ai-edge-torch-nightly 0.2.0.dev20240714__py3-none-any.whl → 0.3.0.dev20240926__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (169) hide show
  1. ai_edge_torch/__init__.py +5 -4
  2. ai_edge_torch/_convert/conversion.py +112 -0
  3. ai_edge_torch/_convert/conversion_utils.py +64 -0
  4. ai_edge_torch/{convert → _convert}/converter.py +94 -48
  5. ai_edge_torch/_convert/fx_passes/__init__.py +22 -0
  6. ai_edge_torch/{convert → _convert}/fx_passes/build_aten_composite_pass.py +107 -44
  7. ai_edge_torch/{convert → _convert}/fx_passes/build_interpolate_composite_pass.py +23 -20
  8. ai_edge_torch/{convert → _convert}/fx_passes/inject_mlir_debuginfo_pass.py +5 -6
  9. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/__init__.py +1 -1
  10. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_check.py +39 -9
  11. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_mark.py +2 -0
  12. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +1 -0
  13. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +17 -8
  14. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +9 -8
  15. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +31 -18
  16. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +2 -2
  17. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/pass_body.py +34 -24
  18. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/utils.py +2 -0
  19. ai_edge_torch/_convert/signature.py +66 -0
  20. ai_edge_torch/_convert/test/test_convert.py +495 -0
  21. ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
  22. ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
  23. ai_edge_torch/{convert → _convert}/test/test_to_channel_last_io.py +5 -5
  24. ai_edge_torch/{convert → _convert}/to_channel_last_io.py +10 -3
  25. ai_edge_torch/config.py +27 -0
  26. ai_edge_torch/conftest.py +20 -0
  27. ai_edge_torch/debug/culprit.py +72 -40
  28. ai_edge_torch/debug/test/test_culprit.py +7 -5
  29. ai_edge_torch/debug/test/test_search_model.py +8 -7
  30. ai_edge_torch/debug/utils.py +14 -3
  31. ai_edge_torch/fx_pass_base.py +101 -0
  32. ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +68 -0
  33. ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +68 -0
  34. ai_edge_torch/generative/examples/gemma/{gemma.py → gemma1.py} +69 -55
  35. ai_edge_torch/generative/examples/gemma/gemma2.py +267 -0
  36. ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
  37. ai_edge_torch/generative/examples/gemma/verify_gemma2.py +57 -0
  38. ai_edge_torch/generative/examples/gemma/verify_util.py +143 -0
  39. ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +68 -0
  40. ai_edge_torch/generative/examples/openelm/openelm.py +206 -0
  41. ai_edge_torch/generative/examples/openelm/verify.py +64 -0
  42. ai_edge_torch/generative/examples/phi/__init__.py +14 -0
  43. ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +68 -0
  44. ai_edge_torch/generative/examples/phi/convert_to_tflite.py +68 -0
  45. ai_edge_torch/generative/examples/{phi2 → phi}/phi2.py +70 -51
  46. ai_edge_torch/generative/examples/phi/phi3.py +286 -0
  47. ai_edge_torch/generative/examples/phi/verify.py +65 -0
  48. ai_edge_torch/generative/examples/phi/verify_phi3.py +70 -0
  49. ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
  50. ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +68 -0
  51. ai_edge_torch/generative/examples/smollm/smollm.py +101 -0
  52. ai_edge_torch/generative/examples/smollm/verify.py +62 -0
  53. ai_edge_torch/generative/examples/stable_diffusion/attention.py +3 -1
  54. ai_edge_torch/generative/examples/stable_diffusion/clip.py +83 -13
  55. ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +27 -14
  56. ai_edge_torch/generative/examples/stable_diffusion/decoder.py +74 -9
  57. ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +179 -37
  58. ai_edge_torch/generative/examples/stable_diffusion/encoder.py +4 -3
  59. ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +83 -58
  60. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +4 -3
  61. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +4 -3
  62. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +4 -3
  63. ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +1 -0
  64. ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +4 -1
  65. ai_edge_torch/generative/examples/stable_diffusion/util.py +9 -3
  66. ai_edge_torch/generative/examples/t5/convert_to_tflite.py +28 -25
  67. ai_edge_torch/generative/examples/t5/t5.py +208 -159
  68. ai_edge_torch/generative/examples/t5/t5_attention.py +45 -30
  69. ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
  70. ai_edge_torch/generative/examples/test_models/toy_model.py +69 -41
  71. ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +50 -64
  72. ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
  73. ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +41 -39
  74. ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +67 -54
  75. ai_edge_torch/generative/examples/tiny_llama/verify.py +64 -0
  76. ai_edge_torch/generative/fx_passes/__init__.py +4 -5
  77. ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +10 -7
  78. ai_edge_torch/generative/layers/attention.py +141 -102
  79. ai_edge_torch/generative/layers/attention_utils.py +53 -12
  80. ai_edge_torch/generative/layers/builder.py +37 -7
  81. ai_edge_torch/generative/layers/feed_forward.py +39 -14
  82. ai_edge_torch/generative/layers/kv_cache.py +162 -50
  83. ai_edge_torch/generative/layers/model_config.py +84 -30
  84. ai_edge_torch/generative/layers/normalization.py +185 -7
