ai-edge-torch-nightly 0.2.0.dev20240714__py3-none-any.whl → 0.3.0.dev20240926__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (169) hide show
  1. ai_edge_torch/__init__.py +5 -4
  2. ai_edge_torch/_convert/conversion.py +112 -0
  3. ai_edge_torch/_convert/conversion_utils.py +64 -0
  4. ai_edge_torch/{convert → _convert}/converter.py +94 -48
  5. ai_edge_torch/_convert/fx_passes/__init__.py +22 -0
  6. ai_edge_torch/{convert → _convert}/fx_passes/build_aten_composite_pass.py +107 -44
  7. ai_edge_torch/{convert → _convert}/fx_passes/build_interpolate_composite_pass.py +23 -20
  8. ai_edge_torch/{convert → _convert}/fx_passes/inject_mlir_debuginfo_pass.py +5 -6
  9. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/__init__.py +1 -1
  10. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_check.py +39 -9
  11. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_mark.py +2 -0
  12. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +1 -0
  13. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +17 -8
  14. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +9 -8
  15. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +31 -18
  16. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +2 -2
  17. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/pass_body.py +34 -24
  18. ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/utils.py +2 -0
  19. ai_edge_torch/_convert/signature.py +66 -0
  20. ai_edge_torch/_convert/test/test_convert.py +495 -0
  21. ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
  22. ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
  23. ai_edge_torch/{convert → _convert}/test/test_to_channel_last_io.py +5 -5
  24. ai_edge_torch/{convert → _convert}/to_channel_last_io.py +10 -3
  25. ai_edge_torch/config.py +27 -0
  26. ai_edge_torch/conftest.py +20 -0
  27. ai_edge_torch/debug/culprit.py +72 -40
  28. ai_edge_torch/debug/test/test_culprit.py +7 -5
  29. ai_edge_torch/debug/test/test_search_model.py +8 -7
  30. ai_edge_torch/debug/utils.py +14 -3
  31. ai_edge_torch/fx_pass_base.py +101 -0
  32. ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +68 -0
  33. ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +68 -0
  34. ai_edge_torch/generative/examples/gemma/{gemma.py → gemma1.py} +69 -55
  35. ai_edge_torch/generative/examples/gemma/gemma2.py +267 -0
  36. ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
  37. ai_edge_torch/generative/examples/gemma/verify_gemma2.py +57 -0
  38. ai_edge_torch/generative/examples/gemma/verify_util.py +143 -0
  39. ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +68 -0
  40. ai_edge_torch/generative/examples/openelm/openelm.py +206 -0
  41. ai_edge_torch/generative/examples/openelm/verify.py +64 -0
  42. ai_edge_torch/generative/examples/phi/__init__.py +14 -0
  43. ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +68 -0
  44. ai_edge_torch/generative/examples/phi/convert_to_tflite.py +68 -0
  45. ai_edge_torch/generative/examples/{phi2 → phi}/phi2.py +70 -51
  46. ai_edge_torch/generative/examples/phi/phi3.py +286 -0
  47. ai_edge_torch/generative/examples/phi/verify.py +65 -0
  48. ai_edge_torch/generative/examples/phi/verify_phi3.py +70 -0
  49. ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
  50. ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +68 -0
  51. ai_edge_torch/generative/examples/smollm/smollm.py +101 -0
  52. ai_edge_torch/generative/examples/smollm/verify.py +62 -0
  53. ai_edge_torch/generative/examples/stable_diffusion/attention.py +3 -1
  54. ai_edge_torch/generative/examples/stable_diffusion/clip.py +83 -13
  55. ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +27 -14
  56. ai_edge_torch/generative/examples/stable_diffusion/decoder.py +74 -9
  57. ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +179 -37
  58. ai_edge_torch/generative/examples/stable_diffusion/encoder.py +4 -3
  59. ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +83 -58
  60. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +4 -3
  61. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +4 -3
  62. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +4 -3
  63. ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +1 -0
  64. ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +4 -1
  65. ai_edge_torch/generative/examples/stable_diffusion/util.py +9 -3
  66. ai_edge_torch/generative/examples/t5/convert_to_tflite.py +28 -25
  67. ai_edge_torch/generative/examples/t5/t5.py +208 -159
  68. ai_edge_torch/generative/examples/t5/t5_attention.py +45 -30
  69. ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
  70. ai_edge_torch/generative/examples/test_models/toy_model.py +69 -41
  71. ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +50 -64
  72. ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
  73. ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +41 -39
  74. ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +67 -54
  75. ai_edge_torch/generative/examples/tiny_llama/verify.py +64 -0
  76. ai_edge_torch/generative/fx_passes/__init__.py +4 -5
  77. ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +10 -7
  78. ai_edge_torch/generative/layers/attention.py +141 -102
  79. ai_edge_torch/generative/layers/attention_utils.py +53 -12
  80. ai_edge_torch/generative/layers/builder.py +37 -7
  81. ai_edge_torch/generative/layers/feed_forward.py +39 -14
  82. ai_edge_torch/generative/layers/kv_cache.py +162 -50
  83. ai_edge_torch/generative/layers/model_config.py +84 -30
