ai-edge-torch-nightly 0.2.0.dev20240714__py3-none-any.whl → 0.3.0.dev20240926__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (169) hide show
  1. ai_edge_torch/__init__.py +5 -4
  2. ai_edge_torch/_convert/conversion.py +112 -0
  3. ai_edge_torch/_convert/conversion_utils.py +64 -0
  4. ai_edge_torch/{convert → _convert}/converter.py +94 -48
  5. ai_edge_torch/_convert/fx_passes/__init__.py +22 -0
  6. ai_edge_torch/{convert → _convert}/fx_passes/build_aten_composite_pass.py +107 -44
  7. ai_edge_torch/{convert → _convert}/fx_passes/build_interpolate_composite_pass.py +23 -20
  8. ai_edge_torch/{convert → _convert}/fx_passes/inject_mlir_debuginfo_pass.py +5 -6
  9. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/__init__.py +1 -1
  10. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_check.py +39 -9
  11. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_mark.py +2 -0
  12. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +1 -0
  13. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +17 -8
  14. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +9 -8
  15. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +31 -18
  16. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +2 -2
  17. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/pass_body.py +34 -24
  18. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/utils.py +2 -0
  19. ai_edge_torch/_convert/signature.py +66 -0
  20. ai_edge_torch/_convert/test/test_convert.py +495 -0
  21. ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
  22. ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
  23. ai_edge_torch/{convert → _convert}/test/test_to_channel_last_io.py +5 -5
  24. ai_edge_torch/{convert → _convert}/to_channel_last_io.py +10 -3
  25. ai_edge_torch/config.py +27 -0
  26. ai_edge_torch/conftest.py +20 -0
  27. ai_edge_torch/debug/culprit.py +72 -40
  28. ai_edge_torch/debug/test/test_culprit.py +7 -5
  29. ai_edge_torch/debug/test/test_search_model.py +8 -7
  30. ai_edge_torch/debug/utils.py +14 -3
  31. ai_edge_torch/fx_pass_base.py +101 -0
  32. ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +68 -0
  33. ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +68 -0
  34. ai_edge_torch/generative/examples/gemma/{gemma.py → gemma1.py} +69 -55
  35. ai_edge_torch/generative/examples/gemma/gemma2.py +267 -0
  36. ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
  37. ai_edge_torch/generative/examples/gemma/verify_gemma2.py +57 -0
  38. ai_edge_torch/generative/examples/gemma/verify_util.py +143 -0
  39. ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +68 -0
  40. ai_edge_torch/generative/examples/openelm/openelm.py +206 -0
  41. ai_edge_torch/generative/examples/openelm/verify.py +64 -0
  42. ai_edge_torch/generative/examples/phi/__init__.py +14 -0
  43. ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +68 -0
  44. ai_edge_torch/generative/examples/phi/convert_to_tflite.py +68 -0
  45. ai_edge_torch/generative/examples/{phi2 → phi}/phi2.py +70 -51
  46. ai_edge_torch/generative/examples/phi/phi3.py +286 -0
  47. ai_edge_torch/generative/examples/phi/verify.py +65 -0
  48. ai_edge_torch/generative/examples/phi/verify_phi3.py +70 -0
  49. ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
  50. ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +68 -0
  51. ai_edge_torch/generative/examples/smollm/smollm.py +101 -0
  52. ai_edge_torch/generative/examples/smollm/verify.py +62 -0
  53. ai_edge_torch/generative/examples/stable_diffusion/attention.py +3 -1
  54. ai_edge_torch/generative/examples/stable_diffusion/clip.py +83 -13
  55. ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +27 -14
