ai-edge-torch-nightly 0.2.0.dev20240714__py3-none-any.whl → 0.3.0.dev20240926__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_edge_torch/__init__.py +5 -4
- ai_edge_torch/_convert/conversion.py +112 -0
- ai_edge_torch/_convert/conversion_utils.py +64 -0
- ai_edge_torch/{convert → _convert}/converter.py +94 -48
- ai_edge_torch/_convert/fx_passes/__init__.py +22 -0
- ai_edge_torch/{convert → _convert}/fx_passes/build_aten_composite_pass.py +107 -44
- ai_edge_torch/{convert → _convert}/fx_passes/build_interpolate_composite_pass.py +23 -20
- ai_edge_torch/{convert → _convert}/fx_passes/inject_mlir_debuginfo_pass.py +5 -6
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/__init__.py +1 -1
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_check.py +39 -9
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_mark.py +2 -0
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +1 -0
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +17 -8
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +9 -8
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +31 -18
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +2 -2
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/pass_body.py +34 -24
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/utils.py +2 -0
- ai_edge_torch/_convert/signature.py +66 -0
- ai_edge_torch/_convert/test/test_convert.py +495 -0
- ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
- ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
- ai_edge_torch/{convert → _convert}/test/test_to_channel_last_io.py +5 -5
- ai_edge_torch/{convert → _convert}/to_channel_last_io.py +10 -3
- ai_edge_torch/config.py +27 -0
- ai_edge_torch/conftest.py +20 -0
- ai_edge_torch/debug/culprit.py +72 -40
- ai_edge_torch/debug/test/test_culprit.py +7 -5
- ai_edge_torch/debug/test/test_search_model.py +8 -7
- ai_edge_torch/debug/utils.py +14 -3
- ai_edge_torch/fx_pass_base.py +101 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/gemma/{gemma.py → gemma1.py} +69 -55
- ai_edge_torch/generative/examples/gemma/gemma2.py +267 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma2.py +57 -0
- ai_edge_torch/generative/examples/gemma/verify_util.py +143 -0
- ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/openelm/openelm.py +206 -0
- ai_edge_torch/generative/examples/openelm/verify.py +64 -0
- ai_edge_torch/generative/examples/phi/__init__.py +14 -0
- ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/phi/convert_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/{phi2 → phi}/phi2.py +70 -51
- ai_edge_torch/generative/examples/phi/phi3.py +286 -0
- ai_edge_torch/generative/examples/phi/verify.py +65 -0
- ai_edge_torch/generative/examples/phi/verify_phi3.py +70 -0
- ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
- ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/smollm/smollm.py +101 -0
- ai_edge_torch/generative/examples/smollm/verify.py +62 -0
- ai_edge_torch/generative/examples/stable_diffusion/attention.py +3 -1
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +83 -13
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +27 -14
- ai_edge_torch/generative/examples/stable_diffusion/decoder.py +74 -9
- ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +179 -37
- ai_edge_torch/generative/examples/stable_diffusion/encoder.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +83 -58
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +1 -0
- ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +4 -1
- ai_edge_torch/generative/examples/stable_diffusion/util.py +9 -3
- ai_edge_torch/generative/examples/t5/convert_to_tflite.py +28 -25
- ai_edge_torch/generative/examples/t5/t5.py +208 -159
- ai_edge_torch/generative/examples/t5/t5_attention.py +45 -30
- ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
- ai_edge_torch/generative/examples/test_models/toy_model.py +69 -41
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +50 -64
- ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +41 -39
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +67 -54
- ai_edge_torch/generative/examples/tiny_llama/verify.py +64 -0
- ai_edge_torch/generative/fx_passes/__init__.py +4 -5
- ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +10 -7
- ai_edge_torch/generative/layers/attention.py +141 -102
- ai_edge_torch/generative/layers/attention_utils.py +53 -12
- ai_edge_torch/generative/layers/builder.py +37 -7
- ai_edge_torch/generative/layers/feed_forward.py +39 -14
- ai_edge_torch/generative/layers/kv_cache.py +162 -50
- ai_edge_torch/generative/layers/model_config.py +84 -30
- ai_edge_torch/generative/layers/normalization.py +185 -7
- ai_edge_torch/generative/layers/rotary_position_embedding.py +6 -4
- ai_edge_torch/generative/layers/scaled_dot_product_attention.py +48 -21
- ai_edge_torch/generative/layers/unet/blocks_2d.py +136 -77