  84. ai_edge_torch/generative/layers/normalization.py +185 -7
  85. ai_edge_torch/generative/layers/rotary_position_embedding.py +6 -4
  86. ai_edge_torch/generative/layers/scaled_dot_product_attention.py +48 -21
  87. ai_edge_torch/generative/layers/unet/blocks_2d.py +136 -77
  88. ai_edge_torch/generative/layers/unet/builder.py +7 -4
  89. ai_edge_torch/generative/layers/unet/model_config.py +17 -15
  90. ai_edge_torch/generative/quantize/example.py +7 -8
  91. ai_edge_torch/generative/quantize/quant_recipe.py +10 -7
  92. ai_edge_torch/generative/quantize/quant_recipe_utils.py +12 -1
  93. ai_edge_torch/generative/quantize/quant_recipes.py +8 -0
  94. ai_edge_torch/generative/test/test_kv_cache.py +120 -0
  95. ai_edge_torch/generative/test/{loader_test.py → test_loader.py} +9 -7
  96. ai_edge_torch/generative/test/test_model_conversion.py +124 -188
  97. ai_edge_torch/generative/test/test_model_conversion_large.py +251 -0
  98. ai_edge_torch/generative/test/test_quantize.py +76 -60
  99. ai_edge_torch/generative/test/utils.py +54 -0
  100. ai_edge_torch/generative/utilities/converter.py +82 -0
  101. ai_edge_torch/generative/utilities/loader.py +120 -57
  102. ai_edge_torch/generative/utilities/stable_diffusion_loader.py +165 -57
  103. ai_edge_torch/generative/utilities/t5_loader.py +110 -81
  104. ai_edge_torch/generative/utilities/verifier.py +247 -0
  105. ai_edge_torch/hlfb/__init__.py +1 -1
  106. ai_edge_torch/hlfb/mark_pattern/__init__.py +9 -7
  107. ai_edge_torch/hlfb/mark_pattern/passes.py +23 -3
  108. ai_edge_torch/hlfb/mark_pattern/pattern.py +39 -30
  109. ai_edge_torch/hlfb/test/test_mark_pattern.py +46 -20
  110. ai_edge_torch/hlfb/test/test_stablehlo_composite_builder.py +24 -11
  111. ai_edge_torch/lowertools/__init__.py +18 -0
  112. ai_edge_torch/lowertools/_shim.py +80 -0
  113. ai_edge_torch/lowertools/common_utils.py +142 -0
  114. ai_edge_torch/lowertools/odml_torch_utils.py +255 -0
  115. ai_edge_torch/lowertools/test_utils.py +60 -0
  116. ai_edge_torch/lowertools/torch_xla_utils.py +284 -0
  117. ai_edge_torch/{generative/quantize/ai_edge_quantizer_glue → lowertools}/translate_recipe.py +29 -14
  118. ai_edge_torch/model.py +53 -18
  119. ai_edge_torch/odml_torch/__init__.py +20 -0
  120. ai_edge_torch/odml_torch/_torch_future.py +61 -0
  121. ai_edge_torch/odml_torch/_torch_library.py +19 -0
  122. ai_edge_torch/odml_torch/composite/__init__.py +16 -0
  123. ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
  124. ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
  125. ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
  126. ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
  127. ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
  128. ai_edge_torch/odml_torch/export.py +357 -0
  129. ai_edge_torch/odml_torch/export_utils.py +168 -0
  130. ai_edge_torch/odml_torch/jax_bridge/__init__.py +15 -0
  131. ai_edge_torch/odml_torch/jax_bridge/_wrap.py +150 -0
  132. ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
  133. ai_edge_torch/odml_torch/lowerings/__init__.py +25 -0
  134. ai_edge_torch/odml_torch/lowerings/_basic.py +258 -0
  135. ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
  136. ai_edge_torch/odml_torch/lowerings/_convolution.py +241 -0
  137. ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +252 -0
  138. ai_edge_torch/odml_torch/lowerings/_layer_norm.py +78 -0
  139. ai_edge_torch/odml_torch/lowerings/context.py +42 -0
  140. ai_edge_torch/odml_torch/lowerings/registry.py +96 -0
  141. ai_edge_torch/odml_torch/lowerings/utils.py +185 -0
  142. ai_edge_torch/odml_torch/passes/__init__.py +38 -0
  143. ai_edge_torch/odml_torch/tf_integration.py +194 -0
  144. ai_edge_torch/quantize/pt2e_quantizer.py +52 -24
  145. ai_edge_torch/quantize/pt2e_quantizer_utils.py +43 -23
  146. ai_edge_torch/quantize/quant_config.py +13 -9
  147. ai_edge_torch/testing/model_coverage/model_coverage.py +29 -16
  148. ai_edge_torch/version.py +16 -0
  149. {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/METADATA +7 -3
  150. ai_edge_torch_nightly-0.3.0.dev20240926.dist-info/RECORD +177 -0
  151. {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/WHEEL +1 -1
  152. ai_edge_torch/convert/conversion.py +0 -117
  153. ai_edge_torch/convert/conversion_utils.py +0 -400
  154. ai_edge_torch/convert/fx_passes/__init__.py +0 -59
  155. ai_edge_torch/convert/fx_passes/_pass_base.py +0 -49
  156. ai_edge_torch/convert/fx_passes/canonicalize_pass.py +0 -37
  157. ai_edge_torch/convert/test/test_convert.py +0 -311
  158. ai_edge_torch/convert/test/test_convert_composites.py +0 -192
  159. ai_edge_torch/convert/test/test_convert_multisig.py +0 -139
  160. ai_edge_torch/generative/examples/gemma/convert_to_tflite.py +0 -66
  161. ai_edge_torch/generative/examples/phi2/convert_to_tflite.py +0 -64
  162. ai_edge_torch/generative/examples/test_models/toy_model_with_external_kv_cache.py +0 -161
  163. ai_edge_torch/generative/quantize/ai_edge_quantizer_glue/__init__.py +0 -0
  164. ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/RECORD +0 -121
  165. /ai_edge_torch/{convert → _convert}/__init__.py +0 -0
  166. /ai_edge_torch/{convert → _convert}/test/__init__.py +0 -0
  167. /ai_edge_torch/generative/examples/{phi2 → openelm}/__init__.py +0 -0
  168. {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/LICENSE +0 -0
  169. {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/top_level.txt +0 -0
@@ -16,16 +16,14 @@
16
16
 
