18
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +2 -2
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/pass_body.py +34 -24
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/utils.py +2 -0
- ai_edge_torch/_convert/signature.py +66 -0
- ai_edge_torch/_convert/test/test_convert.py +495 -0
- ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
- ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
- ai_edge_torch/{convert → _convert}/test/test_to_channel_last_io.py +5 -5
- ai_edge_torch/{convert → _convert}/to_channel_last_io.py +10 -3
- ai_edge_torch/config.py +27 -0
- ai_edge_torch/conftest.py +20 -0
- ai_edge_torch/debug/culprit.py +72 -40
- ai_edge_torch/debug/test/test_culprit.py +7 -5
- ai_edge_torch/debug/test/test_search_model.py +8 -7
- ai_edge_torch/debug/utils.py +14 -3
- ai_edge_torch/fx_pass_base.py +101 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/gemma/{gemma.py → gemma1.py} +69 -55
- ai_edge_torch/generative/examples/gemma/gemma2.py +267 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma2.py +57 -0
- ai_edge_torch/generative/examples/gemma/verify_util.py +143 -0
- ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/openelm/openelm.py +206 -0
- ai_edge_torch/generative/examples/openelm/verify.py +64 -0
- ai_edge_torch/generative/examples/phi/__init__.py +14 -0
- ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/phi/convert_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/{phi2 → phi}/phi2.py +70 -51
- ai_edge_torch/generative/examples/phi/phi3.py +286 -0
- ai_edge_torch/generative/examples/phi/verify.py +65 -0
- ai_edge_torch/generative/examples/phi/verify_phi3.py +70 -0
- ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
- ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/smollm/smollm.py +101 -0
- ai_edge_torch/generative/examples/smollm/verify.py +62 -0
- ai_edge_torch/generative/examples/stable_diffusion/attention.py +3 -1
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +83 -13
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +27 -14
- ai_edge_torch/generative/examples/stable_diffusion/decoder.py +74 -9
- ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +179 -37
- ai_edge_torch/generative/examples/stable_diffusion/encoder.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +83 -58
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +1 -0
- ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +4 -1
- ai_edge_torch/generative/examples/stable_diffusion/util.py +9 -3
- ai_edge_torch/generative/examples/t5/convert_to_tflite.py +28 -25
- ai_edge_torch/generative/examples/t5/t5.py +208 -159
- ai_edge_torch/generative/examples/t5/t5_attention.py +45 -30
- ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
- ai_edge_torch/generative/examples/test_models/toy_model.py +69 -41
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +50 -64
- ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +41 -39
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +67 -54
- ai_edge_torch/generative/examples/tiny_llama/verify.py +64 -0
- ai_edge_torch/generative/fx_passes/__init__.py +4 -5
- ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +10 -7
- ai_edge_torch/generative/layers/attention.py +141 -102
- ai_edge_torch/generative/layers/attention_utils.py +53 -12
- ai_edge_torch/generative/layers/builder.py +37 -7
- ai_edge_torch/generative/layers/feed_forward.py +39 -14
- ai_edge_torch/generative/layers/kv_cache.py +162 -50
- ai_edge_torch/generative/layers/model_config.py +84 -30
- ai_edge_torch/generative/layers/normalization.py +185 -7
- ai_edge_torch/generative/layers/rotary_position_embedding.py +6 -4
- ai_edge_torch/generative/layers/scaled_dot_product_attention.py +48 -21
- ai_edge_torch/generative/layers/unet/blocks_2d.py +136 -77
- ai_edge_torch/generative/layers/unet/builder.py +7 -4
- ai_edge_torch/generative/layers/unet/model_config.py +17 -15
- ai_edge_torch/generative/quantize/example.py +7 -8
- ai_edge_torch/generative/quantize/quant_recipe.py +10 -7
- ai_edge_torch/generative/quantize/quant_recipe_utils.py +12 -1
- ai_edge_torch/generative/quantize/quant_recipes.py +8 -0
