ai-edge-torch-nightly 0.2.0.dev20240714__py3-none-any.whl → 0.3.0.dev20240926__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_edge_torch/__init__.py +5 -4
- ai_edge_torch/_convert/conversion.py +112 -0
- ai_edge_torch/_convert/conversion_utils.py +64 -0
- ai_edge_torch/{convert → _convert}/converter.py +94 -48
- ai_edge_torch/_convert/fx_passes/__init__.py +22 -0
- ai_edge_torch/{convert → _convert}/fx_passes/build_aten_composite_pass.py +107 -44
- ai_edge_torch/{convert → _convert}/fx_passes/build_interpolate_composite_pass.py +23 -20
- ai_edge_torch/{convert → _convert}/fx_passes/inject_mlir_debuginfo_pass.py +5 -6
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/__init__.py +1 -1
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_check.py +39 -9
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_mark.py +2 -0
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +1 -0
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +17 -8
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +9 -8
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +31 -18
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +2 -2
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/pass_body.py +34 -24
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/utils.py +2 -0
- ai_edge_torch/_convert/signature.py +66 -0
- ai_edge_torch/_convert/test/test_convert.py +495 -0
- ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
- ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
- ai_edge_torch/{convert → _convert}/test/test_to_channel_last_io.py +5 -5
- ai_edge_torch/{convert → _convert}/to_channel_last_io.py +10 -3
- ai_edge_torch/config.py +27 -0
- ai_edge_torch/conftest.py +20 -0
- ai_edge_torch/debug/culprit.py +72 -40
- ai_edge_torch/debug/test/test_culprit.py +7 -5
- ai_edge_torch/debug/test/test_search_model.py +8 -7
- ai_edge_torch/debug/utils.py +14 -3
- ai_edge_torch/fx_pass_base.py +101 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/gemma/{gemma.py → gemma1.py} +69 -55
- ai_edge_torch/generative/examples/gemma/gemma2.py +267 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma2.py +57 -0
- ai_edge_torch/generative/examples/gemma/verify_util.py +143 -0
- ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/openelm/openelm.py +206 -0
- ai_edge_torch/generative/examples/openelm/verify.py +64 -0
- ai_edge_torch/generative/examples/phi/__init__.py +14 -0
- ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/phi/convert_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/{phi2 → phi}/phi2.py +70 -51
- ai_edge_torch/generative/examples/phi/phi3.py +286 -0
- ai_edge_torch/generative/examples/phi/verify.py +65 -0
- ai_edge_torch/generative/examples/phi/verify_phi3.py +70 -0
- ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
- ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/smollm/smollm.py +101 -0
- ai_edge_torch/generative/examples/smollm/verify.py +62 -0
- ai_edge_torch/generative/examples/stable_diffusion/attention.py +3 -1
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +83 -13
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +27 -14
- ai_edge_torch/generative/examples/stable_diffusion/decoder.py +74 -9
- ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +179 -37
- ai_edge_torch/generative/examples/stable_diffusion/encoder.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +83 -58
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +1 -0
- ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +4 -1
- ai_edge_torch/generative/examples/stable_diffusion/util.py +9 -3
- ai_edge_torch/generative/examples/t5/convert_to_tflite.py +28 -25
- ai_edge_torch/generative/examples/t5/t5.py +208 -159
- ai_edge_torch/generative/examples/t5/t5_attention.py +45 -30
- ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
- ai_edge_torch/generative/examples/test_models/toy_model.py +69 -41
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +50 -64
- ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +41 -39
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +67 -54
- ai_edge_torch/generative/examples/tiny_llama/verify.py +64 -0
- ai_edge_torch/generative/fx_passes/__init__.py +4 -5
- ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +10 -7
- ai_edge_torch/generative/layers/attention.py +141 -102
- ai_edge_torch/generative/layers/attention_utils.py +53 -12
- ai_edge_torch/generative/layers/builder.py +37 -7
- ai_edge_torch/generative/layers/feed_forward.py +39 -14
- ai_edge_torch/generative/layers/kv_cache.py +162 -50
- ai_edge_torch/generative/layers/model_config.py +84 -30
- ai_edge_torch/generative/layers/normalization.py +185 -7
- ai_edge_torch/generative/layers/rotary_position_embedding.py +6 -4
- ai_edge_torch/generative/layers/scaled_dot_product_attention.py +48 -21
- ai_edge_torch/generative/layers/unet/blocks_2d.py +136 -77