17
17
  from typing import Optional, Tuple
18
18
 
19
- import torch
20
- from torch import nn
21
- import torch.nn.functional as F
22
-
23
19
  from ai_edge_torch.generative.layers.attention import CrossAttention
24
20
  import ai_edge_torch.generative.layers.builder as builder
25
21
  from ai_edge_torch.generative.layers.kv_cache import KVCache
26
22
  import ai_edge_torch.generative.layers.model_config as cfg
27
23
  from ai_edge_torch.generative.layers.scaled_dot_product_attention import scaled_dot_product_attention # NOQA
28
24
  from ai_edge_torch.generative.layers.scaled_dot_product_attention import scaled_dot_product_attention_with_hlfb # NOQA
25
+ import torch
26
+ from torch import nn
29
27
 
30
28
  BATCH_SIZE = 1
31
29
 
@@ -33,46 +31,52 @@ BATCH_SIZE = 1
33
31
  class EncoderDecoderBlock(nn.Module):
34
32
 
35
33
  def __init__(
36
- self, config: cfg.ModelConfig, has_relative_attention_bias: bool = False
34
+ self,
35
+ config: cfg.TransformerBlockConfig,
36
+ model_config: cfg.ModelConfig,
37
+ has_relative_attention_bias: bool = False,
37
38
  ) -> None:
38
39
  """Initialize an instance of the EncoderDecoderBlock.
39
40
 
40
41
  Args:
41
- config (cfg.ModelConfig): the configuration object
42
- for this transformer block.
43
- has_relative_attention_bias (bool): whether the
44
- self attention block has relative bias.
42
+ config (cfg.TransformerBlockConfig): the configuration object for this
43
+ transformer block.
44
+ model_config (cfg.ModelConfig): the configuration object for the model
45
+ this transformer block belongs to.
46
+ has_relative_attention_bias (bool): whether the self attention block has
47
+ relative bias.
45
48
  """
46
49
 
47
50
  super().__init__()
48
51
  self.atten_func = T5Attention(
49
52
  BATCH_SIZE,
50
- config.embedding_dim,
53
+ model_config.embedding_dim,
51
54
  config.attn_config,
52
55
  config.pre_attention_norm_config,
53
- config.kv_cache_max,
54
- config.enable_hlfb,
56
+ model_config.kv_cache_max,
57
+ model_config.enable_hlfb,
55
58
  has_relative_attention_bias=has_relative_attention_bias,
56
59
  )
57
60
  # For a decoder, we add a cross attention.
58
- if config.is_decoder:
61
+ if model_config.is_decoder:
59
62
  self.cross_atten_func = T5Attention(
60
63
  BATCH_SIZE,
61
- config.embedding_dim,
64
+ model_config.embedding_dim,
62
65
  config.attn_config,
63
66
  config.pre_attention_norm_config,
64
- config.kv_cache_max,
65
- config.enable_hlfb,
67
+ model_config.kv_cache_max,
68
+ model_config.enable_hlfb,
66
69
  # Cross Attention does not have relative attention bias.
67
70
  has_relative_attention_bias=False,
68
71
  )
69
72
  else:
70
73
  self.cross_atten_func = None
71
74
 