  56. ai_edge_torch/generative/examples/stable_diffusion/decoder.py +74 -9
  57. ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +179 -37
  58. ai_edge_torch/generative/examples/stable_diffusion/encoder.py +4 -3
  59. ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +83 -58
  60. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +4 -3
  61. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +4 -3
  62. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +4 -3
  63. ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +1 -0
  64. ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +4 -1
  65. ai_edge_torch/generative/examples/stable_diffusion/util.py +9 -3
  66. ai_edge_torch/generative/examples/t5/convert_to_tflite.py +28 -25
  67. ai_edge_torch/generative/examples/t5/t5.py +208 -159
  68. ai_edge_torch/generative/examples/t5/t5_attention.py +45 -30
  69. ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
  70. ai_edge_torch/generative/examples/test_models/toy_model.py +69 -41
  71. ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +50 -64
  72. ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
  73. ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +41 -39
  74. ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +67 -54
  75. ai_edge_torch/generative/examples/tiny_llama/verify.py +64 -0
  76. ai_edge_torch/generative/fx_passes/__init__.py +4 -5
  77. ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +10 -7
  78. ai_edge_torch/generative/layers/attention.py +141 -102
  79. ai_edge_torch/generative/layers/attention_utils.py +53 -12
  80. ai_edge_torch/generative/layers/builder.py +37 -7
  81. ai_edge_torch/generative/layers/feed_forward.py +39 -14
  82. ai_edge_torch/generative/layers/kv_cache.py +162 -50
  83. ai_edge_torch/generative/layers/model_config.py +84 -30
  84. ai_edge_torch/generative/layers/normalization.py +185 -7
  85. ai_edge_torch/generative/layers/rotary_position_embedding.py +6 -4
  86. ai_edge_torch/generative/layers/scaled_dot_product_attention.py +48 -21
  87. ai_edge_torch/generative/layers/unet/blocks_2d.py +136 -77
  88. ai_edge_torch/generative/layers/unet/builder.py +7 -4
  89. ai_edge_torch/generative/layers/unet/model_config.py +17 -15
  90. ai_edge_torch/generative/quantize/example.py +7 -8
  91. ai_edge_torch/generative/quantize/quant_recipe.py +10 -7
  92. ai_edge_torch/generative/quantize/quant_recipe_utils.py +12 -1
  93. ai_edge_torch/generative/quantize/quant_recipes.py +8 -0
  94. ai_edge_torch/generative/test/test_kv_cache.py +120 -0
  95. ai_edge_torch/generative/test/{loader_test.py → test_loader.py} +9 -7
  96. ai_edge_torch/generative/test/test_model_conversion.py +124 -188
  97. ai_edge_torch/generative/test/test_model_conversion_large.py +251 -0
  98. ai_edge_torch/generative/test/test_quantize.py +76 -60
  99. ai_edge_torch/generative/test/utils.py +54 -0
  100. ai_edge_torch/generative/utilities/converter.py +82 -0
  101. ai_edge_torch/generative/utilities/loader.py +120 -57
  102. ai_edge_torch/generative/utilities/stable_diffusion_loader.py +165 -57
  103. ai_edge_torch/generative/utilities/t5_loader.py +110 -81
  104. ai_edge_torch/generative/utilities/verifier.py +247 -0
  105. ai_edge_torch/hlfb/__init__.py +1 -1
  106. ai_edge_torch/hlfb/mark_pattern/__init__.py +9 -7
  107. ai_edge_torch/hlfb/mark_pattern/passes.py +23 -3
  108. ai_edge_torch/hlfb/mark_pattern/pattern.py +39 -30
  109. ai_edge_torch/hlfb/test/test_mark_pattern.py +46 -20
  110. ai_edge_torch/hlfb/test/test_stablehlo_composite_builder.py +24 -11
  111. ai_edge_torch/lowertools/__init__.py +18 -0
  112. ai_edge_torch/lowertools/_shim.py +80 -0
  113. ai_edge_torch/lowertools/common_utils.py +142 -0