- ai_edge_torch/generative/layers/unet/builder.py +7 -4
- ai_edge_torch/generative/layers/unet/model_config.py +17 -15
- ai_edge_torch/generative/quantize/example.py +7 -8
- ai_edge_torch/generative/quantize/quant_recipe.py +10 -7
- ai_edge_torch/generative/quantize/quant_recipe_utils.py +12 -1
- ai_edge_torch/generative/quantize/quant_recipes.py +8 -0
- ai_edge_torch/generative/test/test_kv_cache.py +120 -0
- ai_edge_torch/generative/test/{loader_test.py → test_loader.py} +9 -7
- ai_edge_torch/generative/test/test_model_conversion.py +124 -188
- ai_edge_torch/generative/test/test_model_conversion_large.py +251 -0
- ai_edge_torch/generative/test/test_quantize.py +76 -60
- ai_edge_torch/generative/test/utils.py +54 -0
- ai_edge_torch/generative/utilities/converter.py +82 -0
- ai_edge_torch/generative/utilities/loader.py +120 -57
- ai_edge_torch/generative/utilities/stable_diffusion_loader.py +165 -57
- ai_edge_torch/generative/utilities/t5_loader.py +110 -81
- ai_edge_torch/generative/utilities/verifier.py +247 -0
- ai_edge_torch/hlfb/__init__.py +1 -1
- ai_edge_torch/hlfb/mark_pattern/__init__.py +9 -7
- ai_edge_torch/hlfb/mark_pattern/passes.py +23 -3
- ai_edge_torch/hlfb/mark_pattern/pattern.py +39 -30
- ai_edge_torch/hlfb/test/test_mark_pattern.py +46 -20
- ai_edge_torch/hlfb/test/test_stablehlo_composite_builder.py +24 -11
- ai_edge_torch/lowertools/__init__.py +18 -0
- ai_edge_torch/lowertools/_shim.py +80 -0
- ai_edge_torch/lowertools/common_utils.py +142 -0
- ai_edge_torch/lowertools/odml_torch_utils.py +255 -0
- ai_edge_torch/lowertools/test_utils.py +60 -0
- ai_edge_torch/lowertools/torch_xla_utils.py +284 -0
- ai_edge_torch/{generative/quantize/ai_edge_quantizer_glue → lowertools}/translate_recipe.py +29 -14
- ai_edge_torch/model.py +53 -18
- ai_edge_torch/odml_torch/__init__.py +20 -0
- ai_edge_torch/odml_torch/_torch_future.py +61 -0
- ai_edge_torch/odml_torch/_torch_library.py +19 -0
- ai_edge_torch/odml_torch/composite/__init__.py +16 -0
- ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
- ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
- ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
- ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
- ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
- ai_edge_torch/odml_torch/export.py +357 -0
- ai_edge_torch/odml_torch/export_utils.py +168 -0
- ai_edge_torch/odml_torch/jax_bridge/__init__.py +15 -0
- ai_edge_torch/odml_torch/jax_bridge/_wrap.py +150 -0
- ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
- ai_edge_torch/odml_torch/lowerings/__init__.py +25 -0
- ai_edge_torch/odml_torch/lowerings/_basic.py +258 -0
- ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
- ai_edge_torch/odml_torch/lowerings/_convolution.py +241 -0
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +252 -0
- ai_edge_torch/odml_torch/lowerings/_layer_norm.py +78 -0
- ai_edge_torch/odml_torch/lowerings/context.py +42 -0
- ai_edge_torch/odml_torch/lowerings/registry.py +96 -0
- ai_edge_torch/odml_torch/lowerings/utils.py +185 -0
- ai_edge_torch/odml_torch/passes/__init__.py +38 -0
- ai_edge_torch/odml_torch/tf_integration.py +194 -0
- ai_edge_torch/quantize/pt2e_quantizer.py +52 -24
- ai_edge_torch/quantize/pt2e_quantizer_utils.py +43 -23
- ai_edge_torch/quantize/quant_config.py +13 -9
- ai_edge_torch/testing/model_coverage/model_coverage.py +29 -16
- ai_edge_torch/version.py +16 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/METADATA +7 -3
- ai_edge_torch_nightly-0.3.0.dev20240926.dist-info/RECORD +177 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/WHEEL +1 -1
- ai_edge_torch/convert/conversion.py +0 -117
- ai_edge_torch/convert/conversion_utils.py +0 -400
- ai_edge_torch/convert/fx_passes/__init__.py +0 -59
- ai_edge_torch/convert/fx_passes/_pass_base.py +0 -49
- ai_edge_torch/convert/fx_passes/canonicalize_pass.py +0 -37
- ai_edge_torch/convert/test/test_convert.py +0 -311
- ai_edge_torch/convert/test/test_convert_composites.py +0 -192
- ai_edge_torch/convert/test/test_convert_multisig.py +0 -139
- ai_edge_torch/generative/examples/gemma/convert_to_tflite.py +0 -66
- ai_edge_torch/generative/examples/phi2/convert_to_tflite.py +0 -64
- ai_edge_torch/generative/examples/test_models/toy_model_with_external_kv_cache.py +0 -161
- ai_edge_torch/generative/quantize/ai_edge_quantizer_glue/__init__.py +0 -0
- ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/RECORD +0 -121
- /ai_edge_torch/{convert → _convert}/__init__.py +0 -0
- /ai_edge_torch/{convert → _convert}/test/__init__.py +0 -0
- /ai_edge_torch/generative/examples/{phi2 → openelm}/__init__.py +0 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/LICENSE +0 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/top_level.txt +0 -0
@@ -12,13 +12,25 @@
|
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
|
+
"""Passes to clean up the model graph for pattern matching."""