72
- self.pre_ff_norm = builder.build_norm(
73
- config.embedding_dim, config.pre_ff_norm_config
75
+ self.post_atten_norm = builder.build_norm(
76
+ model_config.embedding_dim,
77
+ config.post_attention_norm_config,
74
78
  )
75
- self.ff = builder.build_ff(config.embedding_dim, config.ff_config)
79
+ self.ff = builder.build_ff(model_config.embedding_dim, config.ff_config)
76
80
  self.config = config
77
81
 
78
82
  def forward(
@@ -119,7 +123,7 @@ class EncoderDecoderBlock(nn.Module):
119
123
  )
120
124
  attn_out = hidden_states + attn_out
121
125
 
122
- forwarded = self.pre_ff_norm(attn_out)
126
+ forwarded = self.post_atten_norm(attn_out)
123
127
  forwarded = self.ff(forwarded)
124
128
  hidden_states = attn_out + forwarded
125
129
 
@@ -144,8 +148,10 @@ class T5Attention(CrossAttention):
144
148
  Args:
145
149
  dim (int): causal attention's input/output dimmension.
146
150
  config (cfg.AttentionConfig): attention specific configurations.
147
- norm_config (cfg.NormalizationConfig): normalization configure before attention.
148
- kv_cache_max (int): determines the size of the KV Cache buffer, if enabled.
151
+ norm_config (cfg.NormalizationConfig): normalization configure before
152
+ attention.
153
+ kv_cache_max (int): determines the size of the KV Cache buffer, if
154
+ enabled.
149
155
  enable_hlfb (bool): whether hlfb is enabled or not.
150
156
  has_relative_attention_bias (bool): whether we compute relative bias.
151
157
  """
@@ -181,9 +187,13 @@ class T5Attention(CrossAttention):
181
187
  """
182
188
 
183
189
  x = self.pre_atten_norm(x)
184
- B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
190
+ B, T, C = (
191
+ x.size()
192
+ ) # batch size, sequence length, embedding dimensionality (n_embd)
185
193
  query_states = self.q_projection(x)
186
- query_states = query_states.reshape(B, T, -1, self.head_dim) # (B, T, nh_q, hs)
194
+ query_states = query_states.reshape(
195
+ B, T, -1, self.config.head_dim
196
+ ) # (B, T, nh_q, hs)
187
197
 
188
198
  if key_value_states is not None:
189
199
  (
@@ -195,13 +205,13 @@ class T5Attention(CrossAttention):
195
205
  ) # batch size, sequence length, embedding dimensionality (n_embd)
196
206
  key_states = self.k_projection(key_value_states)
197
207
  value_states = self.v_projection(key_value_states)
198
- key_states = key_states.reshape(kvB, kvT, -1, self.head_dim)
199
- value_states = value_states.reshape(kvB, kvT, -1, self.head_dim)
208
+ key_states = key_states.reshape(kvB, kvT, -1, self.config.head_dim)
209
+ value_states = value_states.reshape(kvB, kvT, -1, self.config.head_dim)
200
210
  else:
201
211
  key_states = self.k_projection(x)
202
212
  value_states = self.v_projection(x)
203
- key_states = key_states.reshape(B, T, -1, self.head_dim)
204
- value_states = value_states.reshape(B, T, -1, self.head_dim)
213
+ key_states = key_states.reshape(B, T, -1, self.config.head_dim)
214
+ value_states = value_states.reshape(B, T, -1, self.config.head_dim)
205
215
 
206
216
  if key_value_states is None and self.kv_cache is not None:
207
217
  key_states, value_states = self.kv_cache.update_cache(
@@ -218,12 +228,17 @@ class T5Attention(CrossAttention):
218
228
  0
219
229
  ) # shape (1, num_heads, query_length, key_length)
220
230
  else:
221
- # position_bias = torch.zeros(B, self.n_heads, T, self.head_dim, dtype=torch.float32)
231
+ # position_bias = torch.zeros(B, self.n_heads, T, self.config.head_dim, dtype=torch.float32)
222
232
  position_bias = torch.zeros_like(mask, dtype=torch.float32)
223
233
 