- ai_edge_torch/generative/test/test_kv_cache.py +120 -0
- ai_edge_torch/generative/test/{loader_test.py → test_loader.py} +9 -7
- ai_edge_torch/generative/test/test_model_conversion.py +124 -188
- ai_edge_torch/generative/test/test_model_conversion_large.py +251 -0
- ai_edge_torch/generative/test/test_quantize.py +76 -60
- ai_edge_torch/generative/test/utils.py +54 -0
- ai_edge_torch/generative/utilities/converter.py +82 -0
- ai_edge_torch/generative/utilities/loader.py +120 -57
- ai_edge_torch/generative/utilities/stable_diffusion_loader.py +165 -57
- ai_edge_torch/generative/utilities/t5_loader.py +110 -81
- ai_edge_torch/generative/utilities/verifier.py +247 -0
- ai_edge_torch/hlfb/__init__.py +1 -1
- ai_edge_torch/hlfb/mark_pattern/__init__.py +9 -7
- ai_edge_torch/hlfb/mark_pattern/passes.py +23 -3
- ai_edge_torch/hlfb/mark_pattern/pattern.py +39 -30
- ai_edge_torch/hlfb/test/test_mark_pattern.py +46 -20
- ai_edge_torch/hlfb/test/test_stablehlo_composite_builder.py +24 -11
- ai_edge_torch/lowertools/__init__.py +18 -0
- ai_edge_torch/lowertools/_shim.py +80 -0
- ai_edge_torch/lowertools/common_utils.py +142 -0
- ai_edge_torch/lowertools/odml_torch_utils.py +255 -0
- ai_edge_torch/lowertools/test_utils.py +60 -0
- ai_edge_torch/lowertools/torch_xla_utils.py +284 -0
- ai_edge_torch/{generative/quantize/ai_edge_quantizer_glue → lowertools}/translate_recipe.py +29 -14
- ai_edge_torch/model.py +53 -18
- ai_edge_torch/odml_torch/__init__.py +20 -0
- ai_edge_torch/odml_torch/_torch_future.py +61 -0
- ai_edge_torch/odml_torch/_torch_library.py +19 -0
- ai_edge_torch/odml_torch/composite/__init__.py +16 -0
- ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
- ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
- ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
- ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
- ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
- ai_edge_torch/odml_torch/export.py +357 -0
- ai_edge_torch/odml_torch/export_utils.py +168 -0
- ai_edge_torch/odml_torch/jax_bridge/__init__.py +15 -0
- ai_edge_torch/odml_torch/jax_bridge/_wrap.py +150 -0
- ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
- ai_edge_torch/odml_torch/lowerings/__init__.py +25 -0
- ai_edge_torch/odml_torch/lowerings/_basic.py +258 -0
- ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
- ai_edge_torch/odml_torch/lowerings/_convolution.py +241 -0
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +252 -0
- ai_edge_torch/odml_torch/lowerings/_layer_norm.py +78 -0
- ai_edge_torch/odml_torch/lowerings/context.py +42 -0
- ai_edge_torch/odml_torch/lowerings/registry.py +96 -0
- ai_edge_torch/odml_torch/lowerings/utils.py +185 -0
- ai_edge_torch/odml_torch/passes/__init__.py +38 -0
- ai_edge_torch/odml_torch/tf_integration.py +194 -0
- ai_edge_torch/quantize/pt2e_quantizer.py +52 -24
- ai_edge_torch/quantize/pt2e_quantizer_utils.py +43 -23
- ai_edge_torch/quantize/quant_config.py +13 -9
- ai_edge_torch/testing/model_coverage/model_coverage.py +29 -16
- ai_edge_torch/version.py +16 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/METADATA +7 -3
- ai_edge_torch_nightly-0.3.0.dev20240926.dist-info/RECORD +177 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/WHEEL +1 -1
- ai_edge_torch/convert/conversion.py +0 -117
- ai_edge_torch/convert/conversion_utils.py +0 -400
- ai_edge_torch/convert/fx_passes/__init__.py +0 -59
- ai_edge_torch/convert/fx_passes/_pass_base.py +0 -49
- ai_edge_torch/convert/fx_passes/canonicalize_pass.py +0 -37
- ai_edge_torch/convert/test/test_convert.py +0 -311
- ai_edge_torch/convert/test/test_convert_composites.py +0 -192
- ai_edge_torch/convert/test/test_convert_multisig.py +0 -139
- ai_edge_torch/generative/examples/gemma/convert_to_tflite.py +0 -66
- ai_edge_torch/generative/examples/phi2/convert_to_tflite.py +0 -64
- ai_edge_torch/generative/examples/test_models/toy_model_with_external_kv_cache.py +0 -161
- ai_edge_torch/generative/quantize/ai_edge_quantizer_glue/__init__.py +0 -0
- ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/RECORD +0 -121
- /ai_edge_torch/{convert → _convert}/__init__.py +0 -0
- /ai_edge_torch/{convert → _convert}/test/__init__.py +0 -0
