ai-edge-torch-nightly 0.2.0.dev20240714__py3-none-any.whl → 0.3.0.dev20240926__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_edge_torch/__init__.py +5 -4
- ai_edge_torch/_convert/conversion.py +112 -0
- ai_edge_torch/_convert/conversion_utils.py +64 -0
- ai_edge_torch/{convert → _convert}/converter.py +94 -48
- ai_edge_torch/_convert/fx_passes/__init__.py +22 -0
- ai_edge_torch/{convert → _convert}/fx_passes/build_aten_composite_pass.py +107 -44
- ai_edge_torch/{convert → _convert}/fx_passes/build_interpolate_composite_pass.py +23 -20
- ai_edge_torch/{convert → _convert}/fx_passes/inject_mlir_debuginfo_pass.py +5 -6
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/__init__.py +1 -1
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_check.py +39 -9
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_mark.py +2 -0
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +1 -0
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +17 -8
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +9 -8
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +31 -18
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +2 -2
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/pass_body.py +34 -24
- ai_edge_torch/{convert → _convert}/fx_passes/optimize_layout_transposes_pass/utils.py +2 -0
- ai_edge_torch/_convert/signature.py +66 -0
- ai_edge_torch/_convert/test/test_convert.py +495 -0
- ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
- ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
- ai_edge_torch/{convert → _convert}/test/test_to_channel_last_io.py +5 -5
- ai_edge_torch/{convert → _convert}/to_channel_last_io.py +10 -3
- ai_edge_torch/config.py +27 -0
- ai_edge_torch/conftest.py +20 -0
- ai_edge_torch/debug/culprit.py +72 -40
- ai_edge_torch/debug/test/test_culprit.py +7 -5
- ai_edge_torch/debug/test/test_search_model.py +8 -7
- ai_edge_torch/debug/utils.py +14 -3
- ai_edge_torch/fx_pass_base.py +101 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/gemma/{gemma.py → gemma1.py} +69 -55
- ai_edge_torch/generative/examples/gemma/gemma2.py +267 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma2.py +57 -0
- ai_edge_torch/generative/examples/gemma/verify_util.py +143 -0
- ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/openelm/openelm.py +206 -0
- ai_edge_torch/generative/examples/openelm/verify.py +64 -0
- ai_edge_torch/generative/examples/phi/__init__.py +14 -0
- ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/phi/convert_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/{phi2 → phi}/phi2.py +70 -51
- ai_edge_torch/generative/examples/phi/phi3.py +286 -0
- ai_edge_torch/generative/examples/phi/verify.py +65 -0
- ai_edge_torch/generative/examples/phi/verify_phi3.py +70 -0
- ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
- ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +68 -0
- ai_edge_torch/generative/examples/smollm/smollm.py +101 -0
- ai_edge_torch/generative/examples/smollm/verify.py +62 -0
- ai_edge_torch/generative/examples/stable_diffusion/attention.py +3 -1
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +83 -13
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +27 -14
- ai_edge_torch/generative/examples/stable_diffusion/decoder.py +74 -9
- ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +179 -37
- ai_edge_torch/generative/examples/stable_diffusion/encoder.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +83 -58
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +4 -3
- ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +1 -0
- ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +4 -1
- ai_edge_torch/generative/examples/stable_diffusion/util.py +9 -3
- ai_edge_torch/generative/examples/t5/convert_to_tflite.py +28 -25
- ai_edge_torch/generative/examples/t5/t5.py +208 -159
- ai_edge_torch/generative/examples/t5/t5_attention.py +45 -30
- ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
- ai_edge_torch/generative/examples/test_models/toy_model.py +69 -41
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +50 -64
- ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +41 -39
