ai-edge-torch-nightly 0.2.0.dev20240714__py3-none-any.whl → 0.3.0.dev20240926__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (169) hide show
  1. ai_edge_torch/__init__.py +5 -4
  2. ai_edge_torch/_convert/conversion.py +112 -0
  3. ai_edge_torch/_convert/conversion_utils.py +64 -0
  4. ai_edge_torch/{convert → _convert}/converter.py +94 -48
  5. ai_edge_torch/_convert/fx_passes/__init__.py +22 -0
  6. ai_edge_torch/{convert → _convert}/fx_passes/build_aten_composite_pass.py +107 -44
  7. ai_edge_torch/{convert → _convert}/fx_passes/build_interpolate_composite_pass.py +23 -20
  8. ai_edge_torch/{convert → _convert}/fx_passes/inject_mlir_debuginfo_pass.py +5 -6
  9. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/__init__.py +1 -1
  10. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_check.py +39 -9
  11. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_mark.py +2 -0
  12. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +1 -0
  13. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +17 -8
  14. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +9 -8
  15. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +31 -18
  16. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +2 -2
  17. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/pass_body.py +34 -24
  18. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/utils.py +2 -0
  19. ai_edge_torch/_convert/signature.py +66 -0
  20. ai_edge_torch/_convert/test/test_convert.py +495 -0
  21. ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
  22. ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
  23. ai_edge_torch/{convert → _convert}/test/test_to_channel_last_io.py +5 -5
  24. ai_edge_torch/{convert → _convert}/to_channel_last_io.py +10 -3
  25. ai_edge_torch/config.py +27 -0
  26. ai_edge_torch/conftest.py +20 -0
  27. ai_edge_torch/debug/culprit.py +72 -40
  28. ai_edge_torch/debug/test/test_culprit.py +7 -5
  29. ai_edge_torch/debug/test/test_search_model.py +8 -7
  30. ai_edge_torch/debug/utils.py +14 -3
  31. ai_edge_torch/fx_pass_base.py +101 -0
  32. ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +68 -0
  33. ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +68 -0
  34. ai_edge_torch/generative/examples/gemma/{gemma.py → gemma1.py} +69 -55
  35. ai_edge_torch/generative/examples/gemma/gemma2.py +267 -0
  36. ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
  37. ai_edge_torch/generative/examples/gemma/verify_gemma2.py +57 -0
  38. ai_edge_torch/generative/examples/gemma/verify_util.py +143 -0
  39. ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +68 -0
  40. ai_edge_torch/generative/examples/openelm/openelm.py +206 -0
  41. ai_edge_torch/generative/examples/openelm/verify.py +64 -0
  42. ai_edge_torch/generative/examples/phi/__init__.py +14 -0
  43. ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +68 -0
  44. ai_edge_torch/generative/examples/phi/convert_to_tflite.py +68 -0
  45. ai_edge_torch/generative/examples/{phi2 → phi}/phi2.py +70 -51
  46. ai_edge_torch/generative/examples/phi/phi3.py +286 -0
  47. ai_edge_torch/generative/examples/phi/verify.py +65 -0
  48. ai_edge_torch/generative/examples/phi/verify_phi3.py +70 -0
  49. ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
  50. ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +68 -0
  51. ai_edge_torch/generative/examples/smollm/smollm.py +101 -0
  52. ai_edge_torch/generative/examples/smollm/verify.py +62 -0
  53. ai_edge_torch/generative/examples/stable_diffusion/attention.py +3 -1
  54. ai_edge_torch/generative/examples/stable_diffusion/clip.py +83 -13
  55. ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +27 -14
  56. ai_edge_torch/generative/examples/stable_diffusion/decoder.py +74 -9
  57. ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +179 -37
  58. ai_edge_torch/generative/examples/stable_diffusion/encoder.py +4 -3