  114. ai_edge_torch/lowertools/odml_torch_utils.py +255 -0
  115. ai_edge_torch/lowertools/test_utils.py +60 -0
  116. ai_edge_torch/lowertools/torch_xla_utils.py +284 -0
  117. ai_edge_torch/{generative/quantize/ai_edge_quantizer_glue → lowertools}/translate_recipe.py +29 -14
  118. ai_edge_torch/model.py +53 -18
  119. ai_edge_torch/odml_torch/__init__.py +20 -0
  120. ai_edge_torch/odml_torch/_torch_future.py +61 -0
  121. ai_edge_torch/odml_torch/_torch_library.py +19 -0
  122. ai_edge_torch/odml_torch/composite/__init__.py +16 -0
  123. ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
  124. ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
  125. ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
  126. ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
  127. ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
  128. ai_edge_torch/odml_torch/export.py +357 -0
  129. ai_edge_torch/odml_torch/export_utils.py +168 -0
  130. ai_edge_torch/odml_torch/jax_bridge/__init__.py +15 -0
  131. ai_edge_torch/odml_torch/jax_bridge/_wrap.py +150 -0
  132. ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
  133. ai_edge_torch/odml_torch/lowerings/__init__.py +25 -0
  134. ai_edge_torch/odml_torch/lowerings/_basic.py +258 -0
  135. ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
  136. ai_edge_torch/odml_torch/lowerings/_convolution.py +241 -0
  137. ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +252 -0
  138. ai_edge_torch/odml_torch/lowerings/_layer_norm.py +78 -0
  139. ai_edge_torch/odml_torch/lowerings/context.py +42 -0
  140. ai_edge_torch/odml_torch/lowerings/registry.py +96 -0
  141. ai_edge_torch/odml_torch/lowerings/utils.py +185 -0
  142. ai_edge_torch/odml_torch/passes/__init__.py +38 -0
  143. ai_edge_torch/odml_torch/tf_integration.py +194 -0
  144. ai_edge_torch/quantize/pt2e_quantizer.py +52 -24
  145. ai_edge_torch/quantize/pt2e_quantizer_utils.py +43 -23
  146. ai_edge_torch/quantize/quant_config.py +13 -9
  147. ai_edge_torch/testing/model_coverage/model_coverage.py +29 -16
  148. ai_edge_torch/version.py +16 -0
  149. {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/METADATA +7 -3
  150. ai_edge_torch_nightly-0.3.0.dev20240926.dist-info/RECORD +177 -0
  151. {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/WHEEL +1 -1
  152. ai_edge_torch/convert/conversion.py +0 -117
  153. ai_edge_torch/convert/conversion_utils.py +0 -400
  154. ai_edge_torch/convert/fx_passes/__init__.py +0 -59
  155. ai_edge_torch/convert/fx_passes/_pass_base.py +0 -49
  156. ai_edge_torch/convert/fx_passes/canonicalize_pass.py +0 -37
  157. ai_edge_torch/convert/test/test_convert.py +0 -311
  158. ai_edge_torch/convert/test/test_convert_composites.py +0 -192
  159. ai_edge_torch/convert/test/test_convert_multisig.py +0 -139
  160. ai_edge_torch/generative/examples/gemma/convert_to_tflite.py +0 -66
  161. ai_edge_torch/generative/examples/phi2/convert_to_tflite.py +0 -64
  162. ai_edge_torch/generative/examples/test_models/toy_model_with_external_kv_cache.py +0 -161
  163. ai_edge_torch/generative/quantize/ai_edge_quantizer_glue/__init__.py +0 -0
  164. ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/RECORD +0 -121
  165. /ai_edge_torch/{convert → _convert}/__init__.py +0 -0
  166. /ai_edge_torch/{convert → _convert}/test/__init__.py +0 -0
  167. /ai_edge_torch/generative/examples/{phi2 → openelm}/__init__.py +0 -0
  168. {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/LICENSE +0 -0
  169. {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/top_level.txt +0 -0
@@ -16,11 +16,10 @@
16
16
  from dataclasses import dataclass
17
17
  from typing import Dict, List, Optional, Tuple
18
18
 