- /ai_edge_torch/generative/examples/{phi2 → openelm}/__init__.py +0 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/LICENSE +0 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,252 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
import functools
|
16
|
+
import logging
|
17
|
+
|
18
|
+
from ai_edge_torch.odml_torch import jax_bridge
|
19
|
+
import torch
|
20
|
+
import torch_xla2.ops.jaten # Import to load torch_xla2 ops
|
21
|
+
import torch_xla2.ops.ops_registry # Import to load torch_xla2 ops
|
22
|
+
|
23
|
+
from . import registry
|
24
|
+
|
25
|
+
|
26
|
+
@functools.cache
|
27
|
+
def _log_usage(op):
|
28
|
+
logging.warning("Use jax lowering: %s", str(op))
|
29
|
+
|
30
|
+
|
31
|
+
def lower_by_jax(op, ir_input_names=None):
|
32
|
+
def inner(lowering):
|
33
|
+
bridged = jax_bridge.wrap(lowering, ir_input_names)
|
34
|
+
|
35
|
+
@registry.lower(op)
|
36
|
+
def _jax_lowering(lctx, *args, **kwargs):
|
37
|
+
_log_usage(op)
|
38
|
+
return bridged(lctx, *args, **kwargs)
|
39
|
+
|
40
|
+
return lowering
|
41
|
+
|
42
|
+
return inner
|
43
|
+
|
44
|
+
|
45
|
+
_TORCH_XLA2_IMPLS = {
|
46
|
+
key: val.func
|
47
|
+
for key, val in torch_xla2.ops.ops_registry.all_aten_ops.items()
|
48
|
+
if val.is_jax_function
|
49
|
+
}
|
50
|
+
|
51
|
+
|
52
|
+
def lower_by_torch_xla2(op):
|
53
|
+
return lower_by_jax(op)(_TORCH_XLA2_IMPLS[op])
|
54
|
+
|
55
|
+
|
56
|
+
lower_by_torch_xla2(torch.ops.aten._adaptive_avg_pool2d)
|
57
|
+
lower_by_torch_xla2(torch.ops.aten._adaptive_avg_pool3d)
|
58
|
+
lower_by_torch_xla2(torch.ops.aten._cdist_forward)
|
59
|
+
lower_by_torch_xla2(torch.ops.aten._local_scalar_dense)
|
60
|
+
lower_by_torch_xla2(torch.ops.aten._local_scalar_dense)
|
61
|
+
lower_by_torch_xla2(torch.ops.aten._log_softmax)
|
62
|
+
lower_by_torch_xla2(torch.ops.aten._native_batch_norm_legit)
|
63
|
+
lower_by_torch_xla2(torch.ops.aten._native_batch_norm_legit_no_training)
|
64
|
+
lower_by_torch_xla2(torch.ops.aten._pdist_forward)
|
65
|
+
lower_by_torch_xla2(torch.ops.aten._softmax)
|
66
|
+
lower_by_torch_xla2(torch.ops.aten._to_copy)
|
67
|
+
lower_by_torch_xla2(torch.ops.aten._unsafe_index)
|
68
|
+
lower_by_torch_xla2(torch.ops.aten._unsafe_view)
|
69
|
+
lower_by_torch_xla2(torch.ops.aten.abs)
|
70
|
+
lower_by_torch_xla2(torch.ops.aten.acos)
|
71
|
+
lower_by_torch_xla2(torch.ops.aten.acosh)
|
72
|
+
lower_by_torch_xla2(torch.ops.aten.add.Scalar)
|
73
|
+
lower_by_torch_xla2(torch.ops.aten.add.Tensor)
|
74
|
+
lower_by_torch_xla2(torch.ops.aten.addbmm.default)
|
75
|
+
lower_by_torch_xla2(torch.ops.aten.addmm)
|
76
|
+
lower_by_torch_xla2(torch.ops.aten.addmv)
|
77
|
+
lower_by_torch_xla2(torch.ops.aten.alias)
|
78
|
+
lower_by_torch_xla2(torch.ops.aten.allclose)
|
79
|
+
lower_by_torch_xla2(torch.ops.aten.amax)
|
80
|
+
lower_by_torch_xla2(torch.ops.aten.amin)
|
81
|
+
lower_by_torch_xla2(torch.ops.aten.any)
|
82
|
+
lower_by_torch_xla2(torch.ops.aten.arange.default)
|
83
|
+
lower_by_torch_xla2(torch.ops.aten.arange.start)
|
84
|
+
lower_by_torch_xla2(torch.ops.aten.arange.start_step)
|
85
|
+
lower_by_torch_xla2(torch.ops.aten.argmax)
|
86
|
+
lower_by_torch_xla2(torch.ops.aten.argmin)
|
87
|
+
lower_by_torch_xla2(torch.ops.aten.as_strided)
|
88
|
+
lower_by_torch_xla2(torch.ops.aten.as_strided_copy)
|
89
|
+
lower_by_torch_xla2(torch.ops.aten.asin)
|
90
|
+
lower_by_torch_xla2(torch.ops.aten.asinh)
|
91
|
+
lower_by_torch_xla2(torch.ops.aten.atan)
|
92
|
+
lower_by_torch_xla2(torch.ops.aten.atan2)
|
93
|
+
lower_by_torch_xla2(torch.ops.aten.atanh)
|
94
|
+
lower_by_torch_xla2(torch.ops.aten.avg_pool2d)
|
95
|
+
lower_by_torch_xla2(torch.ops.aten.avg_pool3d)
|
96
|
+
lower_by_torch_xla2(torch.ops.aten.bitwise_and)
|
97
|
+
lower_by_torch_xla2(torch.ops.aten.bitwise_not)
|
98
|
+
lower_by_torch_xla2(torch.ops.aten.bitwise_or)
|
99
|
+
lower_by_torch_xla2(torch.ops.aten.bitwise_xor)
|
100
|
+
lower_by_torch_xla2(torch.ops.aten.bmm)
|
101
|
+
lower_by_torch_xla2(torch.ops.aten.cat)
|
102
|
+
lower_by_torch_xla2(torch.ops.aten.ceil)
|
103
|
+
lower_by_torch_xla2(torch.ops.aten.clamp.Tensor)
|
104
|
+
lower_by_torch_xla2(torch.ops.aten.clamp.default)