  59. ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +83 -58
  60. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +4 -3
  61. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +4 -3
  62. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +4 -3
  63. ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +1 -0
  64. ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +4 -1
  65. ai_edge_torch/generative/examples/stable_diffusion/util.py +9 -3
  66. ai_edge_torch/generative/examples/t5/convert_to_tflite.py +28 -25
  67. ai_edge_torch/generative/examples/t5/t5.py +208 -159
  68. ai_edge_torch/generative/examples/t5/t5_attention.py +45 -30
  69. ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
  70. ai_edge_torch/generative/examples/test_models/toy_model.py +69 -41
  71. ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +50 -64
  72. ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
  73. ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +41 -39
  74. ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +67 -54
  75. ai_edge_torch/generative/examples/tiny_llama/verify.py +64 -0
  76. ai_edge_torch/generative/fx_passes/__init__.py +4 -5
  77. ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +10 -7
  78. ai_edge_torch/generative/layers/attention.py +141 -102
  79. ai_edge_torch/generative/layers/attention_utils.py +53 -12
  80. ai_edge_torch/generative/layers/builder.py +37 -7
  81. ai_edge_torch/generative/layers/feed_forward.py +39 -14
  82. ai_edge_torch/generative/layers/kv_cache.py +162 -50
  83. ai_edge_torch/generative/layers/model_config.py +84 -30
  84. ai_edge_torch/generative/layers/normalization.py +185 -7
  85. ai_edge_torch/generative/layers/rotary_position_embedding.py +6 -4
  86. ai_edge_torch/generative/layers/scaled_dot_product_attention.py +48 -21
  87. ai_edge_torch/generative/layers/unet/blocks_2d.py +136 -77
  88. ai_edge_torch/generative/layers/unet/builder.py +7 -4
  89. ai_edge_torch/generative/layers/unet/model_config.py +17 -15
  90. ai_edge_torch/generative/quantize/example.py +7 -8
  91. ai_edge_torch/generative/quantize/quant_recipe.py +10 -7
  92. ai_edge_torch/generative/quantize/quant_recipe_utils.py +12 -1
  93. ai_edge_torch/generative/quantize/quant_recipes.py +8 -0
  94. ai_edge_torch/generative/test/test_kv_cache.py +120 -0
  95. ai_edge_torch/generative/test/{loader_test.py → test_loader.py} +9 -7
  96. ai_edge_torch/generative/test/test_model_conversion.py +124 -188
  97. ai_edge_torch/generative/test/test_model_conversion_large.py +251 -0
  98. ai_edge_torch/generative/test/test_quantize.py +76 -60
  99. ai_edge_torch/generative/test/utils.py +54 -0
  100. ai_edge_torch/generative/utilities/converter.py +82 -0
  101. ai_edge_torch/generative/utilities/loader.py +120 -57
  102. ai_edge_torch/generative/utilities/stable_diffusion_loader.py +165 -57
  103. ai_edge_torch/generative/utilities/t5_loader.py +110 -81
  104. ai_edge_torch/generative/utilities/verifier.py +247 -0
  105. ai_edge_torch/hlfb/__init__.py +1 -1
  106. ai_edge_torch/hlfb/mark_pattern/__init__.py +9 -7
  107. ai_edge_torch/hlfb/mark_pattern/passes.py +23 -3
  108. ai_edge_torch/hlfb/mark_pattern/pattern.py +39 -30
  109. ai_edge_torch/hlfb/test/test_mark_pattern.py +46 -20
  110. ai_edge_torch/hlfb/test/test_stablehlo_composite_builder.py +24 -11
  111. ai_edge_torch/lowertools/__init__.py +18 -0
  112. ai_edge_torch/lowertools/_shim.py +80 -0
  113. ai_edge_torch/lowertools/common_utils.py +142 -0
  114. ai_edge_torch/lowertools/odml_torch_utils.py +255 -0
  115. ai_edge_torch/lowertools/test_utils.py +60 -0
  116. ai_edge_torch/lowertools/torch_xla_utils.py +284 -0
  117. ai_edge_torch/{generative/quantize/ai_edge_quantizer_glue → lowertools}/translate_recipe.py +29 -14
  118. ai_edge_torch/model.py +53 -18
  119. ai_edge_torch/odml_torch/__init__.py +20 -0
  120. ai_edge_torch/odml_torch/_torch_future.py +61 -0