19
- import torch
20
-
21
19
  import ai_edge_torch.generative.layers.model_config as layers_config
22
20
  import ai_edge_torch.generative.layers.unet.model_config as unet_config
23
21
  import ai_edge_torch.generative.utilities.loader as loader
22
+ import torch
24
23
 
25
24
 
26
25
  @dataclass
@@ -80,27 +79,35 @@ class TransformerBlockTensorNames:
80
79
  class MidBlockTensorNames:
81
80
  residual_block_tensor_names: List[ResidualBlockTensorNames]
82
81
  attention_block_tensor_names: Optional[List[AttentionBlockTensorNames]] = None
83
- transformer_block_tensor_names: Optional[List[TransformerBlockTensorNames]] = None
82
+ transformer_block_tensor_names: Optional[
83
+ List[TransformerBlockTensorNames]
84
+ ] = None
84
85
 
85
86
 
86
87
  @dataclass
87
88
  class DownEncoderBlockTensorNames:
88
89
  residual_block_tensor_names: List[ResidualBlockTensorNames]
89
- transformer_block_tensor_names: Optional[List[TransformerBlockTensorNames]] = None
90
+ transformer_block_tensor_names: Optional[
91
+ List[TransformerBlockTensorNames]
92
+ ] = None
90
93
  downsample_conv: str = None
91
94
 
92
95
 
93
96
  @dataclass
94
97
  class UpDecoderBlockTensorNames:
95
98
  residual_block_tensor_names: List[ResidualBlockTensorNames]
96
- transformer_block_tensor_names: Optional[List[TransformerBlockTensorNames]] = None
99
+ transformer_block_tensor_names: Optional[
100
+ List[TransformerBlockTensorNames]
101
+ ] = None
97
102
  upsample_conv: str = None
98
103
 
99
104
 
100
105
  @dataclass
101
106
  class SkipUpDecoderBlockTensorNames:
102
107
  residual_block_tensor_names: List[ResidualBlockTensorNames]
103
- transformer_block_tensor_names: Optional[List[TransformerBlockTensorNames]] = None
108
+ transformer_block_tensor_names: Optional[
109
+ List[TransformerBlockTensorNames]
110
+ ] = None
104
111
  upsample_conv: str = None
105
112
 
106
113
 
@@ -119,7 +126,9 @@ def _map_to_converted_state(
119
126
  converted_state[f"{converted_state_param}.weight"]
120
127
  )
121
128
  if f"{state_param}.bias" in state:
122
- converted_state[f"{converted_state_param}.bias"] = state.pop(f"{state_param}.bias")
129
+ converted_state[f"{converted_state_param}.bias"] = state.pop(
130
+ f"{state_param}.bias"
131
+ )
123
132
  if squeeze_dims:
124
133
  converted_state[f"{converted_state_param}.bias"] = torch.squeeze(
125
134
  converted_state[f"{converted_state_param}.bias"]
@@ -220,25 +229,41 @@ class BaseLoader(loader.ModelLoader):
220
229
  f"{attention_layer_prefix}.v_projection",
221
230
  squeeze_dims=True,
222
231
  )
223
- converted_state[f"{attention_layer_prefix}.qkv_projection.weight"] = torch.concat(
224
- [
225
- converted_state[f"{attention_layer_prefix}.q_projection.weight"],
226
- converted_state[f"{attention_layer_prefix}.k_projection.weight"],
227
- converted_state[f"{attention_layer_prefix}.v_projection.weight"],
228
- ],
229
- axis=0,
232
+ converted_state[f"{attention_layer_prefix}.qkv_projection.weight"] = (
233
+ torch.concat(
234
+ [
235
+ converted_state[
236
+ f"{attention_layer_prefix}.q_projection.weight"
237
+ ],
238
+ converted_state[
239
+ f"{attention_layer_prefix}.k_projection.weight"
240
+ ],
241
+ converted_state[
242
+ f"{attention_layer_prefix}.v_projection.weight"
243
+ ],
244
+ ],
245
+ axis=0,
246
+ )
230
247
  )
231
248
  del converted_state[f"{attention_layer_prefix}.q_projection.weight"]
232
249
  del converted_state[f"{attention_layer_prefix}.k_projection.weight"]
233
250
  del converted_state[f"{attention_layer_prefix}.v_projection.weight"]
234
251
  if config.attention_config.qkv_use_bias:
235
- converted_state[f"{attention_layer_prefix}.qkv_projection.bias"] = torch.concat(
236
- [
237
- converted_state[f"{attention_layer_prefix}.q_projection.bias"],
238
- converted_state[f"{attention_layer_prefix}.k_projection.bias"],
239
- converted_state[f"{attention_layer_prefix}.v_projection.bias"],
240
- ],
241
- axis=0,
252
+ converted_state[f"{attention_layer_prefix}.qkv_projection.bias"] = (
253
+ torch.concat(
254
+ [
255
+ converted_state[
256
+ f"{attention_layer_prefix}.q_projection.bias"
257
+ ],
258
+ converted_state[
259
+ f"{attention_layer_prefix}.k_projection.bias"
260
+ ],
261
+ converted_state[
262
+ f"{attention_layer_prefix}.v_projection.bias"
263
+ ],
264
+ ],
265
+ axis=0,
266
+ )
242
267
  )
243
268
  del converted_state[f"{attention_layer_prefix}.q_projection.bias"]
244
269
  del converted_state[f"{attention_layer_prefix}.k_projection.bias"]
@@ -316,11 +341,17 @@ class BaseLoader(loader.ModelLoader):
316
341
  )
317
342
  else:
318
343
  _map_to_converted_state(
319
- state, tensor_names.w1, converted_state, f"{converted_state_param_prefix}.w1"
344
+ state,
345
+ tensor_names.w1,
346
+ converted_state,
347
+ f"{converted_state_param_prefix}.w1",
320
348
  )
321
349
 