- ai_edge_torch/generative/layers/unet/builder.py +7 -4
- ai_edge_torch/generative/layers/unet/model_config.py +17 -15
- ai_edge_torch/generative/quantize/example.py +7 -8
- ai_edge_torch/generative/quantize/quant_recipe.py +10 -7
- ai_edge_torch/generative/quantize/quant_recipe_utils.py +12 -1
- ai_edge_torch/generative/quantize/quant_recipes.py +8 -0
- ai_edge_torch/generative/test/test_kv_cache.py +120 -0
- ai_edge_torch/generative/test/{loader_test.py → test_loader.py} +9 -7
- ai_edge_torch/generative/test/test_model_conversion.py +124 -188
- ai_edge_torch/generative/test/test_model_conversion_large.py +251 -0
- ai_edge_torch/generative/test/test_quantize.py +76 -60
- ai_edge_torch/generative/test/utils.py +54 -0
- ai_edge_torch/generative/utilities/converter.py +82 -0
- ai_edge_torch/generative/utilities/loader.py +120 -57
- ai_edge_torch/generative/utilities/stable_diffusion_loader.py +165 -57
- ai_edge_torch/generative/utilities/t5_loader.py +110 -81
- ai_edge_torch/generative/utilities/verifier.py +247 -0
- ai_edge_torch/hlfb/__init__.py +1 -1
- ai_edge_torch/hlfb/mark_pattern/__init__.py +9 -7
- ai_edge_torch/hlfb/mark_pattern/passes.py +23 -3
- ai_edge_torch/hlfb/mark_pattern/pattern.py +39 -30
- ai_edge_torch/hlfb/test/test_mark_pattern.py +46 -20
- ai_edge_torch/hlfb/test/test_stablehlo_composite_builder.py +24 -11
- ai_edge_torch/lowertools/__init__.py +18 -0
- ai_edge_torch/lowertools/_shim.py +80 -0
- ai_edge_torch/lowertools/common_utils.py +142 -0
- ai_edge_torch/lowertools/odml_torch_utils.py +255 -0
- ai_edge_torch/lowertools/test_utils.py +60 -0
- ai_edge_torch/lowertools/torch_xla_utils.py +284 -0
- ai_edge_torch/{generative/quantize/ai_edge_quantizer_glue → lowertools}/translate_recipe.py +29 -14
- ai_edge_torch/model.py +53 -18
- ai_edge_torch/odml_torch/__init__.py +20 -0
- ai_edge_torch/odml_torch/_torch_future.py +61 -0
- ai_edge_torch/odml_torch/_torch_library.py +19 -0
- ai_edge_torch/odml_torch/composite/__init__.py +16 -0
- ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
- ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
- ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
- ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
- ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
- ai_edge_torch/odml_torch/export.py +357 -0
- ai_edge_torch/odml_torch/export_utils.py +168 -0
- ai_edge_torch/odml_torch/jax_bridge/__init__.py +15 -0
- ai_edge_torch/odml_torch/jax_bridge/_wrap.py +150 -0
- ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
- ai_edge_torch/odml_torch/lowerings/__init__.py +25 -0
- ai_edge_torch/odml_torch/lowerings/_basic.py +258 -0
- ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
- ai_edge_torch/odml_torch/lowerings/_convolution.py +241 -0
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +252 -0
- ai_edge_torch/odml_torch/lowerings/_layer_norm.py +78 -0
- ai_edge_torch/odml_torch/lowerings/context.py +42 -0
- ai_edge_torch/odml_torch/lowerings/registry.py +96 -0
- ai_edge_torch/odml_torch/lowerings/utils.py +185 -0
- ai_edge_torch/odml_torch/passes/__init__.py +38 -0
- ai_edge_torch/odml_torch/tf_integration.py +194 -0
- ai_edge_torch/quantize/pt2e_quantizer.py +52 -24
- ai_edge_torch/quantize/pt2e_quantizer_utils.py +43 -23
- ai_edge_torch/quantize/quant_config.py +13 -9
- ai_edge_torch/testing/model_coverage/model_coverage.py +29 -16
- ai_edge_torch/version.py +16 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/METADATA +7 -3
- ai_edge_torch_nightly-0.3.0.dev20240926.dist-info/RECORD +177 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/WHEEL +1 -1
- ai_edge_torch/convert/conversion.py +0 -117
- ai_edge_torch/convert/conversion_utils.py +0 -400
- ai_edge_torch/convert/fx_passes/__init__.py +0 -59
- ai_edge_torch/convert/fx_passes/_pass_base.py +0 -49
- ai_edge_torch/convert/fx_passes/canonicalize_pass.py +0 -37
- ai_edge_torch/convert/test/test_convert.py +0 -311
- ai_edge_torch/convert/test/test_convert_composites.py +0 -192
- ai_edge_torch/convert/test/test_convert_multisig.py +0 -139
- ai_edge_torch/generative/examples/gemma/convert_to_tflite.py +0 -66
- ai_edge_torch/generative/examples/phi2/convert_to_tflite.py +0 -64
- ai_edge_torch/generative/examples/test_models/toy_model_with_external_kv_cache.py +0 -161
- ai_edge_torch/generative/quantize/ai_edge_quantizer_glue/__init__.py +0 -0
- ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/RECORD +0 -121
- /ai_edge_torch/{convert → _convert}/__init__.py +0 -0
- /ai_edge_torch/{convert → _convert}/test/__init__.py +0 -0
- /ai_edge_torch/generative/examples/{phi2 → openelm}/__init__.py +0 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/LICENSE +0 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,68 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Example of converting SmolLM model to multi-signature tflite model."""