  85. ai_edge_torch/generative/layers/rotary_position_embedding.py +6 -4
  86. ai_edge_torch/generative/layers/scaled_dot_product_attention.py +48 -21
  87. ai_edge_torch/generative/layers/unet/blocks_2d.py +136 -77
  88. ai_edge_torch/generative/layers/unet/builder.py +7 -4
  89. ai_edge_torch/generative/layers/unet/model_config.py +17 -15
  90. ai_edge_torch/generative/quantize/example.py +7 -8
  91. ai_edge_torch/generative/quantize/quant_recipe.py +10 -7
  92. ai_edge_torch/generative/quantize/quant_recipe_utils.py +12 -1
  93. ai_edge_torch/generative/quantize/quant_recipes.py +8 -0
  94. ai_edge_torch/generative/test/test_kv_cache.py +120 -0
  95. ai_edge_torch/generative/test/{loader_test.py → test_loader.py} +9 -7
  96. ai_edge_torch/generative/test/test_model_conversion.py +124 -188
  97. ai_edge_torch/generative/test/test_model_conversion_large.py +251 -0
  98. ai_edge_torch/generative/test/test_quantize.py +76 -60
  99. ai_edge_torch/generative/test/utils.py +54 -0
  100. ai_edge_torch/generative/utilities/converter.py +82 -0
  101. ai_edge_torch/generative/utilities/loader.py +120 -57
  102. ai_edge_torch/generative/utilities/stable_diffusion_loader.py +165 -57
  103. ai_edge_torch/generative/utilities/t5_loader.py +110 -81
  104. ai_edge_torch/generative/utilities/verifier.py +247 -0
  105. ai_edge_torch/hlfb/__init__.py +1 -1
  106. ai_edge_torch/hlfb/mark_pattern/__init__.py +9 -7
  107. ai_edge_torch/hlfb/mark_pattern/passes.py +23 -3
  108. ai_edge_torch/hlfb/mark_pattern/pattern.py +39 -30
  109. ai_edge_torch/hlfb/test/test_mark_pattern.py +46 -20
  110. ai_edge_torch/hlfb/test/test_stablehlo_composite_builder.py +24 -11
  111. ai_edge_torch/lowertools/__init__.py +18 -0
  112. ai_edge_torch/lowertools/_shim.py +80 -0
  113. ai_edge_torch/lowertools/common_utils.py +142 -0
  114. ai_edge_torch/lowertools/odml_torch_utils.py +255 -0
  115. ai_edge_torch/lowertools/test_utils.py +60 -0
  116. ai_edge_torch/lowertools/torch_xla_utils.py +284 -0
  117. ai_edge_torch/{generative/quantize/ai_edge_quantizer_glue → lowertools}/translate_recipe.py +29 -14
  118. ai_edge_torch/model.py +53 -18
  119. ai_edge_torch/odml_torch/__init__.py +20 -0
  120. ai_edge_torch/odml_torch/_torch_future.py +61 -0
  121. ai_edge_torch/odml_torch/_torch_library.py +19 -0
  122. ai_edge_torch/odml_torch/composite/__init__.py +16 -0
  123. ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
  124. ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
  125. ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
  126. ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
  127. ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
  128. ai_edge_torch/odml_torch/export.py +357 -0
  129. ai_edge_torch/odml_torch/export_utils.py +168 -0
  130. ai_edge_torch/odml_torch/jax_bridge/__init__.py +15 -0
  131. ai_edge_torch/odml_torch/jax_bridge/_wrap.py +150 -0
  132. ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
  133. ai_edge_torch/odml_torch/lowerings/__init__.py +25 -0
  134. ai_edge_torch/odml_torch/lowerings/_basic.py +258 -0
  135. ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
  136. ai_edge_torch/odml_torch/lowerings/_convolution.py +241 -0
  137. ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +252 -0
  138. ai_edge_torch/odml_torch/lowerings/_layer_norm.py +78 -0
  139. ai_edge_torch/odml_torch/lowerings/context.py +42 -0
  140. ai_edge_torch/odml_torch/lowerings/registry.py +96 -0
  141. ai_edge_torch/odml_torch/lowerings/utils.py +185 -0
  142. ai_edge_torch/odml_torch/passes/__init__.py +38 -0
  143. ai_edge_torch/odml_torch/tf_integration.py +194 -0
  144. ai_edge_torch/quantize/pt2e_quantizer.py +52 -24
  145. ai_edge_torch/quantize/pt2e_quantizer_utils.py +43 -23
  146. ai_edge_torch/quantize/quant_config.py +13 -9
  147. ai_edge_torch/testing/model_coverage/model_coverage.py +29 -16
  148. ai_edge_torch/version.py +16 -0
  149. {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/METADATA +7 -3
  150. ai_edge_torch_nightly-0.3.0.dev20240926.dist-info/RECORD +177 -0
  151. {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/WHEEL +1 -1
  152. ai_edge_torch/convert/conversion.py +0 -117
  153. ai_edge_torch/convert/conversion_utils.py +0 -400
  154. ai_edge_torch/convert/fx_passes/__init__.py +0 -59
  155. ai_edge_torch/convert/fx_passes/_pass_base.py +0 -49
  156. ai_edge_torch/convert/fx_passes/canonicalize_pass.py +0 -37
  157. ai_edge_torch/convert/test/test_convert.py +0 -311
  158. ai_edge_torch/convert/test/test_convert_composites.py +0 -192
  159. ai_edge_torch/convert/test/test_convert_multisig.py +0 -139
  160. ai_edge_torch/generative/examples/gemma/convert_to_tflite.py +0 -66
  161. ai_edge_torch/generative/examples/phi2/convert_to_tflite.py +0 -64
  162. ai_edge_torch/generative/examples/test_models/toy_model_with_external_kv_cache.py +0 -161
  163. ai_edge_torch/generative/quantize/ai_edge_quantizer_glue/__init__.py +0 -0
  164. ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/RECORD +0 -121
  165. /ai_edge_torch/{convert → _convert}/__init__.py +0 -0
  166. /ai_edge_torch/{convert → _convert}/test/__init__.py +0 -0
  167. /ai_edge_torch/generative/examples/{phi2 → openelm}/__init__.py +0 -0
  168. {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/LICENSE +0 -0
  169. {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/top_level.txt +0 -0
@@ -13,10 +13,7 @@
13
13
  # limitations under the License.
14
14
  # ==============================================================================
15
15
 