322
350
  _map_to_converted_state(
323
- state, tensor_names.w2, converted_state, f"{converted_state_param_prefix}.w2"
351
+ state,
352
+ tensor_names.w2,
353
+ converted_state,
354
+ f"{converted_state_param_prefix}.w2",
324
355
  )
325
356
 
326
357
  def _map_transformer_block(
@@ -381,6 +412,7 @@ class BaseLoader(loader.ModelLoader):
381
412
  ):
382
413
  residual_block_config = unet_config.ResidualBlock2DConfig(
383
414
  in_channels=config.in_channels,
415
+ hidden_channels=config.in_channels,
384
416
  out_channels=config.in_channels,
385
417
  time_embedding_channels=config.time_embedding_channels,
386
418
  normalization_config=config.normalization_config,
@@ -435,6 +467,7 @@ class BaseLoader(loader.ModelLoader):
435
467
  f"{converted_state_param_prefix}.resnets.{i}",
436
468
  unet_config.ResidualBlock2DConfig(
437
469
  in_channels=input_channels,
470
+ hidden_channels=config.out_channels,
438
471
  out_channels=config.out_channels,
439
472
  time_embedding_channels=config.time_embedding_channels,
440
473
  normalization_config=config.normalization_config,
@@ -477,6 +510,7 @@ class BaseLoader(loader.ModelLoader):
477
510
  f"{converted_state_param_prefix}.resnets.{i}",
478
511
  unet_config.ResidualBlock2DConfig(
479
512
  in_channels=input_channels,
513
+ hidden_channels=config.out_channels,
480
514
  out_channels=config.out_channels,
481
515
  time_embedding_channels=config.time_embedding_channels,
482
516
  normalization_config=config.normalization_config,
@@ -509,9 +543,13 @@ class BaseLoader(loader.ModelLoader):
509
543
  ):
510
544
  for i in range(config.num_layers):
511
545
  res_skip_channels = (
512
- config.in_channels if (i == config.num_layers - 1) else config.out_channels
546
+ config.in_channels
547
+ if (i == config.num_layers - 1)
548
+ else config.out_channels
549
+ )
550
+ resnet_in_channels = (
551
+ config.prev_out_channels if i == 0 else config.out_channels
513
552
  )
514
- resnet_in_channels = config.prev_out_channels if i == 0 else config.out_channels
515
553
  self._map_residual_block(
516
554
  state,
517
555
  converted_state,
@@ -519,6 +557,7 @@ class BaseLoader(loader.ModelLoader):
519
557
  f"{converted_state_param_prefix}.resnets.{i}",
520
558
  unet_config.ResidualBlock2DConfig(
521
559
  in_channels=resnet_in_channels + res_skip_channels,
560
+ hidden_channels=config.out_channels,
522
561
  out_channels=config.out_channels,
523
562
  time_embedding_channels=config.time_embedding_channels,
524
563
  normalization_config=config.normalization_config,
@@ -559,11 +598,13 @@ class AutoEncoderModelLoader(BaseLoader):
559
598
  up_decoder_blocks_tensor_names: List[UpDecoderBlockTensorNames] = None
560
599
 