|
105
|
+
lower_by_torch_xla2(torch.ops.aten.clone)
|
106
|
+
lower_by_torch_xla2(torch.ops.aten.clone.default)
|
107
|
+
lower_by_torch_xla2(torch.ops.aten.constant_pad_nd)
|
108
|
+
lower_by_torch_xla2(torch.ops.aten.cos)
|
109
|
+
lower_by_torch_xla2(torch.ops.aten.cosh)
|
110
|
+
lower_by_torch_xla2(torch.ops.aten.cumsum)
|
111
|
+
lower_by_torch_xla2(torch.ops.aten.detach)
|
112
|
+
lower_by_torch_xla2(torch.ops.aten.diagonal)
|
113
|
+
lower_by_torch_xla2(torch.ops.aten.div)
|
114
|
+
lower_by_torch_xla2(torch.ops.aten.dot)
|
115
|
+
lower_by_torch_xla2(torch.ops.aten.embedding)
|
116
|
+
lower_by_torch_xla2(torch.ops.aten.empty)
|
117
|
+
lower_by_torch_xla2(torch.ops.aten.eq)
|
118
|
+
lower_by_torch_xla2(torch.ops.aten.erf)
|
119
|
+
lower_by_torch_xla2(torch.ops.aten.exp)
|
120
|
+
lower_by_torch_xla2(torch.ops.aten.expand)
|
121
|
+
lower_by_torch_xla2(torch.ops.aten.expand_copy)
|
122
|
+
lower_by_torch_xla2(torch.ops.aten.expm1)
|
123
|
+
lower_by_torch_xla2(torch.ops.aten.fill)
|
124
|
+
lower_by_torch_xla2(torch.ops.aten.flip)
|
125
|
+
lower_by_torch_xla2(torch.ops.aten.floor)
|
126
|
+
lower_by_torch_xla2(torch.ops.aten.fmod)
|
127
|
+
lower_by_torch_xla2(torch.ops.aten.full)
|
128
|
+
lower_by_torch_xla2(torch.ops.aten.full_like)
|
129
|
+
lower_by_torch_xla2(torch.ops.aten.gather)
|
130
|
+
lower_by_torch_xla2(torch.ops.aten.ge)
|
131
|
+
lower_by_torch_xla2(torch.ops.aten.gelu)
|
132
|
+
lower_by_torch_xla2(torch.ops.aten.glu)
|
133
|
+
lower_by_torch_xla2(torch.ops.aten.glu.default)
|
134
|
+
lower_by_torch_xla2(torch.ops.aten.gt)
|
135
|
+
lower_by_torch_xla2(torch.ops.aten.hardtanh)
|
136
|
+
lower_by_torch_xla2(torch.ops.aten.index)
|
137
|
+
lower_by_torch_xla2(torch.ops.aten.index.Tensor)
|
138
|
+
lower_by_torch_xla2(torch.ops.aten.index_copy)
|
139
|
+
lower_by_torch_xla2(torch.ops.aten.index_put)
|
140
|
+
lower_by_torch_xla2(torch.ops.aten.index_select)
|
141
|
+
lower_by_torch_xla2(torch.ops.aten.isinf)
|
142
|
+
lower_by_torch_xla2(torch.ops.aten.isnan)
|
143
|
+
lower_by_torch_xla2(torch.ops.aten.le)
|
144
|
+
lower_by_torch_xla2(torch.ops.aten.leaky_relu)
|
145
|
+
lower_by_torch_xla2(torch.ops.aten.lift_fresh_copy)
|
146
|
+
lower_by_torch_xla2(torch.ops.aten.linalg_vector_norm)
|
147
|
+
lower_by_torch_xla2(torch.ops.aten.log)
|
148
|
+
lower_by_torch_xla2(torch.ops.aten.log10)
|
149
|
+
lower_by_torch_xla2(torch.ops.aten.log1p)
|
150
|
+
lower_by_torch_xla2(torch.ops.aten.log2)
|
151
|
+
lower_by_torch_xla2(torch.ops.aten.logical_and)
|
152
|
+
lower_by_torch_xla2(torch.ops.aten.logical_not)
|
153
|
+
lower_by_torch_xla2(torch.ops.aten.logical_or)
|
154
|
+
lower_by_torch_xla2(torch.ops.aten.logical_xor)
|
155
|
+
lower_by_torch_xla2(torch.ops.aten.lt)
|
156
|
+
lower_by_torch_xla2(torch.ops.aten.max)
|
157
|
+
lower_by_torch_xla2(torch.ops.aten.max_pool2d_with_indices)
|
158
|
+
lower_by_torch_xla2(torch.ops.aten.max_pool2d_with_indices_backward)
|
159
|
+
lower_by_torch_xla2(torch.ops.aten.max_pool2d_with_indices_backward)
|
160
|
+
lower_by_torch_xla2(torch.ops.aten.max_pool3d_with_indices)
|
161
|
+
lower_by_torch_xla2(torch.ops.aten.maximum)
|
162
|
+
lower_by_torch_xla2(torch.ops.aten.mean)
|
163
|
+
lower_by_torch_xla2(torch.ops.aten.min)
|
164
|
+
lower_by_torch_xla2(torch.ops.aten.minimum)
|
165
|
+
lower_by_torch_xla2(torch.ops.aten.mm)
|
166
|
+
lower_by_torch_xla2(torch.ops.aten.mul.Scalar)
|
167
|
+
lower_by_torch_xla2(torch.ops.aten.mul.Tensor)
|
168
|
+
lower_by_torch_xla2(torch.ops.aten.native_batch_norm)
|
169
|
+
lower_by_torch_xla2(torch.ops.aten.native_group_norm)
|
170
|
+
lower_by_torch_xla2(torch.ops.aten.native_layer_norm_backward)
|
171
|
+
lower_by_torch_xla2(torch.ops.aten.ne)
|
172
|
+
lower_by_torch_xla2(torch.ops.aten.neg)
|
173
|
+
lower_by_torch_xla2(torch.ops.aten.nonzero)
|
174
|
+
lower_by_torch_xla2(torch.ops.aten.outer)
|
175
|
+
lower_by_torch_xla2(torch.ops.aten.permute)
|
176
|
+
lower_by_torch_xla2(torch.ops.aten.permute_copy)
|
177
|
+
lower_by_torch_xla2(torch.ops.aten.pixel_shuffle)
|
178
|
+
lower_by_torch_xla2(torch.ops.aten.pow)
|
179
|
+
lower_by_torch_xla2(torch.ops.aten.prod)