|
16
|
+
|
15
17
|
import torch
|
16
18
|
|
17
19
|
|
18
20
|
def remove_clone_ops(gm: torch.fx.GraphModule):
|
19
|
-
|
20
|
-
|
21
|
-
|
21
|
+
"""Removes clone ops from the graph.
|
22
|
+
|
23
|
+
torch export adds additional aten.clone nodes to produce contiguous in memory
|
24
|
+
tensors depending on tensor sizes for runtime efficiency. However, these
|
25
|
+
unpredictable clone nodes can break the pattern matching. Thus remove all
|
26
|
+
clones in model and pattern graphs.
|
27
|
+
|
28
|
+
Args:
|
29
|
+
gm: The graph module to remove clone ops from.
|
30
|
+
|
31
|
+
Returns:
|
32
|
+
The graph module with clone ops removed.
|
33
|
+
"""
|
22
34
|
for node in gm.graph.nodes:
|
23
35
|
if node.op == "call_function" and node.name.startswith("clone"):
|
24
36
|
node.replace_all_uses_with(node.args[0])
|
@@ -30,6 +42,14 @@ def remove_clone_ops(gm: torch.fx.GraphModule):
|
|
30
42
|
|
31
43
|
|
32
44
|
def remove_dangling_args(gm: torch.fx.GraphModule):
|
45
|
+
"""Removes dangling args from the graph.
|
46
|
+
|
47
|
+
Args:
|
48
|
+
gm: The graph module to remove dangling args from.
|
49
|
+
|
50
|
+
Returns:
|
51
|
+
The graph module with dangling args removed.
|
52
|
+
"""
|
33
53
|
nodes_to_erase = []
|
34
54
|
for node in gm.graph.nodes:
|
35
55
|
if node.op == "placeholder" and len(node.users) == 0:
|
@@ -12,10 +12,12 @@
|
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
|
-
|
15
|
+
"""Mark pattern."""
|
16
|
+
|
16
17
|
import dataclasses
|
17
18
|
from typing import Any, Callable, Optional, Union
|
18
19
|
|
20
|
+
from ai_edge_torch.hlfb.mark_pattern import passes
|
19
21
|
import torch
|
20
22
|
from torch.export.graph_signature import TensorArgument
|
21
23
|
from torch.fx import Graph
|
@@ -23,8 +25,6 @@ from torch.fx import GraphModule
|
|
23
25
|
from torch.fx.passes.utils.matcher_utils import InternalMatch
|
24
26
|
from torch.fx.passes.utils.matcher_utils import SubgraphMatcher
|
25
27
|
|
26
|
-
from ai_edge_torch.hlfb.mark_pattern import passes
|
27
|
-
|
28
28
|
|
29
29
|
def _are_equal(x: Any, y: Any) -> bool:
|
30
30
|
if type(x) != type(y):
|
@@ -46,6 +46,7 @@ def _are_equal(x: Any, y: Any) -> bool:
|
|
46
46
|
@dataclasses.dataclass
|
47
47
|
class ScalarAttrTracker:
|
48
48
|
"""ScalarAttrTracker is used to track the occurrence of a pattern's
|
49
|
+
|
49
50
|
scalar arg/attr in the pattern decomposed graph. Since a scalar attr
|
50
51
|
to the pattern can be transformed and turned into a/some ops' scalar
|
51
52
|
arg in the decomposed graph, it would be hard to programmatically get
|
@@ -58,27 +59,31 @@ class ScalarAttrTracker:
|
|
58
59
|
pattern_arg_pos (int): the index of the attr to track in the pattern's
|
59
60
|
export_args.
|
60
61
|
transform (Callable): the transform function used when targeting the
|
61
|
-
occurrence of the attr value in the decomposed graph. An attr value
|
62
|
-
|
63
|
-
|
64
|
-
|
65
|
-
the transformed value back to the original attr value.
|
62
|
+
occurrence of the attr value in the decomposed graph. An attr value may be
|
63
|
+
transformed during the decomposition and appear as a derived value.
|
64
|
+
inverse_transform (Callable): the inverse transform function that maps the
|
65
|
+
transformed value back to the original attr value.
|
66
66
|
"""
|
67
67
|
|
68
68
|
attr_name: str
|
69
69
|
pattern_arg_pos: int
|
70
70
|
transform: Callable = lambda x: x
|
71
71
|
inverse_transform: Callable = lambda x: x
|
72
|
-
_source_targets: list[tuple[Any, Any]] = dataclasses.field(
|
72
|
+
_source_targets: list[tuple[Any, Any]] = dataclasses.field(
|
73
|
+
default_factory=list
|
74
|
+
)
|
73
75
|
|
74
76
|
def track(self, *sources):
|
75
77
|
"""Register magic values to track the (transformed) attr values in
|
78
|
+
|
76
79
|
the pattern decomposed graph.