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +67 -54
- ai_edge_torch/generative/examples/tiny_llama/verify.py +64 -0
- ai_edge_torch/generative/fx_passes/__init__.py +4 -5
- ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +10 -7
- ai_edge_torch/generative/layers/attention.py +141 -102
- ai_edge_torch/generative/layers/attention_utils.py +53 -12
- ai_edge_torch/generative/layers/builder.py +37 -7
- ai_edge_torch/generative/layers/feed_forward.py +39 -14
- ai_edge_torch/generative/layers/kv_cache.py +162 -50
- ai_edge_torch/generative/layers/model_config.py +84 -30
- ai_edge_torch/generative/layers/normalization.py +185 -7
- ai_edge_torch/generative/layers/rotary_position_embedding.py +6 -4
- ai_edge_torch/generative/layers/scaled_dot_product_attention.py +48 -21
- ai_edge_torch/generative/layers/unet/blocks_2d.py +136 -77
- ai_edge_torch/generative/layers/unet/builder.py +7 -4
- ai_edge_torch/generative/layers/unet/model_config.py +17 -15
- ai_edge_torch/generative/quantize/example.py +7 -8
- ai_edge_torch/generative/quantize/quant_recipe.py +10 -7
- ai_edge_torch/generative/quantize/quant_recipe_utils.py +12 -1
- ai_edge_torch/generative/quantize/quant_recipes.py +8 -0
- ai_edge_torch/generative/test/test_kv_cache.py +120 -0
- ai_edge_torch/generative/test/{loader_test.py → test_loader.py} +9 -7
- ai_edge_torch/generative/test/test_model_conversion.py +124 -188
- ai_edge_torch/generative/test/test_model_conversion_large.py +251 -0
- ai_edge_torch/generative/test/test_quantize.py +76 -60
- ai_edge_torch/generative/test/utils.py +54 -0
- ai_edge_torch/generative/utilities/converter.py +82 -0
- ai_edge_torch/generative/utilities/loader.py +120 -57
- ai_edge_torch/generative/utilities/stable_diffusion_loader.py +165 -57
- ai_edge_torch/generative/utilities/t5_loader.py +110 -81
- ai_edge_torch/generative/utilities/verifier.py +247 -0
- ai_edge_torch/hlfb/__init__.py +1 -1
- ai_edge_torch/hlfb/mark_pattern/__init__.py +9 -7
- ai_edge_torch/hlfb/mark_pattern/passes.py +23 -3
- ai_edge_torch/hlfb/mark_pattern/pattern.py +39 -30
- ai_edge_torch/hlfb/test/test_mark_pattern.py +46 -20
- ai_edge_torch/hlfb/test/test_stablehlo_composite_builder.py +24 -11
- ai_edge_torch/lowertools/__init__.py +18 -0
- ai_edge_torch/lowertools/_shim.py +80 -0
- ai_edge_torch/lowertools/common_utils.py +142 -0
- ai_edge_torch/lowertools/odml_torch_utils.py +255 -0
- ai_edge_torch/lowertools/test_utils.py +60 -0
- ai_edge_torch/lowertools/torch_xla_utils.py +284 -0
- ai_edge_torch/{generative/quantize/ai_edge_quantizer_glue → lowertools}/translate_recipe.py +29 -14
- ai_edge_torch/model.py +53 -18
- ai_edge_torch/odml_torch/__init__.py +20 -0
- ai_edge_torch/odml_torch/_torch_future.py +61 -0
- ai_edge_torch/odml_torch/_torch_library.py +19 -0
- ai_edge_torch/odml_torch/composite/__init__.py +16 -0
- ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
- ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
- ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
- ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
- ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
- ai_edge_torch/odml_torch/export.py +357 -0
- ai_edge_torch/odml_torch/export_utils.py +168 -0
- ai_edge_torch/odml_torch/jax_bridge/__init__.py +15 -0
- ai_edge_torch/odml_torch/jax_bridge/_wrap.py +150 -0
- ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
- ai_edge_torch/odml_torch/lowerings/__init__.py +25 -0
- ai_edge_torch/odml_torch/lowerings/_basic.py +258 -0
- ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
- ai_edge_torch/odml_torch/lowerings/_convolution.py +241 -0
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +252 -0
- ai_edge_torch/odml_torch/lowerings/_layer_norm.py +78 -0
- ai_edge_torch/odml_torch/lowerings/context.py +42 -0
- ai_edge_torch/odml_torch/lowerings/registry.py +96 -0
- ai_edge_torch/odml_torch/lowerings/utils.py +185 -0
- ai_edge_torch/odml_torch/passes/__init__.py +38 -0
- ai_edge_torch/odml_torch/tf_integration.py +194 -0
- ai_edge_torch/quantize/pt2e_quantizer.py +52 -24
- ai_edge_torch/quantize/pt2e_quantizer_utils.py +43 -23