|
17
|
+
|
18
|
+
import os
|
19
|
+
import pathlib
|
20
|
+
|
21
|
+
from absl import app
|
22
|
+
from absl import flags
|
23
|
+
from ai_edge_torch.generative.examples.smollm import smollm
|
24
|
+
from ai_edge_torch.generative.utilities import converter
|
25
|
+
|
26
|
+
_CHECKPOINT_PATH = flags.DEFINE_string(
|
27
|
+
'checkpoint_path',
|
28
|
+
os.path.join(pathlib.Path.home(), 'Downloads/llm_data/smollm'),
|
29
|
+
'The path to the model checkpoint, or directory holding the checkpoint.',
|
30
|
+
)
|
31
|
+
_TFLITE_PATH = flags.DEFINE_string(
|
32
|
+
'tflite_path',
|
33
|
+
'/tmp/',
|
34
|
+
'The tflite file path to export.',
|
35
|
+
)
|
36
|
+
_PREFILL_SEQ_LEN = flags.DEFINE_integer(
|
37
|
+
'prefill_seq_len',
|
38
|
+
1024,
|
39
|
+
'The maximum size of prefill input tensor.',
|
40
|
+
)
|
41
|
+
_KV_CACHE_MAX_LEN = flags.DEFINE_integer(
|
42
|
+
'kv_cache_max_len',
|
43
|
+
1280,
|
44
|
+
'The maximum size of KV cache buffer, including both prefill and decode.',
|
45
|
+
)
|
46
|
+
_QUANTIZE = flags.DEFINE_bool(
|
47
|
+
'quantize',
|
48
|
+
True,
|
49
|
+
'Whether the model should be quantized.',
|
50
|
+
)
|
51
|
+
|
52
|
+
|
53
|
+
def main(_):
|
54
|
+
pytorch_model = smollm.build_model(
|
55
|
+
_CHECKPOINT_PATH.value, kv_cache_max_len=_KV_CACHE_MAX_LEN.value
|
56
|
+
)
|
57
|
+
quant_suffix = 'q8' if _QUANTIZE.value else 'f32'
|
58
|
+
output_filename = f'smollm_{quant_suffix}_seq{_PREFILL_SEQ_LEN.value}_ekv{_KV_CACHE_MAX_LEN.value}.tflite'
|
59
|
+
converter.convert_to_tflite(
|
60
|
+
pytorch_model,
|
61
|
+
tflite_path=os.path.join(_TFLITE_PATH.value, output_filename),
|
62
|
+
prefill_seq_len=_PREFILL_SEQ_LEN.value,
|
63
|
+
quantize=_QUANTIZE.value,
|
64
|
+
)
|
65
|
+
|
66
|
+
|
67
|
+
if __name__ == '__main__':
|
68
|
+
app.run(main)
|
@@ -0,0 +1,101 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Example of building a SmolLM model."""
|
17
|
+
|
18
|
+
import copy
|
19
|
+
|
20
|
+
from ai_edge_torch.generative.examples.tiny_llama import tiny_llama
|
21
|
+
import ai_edge_torch.generative.layers.model_config as cfg
|
22
|
+
import ai_edge_torch.generative.utilities.loader as loading_utils
|
23
|
+
from torch import nn
|
24
|
+
|
25
|
+
TENSOR_NAMES = copy.copy(tiny_llama.TENSOR_NAMES)
|
26
|
+
# SmolLM re-uses the embedding as the head projection layer.
|
27
|
+
TENSOR_NAMES.lm_head = None
|
28
|
+
|
29
|
+
|
30
|
+
class SmolLM(tiny_llama.TinyLlama):
|
31
|
+
"""A SmolLM model built from the Edge Generative API layers.
|
32
|
+
|
33
|
+
SmolLM shares the same architecture as TinyLlama, but with different model
|
34
|
+
sizes.
|
35
|
+
"""
|
36
|
+
|
37
|
+
def __init__(self, config: cfg.ModelConfig):
|
38
|
+
super().__init__(config)
|
39
|
+
# SmolLM re-uses the embedding as the head projection layer.
|
40
|
+
self.lm_head.weight.data = self.tok_embedding.weight.data
|
41
|
+
|
42
|
+
|
43
|
+
def get_model_config(kv_cache_max_len: int = 1024) -> cfg.ModelConfig:
|
44
|
+
"""Returns the model config for a SmolLM 135M model.
|
45
|
+
|
46
|
+
Args:
|
47
|
+
kv_cache_max_len (int): The maximum sequence length of the KV cache. Default
|
48
|
+
is 1024.
|
49
|
+
|
50
|
+
Returns:
|
51
|
+
The model config for a SmolLM model.
|
52
|
+
"""
|
53
|
+
attn_config = cfg.AttentionConfig(
|
54
|
+
num_heads=9,
|
55
|
+
head_dim=64,
|
56
|
+
num_query_groups=3,
|
57
|
+
rotary_percentage=1.0,
|
58
|
+
)
|
59
|
+
ff_config = cfg.FeedForwardConfig(
|
60
|
+
type=cfg.FeedForwardType.GATED,
|
61
|
+
activation=cfg.ActivationConfig(cfg.ActivationType.SILU),
|
62
|
+
intermediate_size=1536,
|
63
|
+
)
|
64
|
+
norm_config = cfg.NormalizationConfig(type=cfg.NormalizationType.RMS_NORM)
|
65
|
+
block_config = cfg.TransformerBlockConfig(
|
66
|
+
attn_config=attn_config,
|
67
|
+
ff_config=ff_config,
|
68
|
+
pre_attention_norm_config=norm_config,
|
69
|
+
post_attention_norm_config=norm_config,
|
70
|
+
)
|
71
|
+
config = cfg.ModelConfig(
|
72
|
+
vocab_size=49152,
|
73
|
+
num_layers=30,
|
74
|
+
max_seq_len=2048,
|
75
|
+
embedding_dim=576,
|
76
|
+
kv_cache_max_len=kv_cache_max_len,
|
77
|
+
block_configs=block_config,
|
78
|
+
final_norm_config=norm_config,
|
79
|
+
enable_hlfb=True,
|
80
|
+
)
|
81
|
+
return config
|
82
|
+
|
83
|
+
|
84
|
+
def get_fake_model_config(**kwargs) -> cfg.ModelConfig:
|
85
|
+
config = get_model_config(**kwargs)