561
600
  def __init__(self, file_name: str, names: TensorNames):
562
- """AutoEncoderModelLoader constructor. Can be used to load encoder and decoder models.
601
+ """AutoEncoderModelLoader constructor.
602
+
603
+ Can be used to load encoder and decoder models.
563
604
 
564
605
  Args:
565
- file_name (str): Path to the checkpoint. Can be a directory or an
566
- exact file.
606
+ file_name (str): Path to the checkpoint. Can be a directory or an exact
607
+ file.
567
608
  names (TensorNames): An instance of `TensorNames` to determine mappings.
568
609
  """
569
610
  self._file_name = file_name
@@ -582,7 +623,8 @@ class AutoEncoderModelLoader(BaseLoader):
582
623
 
583
624
  Returns:
584
625
  missing_keys (List[str]): a list of str containing the missing keys.
585
- unexpected_keys (List[str]): a list of str containing the unexpected keys.
626
+ unexpected_keys (List[str]): a list of str containing the unexpected
627
+ keys.
586
628
 
587
629
  Raises:
588
630
  ValueError: If conversion results in unmapped tensors and strict mode is
@@ -599,9 +641,13 @@ class AutoEncoderModelLoader(BaseLoader):
599
641
  state, self._names.post_quant_conv, converted_state, "post_quant_conv"
600
642
  )
601
643
  if self._names.conv_in is not None:
602
- _map_to_converted_state(state, self._names.conv_in, converted_state, "conv_in")
644
+ _map_to_converted_state(
645
+ state, self._names.conv_in, converted_state, "conv_in"
646
+ )
603
647
  if self._names.conv_out is not None:
604
- _map_to_converted_state(state, self._names.conv_out, converted_state, "conv_out")
648
+ _map_to_converted_state(
649
+ state, self._names.conv_out, converted_state, "conv_out"
650
+ )
605
651
  if self._names.final_norm is not None:
606
652
  _map_to_converted_state(
607
653
  state, self._names.final_norm, converted_state, "final_norm"
@@ -614,7 +660,9 @@ class AutoEncoderModelLoader(BaseLoader):
614
660
  model.config.mid_block_config,
615
661
  )
616
662
 
617
- reversed_block_out_channels = list(reversed(model.config.block_out_channels))
663
+ reversed_block_out_channels = list(
664
+ reversed(model.config.block_out_channels)
665
+ )
618
666
  block_out_channels = reversed_block_out_channels[0]
619
667
  for i, out_channels in enumerate(reversed_block_out_channels):
620
668
  prev_output_channel = block_out_channels
@@ -642,6 +690,31 @@ class AutoEncoderModelLoader(BaseLoader):
642
690
  return model.load_state_dict(converted_state, strict=strict)
643
691
 
644
692
 
693
+ def build_attention_config(
694
+ num_heads,
695
+ dim,
696
+ num_query_groups,
697
+ rotary_percentage=0.0,
698
+ qkv_transpose_before_split=True,
699
+ qkv_use_bias=False,
700
+ output_proj_use_bias=True,
701
+ enable_kv_cache=False,
702
+ qkv_fused_interleaved=False,
703
+ ):
704
+
705
+ return layers_config.AttentionConfig(
706
+ num_heads=num_heads,
707
+ head_dim=dim // num_heads,
708
+ num_query_groups=num_query_groups,
709
+ rotary_percentage=rotary_percentage,
710
+ qkv_transpose_before_split=qkv_transpose_before_split,
711
+ qkv_use_bias=qkv_use_bias,
712
+ output_proj_use_bias=output_proj_use_bias,
713
+ enable_kv_cache=enable_kv_cache,
714
+ qkv_fused_interleaved=qkv_fused_interleaved,
715
+ )
716
+
717
+
645
718
  class DiffusionModelLoader(BaseLoader):
646
719
 