16
- from typing import List, Optional, Tuple
17
-
18
- import torch
19
- from torch import nn
16
+ from typing import List, Optional, Tuple, Union
20
17
 
21
18
  from ai_edge_torch.generative.layers.attention import CrossAttention
22
19
  from ai_edge_torch.generative.layers.attention import SelfAttention
@@ -24,6 +21,8 @@ import ai_edge_torch.generative.layers.builder as layers_builder
24
21
  import ai_edge_torch.generative.layers.model_config as layers_cfg
25
22
  import ai_edge_torch.generative.layers.unet.builder as unet_builder
26
23
  import ai_edge_torch.generative.layers.unet.model_config as unet_cfg
24
+ import torch
25
+ from torch import nn
27
26
 
28
27
 
29
28
  class ResidualBlock2D(nn.Module):
@@ -41,26 +40,38 @@ class ResidualBlock2D(nn.Module):
41
40
  config.in_channels, config.normalization_config
42
41
  )
43
42
  self.conv_1 = nn.Conv2d(
44
- config.in_channels, config.out_channels, kernel_size=3, stride=1, padding=1
43
+ config.in_channels,
44
+ config.hidden_channels,
45
+ kernel_size=3,
46
+ stride=1,
47
+ padding=1,
45
48
  )
46
49
  if config.time_embedding_channels is not None:
47
50
  self.time_emb_proj = nn.Linear(
48
- config.time_embedding_channels, config.out_channels
51
+ config.time_embedding_channels, config.hidden_channels
49
52
  )
50
53
  else:
51
54
  self.time_emb_proj = None
52
55
  self.norm_2 = layers_builder.build_norm(
53
- config.out_channels, config.normalization_config
56
+ config.hidden_channels, config.normalization_config
54
57
  )
55
58
  self.conv_2 = nn.Conv2d(
56
- config.out_channels, config.out_channels, kernel_size=3, stride=1, padding=1
59
+ config.hidden_channels,
60
+ config.out_channels,
61
+ kernel_size=3,
62
+ stride=1,
63
+ padding=1,
57
64
  )
58
65
  self.act_fn = layers_builder.get_activation(config.activation_config)
59
66
  if config.in_channels == config.out_channels:
60
67
  self.residual_layer = nn.Identity()
61
68
  else:
62
69
  self.residual_layer = nn.Conv2d(
63
- config.in_channels, config.out_channels, kernel_size=1, stride=1, padding=0
70
+ config.in_channels,
71
+ config.out_channels,
72
+ kernel_size=1,
73
+ stride=1,
74
+ padding=0,
64
75
  )
65
76
 
66
77
  def forward(
@@ -94,7 +105,6 @@ class AttentionBlock2D(nn.Module):
94
105
  """2D self attention block
95
106
 
96
107
  x = SelfAttention(Norm(input_tensor)) + x
97
-
98
108
  """
99
109
 
100
110
  def __init__(self, config: unet_cfg.AttentionBlock2DConfig):
@@ -105,12 +115,13 @@ class AttentionBlock2D(nn.Module):
105
115
  """
106
116
  super().__init__()
107
117
  self.config = config
108
- self.norm = layers_builder.build_norm(config.dim, config.normalization_config)
118
+ self.norm = layers_builder.build_norm(
119
+ config.dim, config.normalization_config
120
+ )
109
121
  self.attention = SelfAttention(
110
122
  config.attention_batch_size,
111
123
  config.dim,
112
124
  config.attention_config,
113
- 0,
114
125
  enable_hlfb=config.enable_hlfb,
115
126
  )
116
127
 
@@ -125,20 +136,23 @@ class AttentionBlock2D(nn.Module):
125
136
  """
126
137
  residual = input_tensor
127
138
  B, C, H, W = input_tensor.shape
128
- x = input_tensor
129
- if self.config.normalization_config.type == layers_cfg.NormalizationType.GROUP_NORM:
130
- x = self.norm(x)
131
- x = input_tensor.view(B, C, H * W)
139
+ if (
140
+ self.config.normalization_config.type
141
+ == layers_cfg.NormalizationType.GROUP_NORM
142
+ ):
143
+ x = self.norm(input_tensor)
144
+ x = x.view(B, C, H * W)
132
145
  x = x.transpose(-1, -2)
133
146
  else:
134
- x = input_tensor.view(B, C, H * W)
135
- x = x.transpose(-1, -2)
147
+ x = torch.permute(input_tensor, (0, 2, 3, 1))
136
148
  x = self.norm(x)
149
+ x = x.view(B, H * W, C)
137
150
  x = x.contiguous() # Prevent BATCH_MATMUL op in converted tflite.
138
151
  x = self.attention(x)
139
- x = x.transpose(-1, -2)
140
- x = x.view(B, C, H, W)
152
+ x = x.view(B, H, W, C)
153
+ residual = torch.permute(residual, (0, 2, 3, 1))
141
154
  x = x + residual
155
+ x = torch.permute(x, (0, 3, 1, 2))
142
156
  return x
143
157
 