|
86
|
+
config.vocab_size = 128
|
87
|
+
config.num_layers = 2
|
88
|
+
# SmolLM has only one block config.
|
89
|
+
config.block_config(0).ff_config.intermediate_size = 64
|
90
|
+
return config
|
91
|
+
|
92
|
+
|
93
|
+
def build_model(checkpoint_path: str, **kwargs) -> nn.Module:
|
94
|
+
config = get_model_config(**kwargs)
|
95
|
+
model = SmolLM(config)
|
96
|
+
loader = loading_utils.ModelLoader(checkpoint_path, TENSOR_NAMES)
|
97
|
+
# Since embedding and lm-head use the same weight, we need to set strict
|
98
|
+
# to False.
|
99
|
+
loader.load(model, strict=False)
|
100
|
+
model.eval()
|
101
|
+
return model
|
@@ -0,0 +1,62 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Verifies the reauthored SmolLM-135M model."""
|
17
|
+
|
18
|
+
import logging
|
19
|
+
import pathlib
|
20
|
+
|
21
|
+
from absl import app
|
22
|
+
from absl import flags
|
23
|
+
from ai_edge_torch.generative.examples.smollm import smollm
|
24
|
+
from ai_edge_torch.generative.utilities import verifier
|
25
|
+
import transformers
|
26
|
+
|
27
|
+
|
28
|
+
_PROMPTS = flags.DEFINE_multi_string(
|
29
|
+
"prompts",
|
30
|
+
"What is the meaning of life?",
|
31
|
+
"The input prompts to generate answers.",
|
32
|
+
)
|
33
|
+
|
34
|
+
|
35
|
+
def main(_):
|
36
|
+
checkpoint = "HuggingFaceTB/SmolLM-135M"
|
37
|
+
logging.info("Loading the original model from: %s", checkpoint)
|
38
|
+
wrapper_model = verifier.ModelWrapper(
|
39
|
+
model=transformers.AutoModelForCausalLM.from_pretrained(checkpoint),
|
40
|
+
)
|
41
|
+
# Locate the cached dir.
|
42
|
+
cached_config_file = transformers.utils.cached_file(
|
43
|
+
checkpoint, transformers.utils.CONFIG_NAME
|
44
|
+
)
|
45
|
+
reauthored_checkpoint = pathlib.Path(cached_config_file).parent
|
46
|
+
logging.info("Building the reauthored model from: %s", reauthored_checkpoint)
|
47
|
+
reauthored_model = smollm.build_model(reauthored_checkpoint)
|
48
|
+
|
49
|
+
logging.info("Loading the tokenizer from: %s", checkpoint)
|
50
|
+
tokenizer = transformers.AutoTokenizer.from_pretrained(checkpoint)
|
51
|
+
|
52
|
+
verifier.verify_reauthored_model(
|
53
|
+
original_model=wrapper_model,
|
54
|
+
reauthored_model=reauthored_model,
|
55
|
+
tokenizer=tokenizer,
|
56
|
+
generate_prompts=_PROMPTS.value,
|
57
|
+
atol=1e-04,
|
58
|
+
)
|
59
|
+
|
60
|
+
|
61
|
+
if __name__ == "__main__":
|
62
|
+
app.run(main)
|
@@ -73,7 +73,9 @@ class SelfAttention(nn.Module):
|
|
73
73
|
|
74
74
|
class CrossAttention(nn.Module):
|
75
75
|
|
76
|
-
def __init__(
|
76
|
+
def __init__(
|
77
|
+
self, n_heads, d_embed, d_cross, in_proj_bias=True, out_proj_bias=True
|
78
|
+
):
|
77
79
|
super().__init__()
|
78
80
|
self.q_proj = nn.Linear(d_embed, d_embed, bias=in_proj_bias)
|
79
81
|
self.k_proj = nn.Linear(d_cross, d_embed, bias=in_proj_bias)
|
@@ -13,25 +13,34 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
15
|
|
16
|
-
import torch
|
17
|
-
from torch import nn
|
18
|
-
|
19
16
|
from ai_edge_torch.generative.layers.attention import TransformerBlock
|
20
17
|
import ai_edge_torch.generative.layers.attention_utils as attention_utils
|
21
18
|
import ai_edge_torch.generative.layers.builder as builder
|
22
19
|
import ai_edge_torch.generative.layers.model_config as cfg
|
23
20
|
import ai_edge_torch.generative.utilities.loader as loading_utils
|
21
|
+
import torch
|
22
|
+
from torch import nn
|
24
23
|
|
25
24
|
TENSOR_NAMES = loading_utils.ModelLoader.TensorNames(
|
26
|
-
ff_up_proj=
|
27
|
-
|
25
|
+
ff_up_proj=(
|
26
|
+
"cond_stage_model.transformer.text_model.encoder.layers.{}.mlp.fc1"
|
27
|
+
),
|
28
|
+
ff_down_proj=(
|
29
|
+
"cond_stage_model.transformer.text_model.encoder.layers.{}.mlp.fc2"
|
30
|
+
),
|
28
31
|
attn_query_proj="cond_stage_model.transformer.text_model.encoder.layers.{}.self_attn.q_proj",
|