|
77
80
|
"""
|
78
81
|
for source in sources:
|
79
82
|
target = self.transform(source)
|
80
83
|
if not _are_equal(self.inverse_transform(target), source):
|
81
|
-
raise Exception(
|
84
|
+
raise Exception(
|
85
|
+
f"Invalid transform/inverse_transform for {self.attr_name}"
|
86
|
+
)
|
82
87
|
self._source_targets.append([source, target])
|
83
88
|
return self
|
84
89
|
|
@@ -155,24 +160,22 @@ class Pattern:
|
|
155
160
|
"""The PyTorch computation pattern to match against a model.
|
156
161
|
|
157
162
|
Args:
|
158
|
-
name (str): the name of the pattern. It would be propagated to
|
159
|
-
|
160
|
-
|
163
|
+
name (str): the name of the pattern. It would be propagated to the `name`
|
164
|
+
attr in StableHLO composite ops for the matched model subgraphs in the
|
165
|
+
lowering.
|
161
166
|
module (torch.nn.Module or Callable): the PyTorch computation.
|
162
|
-
export_args (tuple[Any]): the args used to export the pattern module
|
163
|
-
|
164
|
-
|
165
|
-
|
166
|
-
|
167
|
-
the
|
168
|
-
|
169
|
-
|
170
|
-
|
171
|
-
|
172
|
-
|
173
|
-
|
174
|
-
decomp_table (Optional[dict[torch._ops.OperatorBase, Callable]]):
|
175
|
-
The decomposition table to be run on the pattern's exported program.
|
167
|
+
export_args (tuple[Any]): the args used to export the pattern module with
|
168
|
+
torch.export.export. If export_args contains non-tensor Python scalars,
|
169
|
+
there must be a corresponding attr tracker in `scalar_attr_trackers` for
|
170
|
+
each scalar arg. attr_builder (Callable[[Pattern, GraphModule,
|
171
|
+
InternalMatch], Optional[dict[str, Any]]]): the callable that produces
|
172
|
+
the a scalar attrs dict, which would be propagated to `attr` in
|
173
|
+
StableHLO composite ops for the matched model subgraphs in the lowering.
|
174
|
+
scalar_attr_trackers (list[ScalarAttrTracker]): the trackers for scalar
|
175
|
+
args in `export_args`, which are used to track the attr occurrence(s)
|
176
|
+
and retrieve their values from the matched subgraph.
|
177
|
+
decomp_table (Optional[dict[torch._ops.OperatorBase, Callable]]): The
|
178
|
+
decomposition table to be run on the pattern's exported program.
|
176
179
|
"""
|
177
180
|
if not isinstance(module, torch.nn.Module):
|
178
181
|
|
@@ -189,7 +192,9 @@ class Pattern:
|
|
189
192
|
|
190
193
|
self.name = name
|
191
194
|
self.attr_builder = attr_builder
|
192
|
-
self._scalar_attr_trackers =
|
195
|
+
self._scalar_attr_trackers = (
|
196
|
+
scalar_attr_trackers if scalar_attr_trackers else []
|
197
|
+
)
|
193
198
|
|
194
199
|
exported_program = torch.export.export(module, export_args)
|
195
200
|
if decomp_table is not None:
|
@@ -201,7 +206,9 @@ class Pattern:
|
|
201
206
|
self._scalar_attr_locations = []
|
202
207
|
for tracker in self._scalar_attr_trackers:
|
203
208
|
self._scalar_attr_locations.append(
|
204
|
-
_find_scalar_attr(
|
209
|
+
_find_scalar_attr(
|
210
|
+
module, export_args, tracker, decomp_table=decomp_table
|
211
|
+
)
|
205
212
|
)
|
206
213
|
|
207
214
|
# Sanitize graph_module for more precise pattern matching.
|
@@ -251,7 +258,9 @@ class Pattern:
|
|
251
258
|
attrs = {}
|
252
259
|
|
253
260
|
for loc in self._scalar_attr_locations:
|
254
|
-
attrs[loc.attr_name] = self._get_attr_value_from_pattern_match(
|
261
|
+
attrs[loc.attr_name] = self._get_attr_value_from_pattern_match(
|
262
|
+
match, loc
|
263
|
+
)
|
255
264
|
|
256
265
|
attrs = attrs if attrs else None
|
257
266
|
match_with_attrs.append((match, attrs))
|
@@ -12,13 +12,14 @@
|
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
|
+
"""Tests for mark_pattern."""