  121. ai_edge_torch/odml_torch/_torch_library.py +19 -0
  122. ai_edge_torch/odml_torch/composite/__init__.py +16 -0
  123. ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
  124. ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
  125. ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
  126. ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
  127. ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
  128. ai_edge_torch/odml_torch/export.py +357 -0
  129. ai_edge_torch/odml_torch/export_utils.py +168 -0
  130. ai_edge_torch/odml_torch/jax_bridge/__init__.py +15 -0
  131. ai_edge_torch/odml_torch/jax_bridge/_wrap.py +150 -0
  132. ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
  133. ai_edge_torch/odml_torch/lowerings/__init__.py +25 -0
  134. ai_edge_torch/odml_torch/lowerings/_basic.py +258 -0
  135. ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
  136. ai_edge_torch/odml_torch/lowerings/_convolution.py +241 -0
  137. ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +252 -0
  138. ai_edge_torch/odml_torch/lowerings/_layer_norm.py +78 -0
  139. ai_edge_torch/odml_torch/lowerings/context.py +42 -0
  140. ai_edge_torch/odml_torch/lowerings/registry.py +96 -0
  141. ai_edge_torch/odml_torch/lowerings/utils.py +185 -0
  142. ai_edge_torch/odml_torch/passes/__init__.py +38 -0
  143. ai_edge_torch/odml_torch/tf_integration.py +194 -0
  144. ai_edge_torch/quantize/pt2e_quantizer.py +52 -24
  145. ai_edge_torch/quantize/pt2e_quantizer_utils.py +43 -23
  146. ai_edge_torch/quantize/quant_config.py +13 -9
  147. ai_edge_torch/testing/model_coverage/model_coverage.py +29 -16
  148. ai_edge_torch/version.py +16 -0
  149. {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/METADATA +7 -3
  150. ai_edge_torch_nightly-0.3.0.dev20240926.dist-info/RECORD +177 -0
  151. {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/WHEEL +1 -1
  152. ai_edge_torch/convert/conversion.py +0 -117
  153. ai_edge_torch/convert/conversion_utils.py +0 -400
  154. ai_edge_torch/convert/fx_passes/__init__.py +0 -59
  155. ai_edge_torch/convert/fx_passes/_pass_base.py +0 -49
  156. ai_edge_torch/convert/fx_passes/canonicalize_pass.py +0 -37
  157. ai_edge_torch/convert/test/test_convert.py +0 -311
  158. ai_edge_torch/convert/test/test_convert_composites.py +0 -192
  159. ai_edge_torch/convert/test/test_convert_multisig.py +0 -139
  160. ai_edge_torch/generative/examples/gemma/convert_to_tflite.py +0 -66
  161. ai_edge_torch/generative/examples/phi2/convert_to_tflite.py +0 -64
  162. ai_edge_torch/generative/examples/test_models/toy_model_with_external_kv_cache.py +0 -161
  163. ai_edge_torch/generative/quantize/ai_edge_quantizer_glue/__init__.py +0 -0
  164. ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/RECORD +0 -121
  165. /ai_edge_torch/{convert → _convert}/__init__.py +0 -0
  166. /ai_edge_torch/{convert → _convert}/test/__init__.py +0 -0
  167. /ai_edge_torch/generative/examples/{phi2 → openelm}/__init__.py +0 -0
  168. {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/LICENSE +0 -0
  169. {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,75 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Utilities for Jax bridge."""
16
+
17
+ from ai_edge_torch import odml_torch
18
+ import jax
19
+ import jax.numpy as jnp
20
+ from jax._src.lib.mlir import ir
21
+ import torch
22
+
23
+
24
+ def t2j_dtype(dtype):
25
+ return {
26
+ torch.bfloat16: jnp.bfloat16,
27
+ torch.half: jnp.float16,
28
+ torch.float32: jnp.float32,
29
+ torch.double: jnp.double,
30
+ torch.long: jnp.int64,
31
+ torch.int64: jnp.int64,
32
+ torch.int32: jnp.int32,
33
+ torch.int16: jnp.int16,
34
+ torch.int8: jnp.int8,
35
+ torch.uint8: jnp.uint8,
36
+ torch.bool: jnp.bool_,
37
+ torch.complex64: jnp.complex64,
38
+ torch.complex128: jnp.complex128,
39
+ }.get(dtype)
40
+
41
+
42
+ def is_ir_variable(value):
43