29
32
|
attn_key_proj="cond_stage_model.transformer.text_model.encoder.layers.{}.self_attn.k_proj",
|
30
33
|
attn_value_proj="cond_stage_model.transformer.text_model.encoder.layers.{}.self_attn.v_proj",
|
31
34
|
attn_output_proj="cond_stage_model.transformer.text_model.encoder.layers.{}.self_attn.out_proj",
|
32
|
-
pre_attn_norm=
|
33
|
-
|
34
|
-
|
35
|
+
pre_attn_norm=(
|
36
|
+
"cond_stage_model.transformer.text_model.encoder.layers.{}.layer_norm1"
|
37
|
+
),
|
38
|
+
post_attn_norm=(
|
39
|
+
"cond_stage_model.transformer.text_model.encoder.layers.{}.layer_norm2"
|
40
|
+
),
|
41
|
+
embedding=(
|
42
|
+
"cond_stage_model.transformer.text_model.embeddings.token_embedding"
|
43
|
+
),
|
35
44
|
embedding_position="cond_stage_model.transformer.text_model.embeddings.position_embedding.weight",
|
36
45
|
final_norm="cond_stage_model.transformer.text_model.final_layer_norm",
|
37
46
|
lm_head=None,
|
@@ -39,7 +48,8 @@ TENSOR_NAMES = loading_utils.ModelLoader.TensorNames(
|
|
39
48
|
|
40
49
|
|
41
50
|
class CLIP(nn.Module):
|
42
|
-
"""CLIP text encoder
|
51
|
+
"""CLIP text encoder.
|
52
|
+
|
43
53
|
For details, see https://arxiv.org/abs/2103.00020
|
44
54
|
"""
|
45
55
|
|
@@ -51,10 +61,14 @@ class CLIP(nn.Module):
|
|
51
61
|
)
|
52
62
|
|
53
63
|
self.config = config
|
64
|
+
# CLIP has only one block config.
|
65
|
+
block_config = config.block_config(0)
|
54
66
|
self.transformer_blocks = nn.ModuleList(
|
55
|
-
TransformerBlock(config) for _ in range(config.num_layers)
|
67
|
+
TransformerBlock(block_config, config) for _ in range(config.num_layers)
|
68
|
+
)
|
69
|
+
self.final_norm = builder.build_norm(
|
70
|
+
config.embedding_dim, config.final_norm_config
|
56
71
|
)
|
57
|
-
self.final_norm = builder.build_norm(config.embedding_dim, config.final_norm_config)
|
58
72
|
|
59
73
|
self.mask_cache = attention_utils.build_causal_mask_cache(
|
60
74
|
size=config.max_seq_len, dtype=torch.float32
|
@@ -62,7 +76,7 @@ class CLIP(nn.Module):
|
|
62
76
|
|
63
77
|
@torch.inference_mode
|
64
78
|
def forward(self, tokens: torch.LongTensor) -> torch.FloatTensor:
|
65
|
-
tokens = tokens.type(torch.
|
79
|
+
tokens = tokens.type(torch.int)
|
66
80
|
|
67
81
|
state = self.tok_embedding(tokens) + self.tok_embedding_position
|
68
82
|
for layer in self.transformer_blocks:
|
@@ -72,6 +86,7 @@ class CLIP(nn.Module):
|
|
72
86
|
|
73
87
|
|
74
88
|
def get_model_config() -> cfg.ModelConfig:
|
89
|
+
"""Get configs for the CLIP of Stable Diffusion v1.5."""
|
75
90
|
max_seq_len = 77
|
76
91
|
vocab_size = 49408
|
77
92
|
num_layers = 12
|
@@ -81,6 +96,7 @@ def get_model_config() -> cfg.ModelConfig:
|
|
81
96
|
|
82
97
|
attn_config = cfg.AttentionConfig(
|
83
98
|
num_heads=num_heads,
|
99
|
+
head_dim=embedding_dim // num_heads,
|
84
100
|
num_query_groups=num_query_groups,
|
85
101
|
rotary_percentage=0.0,
|
86
102
|
qkv_use_bias=True,
|
@@ -99,15 +115,69 @@ def get_model_config() -> cfg.ModelConfig:
|
|
99
115
|
|
100
116
|
norm_config = cfg.NormalizationConfig(type=cfg.NormalizationType.LAYER_NORM)
|
101
117
|
|
118
|
+
block_config = cfg.TransformerBlockConfig(
|
119
|
+
attn_config=attn_config,
|
120
|
+
ff_config=ff_config,
|
121
|
+
pre_attention_norm_config=norm_config,
|
122
|
+
post_attention_norm_config=norm_config,
|
123
|
+
)
|
124
|
+
|
102
125
|
config = cfg.ModelConfig(
|
103
126
|
vocab_size=vocab_size,
|
104
127
|
num_layers=num_layers,
|
105
128
|
max_seq_len=max_seq_len,
|
106
129
|
embedding_dim=embedding_dim,
|
130
|
+
block_configs=block_config,
|
131
|
+
final_norm_config=norm_config,
|
132
|
+
enable_hlfb=True,
|
133
|
+
)
|
134
|
+
|
135
|
+
return config
|
136
|
+
|
137
|
+
|
138
|
+
def get_fake_model_config() -> cfg.ModelConfig:
|
139
|
+
"""Get fake configs for the CLIP of Stable Diffusion v1.5 for testing."""