|
15
16
|
|
16
|
-
import
|
17
|
-
|
17
|
+
from ai_edge_torch import lowertools
|
18
|
+
from ai_edge_torch.hlfb import mark_pattern
|
19
|
+
from ai_edge_torch.hlfb.mark_pattern import pattern as pattern_module
|
18
20
|
import torch
|
19
|
-
import torch_xla
|
20
21
|
|
21
|
-
from
|
22
|
+
from absl.testing import absltest as googletest
|
22
23
|
|
23
24
|
|
24
25
|
def _export_stablehlo_mlir(model, args=None):
|
@@ -26,11 +27,10 @@ def _export_stablehlo_mlir(model, args=None):
|
|
26
27
|
ep = torch.export.export(model, args)
|
27
28
|
else:
|
28
29
|
ep = model
|
29
|
-
|
30
|
-
return stablehlo_gm.get_stablehlo_text()
|
30
|
+
return lowertools.exported_program_to_mlir_text(ep)
|
31
31
|
|
32
32
|
|
33
|
-
class TestMarkPattern(
|
33
|
+
class TestMarkPattern(googletest.TestCase):
|
34
34
|
|
35
35
|
def test_mark_pattern(self):
|
36
36
|
|
@@ -39,7 +39,7 @@ class TestMarkPattern(unittest.TestCase):
|
|
39
39
|
def forward(self, x):
|
40
40
|
return x * x + x + x
|
41
41
|
|
42
|
-
pattern =
|
42
|
+
pattern = pattern_module.Pattern(
|
43
43
|
"test.add",
|
44
44
|
lambda a, b: a + b,
|
45
45
|
export_args=(torch.rand(2, 2), torch.rand(2, 2)),
|
@@ -51,7 +51,12 @@ class TestMarkPattern(unittest.TestCase):
|
|
51
51
|
mark_pattern.mark_pattern(exported_program.graph_module, pattern)
|
52
52
|
mlir = _export_stablehlo_mlir(exported_program)
|
53
53
|
|
54
|
-
|
54
|
+
lowertools.assert_string_count(
|
55
|
+
self,
|
56
|
+
mlir,
|
57
|
+
{'stablehlo.composite "test.add"': 2},
|
58
|
+
{"stablehlo.custom_call @mark_tensor": 6},
|
59
|
+
)
|
55
60
|
|
56
61
|
def test_mark_pattern_with_attr_builder(self):
|
57
62
|
class TestModel(torch.nn.Module):
|
@@ -59,7 +64,7 @@ class TestMarkPattern(unittest.TestCase):
|
|
59
64
|
def forward(self, x):
|
60
65
|
return x * x * x + x - x * x + x
|
61
66
|
|
62
|
-
pattern =
|
67
|
+
pattern = pattern_module.Pattern(
|
63
68
|
"test.add",
|
64
69
|
lambda a, b: a + b,
|
65
70
|
export_args=(torch.rand(2, 2), torch.rand(2, 2)),
|
@@ -72,8 +77,16 @@ class TestMarkPattern(unittest.TestCase):
|
|
72
77
|
mark_pattern.mark_pattern(exported_program.graph_module, pattern)
|
73
78
|
mlir = _export_stablehlo_mlir(exported_program)
|
74
79
|
|
75
|
-
|
76
|
-
|
80
|
+
lowertools.assert_string_count(
|
81
|
+
self,
|
82
|
+
mlir,
|
83
|
+
{
|
84
|
+
'stablehlo.composite "test.add"': 2,
|
85
|
+
'composite_attributes = {alias = "test.test_add"}': 2,
|
86
|
+
},
|
87
|
+
{"stablehlo.custom_call @mark_tensor": 6},
|
88
|
+
{'{"alias": "test.test_add"}': 2},
|
89
|
+
)
|
77
90
|
|
78
91
|
def test_mark_pattern_with_scalar_attr_tracker(self):
|
79
92
|
class TestModel(torch.nn.Module):
|
@@ -84,12 +97,12 @@ class TestMarkPattern(unittest.TestCase):
|
|
84
97
|
r = torch.nn.LogSoftmax(dim=idx % 2)(r) * x
|
85
98
|
return r
|
86
99
|
|
87
|
-
pattern =
|
100
|
+
pattern = pattern_module.Pattern(
|
88
101
|
"test.log_softmax",
|
89
102
|
lambda x, dim: torch.nn.functional.log_softmax(x, dim=dim),
|
90
103
|
export_args=(torch.rand(10, 10, 10), 1),
|
91
104
|
scalar_attr_trackers=[
|
92
|
-
|
105
|
+
pattern_module.ScalarAttrTracker("dim", pattern_arg_pos=1)
|
93
106
|
.track(0)
|
94
107
|
.track(1)
|
95
108
|
.track(2),
|
@@ -102,9 +115,17 @@ class TestMarkPattern(unittest.TestCase):
|
|
102
115
|
mark_pattern.mark_pattern(exported_program.graph_module, pattern)
|
103
116
|
mlir = _export_stablehlo_mlir(exported_program)
|
104
117
|
|
105
|
-
|
106
|
-
|
107
|
-
|
118
|
+
lowertools.assert_string_count(
|
119
|
+
self,
|
120
|
+
mlir,
|
121
|
+
{
|
122
|
+
'stablehlo.composite "test.log_softmax"': 5,
|
123
|
+
"composite_attributes = {dim = 0 : i64}": 3,
|
124
|
+
"composite_attributes = {dim = 1 : i64}": 2,
|
125
|
+
},
|
126
|
+
{"stablehlo.custom_call @mark_tensor": 10},
|
127
|
+
{'{"dim": 0}': 3, '{"dim": 1}': 2},
|
128
|
+
)
|
108
129
|
|
109
130
|
def test_mark_tangent_model_and_pattern_input(self):
|
110
131
|
class TestModel(torch.nn.Module):
|
@@ -114,7 +135,7 @@ class TestMarkPattern(unittest.TestCase):
|
|
114
135
|
z = z + y
|
115
136
|
return z
|
116
137
|
|
117
|
-
pattern =
|
138
|
+
pattern = pattern_module.Pattern(
|
118
139
|
"test.relu",
|
119
140
|
lambda x: torch.ops.aten.relu(x),
|
120
141
|
export_args=(torch.rand(2, 2),),
|
@@ -126,8 +147,13 @@ class TestMarkPattern(unittest.TestCase):
|
|
126
147
|
mark_pattern.mark_pattern(exported_program.graph_module, pattern)
|
127
148
|
mlir = _export_stablehlo_mlir(exported_program)
|
128
149
|
|
129
|
-
|
150
|
+
lowertools.assert_string_count(
|
151
|
+
self,
|
152
|
+
mlir,
|
153
|
+
{'stablehlo.composite "test.relu"': 1},
|
154
|
+
{"stablehlo.custom_call @mark_tensor": 2},
|
155
|
+
)
|
130
156
|
|
131
157
|
|
132
158
|
if __name__ == "__main__":
|
133
|
-
|
159
|
+
googletest.main()
|
@@ -12,23 +12,29 @@
|
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
|
+
"""Tests for StableHLOCompositeBuilder."""