|
180
|
+
lower_by_torch_xla2(torch.ops.aten.rand)
|
181
|
+
lower_by_torch_xla2(torch.ops.aten.randn)
|
182
|
+
lower_by_torch_xla2(torch.ops.aten.reciprocal)
|
183
|
+
lower_by_torch_xla2(torch.ops.aten.reflection_pad1d)
|
184
|
+
lower_by_torch_xla2(torch.ops.aten.relu)
|
185
|
+
lower_by_torch_xla2(torch.ops.aten.remainder)
|
186
|
+
lower_by_torch_xla2(torch.ops.aten.repeat)
|
187
|
+
lower_by_torch_xla2(torch.ops.aten.reshape)
|
188
|
+
lower_by_torch_xla2(torch.ops.aten.roll)
|
189
|
+
lower_by_torch_xla2(torch.ops.aten.round)
|
190
|
+
lower_by_torch_xla2(torch.ops.aten.rsqrt)
|
191
|
+
lower_by_torch_xla2(torch.ops.aten.scalar_tensor)
|
192
|
+
lower_by_torch_xla2(torch.ops.aten.scatter.src)
|
193
|
+
lower_by_torch_xla2(torch.ops.aten.scatter.value)
|
194
|
+
lower_by_torch_xla2(torch.ops.aten.scatter_add)
|
195
|
+
lower_by_torch_xla2(torch.ops.aten.scatter_reduce)
|
196
|
+
lower_by_torch_xla2(torch.ops.aten.select)
|
197
|
+
lower_by_torch_xla2(torch.ops.aten.select_copy)
|
198
|
+
lower_by_torch_xla2(torch.ops.aten.select_scatter)
|
199
|
+
lower_by_torch_xla2(torch.ops.aten.sigmoid)
|
200
|
+
lower_by_torch_xla2(torch.ops.aten.sign)
|
201
|
+
lower_by_torch_xla2(torch.ops.aten.silu)
|
202
|
+
lower_by_torch_xla2(torch.ops.aten.sin)
|
203
|
+
lower_by_torch_xla2(torch.ops.aten.sinh)
|
204
|
+
lower_by_torch_xla2(torch.ops.aten.slice)
|
205
|
+
lower_by_torch_xla2(torch.ops.aten.slice_copy)
|
206
|
+
lower_by_torch_xla2(torch.ops.aten.sort)
|
207
|
+
lower_by_torch_xla2(torch.ops.aten.split)
|
208
|
+
lower_by_torch_xla2(torch.ops.aten.split_copy)
|
209
|
+
lower_by_torch_xla2(torch.ops.aten.split_with_sizes)
|
210
|
+
lower_by_torch_xla2(torch.ops.aten.sqrt)
|
211
|
+
lower_by_torch_xla2(torch.ops.aten.squeeze)
|
212
|
+
lower_by_torch_xla2(torch.ops.aten.squeeze_copy)
|
213
|
+
lower_by_torch_xla2(torch.ops.aten.stack)
|
214
|
+
lower_by_torch_xla2(torch.ops.aten.sub.Scalar)
|
215
|
+
lower_by_torch_xla2(torch.ops.aten.sub.Tensor)
|
216
|
+
lower_by_torch_xla2(torch.ops.aten.sum)
|
217
|
+
lower_by_torch_xla2(torch.ops.aten.sym_size)
|
218
|
+
lower_by_torch_xla2(torch.ops.aten.t)
|
219
|
+
lower_by_torch_xla2(torch.ops.aten.tan)
|
220
|
+
lower_by_torch_xla2(torch.ops.aten.tanh)
|
221
|
+
lower_by_torch_xla2(torch.ops.aten.tensor_split.sections)
|
222
|
+
lower_by_torch_xla2(torch.ops.aten.tensor_split.sections)
|
223
|
+
lower_by_torch_xla2(torch.ops.aten.to.device)
|
224
|
+
lower_by_torch_xla2(torch.ops.aten.to.device)
|
225
|
+
lower_by_torch_xla2(torch.ops.aten.to.dtype)
|
226
|
+
lower_by_torch_xla2(torch.ops.aten.topk)
|
227
|
+
lower_by_torch_xla2(torch.ops.aten.transpose)
|
228
|
+
lower_by_torch_xla2(torch.ops.aten.transpose_copy)
|
229
|
+
lower_by_torch_xla2(torch.ops.aten.triu)
|
230
|
+
lower_by_torch_xla2(torch.ops.aten.true_divide)
|
231
|
+
lower_by_torch_xla2(torch.ops.aten.trunc)
|
232
|
+
lower_by_torch_xla2(torch.ops.aten.unbind)
|
233
|
+
lower_by_torch_xla2(torch.ops.aten.unbind_copy)
|
234
|
+
lower_by_torch_xla2(torch.ops.aten.unsqueeze)
|
235
|
+
lower_by_torch_xla2(torch.ops.aten.unsqueeze.default)
|
236
|
+
lower_by_torch_xla2(torch.ops.aten.unsqueeze_copy)
|
237
|
+
lower_by_torch_xla2(torch.ops.aten.var.correction)
|
238
|
+
lower_by_torch_xla2(torch.ops.aten.var_mean.correction)
|
239
|
+
lower_by_torch_xla2(torch.ops.aten.view)
|
240
|
+
lower_by_torch_xla2(torch.ops.aten.view_as_complex)
|
241
|
+
lower_by_torch_xla2(torch.ops.aten.view_as_real)
|
242
|
+
lower_by_torch_xla2(torch.ops.aten.view_copy)
|
243
|
+
lower_by_torch_xla2(torch.ops.aten.where.ScalarOther)
|
244
|
+
lower_by_torch_xla2(torch.ops.aten.where.ScalarSelf)
|
245
|
+
lower_by_torch_xla2(torch.ops.aten.where.self)
|
246
|
+
lower_by_torch_xla2(torch.ops.prims.broadcast_in_dim)
|
247
|
+
lower_by_torch_xla2(torch.ops.prims.var)
|
248
|
+
|
249
|
+
|
250
|
+
@lower_by_jax(torch.ops.aten.copy, ir_input_names=["src"])
|
251
|
+
def _aten_copy(self, src, **kwargs):
|
252
|
+
return _TORCH_XLA2_IMPLS[torch.ops.aten.copy](self, src)
|
@@ -0,0 +1,78 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
"""Provides lowering for coreaten to stablehlo for LayerNorm."""