|
140
|
+
max_seq_len = 6
|
141
|
+
vocab_size = 100
|
142
|
+
num_layers = 2
|
143
|
+
num_heads = 12
|
144
|
+
num_query_groups = 12
|
145
|
+
embedding_dim = 24
|
146
|
+
|
147
|
+
attn_config = cfg.AttentionConfig(
|
148
|
+
num_heads=num_heads,
|
149
|
+
head_dim=embedding_dim // num_heads,
|
150
|
+
num_query_groups=num_query_groups,
|
151
|
+
rotary_percentage=0.0,
|
152
|
+
qkv_use_bias=True,
|
153
|
+
qkv_transpose_before_split=True,
|
154
|
+
qkv_fused_interleaved=False,
|
155
|
+
output_proj_use_bias=True,
|
156
|
+
enable_kv_cache=False,
|
157
|
+
)
|
158
|
+
|
159
|
+
ff_config = cfg.FeedForwardConfig(
|
160
|
+
type=cfg.FeedForwardType.SEQUENTIAL,
|
161
|
+
activation=cfg.ActivationConfig(cfg.ActivationType.GELU_QUICK),
|
162
|
+
intermediate_size=embedding_dim * 4,
|
163
|
+
use_bias=True,
|
164
|
+
)
|
165
|
+
|
166
|
+
norm_config = cfg.NormalizationConfig(type=cfg.NormalizationType.LAYER_NORM)
|
167
|
+
|
168
|
+
block_config = cfg.TransformerBlockConfig(
|
107
169
|
attn_config=attn_config,
|
108
170
|
ff_config=ff_config,
|
109
171
|
pre_attention_norm_config=norm_config,
|
110
|
-
|
172
|
+
post_attention_norm_config=norm_config,
|
173
|
+
)
|
174
|
+
|
175
|
+
config = cfg.ModelConfig(
|
176
|
+
vocab_size=vocab_size,
|
177
|
+
num_layers=num_layers,
|
178
|
+
max_seq_len=max_seq_len,
|
179
|
+
embedding_dim=embedding_dim,
|
180
|
+
block_configs=block_config,
|
111
181
|
final_norm_config=norm_config,
|
112
182
|
enable_hlfb=True,
|
113
183
|
)
|
@@ -18,19 +18,22 @@ import os
|
|
18
18
|
from pathlib import Path
|
19
19
|
from typing import Optional
|
20
20
|
|
21
|
-
import torch
|
22
|
-
|
23
21
|
import ai_edge_torch
|
24
22
|
import ai_edge_torch.generative.examples.stable_diffusion.clip as clip
|
25
23
|
import ai_edge_torch.generative.examples.stable_diffusion.decoder as decoder
|
26
24
|
import ai_edge_torch.generative.examples.stable_diffusion.diffusion as diffusion
|
27
25
|
from ai_edge_torch.generative.examples.stable_diffusion.encoder import Encoder
|
28
26
|
import ai_edge_torch.generative.examples.stable_diffusion.util as util
|
27
|
+
from ai_edge_torch.generative.quantize import quant_recipes
|
29
28
|
import ai_edge_torch.generative.utilities.stable_diffusion_loader as stable_diffusion_loader
|
29
|
+
import torch
|
30
30
|
|
31
31
|
arg_parser = argparse.ArgumentParser()
|
32
32
|
arg_parser.add_argument(
|
33
|
-
'--clip_ckpt',
|
33
|
+
'--clip_ckpt',
|
34
|
+
type=str,
|
35
|
+
help='Path to source CLIP model checkpoint',
|
36
|
+
required=True,
|
34
37
|
)
|
35
38
|
arg_parser.add_argument(
|
36
39
|
'--diffusion_ckpt',
|
@@ -60,6 +63,7 @@ def convert_stable_diffusion_to_tflite(
|
|
60
63
|
decoder_ckpt_path: str,
|
61
64
|
image_height: int = 512,
|
62
65
|
image_width: int = 512,
|
66
|
+
quantize: bool = True,
|
63
67
|
):
|
64
68
|
|
65
69
|
clip_model = clip.CLIP(clip.get_model_config())
|
@@ -90,10 +94,14 @@ def convert_stable_diffusion_to_tflite(
|
|
90
94
|
n_tokens = 77
|
91
95
|
timestamp = 0
|
92
96
|
len_prompt = 1
|
93
|
-
prompt_tokens = torch.full((1, n_tokens), 0, dtype=torch.