|
16
|
+
|
15
17
|
import math
|
16
|
-
import unittest
|
17
18
|
|
19
|
+
from ai_edge_torch import config
|
20
|
+
from ai_edge_torch import lowertools
|
21
|
+
from ai_edge_torch.hlfb import StableHLOCompositeBuilder
|
18
22
|
import torch
|
19
23
|
import torch.nn.functional as F
|
20
|
-
import torch_xla
|
21
24
|
|
22
|
-
from
|
25
|
+
from absl.testing import absltest as googletest
|
23
26
|
|
24
27
|
|
25
28
|
def _export_stablehlo_mlir(model, args):
|
26
29
|
ep = torch.export.export(model, args)
|
27
|
-
|
28
|
-
return stablehlo_gm.get_stablehlo_text()
|
30
|
+
return lowertools.exported_program_to_mlir_text(ep)
|
29
31
|
|
30
32
|
|
31
|
-
|
33
|
+
@googletest.skipIf(
|
34
|
+
not config.Config.use_torch_xla,
|
35
|
+
reason="The odml_torch counter part is in odml_torch.",
|
36
|
+
)
|
37
|
+
class TestStableHLOCompositeBuilder(googletest.TestCase):
|
32
38
|
|
33
39
|
def test_build_composite(self):
|
34
40
|
class SampleModel(torch.nn.Module):
|
@@ -80,7 +86,9 @@ class TestStableHLOCompositeBuilder(unittest.TestCase):
|
|
80
86
|
super().__init__()
|
81
87
|
|
82
88
|
def log_softmax(self, x: torch.Tensor, dim: int):
|
83
|
-
builder = StableHLOCompositeBuilder(
|
89
|
+
builder = StableHLOCompositeBuilder(
|
90
|
+
name="test.log_softmax", attr={"dim": dim}
|
91
|
+
)
|
84
92
|
x = builder.mark_inputs(x)
|
85
93
|
y = torch.nn.functional.log_softmax(x, dim=dim)
|
86
94
|
y = builder.mark_outputs(y)
|
@@ -126,7 +134,8 @@ class TestStableHLOCompositeBuilder(unittest.TestCase):
|
|
126
134
|
self.assertEqual(mlir.count('stablehlo.composite "test.log_softmax"'), 1)
|
127
135
|
self.assertEqual(
|
128
136
|
mlir.count(
|
129
|
-
'composite_attributes = {dim = 0 : i64, source = "torch.nn",
|
137
|
+
'composite_attributes = {dim = 0 : i64, source = "torch.nn",'
|
138
|
+
" version = 1.000000e+00 : f32}"
|
130
139
|
),
|
131
140
|
1,
|
132
141
|
)
|
@@ -236,8 +245,12 @@ class TestStableHLOCompositeBuilder(unittest.TestCase):
|
|
236
245
|
self.assertEqual(
|
237
246
|
mlir.count('stablehlo.composite "test.scaled_dot_product_attention"'), 2
|
238
247
|
)
|
239
|
-
self.assertEqual(
|
240
|
-
|
248
|
+
self.assertEqual(
|
249
|
+
mlir.count("composite_attributes = {include_captanh = true}"), 1
|
250
|
+
)
|
251
|
+
self.assertEqual(
|
252
|
+
mlir.count("composite_attributes = {include_captanh = false}"), 1
|
253
|
+
)
|
241
254
|
|
242
255
|
def test_build_composite_with_multiple_inputs_outputs(self):
|
243
256
|
class SampleModel(torch.nn.Module):
|
@@ -267,4 +280,4 @@ class TestStableHLOCompositeBuilder(unittest.TestCase):
|
|
267
280
|
|
268
281
|
|
269
282
|
if __name__ == "__main__":
|
270
|
-
|
283
|
+
googletest.main()
|
@@ -0,0 +1,18 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
from ._shim import *
|
17
|
+
from .common_utils import flat_dict_names
|
18
|
+
from .test_utils import *
|
@@ -0,0 +1,80 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
from typing import Any, Optional
|
17
|
+
|
18
|
+
from ai_edge_torch import config
|
19
|
+
from ai_edge_torch._convert import signature
|
20
|
+
from ai_edge_torch.quantize import quant_config as qcfg
|
21
|
+
import torch
|
22
|
+
|
23
|
+
# isort: off
|
24
|
+
if config.Config.use_torch_xla:
|
25
|
+
from ai_edge_torch.lowertools import torch_xla_utils as utils
|
26
|
+
from ai_edge_torch.lowertools.torch_xla_utils import exported_program_to_mlir_text