+ if isinstance(value, ir.Value):
44
+ return True
45
+ if isinstance(value, (list, tuple)):
46
+ return any(is_ir_variable(x) for x in value)
47
+ return False
48
+
49
+
50
+ def ir_variable_to_jax(value):
51
+ if isinstance(value, (list, tuple)):
52
+ return tuple([ir_variable_to_jax(x) for x in value])
53
+ elif not isinstance(value, ir.Value):
54
+ return value
55
+ elif not isinstance(value.type, ir.RankedTensorType):
56
+ raise ValueError(
57
+ f"ir.Value to JAX must be in ir.RankedTensorType, got {value}"
58
+ )
59
+
60
+ return jax.ShapeDtypeStruct(
61
+ value.type.shape,
62
+ t2j_dtype(
63
+ odml_torch.export_utils.ir_element_type_to_torch_dtype(
64
+ value.type.element_type
65
+ )
66
+ ),
67
+ )
68
+
69
+
70
+ def tree_map_list_to_tuple(value):
71
+ if isinstance(value, dict):
72
+ return {k: tree_map_list_to_tuple(v) for k, v in value.items()}
73
+ if isinstance(value, (list, tuple)):
74
+ return tuple([tree_map_list_to_tuple(v) for v in value])
75
+ return value
@@ -0,0 +1,25 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ from . import _basic
16
+ from . import _batch_norm
17
+ from . import _convolution
18
+ from . import _jax_lowerings
19
+ from . import _layer_norm
20
+ from . import context
21
+ from . import registry
22
+ from . import utils
23
+ from .registry import decompositions
24
+ from .registry import lookup
25
+ from .registry import lower
@@ -0,0 +1,258 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ import math
16
+ from typing import Optional, Union
17
+
18
+ from ai_edge_torch.odml_torch.lowerings import utils
19
+ from jax._src.lib.mlir import ir
20
+ from jax._src.lib.mlir.dialects import hlo as stablehlo
21
+ import numpy as np
22
+ import torch
23
+
24
+ from .registry import lower
25
+
26
+
27
+ # add(Tensor self, Tensor other) -> Tensor
28
+ # @lower(torch.ops.aten.add)
29
+ def _aten_add(lctx, x: ir.Value, y: ir.Value, alpha=1):
30
+ x, y = utils.upcast_to_same_type(x, y)
31
+ x, y = utils.broadcast_args_if_needed(x, y)
32
+ if alpha == 1:
33
+ return stablehlo.add(x, y)
34
+
35
+ alpha_splat = utils.splat(alpha, y.type.element_type, y.type.shape)
36
+ return stablehlo.add(x, stablehlo.multiply(y, alpha_splat))
37
+
38
+
39
+ # mul.Tensor(Tensor self, Tensor other) -> Tensor
40
+ # @lower(torch.ops.aten.mul.Tensor)
41
+ def _aten_mul_tensor(lctx, self: ir.Value, other: ir.Value):
42
+ self, other = utils.upcast_to_same_type(self, other)
43
+ self, other = utils.broadcast_args_if_needed(self, other)
44
+
45
+ return stablehlo.multiply(self, other)
46
+
47
+
48
+ # cat(Tensor[] tensors, int dim=0) -> Tensor
49
+ # @lower(torch.ops.aten.cat)
50
+ def _aten_cat(lctx, tensors: list[ir.Value], dim: int = 1):
51
+ return stablehlo.ConcatenateOp(tensors, dim).result
52
+
53
+
54
+ # view(Tensor(a) self, SymInt[] size) -> Tensor(a)
55
+ # @lower(torch.ops.aten.view)
56
+ def _aten_view(lctx, self: ir.Value, size: list[int]):
57
+ return stablehlo.ReshapeOp(
58
+ ir.RankedTensorType.get(size, self.type.element_type), self
59
+ ).result
60
+
61
+
62
+ # hardtanh(Tensor self, Scalar min_val=-1, Scalar max_val=1) -> Tensor
63
+ @lower(torch.ops.aten.hardtanh)
64
+ def _aten_hardtanh(
65
+ lctx,
66
+ self: ir.Value,
67
+ min_val: Union[int, float] = -1.0,
68
+ max_val: Union[int, float] = 1.0,
69
+ ):
70
+ elty = self.type.element_type
71
+ min_val = utils.splat(min_val, elty)
72
+ max_val = utils.splat(max_val, elty)
73
+
74
+ return stablehlo.clamp(min_val, self, max_val)
75
+
76
+
77
+ # mean(Tensor self, *, ScalarType? dtype=None) -> Tensor
78
+ # mean.dim(Tensor self, int[1]? dim, bool keepdim=False, *,
79
+ # ScalarType? dtype=None) -> Tensor
80
+ @lower(torch.ops.aten.mean)
81
+ @lower(torch.ops.aten.mean.dim)
82
+ def _aten_mean_dim(
83
+ lctx,
84
+ self: ir.Value,
85
+ dim: Optional[list[int]] = None,
86
+ keepdim: bool = False,
87
+ *,
88
+ dtype=None,
89
+ ):
90
+ self_shape = self.type.shape