144
158
 
@@ -146,24 +160,27 @@ class CrossAttentionBlock2D(nn.Module):
146
160
  """2D cross attention block
147
161
 
148
162
  x = CrossAttention(Norm(input_tensor), context) + x
149
-
150
163
  """
151
164
 
152
165
  def __init__(self, config: unet_cfg.CrossAttentionBlock2DConfig):
153
166
  """Initialize an instance of the AttentionBlock2D.
154
167
 
155
168
  Args:
156
- config (unet_cfg.CrossAttentionBlock2DConfig): the configuration of this block.
169
+ config (unet_cfg.CrossAttentionBlock2DConfig): the configuration of this
170
+ block.
157
171
  """
158
172
  super().__init__()
159
173
  self.config = config
160
- self.norm = layers_builder.build_norm(config.query_dim, config.normalization_config)
174
+ self.norm = layers_builder.build_norm(
175
+ config.query_dim, config.normalization_config
176
+ )
161
177
  self.attention = CrossAttention(
162
178
  config.attention_batch_size,
163
179
  config.query_dim,
164
180
  config.cross_dim,
181
+ config.hidden_dim,
182
+ config.output_dim,
165
183
  config.attention_config,
166
- 0,
167
184
  enable_hlfb=config.enable_hlfb,
168
185
  )
169
186
 
@@ -174,26 +191,30 @@ class CrossAttentionBlock2D(nn.Module):
174
191
 
175
192
  Args:
176
193
  input_tensor (torch.Tensor): the input tensor.
177
- context_tensor (torch.Tensor): the context tensor to apply cross attention on.
194
+ context_tensor (torch.Tensor): the context tensor to apply cross attention
195
+ on.
178
196
 
179
197
  Returns:
180
198
  output activation tensor after cross attention.
181
199
  """
182
200
  residual = input_tensor
183
201
  B, C, H, W = input_tensor.shape
184
- x = input_tensor
185
- if self.config.normalization_config.type == layers_cfg.NormalizationType.GROUP_NORM:
186
- x = self.norm(x)
187
- x = input_tensor.view(B, C, H * W)
202
+ if (
203
+ self.config.normalization_config.type
204
+ == layers_cfg.NormalizationType.GROUP_NORM
205
+ ):
206
+ x = self.norm(input_tensor)
207
+ x = x.view(B, C, H * W)
188
208
  x = x.transpose(-1, -2)
189
209
  else:
190
- x = input_tensor.view(B, C, H * W)
191
- x = x.transpose(-1, -2)
210
+ x = torch.permute(input_tensor, (0, 2, 3, 1))
192
211
  x = self.norm(x)
212
+ x = x.view(B, H * W, C)
193
213
  x = self.attention(x, context_tensor)
194
- x = x.transpose(-1, -2)
195
- x = x.view(B, C, H, W)
214
+ x = x.view(B, H, W, C)
215
+ residual = torch.permute(residual, (0, 2, 3, 1))
196
216
  x = x + residual
217
+ x = torch.permute(x, (0, 3, 1, 2))
197
218
  return x
198
219
 
199
220
 
@@ -201,7 +222,6 @@ class FeedForwardBlock2D(nn.Module):
201
222
  """2D feed forward block
202
223
 
203
224
  x = w2(Activation(w1(Norm(x)))) + x
204
-
205
225
  """
206
226
 
207
227
  def __init__(
@@ -211,7 +231,9 @@ class FeedForwardBlock2D(nn.Module):
211
231
  super().__init__()
212
232
  self.config = config
213
233
  self.act = layers_builder.get_activation(config.activation_config)
214
- self.norm = layers_builder.build_norm(config.dim, config.normalization_config)
234
+ self.norm = layers_builder.build_norm(
235
+ config.dim, config.normalization_config
236
+ )
215
237
  if config.activation_config.type == layers_cfg.ActivationType.GE_GLU:
216
238
  self.w1 = nn.Identity()
217
239
  self.w2 = nn.Linear(config.hidden_dim, config.dim)
@@ -222,23 +244,25 @@ class FeedForwardBlock2D(nn.Module):
222
244
  def forward(self, input_tensor: torch.Tensor) -> torch.Tensor:
223
245
  residual = input_tensor
224
246
  B, C, H, W = input_tensor.shape
225
- x = input_tensor
226
- if self.config.normalization_config.type == layers_cfg.NormalizationType.GROUP_NORM:
227
- x = self.norm(x)
228
- x = input_tensor.view(B, C, H * W)
247
+ if (
248
+ self.config.normalization_config.type
249
+ == layers_cfg.NormalizationType.GROUP_NORM
250
+ ):
251
+ x = self.norm(input_tensor)
252
+ x = x.view(B, C, H * W)
229
253
  x = x.transpose(-1, -2)
230
254
  else:
231
- x = input_tensor.view(B, C, H * W)
232
- x = x.transpose(-1, -2)
255
+ x = torch.permute(input_tensor, (0, 2, 3, 1))
233
256
  x = self.norm(x)
257
+ x = x.view(B, H * W, C)
234
258
  x = self.w1(x)
235
259
  x = self.act(x)
236
260
  x = self.w2(x)
237
-
238
- x = x.transpose(-1, -2) # (B, C, HW)
239
- x = x.view((B, C, H, W))
240
-
241
- return x + residual
261
+ x = x.view(B, H, W, C)
262
+ residual = torch.permute(residual, (0, 2, 3, 1))
263
+ x = x + residual
264
+ x = torch.permute(x, (0, 3, 1, 2))
265
+ return x
242
266
 