224
234
  mask = mask + position_bias
225
235
  y = self.sdpa_func(
226
- query_states, key_states, value_states, self.head_dim, mask=mask, scale=1.0
236
+ query_states,
237
+ key_states,
238
+ value_states,
239
+ self.config.head_dim,
240
+ mask=mask,
241
+ scale=1.0,
227
242
  )
228
243
  y = y.reshape(B, T, C) # re-assemble all head outputs side by side
229
244
  # output projection
@@ -0,0 +1,105 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ # A toy example which has a single-layer transformer block.
16
+ from absl import app
17
+ import ai_edge_torch
18
+ from ai_edge_torch import lowertools
19
+ from ai_edge_torch.generative.examples.test_models import toy_model
20
+ from ai_edge_torch.generative.examples.test_models import toy_model_with_kv_cache
21
+ from ai_edge_torch.generative.layers import kv_cache as kv_utils
22
+ import torch
23
+
24
+ KV_CACHE_MAX_LEN = 100
25
+
26
+
27
+ def convert_toy_model(_) -> None:
28
+ """Converts a toy model to tflite."""
29
+ model = toy_model.ToySingleLayerModel(toy_model.get_model_config())
30
+ idx = torch.unsqueeze(torch.arange(0, KV_CACHE_MAX_LEN), 0)
31
+ input_pos = torch.arange(0, KV_CACHE_MAX_LEN)
32
+ print('running an inference')
33
+ print(
34
+ model.forward(
35
+ idx,
36
+ input_pos,
37
+ )
38
+ )
39
+
40
+ # Convert model to tflite.
41
+ print('converting model to tflite')
42
+ edge_model = ai_edge_torch.convert(
43
+ model,
44
+ (
45
+ idx,
46
+ input_pos,
47
+ ),
48
+ )
49
+ edge_model.export('/tmp/toy_model.tflite')
50
+
51
+
52
+ def _export_stablehlo_mlir(model, args):
53
+ ep = torch.export.export(model, args)
54
+ return lowertools.exported_program_to_mlir_text(ep)
55
+
56
+
57
+ def convert_toy_model_with_kv_cache(_) -> None:
58
+ """Converts a toy model with kv cache to tflite."""
59
+ dump_mlir = False
60
+
61
+ config = toy_model_with_kv_cache.get_model_config()
62
+ model = toy_model_with_kv_cache.ToyModelWithKVCache(config)
63
+ model.eval()
64
+ print('running an inference')
65
+ kv = kv_utils.KVCache.from_model_config(config)
66
+
67
+ tokens, input_pos = toy_model_with_kv_cache.get_sample_prefill_inputs()
68
+ decode_token, decode_input_pos = (
69
+ toy_model_with_kv_cache.get_sample_decode_inputs()
70
+ )
71
+ print(model.forward(tokens, input_pos, kv))
72
+
73
+ if dump_mlir:
74
+ mlir_text = _export_stablehlo_mlir(model, (tokens, input_pos, kv))
75
+ with open('/tmp/toy_model_with_external_kv.stablehlo.mlir', 'w') as f:
76
+ f.write(mlir_text)
77
+
78
+ # Convert model to tflite with 2 signatures (prefill + decode).
79
+ print('converting toy model to tflite with 2 signatures (prefill + decode)')
80
+ edge_model = (
81
+ ai_edge_torch.signature(
82
+ 'prefill',
83
+ model,
84
+ sample_kwargs={
85
+ 'tokens': tokens,
86
+ 'input_pos': input_pos,
87
+ 'kv_cache': kv,
88
+ },
89
+ )
90
+ .signature(
91
+ 'decode',
92
+ model,
93
+ sample_kwargs={
94
+ 'tokens': decode_token,
95
+ 'input_pos': decode_input_pos,
96
+ 'kv_cache': kv,
97
+ },
98
+ )
99
+ .convert()
100
+ )
101
+ edge_model.export('/tmp/toy_external_kv_cache.tflite')
102
+
103
+
104
+ if __name__ == '__main__':
105
+ app.run(convert_toy_model)
@@ -15,15 +15,12 @@
15
15
  # A toy example which has a single-layer transformer block.
16
16
  from typing import Tuple
17
17
 
18
- import numpy as np
19
- import torch
20
- import torch.nn as nn
21
-
22
- import ai_edge_torch
18
+ from ai_edge_torch.generative.layers import builder
23
19
  from ai_edge_torch.generative.layers.attention import TransformerBlock
24
20
  import ai_edge_torch.generative.layers.attention_utils as attn_utils
25
- import ai_edge_torch.generative.layers.builder as builder
26
21
  import ai_edge_torch.generative.layers.model_config as cfg
22
+ import torch
23
+ from torch import nn
27
24
 