647
720
  @dataclass
@@ -655,11 +728,13 @@ class DiffusionModelLoader(BaseLoader):
655
728
  up_decoder_blocks_tensor_names: List[UpDecoderBlockTensorNames] = None
656
729
 
657
730
  def __init__(self, file_name: str, names: TensorNames):
658
- """DiffusionModelLoader constructor. Can be used to load diffusion models of Stable Diffusion.
731
+ """DiffusionModelLoader constructor.
732
+
733
+ Can be used to load diffusion models of Stable Diffusion.
659
734
 
660
735
  Args:
661
- file_name (str): Path to the checkpoint. Can be a directory or an
662
- exact file.
736
+ file_name (str): Path to the checkpoint. Can be a directory or an exact
737
+ file.
663
738
  names (TensorNames): An instance of `TensorNames` to determine mappings.
664
739
  """
665
740
  self._file_name = file_name
@@ -678,7 +753,8 @@ class DiffusionModelLoader(BaseLoader):
678
753
 
679
754
  Returns:
680
755
  missing_keys (List[str]): a list of str containing the missing keys.
681
- unexpected_keys (List[str]): a list of str containing the unexpected keys.
756
+ unexpected_keys (List[str]): a list of str containing the unexpected
757
+ keys.
682
758
 
683
759
  Raises:
684
760
  ValueError: If conversion results in unmapped tensors and strict mode is
@@ -690,20 +766,14 @@ class DiffusionModelLoader(BaseLoader):
690
766
  self._map_time_embedding(
691
767
  state, converted_state, "time_embedding", self._names.time_embedding
692
768
  )
693
- _map_to_converted_state(state, self._names.conv_in, converted_state, "conv_in")
694
- _map_to_converted_state(state, self._names.conv_out, converted_state, "conv_out")
695
769
  _map_to_converted_state(
696
- state, self._names.final_norm, converted_state, "final_norm"
770
+ state, self._names.conv_in, converted_state, "conv_in"
697
771
  )
698
-
699
- attention_config = layers_config.AttentionConfig(
700
- num_heads=config.transformer_num_attention_heads,
701
- num_query_groups=config.transformer_num_attention_heads,
702
- rotary_percentage=0.0,
703
- qkv_transpose_before_split=True,
704
- qkv_use_bias=False,
705
- output_proj_use_bias=True,
706
- enable_kv_cache=False,
772
+ _map_to_converted_state(
773
+ state, self._names.conv_out, converted_state, "conv_out"
774
+ )
775
+ _map_to_converted_state(
776
+ state, self._names.final_norm, converted_state, "final_norm"
707
777
  )
708
778
 