243
267
 
244
268
  class TransformerBlock2D(nn.Module):
@@ -268,15 +292,14 @@ class TransformerBlock2D(nn.Module):
268
292
  └─────────┬─────────┘
269
293
 
270
294
  hidden_states
271
-
272
-
273
295
  """
274
296
 
275
297
  def __init__(self, config: unet_cfg.TransformerBlock2DConfig):
276
298
  """Initialize an instance of the TransformerBlock2D.
277
299
 
278
300
  Args:
279
- config (unet_cfg.TransformerBlock2Dconfig): the configuration of this block.
301
+ config (unet_cfg.TransformerBlock2Dconfig): the configuration of this
302
+ block.
280
303
  """
281
304
  super().__init__()
282
305
  self.config = config
@@ -290,7 +313,9 @@ class TransformerBlock2D(nn.Module):
290
313
  padding=0,
291
314
  )
292
315
  self.self_attention = AttentionBlock2D(config.attention_block_config)
293
- self.cross_attention = CrossAttentionBlock2D(config.cross_attention_block_config)
316
+ self.cross_attention = CrossAttentionBlock2D(
317
+ config.cross_attention_block_config
318
+ )
294
319
  self.feed_forward = FeedForwardBlock2D(config.feed_forward_block_config)
295
320
  self.conv_out = nn.Conv2d(
296
321
  config.attention_block_config.dim,
@@ -304,7 +329,8 @@ class TransformerBlock2D(nn.Module):
304
329
 
305
330
  Args:
306
331
  input_tensor (torch.Tensor): the input tensor.
307
- context_tensor (torch.Tensor): the context tensor to apply cross attention on.
332
+ context_tensor (torch.Tensor): the context tensor to apply cross attention
333
+ on.
308
334
 
309
335
  Returns:
310
336
  output activation tensor after transformer block.
@@ -352,7 +378,8 @@ class DownEncoderBlock2D(nn.Module):
352
378
  """Initialize an instance of the DownEncoderBlock2D.
353
379
 
354
380
  Args:
355
- config (unet_cfg.DownEncoderBlock2DConfig): the configuration of this block.
381
+ config (unet_cfg.DownEncoderBlock2DConfig): the configuration of this
382
+ block.
356
383
  """
357
384
  super().__init__()
358
385
  self.config = config
@@ -364,6 +391,7 @@ class DownEncoderBlock2D(nn.Module):
364
391
  ResidualBlock2D(
365
392
  unet_cfg.ResidualBlock2DConfig(
366
393
  in_channels=input_channels,
394
+ hidden_channels=config.out_channels,
367
395
  out_channels=config.out_channels,
368
396
  time_embedding_channels=config.time_embedding_channels,
369
397
  normalization_config=config.normalization_config,
@@ -374,7 +402,9 @@ class DownEncoderBlock2D(nn.Module):
374
402
  if config.transformer_block_config:
375
403
  transformers.append(TransformerBlock2D(config.transformer_block_config))
376
404
  self.resnets = nn.ModuleList(resnets)
377
- self.transformers = nn.ModuleList(transformers) if len(transformers) > 0 else None
405
+ self.transformers = (
406
+ nn.ModuleList(transformers) if len(transformers) > 0 else None
407
+ )
378
408
  if config.add_downsample:
379
409
  self.downsampler = unet_builder.build_downsampling(config.sampling_config)
380
410
  else:
@@ -386,15 +416,18 @@ class DownEncoderBlock2D(nn.Module):
386
416
  time_emb: Optional[torch.Tensor] = None,
387
417
  context_tensor: Optional[torch.Tensor] = None,
388
418
  output_hidden_states: bool = False,
389
- ) -> torch.Tensor | Tuple[torch.Tensor, List[torch.Tensor]]:
419
+ ) -> Union[torch.Tensor, Tuple[torch.Tensor, List[torch.Tensor]]]:
390
420
  """Forward function of the DownEncoderBlock2D.
391
421
 