91
+ self_elty = self.type.element_type
92
+ if dim is None:
93
+ dim = list(range(len(self_shape)))
94
+ dim = [len(self_shape) + d if d < 0 else d for d in dim]
95
+ dim_ = ir.DenseI64ArrayAttr.get(np.asarray(dim, np.int64))
96
+ dim_to_keep = [d for d in range(len(self_shape)) if d not in dim]
97
+ dim_to_keep_ = ir.DenseI64ArrayAttr.get(np.asarray(dim_to_keep, np.int64))
98
+
99
+ zero_ = utils.splat(0.0, self_elty)
100
+
101
+ reduce_result_shape = [
102
+ s for d, s in enumerate(self_shape) if d in dim_to_keep
103
+ ]
104
+ reduce_result_ty = ir.RankedTensorType.get(reduce_result_shape, self_elty)
105
+ reduce_op = stablehlo.ReduceOp([reduce_result_ty], [self], [zero_], dim_)
106
+
107
+ reducer_arg_ty = ir.RankedTensorType.get(tuple(), self_elty)
108
+ reducer = reduce_op.regions[0].blocks.append(reducer_arg_ty, reducer_arg_ty)
109
+ with ir.InsertionPoint(reducer):
110
+ stablehlo.return_(
111
+ [stablehlo.add(reducer.arguments[0], reducer.arguments[1])]
112
+ )
113
+
114
+ sum_ = reduce_op.result
115
+ if keepdim:
116
+ sum_ = stablehlo.broadcast_in_dim(
117
+ ir.RankedTensorType.get(
118
+ [s if d in dim_to_keep else 1 for d, s in enumerate(self_shape)],
119
+ self_elty,
120
+ ),
121
+ sum_,
122
+ dim_to_keep_,
123
+ )
124
+
125
+ dim_els = math.prod([s for d, s in enumerate(self_shape) if d in dim])
126
+ dim_els_ = utils.splat(dim_els, self_elty)
127
+ div_ = stablehlo.broadcast_in_dim(
128
+ sum_.type, dim_els_, ir.DenseI64ArrayAttr.get([])
129
+ )
130
+ mean_ = stablehlo.divide(sum_, div_)
131
+
132
+ return mean_
133
+
134
+
135
+ # https://pytorch.org/docs/stable/generated/torch.clone.html
136
+ # https://github.com/pytorch/pytorch/blob/a95ceb51a23ae33c00b3a99224143c609b1b3eb3/aten/src/ATen/native/TensorFactories.cpp#L1730
137
+ @lower(torch.ops.aten.clone)
138
+ def _aten_clone(lctx, x: ir.Value, *, memory_format=None):
139
+ return x
140
+
141
+
142
+ # https://pytorch.org/docs/stable/generated/torch.permute.html
143
+ # https://github.com/pytorch/pytorch/blob/519151a062a9bd4f0d32a9c7c7eae47d7ed847b2/aten/src/ATen/native/TensorShape.cpp#L1448
144
+ # https://github.com/openxla/stablehlo/blob/main/docs/spec.md#transpose
145
+ @lower(torch.ops.aten.permute)
146
+ def _aten_permute(lctx, x: ir.Value, dims: list[int]):
147
+ dim = len(x.type.shape)
148
+ return stablehlo.transpose(x, ir.DenseI64ArrayAttr.get(dims))
149
+
150
+
151
+ # https://pytorch.org/docs/stable/generated/torch.mm.html
152
+ # https://github.com/pytorch/pytorch/blob/ffabb25c489df1dc631a577c12a0c843c8b202f3/aten/src/ATen/native/LinearAlgebra.cpp#L193
153
+ # https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dot_general
154
+ @lower(torch.ops.aten.mm)
155
+ def _aten_mm(mod, mat1: ir.Value, mat2: ir.Value) -> ir.Value:
156
+ mat1_shape = mat1.type.shape
157
+ mat2_shape = mat2.type.shape
158
+ mat1_dims = len(mat1_shape)
159
+ mat2_dims = len(mat2_shape)
160
+
161
+ if mat1_dims != 2 or mat1_dims != 2:
162
+ raise ValueError(
163
+ "Both arguments must be 2D matrices, received dimensions %d and %d"
164
+ % (mat1_dims, mat2_dims)
165
+ )
166
+
167
+ if mat1_shape[1] != mat2_shape[0]:
168
+ raise ValueError(
169
+ "mat1 and mat2 shapes cannot be multiplied, received shapes %s and %s"
170
+ % (mat1_shape, mat2_shape)
171
+ )
172
+
173
+ dot_dnums = stablehlo.DotDimensionNumbers.get(
174
+ lhs_batching_dimensions=[],
175
+ rhs_batching_dimensions=[],
176
+ lhs_contracting_dimensions=(1,),
177
+ rhs_contracting_dimensions=(0,),
178
+ )
179
+ return stablehlo.dot_general(
180
+ ir.RankedTensorType.get(
181
+ (mat1.type.shape[0], mat2.type.shape[1]), mat1.type.element_type
182
+ ),
183
+ mat1,
184
+ mat2,
185
+ dot_dnums,
186
+ )
187
+
188
+
189
+ # https://pytorch.org/docs/stable/generated/torch.div.html
190
+ # https://openxla.org/stablehlo/spec#divide
191
+ # TODO: support rounding mode and type promotion (see torch.div spec).