28
25
  RoPECache = Tuple[torch.Tensor, torch.Tensor]
29
26
  KV_CACHE_MAX_LEN = 100
@@ -37,14 +34,16 @@ class ToySingleLayerModel(torch.nn.Module):
37
34
  config.embedding_dim, config.vocab_size, bias=config.lm_head_use_bias
38
35
  )
39
36
  self.tok_embedding = nn.Embedding(config.vocab_size, config.embedding_dim)
40
- self.transformer_block = TransformerBlock(config)
37
+ self.transformer_block = TransformerBlock(config.block_config(0), config)
41
38
  self.final_norm = builder.build_norm(
42
39
  config.embedding_dim,
43
40
  config.final_norm_config,
44
41
  )
42
+ # Toy model has only one block config.
43
+ attn_config = config.block_config(0).attn_config
45
44
  self.rope_cache = attn_utils.build_rope_cache(
46
45
  size=config.max_seq_len,
47
- dim=int(config.attn_config.rotary_percentage * config.head_dim),
46
+ dim=int(attn_config.rotary_percentage * attn_config.head_dim),
48
47
  base=10_000,
49
48
  condense_ratio=1,
50
49
  dtype=torch.float32,
@@ -70,9 +69,63 @@ class ToySingleLayerModel(torch.nn.Module):
70
69
  return self.lm_head(x)
71
70
 
72
71
 
72
+ class ToySingleLayerModelWeightSharing(torch.nn.Module):
73
+
74
+ def __init__(self, config: cfg.ModelConfig) -> None:
75
+ super().__init__()
76
+ self.lm_head = nn.Linear(
77
+ config.embedding_dim, config.vocab_size, bias=config.lm_head_use_bias
78
+ )
79
+ self.tok_embedding = nn.Embedding(config.vocab_size, config.embedding_dim)
80
+ self.lm_head = nn.Linear(
81
+ config.embedding_dim,
82
+ config.vocab_size,
83
+ bias=config.lm_head_use_bias,
84
+ )
85
+ self.lm_head.weight.data = self.tok_embedding.weight.data
86
+ self.transformer_block = TransformerBlock(config.block_config(0), config)
87
+ self.final_norm = builder.build_norm(
88
+ config.embedding_dim,
89
+ config.final_norm_config,
90
+ )
91
+ # Toy model has only one block config.
92
+ attn_config = config.block_config(0).attn_config
93
+ self.rope_cache = attn_utils.build_rope_cache(
94
+ size=config.max_seq_len,
95
+ dim=int(attn_config.rotary_percentage * attn_config.head_dim),
96
+ base=10_000,
97
+ condense_ratio=1,
98
+ dtype=torch.float32,
99
+ device=torch.device('cpu'),
100
+ )
101
+ self.mask_cache = attn_utils.build_causal_mask_cache(
102
+ size=config.max_seq_len, dtype=torch.float32, device=torch.device('cpu')
103
+ )
104
+ self.config = config
105
+
106
+ @torch.inference_mode
107
+ def forward(self, idx: torch.Tensor, input_pos: torch.Tensor) -> torch.Tensor:
108
+ x = self.tok_embedding(idx)
109
+ cos, sin = self.rope_cache
110
+
111
+ cos = cos.index_select(0, input_pos)
112
+ sin = sin.index_select(0, input_pos)
113
+ mask = self.mask_cache.index_select(2, input_pos)
114
+ mask = mask[:, :, :, : self.config.max_seq_len]
115
+
116
+ x = self.transformer_block(x, (cos, sin), mask, input_pos)
117
+ x = self.final_norm(x)
118
+ res = self.lm_head(x)
119
+ return res
120
+
121
+
73
122
  def get_model_config() -> cfg.ModelConfig:
74
123
  attn_config = cfg.AttentionConfig(
75
- num_heads=32, num_query_groups=4, rotary_percentage=1.0, enable_kv_cache=False
124
+ num_heads=32,
125
+ head_dim=4,
126
+ num_query_groups=4,
127
+ rotary_percentage=1.0,
128
+ enable_kv_cache=False,
76
129
  )
77
130
  ff_config = cfg.FeedForwardConfig(
78
131
  type=cfg.FeedForwardType.GATED,
@@ -80,43 +133,18 @@ def get_model_config() -> cfg.ModelConfig:
80
133
  intermediate_size=256,
81
134
  )
82
135
  norm_config = cfg.NormalizationConfig(type=cfg.NormalizationType.RMS_NORM)
136
+ block_config = cfg.TransformerBlockConfig(
137
+ attn_config=attn_config,
138
+ ff_config=ff_config,
139
+ pre_attention_norm_config=norm_config,
140
+ post_attention_norm_config=norm_config,
141
+ )
83
142
  config = cfg.ModelConfig(
84
143
  vocab_size=400,
85
144
  num_layers=1,
86
145
  max_seq_len=KV_CACHE_MAX_LEN,
87
146
  embedding_dim=128,
88
- attn_config=attn_config,
89
- ff_config=ff_config,
90
- pre_attention_norm_config=norm_config,
91
- pre_ff_norm_config=norm_config,
147
+ block_configs=block_config,
92
148
  final_norm_config=norm_config,
93
149
  )
94
150
  return config
95
-
96
-
97
- def define_and_run() -> None:
98
- model = ToySingleLayerModel(get_model_config())
99
- idx = torch.unsqueeze(torch.arange(0, KV_CACHE_MAX_LEN), 0)
100
- input_pos = torch.arange(0, KV_CACHE_MAX_LEN)
101
- print('running an inference')
102
- print(
103
- model.forward(
104
- idx,
105
- input_pos,
106
- )
107
- )
108
-
109
- # Convert model to tflite.
110
- print('converting model to tflite')
111
- edge_model = ai_edge_torch.convert(
112
- model,
113
- (
114
- idx,
115
- input_pos,
116
- ),
117
- )
118
- edge_model.export('/tmp/toy_model.tflite')
119
-
120
-
121
- if __name__ == '__main__':
122
- define_and_run()
@@ -12,24 +12,24 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
  # ==============================================================================
15
- # A toy example which has basic transformer block (w/ KV-Cache).
16
- from typing import List, Tuple
17
15
 