|
94
|
-
input_image = torch.full(
|
97
|
+
prompt_tokens = torch.full((1, n_tokens), 0, dtype=torch.int)
|
98
|
+
input_image = torch.full(
|
99
|
+
(1, 3, image_height, image_width), 0, dtype=torch.float32
|
100
|
+
)
|
95
101
|
noise = torch.full(
|
96
|
-
(len_prompt, 4, image_height // 8, image_width // 8),
|
102
|
+
(len_prompt, 4, image_height // 8, image_width // 8),
|
103
|
+
0,
|
104
|
+
dtype=torch.float32,
|
97
105
|
)
|
98
106
|
|
99
107
|
input_latents = torch.zeros_like(noise)
|
@@ -105,15 +113,19 @@ def convert_stable_diffusion_to_tflite(
|
|
105
113
|
if not os.path.exists(output_dir):
|
106
114
|
Path(output_dir).mkdir(parents=True, exist_ok=True)
|
107
115
|
|
116
|
+
quant_config = (
|
117
|
+
quant_recipes.full_int8_weight_only_recipe() if quantize else None
|
118
|
+
)
|
119
|
+
|
108
120
|
# TODO(yichunk): convert to multi signature tflite model.
|
109
121
|
# CLIP text encoder
|
110
|
-
ai_edge_torch.signature('encode', clip_model, (prompt_tokens,)).convert(
|
111
|
-
|
112
|
-
)
|
122
|
+
ai_edge_torch.signature('encode', clip_model, (prompt_tokens,)).convert(
|
123
|
+
quant_config=quant_config
|
124
|
+
).export(f'{output_dir}/clip.tflite')
|
113
125
|
|
114
126
|
# TODO(yichunk): enable image encoder conversion
|
115
127
|
# Image encoder
|
116
|
-
# ai_edge_torch.signature('encode', encoder, (input_image, noise)).convert().export(
|
128
|
+
# ai_edge_torch.signature('encode', encoder, (input_image, noise)).convert(quant_config=quant_config).export(
|
117
129
|
# f'{output_dir}/encoder.tflite'
|
118
130
|
# )
|
119
131
|
|
@@ -122,12 +134,12 @@ def convert_stable_diffusion_to_tflite(
|
|
122
134
|
'diffusion',
|
123
135
|
diffusion_model,
|
124
136
|
(torch.repeat_interleave(input_latents, 2, 0), context, time_embedding),
|
125
|
-
).convert().export(f'{output_dir}/diffusion.tflite')
|
137
|
+
).convert(quant_config=quant_config).export(f'{output_dir}/diffusion.tflite')
|
126
138
|
|
127
139
|
# Image decoder
|
128
|
-
ai_edge_torch.signature('decode', decoder_model, (input_latents,)).convert(
|
129
|
-
|
130
|
-
)
|
140
|
+
ai_edge_torch.signature('decode', decoder_model, (input_latents,)).convert(
|
141
|
+
quant_config=quant_config
|
142
|
+
).export(f'{output_dir}/decoder.tflite')
|
131
143
|
|
132
144
|
|
133
145
|
if __name__ == '__main__':
|
@@ -139,4 +151,5 @@ if __name__ == '__main__':
|
|
139
151
|
decoder_ckpt_path=args.decoder_ckpt,
|
140
152
|
image_height=512,
|
141
153
|
image_width=512,
|
154
|
+
quantize=True,
|
142
155
|
)
|
@@ -13,14 +13,13 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
15
|
|
16
|
-
import torch
|
17
|
-
from torch import nn
|
18
|
-
|
19
16
|
import ai_edge_torch.generative.layers.builder as layers_builder
|
20
17
|
import ai_edge_torch.generative.layers.model_config as layers_cfg
|
21
|
-
|
18
|
+
from ai_edge_torch.generative.layers.unet import blocks_2d
|
22
19
|
import ai_edge_torch.generative.layers.unet.model_config as unet_cfg
|
23
|
-
|
20
|
+
from ai_edge_torch.generative.utilities import stable_diffusion_loader
|
21
|
+
import torch
|
22
|
+
from torch import nn
|
24
23
|
|
25
24
|
TENSOR_NAMES = stable_diffusion_loader.AutoEncoderModelLoader.TensorNames(
|
26
25
|
post_quant_conv="first_stage_model.post_quant_conv",
|
@@ -104,7 +103,9 @@ TENSOR_NAMES = stable_diffusion_loader.AutoEncoderModelLoader.TensorNames(
|
|
104
103
|
norm_2="first_stage_model.decoder.up.1.block.0.norm2",
|
105
104
|
conv_1="first_stage_model.decoder.up.1.block.0.conv1",
|
106
105
|
conv_2="first_stage_model.decoder.up.1.block.0.conv2",
|
107
|
-
residual_layer=
|
106
|
+
residual_layer=(
|
107
|
+
"first_stage_model.decoder.up.1.block.0.nin_shortcut"
|
108
|
+
),
|
108
109
|
),
|
109
110
|
stable_diffusion_loader.ResidualBlockTensorNames(
|
110
111
|
norm_1="first_stage_model.decoder.up.1.block.1.norm1",
|
@@ -128,7 +129,9 @@ TENSOR_NAMES = stable_diffusion_loader.AutoEncoderModelLoader.TensorNames(
|