192
+ # @lower(torch.ops.aten.div)
193
+ def _aten_div(mod, x, y, *, rounding_mode=None, out=None) -> ir.Value:
194
+ # By default, PyTorch performs a "true" division like Python 3. This requires
195
+ # casting integer input types to float to achieve the same semantics using
196
+ # stablehlo.divide.
197
+ if isinstance(x.type.element_type, ir.IntegerType):
198
+ x = utils.convert_int_to_float(x)
199
+ if isinstance(y.type.element_type, ir.IntegerType):
200
+ y = utils.convert_int_to_float(y)
201
+
202
+ x, y = utils.broadcast_args_if_needed(x, y)
203
+
204
+ return stablehlo.divide(x, y)
205
+
206
+
207
+ # Schema:
208
+ # - aten::slice_scatter(Tensor self, Tensor src, int dim=0, SymInt?
209
+ # start=None, SymInt? end=None, SymInt step=1) -> Tensor
210
+ # Torch Reference:
211
+ # - https://pytorch.org/docs/stable/generated/torch.slice_scatter.html
212
+ # - https://github.com/pytorch/pytorch/blob/18f9331e5deb4c02ae5c206e133a9b4add49bd97/aten/src/ATen/native/TensorShape.cpp#L4002
213
+ @lower(torch.ops.aten.slice_scatter)
214
+ def _aten_slice_scatter(lctx, self, src, dim=0, start=None, end=None, step=1):
215
+ start = start if start is not None else 0
216
+ end = end if end is not None else self.type.shape[dim]
217
+
218
+ start, end = np.clip(
219
+ [start, end], -self.type.shape[dim], self.type.shape[dim]
220
+ )
221
+
222
+ if start < 0:
223
+ start = self.type.shape[dim] + start
224
+ if end < 0:
225
+ end = self.type.shape[dim] + end
226
+
227
+ if end <= start or np.prod(src.type.shape) == 0:
228
+ return self
229
+
230
+ end = start + step * math.ceil((end - start) / step) - (step - 1)
231
+ padding_low = start
232
+ padding_high = self.type.shape[dim] - end
233
+ interior_padding = step - 1
234
+
235
+ rank = len(self.type.shape)
236
+ src = stablehlo.pad(
237
+ src,
238
+ utils.splat(0, src.type.element_type, []),
239
+ edge_padding_low=[padding_low if i == dim else 0 for i in range(rank)],
240
+ edge_padding_high=[padding_high if i == dim else 0 for i in range(rank)],
241
+ interior_padding=[
242
+ interior_padding if i == dim else 0 for i in range(rank)
243
+ ],
244
+ )
245
+ pred = np.ones(self.type.shape, dtype=np.bool_)
246
+ pred[*[
247
+ slice(start, end, step) if i == dim else slice(None, None, None)
248
+ for i in range(rank)
249
+ ]] = False
250
+ pred = stablehlo.constant(
251
+ ir.DenseElementsAttr.get(
252
+ np.packbits(pred, bitorder="little"),
253
+ type=ir.IntegerType.get_signless(1),
254
+ shape=pred.shape,
255
+ )
256
+ )
257
+ out = stablehlo.select(pred, self, src)
258
+ return out
@@ -0,0 +1,65 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Provides lowering for coreaten to mlir stablehlo op: Convolution"""
16
+
17
+ from typing import Optional
18
+
19
+ from ai_edge_torch.odml_torch.lowerings import utils
20
+ from jax._src.lib.mlir import ir
21
+ from jax._src.lib.mlir.dialects import hlo as stablehlo
22
+ import torch
23
+
24
+ from .registry import lower
25
+
26
+
27
+ # _native_batch_norm_legit_no_training(
28
+ # Tensor input,
29
+ # Tensor? weight,
30
+ # Tensor? bias,
31
+ # Tensor running_mean,
32
+ # Tensor running_var,
33
+ # float momentum,
34
+ # float eps) -> (Tensor, Tensor, Tensor)
35
+ @lower(torch.ops.aten._native_batch_norm_legit_no_training)
36
+ def _native_batch_norm_legit_no_training(
37
+ lctx,
38
+ input_tensor: ir.Value,
39
+ weight: Optional[ir.Value],
40
+ bias: Optional[ir.Value],
41
+ running_mean: ir.Value,
42
+ running_var: ir.Value,
43
+ momentum: float,
44
+ eps: float,
45
+ ):
46
+ if weight is None:
47
+ weight = utils.splat(
48
+ 1, running_mean.type.element_type, running_mean.type.shape
49
+ )
50
+ if bias is None:
51
+ bias = utils.splat(
52
+ 0, running_mean.type.element_type, running_mean.type.shape
53
+ )
54
+
55
+ return [
56
+ stablehlo.batch_norm_inference(
57
+ input_tensor, weight, bias, running_mean, running_var, eps, 1
58
+ ),
59
+ utils.splat(
60
+ 0, input_tensor.type.element_type
61
+ ), # TODO: return empty array instead
62
+ utils.splat(
63
+ 0, input_tensor.type.element_type
64
+ ), # TODO: return empty array instead
65
+ ]
@@ -0,0 +1,241 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Provides lowering for coreaten to stablehlo for Convolution."""