18
- import numpy as np
19
- import torch
20
- import torch.nn as nn
21
- import torch_xla
16
+ """A toy example which has basic transformer block (w/ externalized KV-Cache)."""
17
+
18
+ from typing import Tuple
22
19
 
23
- import ai_edge_torch
24
- from ai_edge_torch.generative.layers.attention import TransformerBlock
20
+ from absl import app
21
+ from ai_edge_torch.generative.layers import attention
22
+ from ai_edge_torch.generative.layers import builder
23
+ from ai_edge_torch.generative.layers import kv_cache as kv_utils
25
24
  import ai_edge_torch.generative.layers.attention_utils as attn_utils
26
- import ai_edge_torch.generative.layers.builder as builder
27
25
  import ai_edge_torch.generative.layers.model_config as cfg
26
+ import torch
27
+ from torch import nn
28
28
 
29
29
  RoPECache = Tuple[torch.Tensor, torch.Tensor]
30
30
 
31
31
 
32
- class ToyModelWithKV(torch.nn.Module):
32
+ class ToyModelWithKVCache(torch.nn.Module):
33
33
 
34
34
  def __init__(self, config: cfg.ModelConfig) -> None:
35
35
  super().__init__()
@@ -37,16 +37,20 @@ class ToyModelWithKV(torch.nn.Module):
37
37
  config.embedding_dim, config.vocab_size, bias=config.lm_head_use_bias
38
38
  )
39
39
  self.tok_embedding = nn.Embedding(config.vocab_size, config.embedding_dim)
40
+ # Toy model has only one block config.
41
+ block_config = config.block_config(0)
40
42
  self.transformer_blocks = nn.ModuleList(
41
- TransformerBlock(config) for _ in range(config.num_layers)
43
+ attention.TransformerBlock(block_config, config)
44
+ for _ in range(config.num_layers)
42
45
  )
43
46
  self.final_norm = builder.build_norm(
44
47
  config.embedding_dim,
45
48
  config.final_norm_config,
46
49
  )
50
+ attn_config = block_config.attn_config
47
51
  self.rope_cache = attn_utils.build_rope_cache(
48
52
  size=config.max_seq_len,
49
- dim=int(config.attn_config.rotary_percentage * config.head_dim),
53
+ dim=int(attn_config.rotary_percentage * attn_config.head_dim),
50
54
  base=10_000,
51
55
  condense_ratio=1,
52
56
  dtype=torch.float32,
@@ -57,29 +61,37 @@ class ToyModelWithKV(torch.nn.Module):
57
61
  )
58
62
  self.config = config
59
63
 
60
- @torch.inference_mode
61
- def forward(self, idx: torch.Tensor, input_pos: torch.Tensor) -> torch.Tensor:
62
- x = self.tok_embedding(idx)
64
+ def forward(
65
+ self,
66
+ tokens: torch.Tensor,
67
+ input_pos: torch.Tensor,
68
+ kv_cache: kv_utils.KVCache,
69
+ ) -> Tuple[torch.Tensor, kv_utils.KVCache]:
70
+ x = self.tok_embedding(tokens)
63
71
  cos, sin = self.rope_cache
64
72
  cos = cos.index_select(0, input_pos)
65
73
  sin = sin.index_select(0, input_pos)
66
74
  mask = self.mask_cache.index_select(2, input_pos)
67
75
  mask = mask[:, :, :, : self.config.max_seq_len]
68
- for i, block in enumerate(self.transformer_blocks):
69
- x = block(x, (cos, sin), mask, input_pos)
70
- x = self.final_norm(x)
71
- return self.lm_head(x)
72
76
 