|
27
|
+
from torch_xla.experimental.mark_pattern_utils import StableHLOCompositeBuilder
|
28
|
+
from torch_xla.experimental.xla_marker import serialize_composite_attr
|
29
|
+
# The following imports are needed to register the needed torch_xla ops.
|
30
|
+
import torch_xla.experimental.xla_marker
|
31
|
+
import torch_xla.experimental.xla_mlir_debuginfo
|
32
|
+
|
33
|
+
mark_tensor_op = torch.ops.xla.mark_tensor.default
|
34
|
+
write_mlir_debuginfo_op = torch.ops.xla.write_mlir_debuginfo.default
|
35
|
+
else:
|
36
|
+
from ai_edge_torch.lowertools import odml_torch_utils as utils
|
37
|
+
from ai_edge_torch.lowertools.odml_torch_utils import exported_program_to_mlir_text
|
38
|
+
from ai_edge_torch.odml_torch.composite import StableHLOCompositeBuilder
|
39
|
+
from ai_edge_torch.odml_torch.composite.mark_tensor import serialize_composite_attr
|
40
|
+
from ai_edge_torch.odml_torch.composite.mark_tensor import mark_tensor_op
|
41
|
+
from ai_edge_torch.odml_torch.debuginfo import write_mlir_debuginfo_op
|
42
|
+
# isort: on
|
43
|
+
|
44
|
+
|
45
|
+
def exported_programs_to_tflite(
|
46
|
+
exported_programs: list[torch.export.ExportedProgram],
|
47
|
+
signatures: list[signature.Signature],
|
48
|
+
*,
|
49
|
+
quant_config: Optional[qcfg.QuantConfig] = None,
|
50
|
+
_tfl_converter_flags: Optional[dict[str, Any]] = None,
|
51
|
+
):
|
52
|
+
"""Converts a list of ExportedProgram to a TFLite model.
|
53
|
+
|
54
|
+
Args:
|
55
|
+
exported_programs: A list of ExportedProgram.
|
56
|
+
signatures: A list of Signature.
|
57
|
+
quant_config: A QuantConfig.
|
58
|
+
_tfl_converter_flags: A dict of flags for TFLiteConverter.
|
59
|
+
|
60
|
+
Returns:
|
61
|
+
A TFLite model.
|
62
|
+
"""
|
63
|
+
if _tfl_converter_flags is None:
|
64
|
+
_tfl_converter_flags = {}
|
65
|
+
|
66
|
+
bundles: list[utils.MlirBundle] = [
|
67
|
+
utils.exported_program_to_mlir(exported, sig.flat_args)
|
68
|
+
for exported, sig in zip(exported_programs, signatures)
|
69
|
+
]
|
70
|
+
|
71
|
+
merged_bundle: utils.MergedBundle = utils.merge_mlir_bundles(
|
72
|
+
bundles, signatures, exported_programs
|
73
|
+
)
|
74
|
+
|
75
|
+
return utils.merged_bundle_to_tfl_model(
|
76
|
+
merged_bundle,
|
77
|
+
signatures,
|
78
|
+
quant_config=quant_config,
|
79
|
+
_tfl_converter_flags=_tfl_converter_flags,
|
80
|
+
)
|
@@ -0,0 +1,142 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
import logging
|
17
|
+
from typing import List
|
18
|
+
|
19
|
+
from ai_edge_torch._convert import signature as signature_module
|
20
|
+
import tensorflow as tf
|
21
|
+
import torch
|
22
|
+
import torch.utils._pytree as pytree
|
23
|
+
|
24
|
+
|
25
|
+
def _flatten_list(l: List) -> List:
|
26
|
+
flattened = []
|
27
|
+
for item in l:
|
28
|
+
if isinstance(item, list):
|
29
|
+
flattened.extend(_flatten_list(item))
|
30
|
+
else:
|
31
|
+
flattened.append(item)
|
32
|
+
return flattened
|
33
|
+
|
34
|
+
|
35
|
+
def flat_dict_names(
|
36
|
+
tree_spec: pytree.TreeSpec, context: pytree.Context
|
37
|
+
) -> List[str]:
|
38
|
+
"""Given a TreeSpec, this produces a list of names for the leaves.
|
39
|
+
|
40
|
+
The list of names embeddeds the structure of the tree_spec. A nesting level is
|
41
|
+
indicated by an `_` and elements in a list are indicated by `_<index>`.