16
+
17
+ import math
18
+ from typing import Optional
19
+
20
+ from ai_edge_torch.odml_torch.lowerings import registry
21
+ from jax._src.lib.mlir import ir
22
+ from jax._src.lib.mlir.dialects import hlo as stablehlo
23
+ import torch
24
+
25
+
26
+ def make_padding(padding):
27
+ """Change the padding from pytorch to stablehlo style.
28
+
29
+ Stablehlo allows start and end padding for each dimension while aten only
30
+ allows symmetric padding and so only has one number per dimension.
31
+
32
+ Args:
33
+ padding: The padding of the convolution
34
+
35
+ Returns:
36
+ The padding in stablehlo style
37
+ """
38
+ return tuple((p, p) for p in padding)
39
+
40
+
41
+ def create_conv_dimension_numbers(lhs, transposed: bool = False):
42
+ """Create the dimension numbers for the convolution.
43
+
44
+ Args:
45
+ lhs: The input tensor
46
+ transposed: Whether the convolution is transposed
47
+
48
+ Returns:
49
+ The dimension numbers for the convolution
50
+ """
51
+ num_spatial_dims = len(lhs.type.shape) - 2
52
+ spatial_dimensions = []
53
+ for i in range(0, num_spatial_dims):
54
+ spatial_dimensions.append(i + 2)
55
+
56
+ # Regular kernels are OIHW
57
+ # TransposedConv kernels are IOHW
58
+ dimension_numbers = stablehlo.ConvDimensionNumbers.get(
59
+ input_batch_dimension=0,
60
+ input_feature_dimension=1,
61
+ input_spatial_dimensions=spatial_dimensions,
62
+ kernel_input_feature_dimension=0 if transposed else 1,
63
+ kernel_output_feature_dimension=1 if transposed else 0,
64
+ kernel_spatial_dimensions=spatial_dimensions,
65
+ output_batch_dimension=0,
66
+ output_feature_dimension=1,
67
+ output_spatial_dimensions=spatial_dimensions,
68
+ )
69
+ return dimension_numbers
70
+
71
+
72
+ def infer_output_shape(
73
+ lhs,
74
+ rhs,
75
+ stride,
76
+ dilation,
77
+ padding,
78
+ transposed: bool = False,
79
+ output_padding: list[int] = 0,
80
+ ):
81
+ """Infer the output shape of the convolution.