|
16
|
+
|
17
|
+
import math
|
18
|
+
from typing import Optional
|
19
|
+
from ai_edge_torch.odml_torch.lowerings import registry
|
20
|
+
from ai_edge_torch.odml_torch.lowerings import utils
|
21
|
+
from jax._src.lib.mlir import ir
|
22
|
+
from jax._src.lib.mlir.dialects import hlo as stablehlo
|
23
|
+
import torch
|
24
|
+
|
25
|
+
|
26
|
+
# native_layer_norm(Tensor input, SymInt[] normalized_shape, Tensor? weight,
|
27
|
+
# Tensor? bias, float eps) -> (Tensor, Tensor, Tensor)
|
28
|
+
@registry.lower(torch.ops.aten.native_layer_norm)
|
29
|
+
def _aten_native_layer_norm(
|
30
|
+
lctx,
|
31
|
+
data: ir.Value,
|
32
|
+
normalized_shape: list[int],
|
33
|
+
weight: Optional[ir.Value],
|
34
|
+
bias: Optional[ir.Value],
|
35
|
+
eps: float,
|
36
|
+
):
|
37
|
+
data_type: ir.RankedTensorType = data.type
|
38
|
+
unnormalized_count = math.prod(data_type.shape) // math.prod(normalized_shape)
|
39
|
+
dest_shape = [
|
40
|
+
1,
|
41
|
+
unnormalized_count,
|
42
|
+
math.prod(normalized_shape),
|
43
|
+
]
|
44
|
+
dest_type = ir.RankedTensorType.get(dest_shape, data_type.element_type)
|
45
|
+
|
46
|
+
reshaped_data = stablehlo.reshape(dest_type, data)
|
47
|
+
|
48
|
+
one = utils.splat(1, data_type.element_type, [unnormalized_count])
|
49
|
+
zero = utils.splat(0, data_type.element_type, [unnormalized_count])
|
50
|
+
output, mean, var = stablehlo.batch_norm_training(
|
51
|
+
reshaped_data, one, zero, eps, 1
|
52
|
+
)
|
53
|
+
eps_splat = utils.splat(eps, var.type.element_type, var.type.shape)
|
54
|
+
rstd = stablehlo.rsqrt(stablehlo.add(var, eps_splat))
|
55
|
+
|
56
|
+
stats_shape = data_type.shape[: -1 * len(normalized_shape)] + [1] * len(
|
57
|
+
normalized_shape
|
58
|
+
)
|
59
|
+
stats_type = ir.RankedTensorType.get(stats_shape, data_type.element_type)
|
60
|
+
mean = stablehlo.reshape(stats_type, mean)
|
61
|
+
rstd = stablehlo.reshape(stats_type, rstd)
|
62
|
+
|
63
|
+
output = stablehlo.reshape(data_type, output)
|
64
|
+
|
65
|
+
data_rank = len(data_type.shape)
|
66
|
+
normalized_rank = len(normalized_shape)
|
67
|
+
if weight is not None:
|
68
|
+
weight = stablehlo.broadcast_in_dim(
|
69
|
+
data_type, weight, list(range(data_rank - normalized_rank, data_rank))
|
70
|
+
)
|
71
|
+
output = stablehlo.multiply(weight, output)
|
72
|
+
if bias is not None:
|
73
|
+
bias = stablehlo.broadcast_in_dim(
|
74
|
+
data_type, bias, list(range(data_rank - normalized_rank, data_rank))
|
75
|
+
)
|
76
|
+
output = stablehlo.add(bias, output)
|
77
|
+
|
78
|
+
return output, mean, rstd
|
@@ -0,0 +1,42 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
"""Define context object for export and MLIR lowerings."""
|
16
|
+
|
17
|
+
import dataclasses
|
18
|
+
from jax._src.lib.mlir import ir
|
19
|
+
import torch
|
20
|
+
|
21
|
+
|
22
|
+
@dataclasses.dataclass
|
23
|
+
class LoweringContext:
|
24
|
+
"""The context object used in export interpreter and MLIR lowerings."""
|
25
|
+
|
26
|
+
ir_context: ir.Context
|
27
|
+
ir_module: ir.Module
|
28
|
+
ir_location: ir.Location = None
|
29
|
+
node: torch.fx.Node = None
|
30
|
+
|
31
|
+
@property
|
32
|
+
def ctx(self):
|
33
|
+
"""Shortcut for ir_context."""
|
34
|
+
return self.ir_context
|
35
|
+
|
36
|
+
@property
|
37
|
+
def loc(self):
|
38
|
+
"""Shortcut for ir_location."""
|
39
|
+
return self.ir_location
|
40
|
+
|
41
|
+
def replace(self, **kwargs):
|
42
|
+
return dataclasses.replace(self, **kwargs)
|
@@ -0,0 +1,96 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
"""Torch op decompositions and MLIR lowerings registry."""
|
16
|
+
|
17
|
+
from typing import Any, Callable
|
18
|
+
|
19
|
+
import torch
|
20
|
+
|
21
|
+
from . import context
|
22
|
+
|
23
|
+
|
24
|
+
class LoweringRegistry:
|
25
|
+
"""Registry object for torch op decompositions and to-MLIR lowerings."""