392
422
  Args:
393
423
  input_tensor (torch.Tensor): the input tensor.
394
- time_emb (torch.Tensor): optional time embedding tensor, if the block is configured to accept
395
- time embedding.
396
- context_tensor (torch.Tensor): optional context tensor, if the block if configured to use transofrmer block.
397
- output_hidden_states (bool): whether to output hidden states, usually for skip connections.
424
+ time_emb (torch.Tensor): optional time embedding tensor, if the block is
425
+ configured to accept time embedding.
426
+ context_tensor (torch.Tensor): optional context tensor, if the block if
427
+ configured to use transofrmer block.
428
+ output_hidden_states (bool): whether to output hidden states, usually for
429
+ skip connections.
430
+
398
431
  Returns:
399
432
  output hidden_states tensor after DownEncoderBlock2D.
400
433
  """
@@ -460,6 +493,7 @@ class UpDecoderBlock2D(nn.Module):
460
493
  ResidualBlock2D(
461
494
  unet_cfg.ResidualBlock2DConfig(
462
495
  in_channels=input_channels,
496
+ hidden_channels=config.out_channels,
463
497
  out_channels=config.out_channels,
464
498
  time_embedding_channels=config.time_embedding_channels,
465
499
  normalization_config=config.normalization_config,
@@ -470,12 +504,18 @@ class UpDecoderBlock2D(nn.Module):
470
504
  if config.transformer_block_config:
471
505
  transformers.append(TransformerBlock2D(config.transformer_block_config))
472
506
  self.resnets = nn.ModuleList(resnets)
473
- self.transformers = nn.ModuleList(transformers) if len(transformers) > 0 else None
507
+ self.transformers = (
508
+ nn.ModuleList(transformers) if len(transformers) > 0 else None
509
+ )
474
510
  if config.add_upsample:
475
511
  self.upsampler = unet_builder.build_upsampling(config.sampling_config)
476
512
  if config.upsample_conv:
477
513
  self.upsample_conv = nn.Conv2d(
478
- config.out_channels, config.out_channels, kernel_size=3, stride=1, padding=1
514
+ config.out_channels,
515
+ config.out_channels,
516
+ kernel_size=3,
517
+ stride=1,
518
+ padding=1,
479
519
  )
480
520
  else:
481
521
  self.upsampler = None
@@ -490,9 +530,10 @@ class UpDecoderBlock2D(nn.Module):
490
530
 
491
531
  Args:
492
532
  input_tensor (torch.Tensor): the input tensor.
493
- time_emb (torch.Tensor): optional time embedding tensor, if the block is configured to accept
494
- time embedding.
495
- context_tensor (torch.Tensor): optional context tensor, if the block if configured to use transofrmer block.
533
+ time_emb (torch.Tensor): optional time embedding tensor, if the block is
534
+ configured to accept time embedding.
535
+ context_tensor (torch.Tensor): optional context tensor, if the block if
536
+ configured to use transofrmer block.
496
537
 
497
538
  Returns:
498
539
  output hidden_states tensor after UpDecoderBlock2D.
@@ -543,7 +584,8 @@ class SkipUpDecoderBlock2D(nn.Module):
543
584
  """Initialize an instance of the SkipUpDecoderBlock2D.
544
585
 
545
586
  Args:
546
- config (unet_cfg.SkipUpDecoderBlock2DConfig): the configuration of this block.
587
+ config (unet_cfg.SkipUpDecoderBlock2DConfig): the configuration of this
588
+ block.
547
589
  """
548
590
  super().__init__()
549
591
  self.config = config
@@ -551,13 +593,18 @@ class SkipUpDecoderBlock2D(nn.Module):
551
593
  transformers = []
552
594
  for i in range(config.num_layers):
553
595
  res_skip_channels = (
554
- config.in_channels if (i == config.num_layers - 1) else config.out_channels
596
+ config.in_channels
597
+ if (i == config.num_layers - 1)
598
+ else config.out_channels
599
+ )
600
+ resnet_in_channels = (
601
+ config.prev_out_channels if i == 0 else config.out_channels
555
602
  )
556
- resnet_in_channels = config.prev_out_channels if i == 0 else config.out_channels
557
603
  resnets.append(
558
604
  ResidualBlock2D(
559
605
  unet_cfg.ResidualBlock2DConfig(
560
606
  in_channels=resnet_in_channels + res_skip_channels,
607
+ hidden_channels=config.out_channels,
561
608
  out_channels=config.out_channels,
562
609
  time_embedding_channels=config.time_embedding_channels,
563
610
  normalization_config=config.normalization_config,
@@ -568,12 +615,18 @@ class SkipUpDecoderBlock2D(nn.Module):
568
615
  if config.transformer_block_config:
569
616
  transformers.append(TransformerBlock2D(config.transformer_block_config))
570
617
  self.resnets = nn.ModuleList(resnets)
571
- self.transformers = nn.ModuleList(transformers) if len(transformers) > 0 else None
618
+ self.transformers = (
619
+ nn.ModuleList(transformers) if len(transformers) > 0 else None
620
+ )
572
621
  if config.add_upsample:
573
622
  self.upsampler = unet_builder.build_upsampling(config.sampling_config)
574
623
  if config.upsample_conv:
575
624
  self.upsample_conv = nn.Conv2d(
576
- config.out_channels, config.out_channels, kernel_size=3, stride=1, padding=1
625
+ config.out_channels,
626
+ config.out_channels,
627
+ kernel_size=3,
628
+ stride=1,
629
+ padding=1,
577
630
  )
578
631
  else:
579
632
  self.upsampler = None
@@ -589,10 +642,12 @@ class SkipUpDecoderBlock2D(nn.Module):
589
642
 