|
42
|
+
|
43
|
+
TODO b/361601485: The flattening of names is not collision-free and needs to
|
44
|
+
be revised.
|
45
|
+
|
46
|
+
Args:
|
47
|
+
tree_spec: The TreeSpec to extract the names from.
|
48
|
+
context: The context used to check if the provided spec belongs to a
|
49
|
+
dictionary or a list.
|
50
|
+
|
51
|
+
Returns:
|
52
|
+
A list of flattened names.
|
53
|
+
"""
|
54
|
+
flat_names = []
|
55
|
+
if context is None:
|
56
|
+
for i, spec in enumerate(tree_spec):
|
57
|
+
if spec.children_specs:
|
58
|
+
flat_names.extend([
|
59
|
+
f"{i}_{name}"
|
60
|
+
for name in flat_dict_names(spec.children_specs, spec.context)
|
61
|
+
])
|
62
|
+
else:
|
63
|
+
flat_names.append(f"{i}")
|
64
|
+
else:
|
65
|
+
flat_ctx = _flatten_list(context)
|
66
|
+
for prefix, spec in zip(flat_ctx, tree_spec):
|
67
|
+
leaf_flat_names = flat_dict_names(spec.children_specs, spec.context)
|
68
|
+
if leaf_flat_names:
|
69
|
+
flat_names.extend([f"{prefix}_{name}" for name in leaf_flat_names])
|
70
|
+
else:
|
71
|
+
flat_names.append(prefix)
|
72
|
+
|
73
|
+
return flat_names
|
74
|
+
|
75
|
+
|
76
|
+
def _torch_to_tf_variable(torch_tensor: torch.Tensor):
|
77
|
+
if not torch_tensor.is_contiguous():
|
78
|
+
torch_tensor = torch_tensor.contiguous()
|
79
|
+
|
80
|
+
try:
|
81
|
+
dlpack_capsule = torch.utils.dlpack.to_dlpack(torch_tensor)
|
82
|
+
tf_tensor = tf.experimental.dlpack.from_dlpack(dlpack_capsule)
|
83
|
+
except Exception:
|
84
|
+
logging.info(
|
85
|
+
"Can not use dlpack to convert torch tensors. Falling back to numpy."
|
86
|
+
)
|
87
|
+
nparray = torch_tensor.cpu().detach().numpy()
|
88
|
+
tf_tensor = tf.convert_to_tensor(nparray)
|
89
|
+
|
90
|
+
return tf.Variable(tf_tensor, trainable=False)
|
91
|
+
|
92
|
+
|
93
|
+
def _get_states(
|
94
|
+
exported_programs: list[torch.export.ExportedProgram],
|
95
|
+
signatures: list[signature_module.Signature],
|
96
|
+
):
|
97
|
+
for exported_program, signature in zip(exported_programs, signatures):
|
98
|
+
args, _ = exported_program.example_inputs
|
99
|
+
# Calling this to get **all** the state including model buffers.
|
100
|
+
_flat_input_args = exported_program._graph_module_flat_inputs(args, {})
|
101
|
+
for tensor, input_spec in zip(
|
102
|
+
_flat_input_args, exported_program.graph_signature.input_specs
|
103
|
+
):
|
104
|
+
# Only interested in Tensors that are part of the state (and not user input).
|
105
|
+
if (
|
106
|
+
not isinstance(tensor, torch.Tensor)
|
107
|
+
or input_spec.kind
|
108
|
+
== torch.export.graph_signature.InputKind.USER_INPUT
|
109
|
+
):
|
110
|
+
continue
|
111
|
+
yield signature, tensor, input_spec
|
112
|
+
|
113
|
+
|
114
|
+
def _tensor_unique_id(tensor: torch.Tensor):
|
115
|
+
return (
|
116
|
+
str(tensor.device),
|
117
|
+
tensor.shape,
|
118
|
+
tensor.stride(),
|
119
|
+
tensor.untyped_storage().data_ptr(),
|
120
|
+
)
|
121
|
+
|
122
|
+
|
123
|
+
def gather_state_dict(
|
124
|
+
exported_programs: list[torch.export.ExportedProgram],
|
125
|
+
signatures: list[signature_module.Signature],
|
126
|
+
):
|
127
|
+
deduped_tensor_map = {}
|
128
|
+
|
129
|
+
for _, tensor, _ in _get_states(exported_programs, signatures):
|
130
|
+
unique_id = _tensor_unique_id(tensor)
|
131
|
+
deduped_tensor_map[unique_id] = _torch_to_tf_variable(tensor)
|
132
|
+
|
133
|
+
state_dict = {}
|
134
|
+
for signature, tensor, input_spec in _get_states(
|
135
|
+
exported_programs, signatures
|
136
|
+
):
|
137
|
+
unique_id = _tensor_unique_id(tensor)
|
138
|
+
state_dict[signature.name + "_" + input_spec.target] = deduped_tensor_map[
|
139
|
+
unique_id
|
140
|
+
]
|
141
|
+
|
142
|
+
return state_dict, list(deduped_tensor_map.values())
|