|
26
|
+
|
27
|
+
def __init__(self):
|
28
|
+
self.registered_ops = {}
|
29
|
+
self.decompositions = {}
|
30
|
+
|
31
|
+
def lookup(self, op_or_name):
|
32
|
+
candidate = self._get_lowering(op_or_name)
|
33
|
+
if candidate is None:
|
34
|
+
if isinstance(op_or_name, torch._ops.OpOverloadPacket):
|
35
|
+
candidate = self._get_lowering(op_or_name.default)
|
36
|
+
if isinstance(op_or_name, torch._ops.OpOverload):
|
37
|
+
candidate = self._get_lowering(op_or_name.overloadpacket)
|
38
|
+
return candidate
|
39
|
+
|
40
|
+
def _get_lowering(self, op):
|
41
|
+
candidate = self.registered_ops.get(op)
|
42
|
+
return candidate
|
43
|
+
|
44
|
+
def register(self, op, lowering):
|
45
|
+
if isinstance(op, torch._ops.OpOverloadPacket):
|
46
|
+
ops = [getattr(op, overload) for overload in op.overloads()]
|
47
|
+
else:
|
48
|
+
ops = [op]
|
49
|
+
|
50
|
+
for op in ops:
|
51
|
+
self.registered_ops[op] = lowering
|
52
|
+
|
53
|
+
|
54
|
+
global_registry = LoweringRegistry()
|
55
|
+
global_registry.decompositions.update(torch._decomp.core_aten_decompositions())
|
56
|
+
global_registry.decompositions.update(
|
57
|
+
torch._decomp.get_decompositions([
|
58
|
+
torch.ops.aten.upsample_nearest2d,
|
59
|
+
torch.ops.aten._native_batch_norm_legit.no_stats,
|
60
|
+
torch.ops.aten._native_batch_norm_legit_functional,
|
61
|
+
torch.ops.aten._adaptive_avg_pool2d,
|
62
|
+
torch.ops.aten._adaptive_avg_pool3d,
|
63
|
+
torch.ops.aten.grid_sampler_2d,
|
64
|
+
torch.ops.aten.native_dropout,
|
65
|
+
torch.ops.aten.reflection_pad1d,
|
66
|
+
torch.ops.aten.reflection_pad2d,
|
67
|
+
torch.ops.aten.reflection_pad3d,
|
68
|
+
torch.ops.aten.replication_pad1d,
|
69
|
+
torch.ops.aten.replication_pad2d,
|
70
|
+
torch.ops.aten.replication_pad3d,
|
71
|
+
torch.ops.aten.addmm,
|
72
|
+
])
|
73
|
+
)
|
74
|
+
|
75
|
+
torch._decomp.remove_decompositions(
|
76
|
+
global_registry.decompositions,
|
77
|
+
[
|
78
|
+
torch.ops.aten.roll,
|
79
|
+
],
|
80
|
+
)
|
81
|
+
|
82
|
+
|
83
|
+
def lookup(op):
|
84
|
+
return global_registry.lookup(op)
|
85
|
+
|
86
|
+
|
87
|
+
def lower(op):
|
88
|
+
def inner(lowering: Callable[[context.LoweringContext, ...], Any]):
|
89
|
+
global_registry.register(op, lowering)
|
90
|
+
return lowering
|
91
|
+
|
92
|
+
return inner
|
93
|
+
|
94
|
+
|
95
|
+
def decompositions():
|
96
|
+
return global_registry.decompositions
|
@@ -0,0 +1,185 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
"""Utilities for building MLIR lowerings."""
|
16
|
+
|
17
|
+
import numbers
|
18
|
+
from typing import Any
|
19
|
+
from typing import Optional
|
20
|
+
|
21
|
+
from jax._src.lib.mlir import ir
|
22
|
+
from jax._src.lib.mlir.dialects import hlo as stablehlo
|
23
|
+
import numpy as np
|
24
|
+
|
25
|
+
|
26
|
+
def splat(val, ty, shape=tuple(), *, loc: Optional[Any] = None):
|
27
|
+
if isinstance(ty, ir.IntegerType):
|
28
|
+
if ty.width == 1:
|
29
|
+
attr = ir.BoolAttr.get(bool(val))
|
30
|
+
else:
|
31
|
+
attr = ir.IntegerAttr.get(ty, int(val))
|
32
|
+
elif isinstance(ty, ir.FloatType):
|
33
|
+
attr = ir.FloatAttr.get(ty, val)
|
34
|
+
else:
|
35
|
+
raise ValueError("Unsupported type: %s" % str(ty))
|
36
|
+
|
37
|
+
return stablehlo.constant(
|
38
|
+
ir.DenseElementsAttr.get_splat(
|
39
|
+
ir.RankedTensorType.get(shape, ty),
|
40
|
+
attr,
|
41
|
+
),
|
42
|
+
loc=loc,
|
43
|
+
)
|
44
|
+
|
45
|
+
|
46
|
+
def get_common_broadcast_shape(
|
47
|
+
shape_1: list[int], shape_2: list[int]
|
48
|
+
) -> Optional[list[int]]:
|
49
|
+
if not shape_1 and not shape_2:
|
50
|
+
return None
|
51
|
+
|
52
|
+
shape_1 = shape_1 if shape_1 else [1]
|
53
|
+
shape_2 = shape_2 if shape_2 else [1]
|
54
|
+
|
55
|
+
length_diff = abs(len(shape_1) - len(shape_2))
|
56
|
+
if len(shape_1) < len(shape_2):
|
57
|
+
shape_1 = [1] * length_diff + shape_1
|
58
|
+
elif len(shape_1) > len(shape_2):
|
59
|
+
shape_2 = [1] * length_diff + shape_2
|
60
|
+
|
61
|
+
common_broadcast_shape = []
|
62
|
+
for idx in reversed(range(len(shape_1))):
|
63
|
+
dim_size1 = shape_1[idx]
|
64
|
+
dim_size2 = shape_2[idx]
|
65
|
+
|
66
|
+
if dim_size1 == dim_size2:
|
67
|
+
common_broadcast_shape.insert(0, dim_size1)
|
68
|
+
elif dim_size1 == 1 or dim_size2 == 1:
|
69
|
+
common_broadcast_shape.insert(0, max(dim_size1, dim_size2))
|
70
|
+
else:
|
71
|
+
return None
|
72
|
+
|
73
|
+
return common_broadcast_shape
|
74
|
+
|
75
|
+
|
76
|
+
def get_broadcast_dimensions(
|
77
|
+
shape_from: list[int], shape_to: list[int]
|
78
|
+
) -> list[int]:
|
79
|
+
assert get_common_broadcast_shape(shape_from, shape_to) == shape_to
|
80
|
+
|
81
|
+