590
643
  Args:
591
644
  input_tensor (torch.Tensor): the input tensor.
592
- skip_connection_tensors (List[torch.Tensor]): the skip connection tensors from encoder blocks.
593
- time_emb (torch.Tensor): optional time embedding tensor, if the block is configured to accept
594
- time embedding.
595
- context_tensor (torch.Tensor): optional context tensor, if the block if configured to use transofrmer block.
645
+ skip_connection_tensors (List[torch.Tensor]): the skip connection tensors
646
+ from encoder blocks.
647
+ time_emb (torch.Tensor): optional time embedding tensor, if the block is
648
+ configured to accept time embedding.
649
+ context_tensor (torch.Tensor): optional context tensor, if the block if
650
+ configured to use transofrmer block.
596
651
 
597
652
  Returns:
598
653
  output hidden_states tensor after SkipUpDecoderBlock2D.
@@ -654,6 +709,7 @@ class MidBlock2D(nn.Module):
654
709
  ResidualBlock2D(
655
710
  unet_cfg.ResidualBlock2DConfig(
656
711
  in_channels=config.in_channels,
712
+ hidden_channels=config.in_channels,
657
713
  out_channels=config.in_channels,
658
714
  time_embedding_channels=config.time_embedding_channels,
659
715
  normalization_config=config.normalization_config,
@@ -672,6 +728,7 @@ class MidBlock2D(nn.Module):
672
728
  ResidualBlock2D(
673
729
  unet_cfg.ResidualBlock2DConfig(
674
730
  in_channels=config.in_channels,
731
+ hidden_channels=config.in_channels,
675
732
  out_channels=config.in_channels,
676
733
  time_embedding_channels=config.time_embedding_channels,
677
734
  normalization_config=config.normalization_config,
@@ -681,7 +738,9 @@ class MidBlock2D(nn.Module):
681
738
  )
682
739
  self.resnets = nn.ModuleList(resnets)
683
740
  self.attentions = nn.ModuleList(attentions) if len(attentions) > 0 else None
684
- self.transformers = nn.ModuleList(transformers) if len(transformers) > 0 else None
741
+ self.transformers = (
742
+ nn.ModuleList(transformers) if len(transformers) > 0 else None
743
+ )
685
744
 
686
745
  def forward(
687
746
  self,
@@ -693,10 +752,10 @@ class MidBlock2D(nn.Module):
693
752
 
694
753
  Args:
695
754
  input_tensor (torch.Tensor): the input tensor.
696
- time_emb (torch.Tensor): optional time embedding tensor, if the block is configured to accept
697
- time embedding.
698
- context_tensor (torch.Tensor): optional context tensor, if the block if configured to use
699
- transofrmer block.
755
+ time_emb (torch.Tensor): optional time embedding tensor, if the block is
756
+ configured to accept time embedding.
757
+ context_tensor (torch.Tensor): optional context tensor, if the block if
758
+ configured to use transofrmer block.
700
759
 
701
760
  Returns:
702
761
  output hidden_states tensor after MidBlock2D.
@@ -14,9 +14,8 @@
14
14
  # ==============================================================================
15
15
  # Builder utils for individual components.
16
16
 
17
- from torch import nn
18
-
19
17
  import ai_edge_torch.generative.layers.unet.model_config as unet_config
18
+ from torch import nn
20
19
 
21
20
 
22
21
  def build_upsampling(config: unet_config.UpSamplingConfig):
@@ -30,10 +29,14 @@ def build_upsampling(config: unet_config.UpSamplingConfig):
30
29
 
31
30
  def build_downsampling(config: unet_config.DownSamplingConfig):
32
31
  if config.mode == unet_config.SamplingType.AVERAGE:
33
- return nn.AvgPool2d(config.kernel_size, config.stride, padding=config.padding)
32
+ return nn.AvgPool2d(
33
+ config.kernel_size, config.stride, padding=config.padding
34
+ )
34
35
  elif config.mode == unet_config.SamplingType.CONVOLUTION:
35
36
  out_channels = (
36
- config.in_channels if config.out_channels is None else config.out_channels
37
+ config.in_channels
38
+ if config.out_channels is None
39
+ else config.out_channels
37
40
  )
38
41
  padding = (0, 1, 0, 1) if config.padding == 0 else config.padding
39
42
  return nn.Conv2d(
@@ -14,8 +14,7 @@
14
14
  # ==============================================================================
15
15
 
16
16
  # UNet configuration class.
17
- from dataclasses import dataclass
18
- from dataclasses import field
17
+ import dataclasses
19
18
  import enum
20
19
  from typing import List, Optional
21
20
 
@@ -30,13 +29,13 @@ class SamplingType(enum.Enum):
30
29
  CONVOLUTION = enum.auto()
31
30
 
32
31
 
33
- @dataclass
32
+ @dataclasses.dataclass
34
33
  class UpSamplingConfig:
35
34
  mode: SamplingType
36
35
  scale_factor: float
37
36
 
38
37
 
39
- @dataclass
38
+ @dataclasses.dataclass
40
39
  class DownSamplingConfig:
41
40
  mode: SamplingType
42
41
  in_channels: int
@@ -46,9 +45,10 @@ class DownSamplingConfig:
46
45
  out_channels: Optional[int] = None
47
46
 