82
+
83
+ Args:
84
+ lhs: The input tensor
85
+ rhs: The kernel tensor
86
+ stride: The stride of the convolution (dilation of input in transposed conv)
87
+ dilation: The kernel dilation of the convolution
88
+ padding: The padding of the convolution
89
+ transposed: Whether the convolution is transposed
90
+ output_padding: The output padding of the convolution
91
+
92
+ Returns:
93
+ The output shape of the convolution
94
+ """
95
+ lhs_type: ir.RankedTensorType = lhs.type
96
+ lhs_shape: list[int] = lhs_type.shape
97
+ rhs_shape: list[int] = rhs.type.shape
98
+
99
+ # Input layout is: (N)CHW and Kernel layout is: (O)IHW for regular conv
100
+ # Input layout is: (N)CHW and Kernel layout is: I(O)HW for transposed conv
101
+ output_shape = (
102
+ [lhs_shape[0], rhs_shape[1]]
103
+ if transposed
104
+ else [lhs_shape[0], rhs_shape[0]]
105
+ )
106
+ num_spatial_dims = len(lhs.type.shape) - 2
107
+
108
+ # looping over the spatial dims (skipping the first 2 dims which are
109
+ # batch and features)
110
+ for spatial_dim in range(0, num_spatial_dims):
111
+ dim = spatial_dim + 2
112
+ dim_size = lhs_shape[dim]
113
+ kernel_dim_size = rhs_shape[dim]
114
+
115
+ if transposed:
116
+ output_dim_size = (
117
+ (dim_size - 1) * stride[spatial_dim]
118
+ - 2 * padding[spatial_dim]
119
+ + dilation[spatial_dim] * (kernel_dim_size - 1)
120
+ + output_padding[spatial_dim]
121
+ + 1
122
+ )
123
+ else:
124
+ output_dim_size = math.floor(
125
+ (
126
+ (
127
+ dim_size
128
+ + 2 * padding[spatial_dim]
129
+ - dilation[spatial_dim] * (kernel_dim_size - 1)
130
+ - 1
131
+ )
132
+ / stride[spatial_dim]
133
+ )
134
+ + 1
135
+ )
136
+
137
+ output_shape.append(output_dim_size)
138
+
139
+ return output_shape
140
+
141
+
142
+ def build_transpose_conv(
143
+ lctx,
144
+ output_type: ir.RankedTensorType,
145
+ lhs: ir.Value,
146
+ rhs: ir.Value,
147
+ stride: list[int],
148
+ padding: list[int],
149
+ dilation: list[int],
150
+ output_padding: list[int],
151
+ groups: int,
152
+ ):
153
+ lhs_type: ir.RankedTensorType = lhs.type
154
+ num_spatial_dims = len(lhs_type.shape) - 2
155
+ rhs = stablehlo.reverse(rhs, list(range(2, 2 + num_spatial_dims)))
156
+
157
+ kernel_size = rhs.type.shape
158
+ # We need to additional padding on the input to get the right output size.
159
+ adjusted_padding = [
160
+ dilation[dim] * (kernel_size[dim + 2] - 1) - padding[dim]
161
+ for dim in range(num_spatial_dims)
162
+ ]
163
+ return stablehlo.convolution(
164
+ result=output_type,
165
+ lhs=lhs,
166
+ rhs=rhs,
167
+ dimension_numbers=create_conv_dimension_numbers(lhs, True),
168
+ feature_group_count=groups,
169
+ batch_group_count=1,
170
+ padding=make_padding(adjusted_padding),
171
+ lhs_dilation=stride,
172
+ rhs_dilation=dilation,
173
+ )
174
+
175
+
176
+ # convolution(Tensor input, Tensor weight, Tensor? bias, SymInt[] stride,
177
+ # SymInt[] padding, SymInt[] dilation, bool transposed,
178
+ # SymInt[] output_padding, SymInt groups) -> Tensor
179
+ @registry.lower(torch.ops.aten.convolution)
180
+ def _aten_convolution(
181
+ lctx,
182
+ lhs: ir.Value,
183
+ rhs: ir.Value,
184
+ bias: Optional[ir.Value],
185
+ stride: list[int],
186
+ padding: list[int],
187
+ dilation: list[int],
188
+ transposed: bool,
189
+ output_padding: list[int],
190
+ groups: int,
191
+ ):
192
+
193
+ # TODO(b/365559296) Add support for output_padding
194
+ if any(output_padding):
195
+ raise NotImplementedError(
196
+ "Output padding on convolution is not implemented."
197
+ )
198
+
199
+ lhs_type: ir.RankedTensorType = lhs.type
200
+ output_shape = infer_output_shape(
201
+ lhs, rhs, stride, dilation, padding, transposed, output_padding
202
+ )
203
+ output_type = ir.RankedTensorType.get(
204
+ output_shape,
205
+ lhs_type.element_type,
206
+ )
207
+
208
+ if transposed:
209
+ res = build_transpose_conv(
210
+ lctx,
211
+ output_type,
212
+ lhs,
213
+ rhs,
214
+ stride,
215
+ padding,
216
+ dilation,
217
+ output_padding,
218
+ groups,
219
+ )
220
+ else:
221
+ res = stablehlo.convolution(
222
+ result=output_type,
223
+ lhs=lhs,
224
+ rhs=rhs,
225
+ dimension_numbers=create_conv_dimension_numbers(lhs),
226
+ feature_group_count=groups,
227
+ batch_group_count=1,
228
+ window_strides=stride,
229
+ padding=make_padding(padding),
230
+ rhs_dilation=dilation,
231
+ )
232
+
233
+ if bias is not None:
234
+ # broadcast [C] to [NCHW]
235
+ broadcasted_bias = stablehlo.broadcast_in_dim(output_type, bias, [1])
236
+ res = stablehlo.add(
237
+ lhs=res,
238
+ rhs=broadcasted_bias,
239
+ )
240
+
241
+ return res