709
779
  # Map down_encoders.
@@ -736,13 +806,23 @@ class DiffusionModelLoader(BaseLoader):
736
806
  attention_block_config=unet_config.AttentionBlock2DConfig(
737
807
  dim=output_channel,
738
808
  normalization_config=config.transformer_norm_config,
739
- attention_config=attention_config,
809
+ attention_config=build_attention_config(
810
+ num_heads=config.transformer_num_attention_heads,
811
+ dim=output_channel,
812
+ num_query_groups=config.transformer_num_attention_heads,
813
+ ),
740
814
  ),
741
815
  cross_attention_block_config=unet_config.CrossAttentionBlock2DConfig(
742
816
  query_dim=output_channel,
743
817
  cross_dim=config.transformer_cross_attention_dim,
818
+ hidden_dim=output_channel,
819
+ output_dim=output_channel,
744
820
  normalization_config=config.transformer_norm_config,
745
- attention_config=attention_config,
821
+ attention_config=build_attention_config(
822
+ num_heads=config.transformer_num_attention_heads,
823
+ dim=output_channel,
824
+ num_query_groups=config.transformer_num_attention_heads,
825
+ ),
746
826
  ),
747
827
  pre_conv_normalization_config=config.transformer_pre_conv_norm_config,
748
828
  feed_forward_block_config=unet_config.FeedForwardBlock2DConfig(
@@ -794,13 +874,23 @@ class DiffusionModelLoader(BaseLoader):
794
874
  attention_block_config=unet_config.AttentionBlock2DConfig(
795
875
  dim=mid_block_channels,
796
876
  normalization_config=config.transformer_norm_config,
797
- attention_config=attention_config,
877
+ attention_config=build_attention_config(
878
+ num_heads=config.transformer_num_attention_heads,
879
+ dim=mid_block_channels,
880
+ num_query_groups=config.transformer_num_attention_heads,
881
+ ),
798
882
  ),
799
883
  cross_attention_block_config=unet_config.CrossAttentionBlock2DConfig(
800
884
  query_dim=mid_block_channels,
801
885
  cross_dim=config.transformer_cross_attention_dim,
886
+ hidden_dim=mid_block_channels,
887
+ output_dim=mid_block_channels,
802
888
  normalization_config=config.transformer_norm_config,
803
- attention_config=attention_config,
889
+ attention_config=build_attention_config(
890
+ num_heads=config.transformer_num_attention_heads,
891
+ dim=mid_block_channels,
892
+ num_query_groups=config.transformer_num_attention_heads,
893
+ ),
804
894
  ),
805
895
  pre_conv_normalization_config=config.transformer_pre_conv_norm_config,
806
896
  feed_forward_block_config=unet_config.FeedForwardBlock2DConfig(
@@ -825,7 +915,9 @@ class DiffusionModelLoader(BaseLoader):
825
915
  )
826
916
 
827
917
  # Map up_decoders.
828
- reversed_block_out_channels = list(reversed(model.config.block_out_channels))
918
+ reversed_block_out_channels = list(
919
+ reversed(model.config.block_out_channels)
920
+ )
829
921
  up_decoder_layers_per_block = config.layers_per_block + 1
830
922
  output_channel = reversed_block_out_channels[0]
831
923
  for i, block_out_channel in enumerate(reversed_block_out_channels):
@@ -857,13 +949,23 @@ class DiffusionModelLoader(BaseLoader):
857
949
  attention_block_config=unet_config.AttentionBlock2DConfig(
858
950
  dim=output_channel,
859
951
  normalization_config=config.transformer_norm_config,
860
- attention_config=attention_config,
952
+ attention_config=build_attention_config(
953
+ num_heads=config.transformer_num_attention_heads,
954
+ dim=output_channel,
955
+ num_query_groups=config.transformer_num_attention_heads,
956
+ ),
861
957
  ),
862
958
  cross_attention_block_config=unet_config.CrossAttentionBlock2DConfig(
863
959
  query_dim=output_channel,
864
960
  cross_dim=config.transformer_cross_attention_dim,
961
+ hidden_dim=output_channel,
962
+ output_dim=output_channel,
865
963
  normalization_config=config.transformer_norm_config,
866
- attention_config=attention_config,
964
+ attention_config=build_attention_config(
965
+ num_heads=config.transformer_num_attention_heads,
966
+ dim=output_channel,
967
+ num_query_groups=config.transformer_num_attention_heads,
968
+ ),
867
969
  ),
868
970
  pre_conv_normalization_config=config.transformer_pre_conv_norm_config,
869
971
  feed_forward_block_config=unet_config.FeedForwardBlock2DConfig(
@@ -917,8 +1019,14 @@ class DiffusionModelLoader(BaseLoader):
917
1019
  tensor_names: TimeEmbeddingTensorNames,
918
1020
  ):
919
1021
  _map_to_converted_state(
920
- state, tensor_names.w1, converted_state, f"{converted_state_param_prefix}.w1"
1022
+ state,
1023
+ tensor_names.w1,
1024
+ converted_state,
1025
+ f"{converted_state_param_prefix}.w1",
921
1026
  )
922
1027
  _map_to_converted_state(
923
- state, tensor_names.w2, converted_state, f"{converted_state_param_prefix}.w2"
1028
+ state,
1029
+ tensor_names.w2,
1030
+ converted_state,
1031
+ f"{converted_state_param_prefix}.w2",
924
1032
  )