|
128
129
|
norm_2="first_stage_model.decoder.up.0.block.0.norm2",
|
129
130
|
conv_1="first_stage_model.decoder.up.0.block.0.conv1",
|
130
131
|
conv_2="first_stage_model.decoder.up.0.block.0.conv2",
|
131
|
-
residual_layer=
|
132
|
+
residual_layer=(
|
133
|
+
"first_stage_model.decoder.up.0.block.0.nin_shortcut"
|
134
|
+
),
|
132
135
|
),
|
133
136
|
stable_diffusion_loader.ResidualBlockTensorNames(
|
134
137
|
norm_1="first_stage_model.decoder.up.0.block.1.norm1",
|
@@ -285,6 +288,63 @@ def get_model_config() -> unet_cfg.AutoEncoderConfig:
|
|
285
288
|
normalization_config=norm_config,
|
286
289
|
attention_config=layers_cfg.AttentionConfig(
|
287
290
|
num_heads=1,
|
291
|
+
head_dim=block_out_channels[-1],
|
292
|
+
num_query_groups=1,
|
293
|
+
qkv_use_bias=True,
|
294
|
+
output_proj_use_bias=True,
|
295
|
+
enable_kv_cache=False,
|
296
|
+
qkv_transpose_before_split=True,
|
297
|
+
qkv_fused_interleaved=False,
|
298
|
+
rotary_percentage=0.0,
|
299
|
+
),
|
300
|
+
enable_hlfb=False,
|
301
|
+
)
|
302
|
+
|
303
|
+
mid_block_config = unet_cfg.MidBlock2DConfig(
|
304
|
+
in_channels=block_out_channels[-1],
|
305
|
+
normalization_config=norm_config,
|
306
|
+
activation_config=layers_cfg.ActivationConfig(
|
307
|
+
layers_cfg.ActivationType.SILU
|
308
|
+
),
|
309
|
+
num_layers=1,
|
310
|
+
attention_block_config=att_config,
|
311
|
+
)
|
312
|
+
|
313
|
+
config = unet_cfg.AutoEncoderConfig(
|
314
|
+
in_channels=in_channels,
|
315
|
+
latent_channels=latent_channels,
|
316
|
+
out_channels=out_channels,
|
317
|
+
activation_config=layers_cfg.ActivationConfig(
|
318
|
+
layers_cfg.ActivationType.SILU
|
319
|
+
),
|
320
|
+
block_out_channels=block_out_channels,
|
321
|
+
scaling_factor=scaling_factor,
|
322
|
+
layers_per_block=layers_per_block,
|
323
|
+
normalization_config=norm_config,
|
324
|
+
mid_block_config=mid_block_config,
|
325
|
+
)
|
326
|
+
return config
|
327
|
+
|
328
|
+
|
329
|
+
def get_fake_model_config() -> unet_cfg.AutoEncoderConfig:
|
330
|
+
"""Get fake configs for the Decoder of Stable Diffusion v1.5 for testing."""
|
331
|
+
in_channels = 3
|
332
|
+
latent_channels = 4
|
333
|
+
out_channels = 3
|
334
|
+
block_out_channels = [2, 4]
|
335
|
+
scaling_factor = 0.18215
|
336
|
+
layers_per_block = 2
|
337
|
+
|
338
|
+
norm_config = layers_cfg.NormalizationConfig(
|
339
|
+
layers_cfg.NormalizationType.GROUP_NORM, group_num=2
|
340
|
+
)
|
341
|
+
|
342
|
+
att_config = unet_cfg.AttentionBlock2DConfig(
|
343
|
+
dim=block_out_channels[-1],
|
344
|
+
normalization_config=norm_config,
|
345
|
+
attention_config=layers_cfg.AttentionConfig(
|
346
|
+
num_heads=1,
|
347
|
+
head_dim=block_out_channels[-1],
|
288
348
|
num_query_groups=1,
|
289
349
|
qkv_use_bias=True,
|
290
350
|
output_proj_use_bias=True,
|
@@ -293,12 +353,15 @@ def get_model_config() -> unet_cfg.AutoEncoderConfig:
|
|
293
353
|
qkv_fused_interleaved=False,
|
294
354
|
rotary_percentage=0.0,
|
295
355
|
),
|
356
|
+
enable_hlfb=False,
|
296
357
|
)
|
297
358
|
|
298
359
|
mid_block_config = unet_cfg.MidBlock2DConfig(
|
299
360
|
in_channels=block_out_channels[-1],
|
300
361
|
normalization_config=norm_config,
|
301
|
-
activation_config=layers_cfg.ActivationConfig(
|
362
|
+
activation_config=layers_cfg.ActivationConfig(
|
363
|
+
layers_cfg.ActivationType.SILU
|
364
|
+
),
|
302
365
|
num_layers=1,
|
303
366
|
attention_block_config=att_config,
|
304
367
|
)
|
@@ -307,7 +370,9 @@ def get_model_config() -> unet_cfg.AutoEncoderConfig:
|
|
307
370
|
in_channels=in_channels,
|
308
371
|
latent_channels=latent_channels,
|
309
372
|
out_channels=out_channels,
|
310
|
-
activation_config=layers_cfg.ActivationConfig(
|
373
|
+
activation_config=layers_cfg.ActivationConfig(
|
374
|
+
layers_cfg.ActivationType.SILU
|
375
|
+
),
|
311
376
|
block_out_channels=block_out_channels,
|
312
377
|
scaling_factor=scaling_factor,
|
313
378
|
layers_per_block=layers_per_block,
|