48
47
 
49
- @dataclass
48
+ @dataclasses.dataclass
50
49
  class ResidualBlock2DConfig:
51
50
  in_channels: int
51
+ hidden_channels: int
52
52
  out_channels: int
53
53
  normalization_config: layers_cfg.NormalizationConfig
54
54
  activation_config: layers_cfg.ActivationConfig
@@ -56,7 +56,7 @@ class ResidualBlock2DConfig:
56
56
  time_embedding_channels: Optional[int] = None
57
57
 
58
58
 
59
- @dataclass
59
+ @dataclasses.dataclass
60
60
  class AttentionBlock2DConfig:
61
61
  dim: int
62
62
  normalization_config: layers_cfg.NormalizationConfig
@@ -65,17 +65,19 @@ class AttentionBlock2DConfig:
65
65
  attention_batch_size: int = 1
66
66
 
67
67
 
68
- @dataclass
68
+ @dataclasses.dataclass
69
69
  class CrossAttentionBlock2DConfig:
70
70
  query_dim: int
71
71
  cross_dim: int
72
+ hidden_dim: int
73
+ output_dim: int
72
74
  normalization_config: layers_cfg.NormalizationConfig
73
75
  attention_config: layers_cfg.AttentionConfig
74
76
  enable_hlfb: bool = True
75
77
  attention_batch_size: int = 1
76
78
 
77
79
 
78
- @dataclass
80
+ @dataclasses.dataclass
79
81
  class FeedForwardBlock2DConfig:
80
82
  dim: int
81
83
  hidden_dim: int
@@ -84,7 +86,7 @@ class FeedForwardBlock2DConfig:
84
86
  use_bias: bool
85
87
 
86
88
 
87
- @dataclass
89
+ @dataclasses.dataclass
88
90
  class TransformerBlock2DConfig:
89
91
  pre_conv_normalization_config: layers_cfg.NormalizationConfig
90
92
  attention_block_config: AttentionBlock2DConfig
@@ -92,7 +94,7 @@ class TransformerBlock2DConfig:
92
94
  feed_forward_block_config: FeedForwardBlock2DConfig
93
95
 
94
96
 
95
- @dataclass
97
+ @dataclasses.dataclass
96
98
  class UpDecoderBlock2DConfig:
97
99
  in_channels: int
98
100
  out_channels: int
@@ -113,7 +115,7 @@ class UpDecoderBlock2DConfig:
113
115
  context_dim: Optional[int] = None
114
116
 
115
117
 
116
- @dataclass
118
+ @dataclasses.dataclass
117
119
  class SkipUpDecoderBlock2DConfig:
118
120
  in_channels: int
119
121
  out_channels: int
@@ -136,7 +138,7 @@ class SkipUpDecoderBlock2DConfig:
136
138
  context_dim: Optional[int] = None
137
139
 
138
140
 
139
- @dataclass
141
+ @dataclasses.dataclass
140
142
  class DownEncoderBlock2DConfig:
141
143
  in_channels: int
142
144
  out_channels: int
@@ -157,7 +159,7 @@ class DownEncoderBlock2DConfig:
157
159
  context_dim: Optional[int] = None
158
160
 
159
161
 
160
- @dataclass
162
+ @dataclasses.dataclass
161
163
  class MidBlock2DConfig:
162
164
  in_channels: int
163
165
  normalization_config: layers_cfg.NormalizationConfig
@@ -173,7 +175,7 @@ class MidBlock2DConfig:
173
175
  context_dim: Optional[int] = None
174
176
 
175
177
 
176
- @dataclass
178
+ @dataclasses.dataclass
177
179
  class AutoEncoderConfig:
178
180
  """Configurations of encoder/decoder in the autoencoder model."""
179
181
 
@@ -210,7 +212,7 @@ class AutoEncoderConfig:
210
212
  mid_block_config: MidBlock2DConfig
211
213
 
212
214
 
213
- @dataclass
215
+ @dataclasses.dataclass
214
216
  class DiffusionModelConfig:
215
217
  """Configurations of Diffusion model."""
216
218
 
@@ -13,22 +13,21 @@
13
13
  # limitations under the License.
14
14
  # ==============================================================================
15
15
 
16
- import numpy as np
17
- import torch
18
-
19
16
  import ai_edge_torch
20
- from ai_edge_torch.generative.examples.gemma import gemma
17
+ from ai_edge_torch.generative.examples.gemma import gemma1
21
18
  from ai_edge_torch.generative.quantize import quant_recipes
19
+ import numpy as np
20
+ import torch
22
21
 
23
22
 
24
23
  def main():
25
24
  # Build a PyTorch model as usual
26
- config = gemma.get_fake_model_config_2b_for_test()
27
- model = gemma.Gemma(config)
25
+ config = gemma1.get_fake_model_config()
26
+ model = gemma1.Gemma(config)
28
27
  idx = torch.from_numpy(np.array([[1, 2, 3, 4]]))
29
- tokens = torch.full((1, 10), 0, dtype=torch.long, device="cpu")
28
+ tokens = torch.full((1, 10), 0, dtype=torch.int, device="cpu")
30
29
  tokens[0, :4] = idx
31
- input_pos = torch.arange(0, 10)
30
+ input_pos = torch.arange(0, 10, dtype=torch.int)
32
31
 
33
32
  # Create a quantization recipe to be applied to the model
34
33
  quant_config = quant_recipes.full_int8_dynamic_recipe()