ret = []
|
82
|
+
for val in range(len(shape_to) - len(shape_from), len(shape_to)):
|
83
|
+
ret.append(val)
|
84
|
+
|
85
|
+
return ir.DenseI64ArrayAttr.get(np.asarray(ret, np.int64))
|
86
|
+
|
87
|
+
|
88
|
+
def broadcast_args_if_needed(
|
89
|
+
val_1: ir.Value, val_2: ir.Value
|
90
|
+
) -> tuple[Optional[ir.Value], Optional[ir.Value]]:
|
91
|
+
broadcast_shape = get_common_broadcast_shape(
|
92
|
+
val_1.type.shape, val_2.type.shape
|
93
|
+
)
|
94
|
+
if broadcast_shape is None:
|
95
|
+
return None, None
|
96
|
+
|
97
|
+
new_val_1, new_val_2 = val_1, val_2
|
98
|
+
|
99
|
+
if val_1.type.shape != broadcast_shape:
|
100
|
+
new_val_1 = stablehlo.broadcast_in_dim(
|
101
|
+
result=ir.RankedTensorType.get(
|
102
|
+
broadcast_shape, val_1.type.element_type
|
103
|
+
),
|
104
|
+
operand=val_1,
|
105
|
+
broadcast_dimensions=get_broadcast_dimensions(
|
106
|
+
val_1.type.shape, broadcast_shape
|
107
|
+
),
|
108
|
+
)
|
109
|
+
if val_2.type.shape != broadcast_shape:
|
110
|
+
new_val_2 = stablehlo.broadcast_in_dim(
|
111
|
+
result=ir.RankedTensorType.get(
|
112
|
+
broadcast_shape, val_2.type.element_type
|
113
|
+
),
|
114
|
+
operand=val_2,
|
115
|
+
broadcast_dimensions=get_broadcast_dimensions(
|
116
|
+
val_2.type.shape, broadcast_shape
|
117
|
+
),
|
118
|
+
)
|
119
|
+
return new_val_1, new_val_2
|
120
|
+
|
121
|
+
|
122
|
+
def upcast_to_same_type(*vals: ir.Value):
|
123
|
+
if not vals:
|
124
|
+
return None
|
125
|
+
if len(vals) == 1:
|
126
|
+
return vals[0]
|
127
|
+
|
128
|
+
def get_priority(ty: ir.Type):
|
129
|
+
priorities = [
|
130
|
+
ir.IntegerType.get_signless(1),
|
131
|
+
ir.IntegerType.get_signless(16),
|
132
|
+
ir.IntegerType.get_signless(32),
|
133
|
+
ir.IntegerType.get_signless(64),
|
134
|
+
ir.F16Type,
|
135
|
+
ir.F32Type,
|
136
|
+
ir.F64Type,
|
137
|
+
]
|
138
|
+
for i, tycls in enumerate(priorities):
|
139
|
+
if tycls.isinstance(ty):
|
140
|
+
return i
|
141
|
+
raise ValueError("Unsupported type: %s" % str(ty))
|
142
|
+
|
143
|
+
cast_tycls = type(max([v.type.element_type for v in vals], key=get_priority))
|
144
|
+
new_vals = []
|
145
|
+
for val in vals:
|
146
|
+
if not cast_tycls.isinstance(val.type.element_type):
|
147
|
+
val = stablehlo.convert(
|
148
|
+
ir.RankedTensorType.get(val.type.shape, cast_tycls.get()), val
|
149
|
+
)
|
150
|
+
new_vals.append(val)
|
151
|
+
return tuple(new_vals)
|
152
|
+
|
153
|
+
|
154
|
+
def minmax(ty: ir.Type) -> tuple[numbers.Number, numbers.Number]:
|
155
|
+
if isinstance(ty, ir.IntegerType):
|
156
|
+
if ty.is_unsigned:
|
157
|
+
return (0, 1 << ty.width)
|
158
|
+
else:
|
159
|
+
return (-(1 << (ty.width - 1)), (1 << (ty.width - 1)) - 1)
|
160
|
+
elif isinstance(ty, ir.F16Type):
|
161
|
+
return (np.finfo(np.float16).min, np.finfo(np.float16).max)
|
162
|
+
elif isinstance(ty, ir.F32Type):
|
163
|
+
return (np.finfo(np.float32).min, np.finfo(np.float32).max)
|
164
|
+
elif isinstance(ty, ir.F64Type):
|
165
|
+
return (np.finfo(np.float64).min, np.finfo(np.float64).max)
|
166
|
+
else:
|
167
|
+
raise ValueError("Unsupported type: %s" % ty)
|
168
|
+
|
169
|
+
|
170
|
+
def convert_int_to_float(t: ir.Value) -> ir.Value:
|
171
|
+
"""Converts an input with type ir.IntegerType to an ir.FloatType of equivalent width."""
|
172
|
+
elty = t.type.element_type
|
173
|
+
if not isinstance(elty, ir.IntegerType):
|
174
|
+
raise ValueError(
|
175
|
+
"Expected input with integer type, received %s" % type(elty)
|
176
|
+
)
|
177
|
+
|
178
|
+
if elty.width == 32:
|
179
|
+
return stablehlo.convert(
|
180
|
+
ir.RankedTensorType.get(t.type.shape, ir.F32Type.get()), t
|
181
|
+
)
|
182
|
+
elif elty.width == 64:
|
183
|
+
return stablehlo.convert(
|
184
|
+
ir.RankedTensorType.get(t.type.shape, ir.F64Type.get()), t
|
185
|
+
)
|
@@ -0,0 +1,38 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
from jax._src.lib.mlir import ir
|
16
|
+
from jax._src.lib.mlir import passmanager
|
17
|
+
|
18
|
+
|
19
|
+
def run_pass(pipeline, module: ir.Module):
|
20
|
+
pm = passmanager.PassManager.parse(pipeline)
|
21
|
+
pm.run(module.operation)
|
22
|
+
return module
|
23
|
+
|
24
|
+
|
25
|
+
def canonicalize(module: ir.Module):
|
26
|
+
return run_pass("builtin.module(canonicalize)", module)
|
27
|
+
|
28
|
+
|
29
|
+
def cse(module: ir.Module):
|
30
|
+
return run_pass("builtin.module(cse)", module)
|
31
|
+
|
32
|
+
|
33
|
+
def inline(module: ir.Module):
|
34
|
+
return run_pass("builtin.module(inline)", module)
|
35
|
+
|
36
|
+
|
37
|
+
def strip_debuginfo(module: ir.Module):
|
38
|
+
return run_pass("builtin.module(strip-debuginfo)", module)
|