77
+ updated_kv_entires = []
78
+ for i, block in enumerate(self.transformer_blocks):
79
+ kv_entry = kv_cache.caches[i] if kv_cache else None
80
+ x, kv_entry = block(x, (cos, sin), mask, input_pos, kv_entry)
81
+ if kv_entry:
82
+ updated_kv_entires.append(kv_entry)
73
83
 
74
- def _export_stablehlo_mlir(model, args):
75
- ep = torch.export.export(model, args)
76
- stablehlo_gm = torch_xla.stablehlo.exported_program_to_stablehlo(ep)
77
- return stablehlo_gm.get_stablehlo_text()
84
+ x = self.final_norm(x)
85
+ updated_kv_cache = kv_utils.KVCache(tuple(updated_kv_entires))
86
+ return {'logits': self.lm_head(x), 'kv_cache': updated_kv_cache}
78
87
 
79
88
 
80
89
  def get_model_config() -> cfg.ModelConfig:
81
90
  attn_config = cfg.AttentionConfig(
82
- num_heads=32, num_query_groups=4, rotary_percentage=1.0
91
+ num_heads=32,
92
+ head_dim=4,
93
+ num_query_groups=4,
94
+ rotary_percentage=1.0,
83
95
  )
84
96
  ff_config = cfg.FeedForwardConfig(
85
97
  type=cfg.FeedForwardType.GATED,
@@ -87,15 +99,18 @@ def get_model_config() -> cfg.ModelConfig:
87
99
  intermediate_size=256,
88
100
  )
89
101
  norm_config = cfg.NormalizationConfig(type=cfg.NormalizationType.RMS_NORM)
102
+ block_config = cfg.TransformerBlockConfig(
103
+ attn_config=attn_config,
104
+ ff_config=ff_config,
105
+ pre_attention_norm_config=norm_config,
106
+ post_attention_norm_config=norm_config,
107
+ )
90
108
  config = cfg.ModelConfig(
91
109
  vocab_size=150,
92
110
  num_layers=2,
93
- max_seq_len=500,
111
+ max_seq_len=100,
94
112
  embedding_dim=128,
95
- attn_config=attn_config,
96
- ff_config=ff_config,
97
- pre_attention_norm_config=norm_config,
98
- pre_ff_norm_config=norm_config,
113
+ block_configs=block_config,
99
114
  final_norm_config=norm_config,
100
115
  enable_hlfb=True,
101
116
  )
@@ -103,41 +118,12 @@ def get_model_config() -> cfg.ModelConfig:
103
118
 
104
119
 
105
120
  def get_sample_prefill_inputs() -> Tuple[torch.Tensor, torch.Tensor]:
106
- idx = torch.unsqueeze(torch.arange(0, 100), 0)
107
- input_pos = torch.arange(0, 100)
108
- return idx, input_pos
121
+ tokens = torch.unsqueeze(torch.arange(0, 100, dtype=torch.int), 0)
122
+ input_pos = torch.arange(0, 100, dtype=torch.int)
123
+ return tokens, input_pos
109
124
 
110
125
 
111
126
  def get_sample_decode_inputs() -> Tuple[torch.Tensor, torch.Tensor]:
112
- idx = torch.tensor([[1]], dtype=torch.long)
113
- input_pos = torch.tensor([10], dtype=torch.int64)
114
- return idx, input_pos
115
-
116
-
117
- def define_and_run() -> None:
118
- dump_mlir = False
119
-
120
- config = get_model_config()
121
- model = ToyModelWithKV(config)
122
- print('running an inference')
123
- idx, input_pos = get_sample_prefill_inputs()
124
- decode_idx, decode_input_pos = get_sample_decode_inputs()
125
- print(model.forward(idx, input_pos))
126
-
127
- if dump_mlir:
128
- mlir_text = _export_stablehlo_mlir(model, (idx, input_pos))
129
- with open('/tmp/toy_model_with_kv.stablehlo.mlir', 'w') as f:
130
- f.write(mlir_text)
131
-
132
- # Convert model to tflite with 2 signatures (prefill + decode).
133
- print('converting toy model to tflite with 2 signatures (prefill + decode)')
134
- edge_model = (
135
- ai_edge_torch.signature('prefill', model, (idx, input_pos))
136
- .signature('decode', model, (decode_idx, decode_input_pos))
137
- .convert()
138
- )
139
- edge_model.export('/tmp/toy_kv_cache.tflite')
140
-
141
-
142
- if __name__ == '__main__':
143
- define_and_run()
127
+ tokens = torch.tensor([[1]], dtype=torch.int)
128
+ input_pos = torch.tensor([10])
129
+ return tokens, input_pos
@@ -0,0 +1,14 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================