- ai_edge_torch/quantize/quant_config.py +13 -9
- ai_edge_torch/testing/model_coverage/model_coverage.py +29 -16
- ai_edge_torch/version.py +16 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/METADATA +7 -3
- ai_edge_torch_nightly-0.3.0.dev20240926.dist-info/RECORD +177 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/WHEEL +1 -1
- ai_edge_torch/convert/conversion.py +0 -117
- ai_edge_torch/convert/conversion_utils.py +0 -400
- ai_edge_torch/convert/fx_passes/__init__.py +0 -59
- ai_edge_torch/convert/fx_passes/_pass_base.py +0 -49
- ai_edge_torch/convert/fx_passes/canonicalize_pass.py +0 -37
- ai_edge_torch/convert/test/test_convert.py +0 -311
- ai_edge_torch/convert/test/test_convert_composites.py +0 -192
- ai_edge_torch/convert/test/test_convert_multisig.py +0 -139
- ai_edge_torch/generative/examples/gemma/convert_to_tflite.py +0 -66
- ai_edge_torch/generative/examples/phi2/convert_to_tflite.py +0 -64
- ai_edge_torch/generative/examples/test_models/toy_model_with_external_kv_cache.py +0 -161
- ai_edge_torch/generative/quantize/ai_edge_quantizer_glue/__init__.py +0 -0
- ai_edge_torch_nightly-0.2.0.dev20240714.dist-info/RECORD +0 -121
- /ai_edge_torch/{convert → _convert}/__init__.py +0 -0
- /ai_edge_torch/{convert → _convert}/test/__init__.py +0 -0
- /ai_edge_torch/generative/examples/{phi2 → openelm}/__init__.py +0 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/LICENSE +0 -0
- {ai_edge_torch_nightly-0.2.0.dev20240714.dist-info → ai_edge_torch_nightly-0.3.0.dev20240926.dist-info}/top_level.txt +0 -0
ai_edge_torch/debug/culprit.py
CHANGED
@@ -12,6 +12,7 @@
|
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
|
+
"""Culprit finder for AI Edge Torch conversion."""
|
15
16
|
|
16
17
|
import contextlib
|
17
18
|
import copy
|
@@ -20,17 +21,15 @@ import functools
|
|
20
21
|
import io
|
21
22
|
import operator
|
22
23
|
import os
|
23
|
-
import sys
|
24
24
|
from typing import Any, Callable, Generator, List, Optional, Tuple, Union
|
25
25
|
|
26
|
-
|
26
|
+
import ai_edge_torch
|
27
|
+
from ai_edge_torch.debug import utils
|
27
28
|
import torch
|
28
29
|
from torch._functorch import aot_autograd
|
30
|
+
from torch._functorch.fx_minifier import minifier as fx_minifier
|
29
31
|
import torch.utils._pytree as pytree
|
30
32
|
|
31
|
-
import ai_edge_torch
|
32
|
-
from ai_edge_torch.debug import utils
|
33
|
-
|
34
33
|
_torch_float_dtypes = {
|
35
34
|
torch.float32,
|
36
35
|
torch.float,
|
@@ -117,24 +116,32 @@ class Culprit(SearchResult):
|
|
117
116
|
print_output: bool - If true, prints the code to stdout. Otherwise returns
|
118
117
|
the code in a str.
|
119
118
|
"""
|
120
|
-
# TODO
|
119
|
+
# TODO: b/321263453 - Support Python code gen with sample arg tensor values.
|
121
120
|
random_inputs = True
|
122
121
|
|
123
|
-
graph_module_code = self.graph_module.print_readable(
|
122
|
+
graph_module_code = self.graph_module.print_readable(
|
123
|
+
print_output=False
|
124
|
+
).rstrip()
|
124
125
|
|
125
126
|
input_strs = []
|
126
127
|
for value in self.inputs:
|
127
128
|
if torch.is_tensor(value):
|
128
129
|
if not random_inputs:
|
129
|
-
input_strs.append(
|
130
|
-
|
130
|
+
input_strs.append(
|
131
|
+
f"# size={_get_shape_str(value)}, dtype={value.dtype}"
|
132
|
+
)
|
133
|
+
input_strs.append(
|
134
|
+
f"torch.load(io.BytesIO({_tensor_to_buffer(value)})),"
|
135
|
+
)
|
131
136
|
else:
|
132
137
|
input_strs.append(_tensor_to_random_tensor_call(value) + ",")
|
133
138
|
else:
|
134
139
|
input_strs.append(str(value) + ",")
|
135
140
|
|
136
141
|
inputs_code = (
|
137
|
-
"_args = (\n"
|
142
|
+
"_args = (\n"
|
143
|
+
+ "\n".join([" " * 4 + code for code in input_strs])
|
144
|
+
+ "\n)"
|
138
145
|
)
|
139
146
|
|
140
147
|
code = graph_module_code + "\n\n" + inputs_code
|
@@ -145,6 +152,7 @@ class Culprit(SearchResult):
|
|
145
152
|
|
146
153
|
def print_code(self, print_output=True):
|
147
154
|
"""Print the Python code for culprit graph module, sample args, and AI
|
155
|
+
|
148
156
|
Edge Torch conversion that will fail with the error.
|
149
157
|
|
150
158
|
Args:
|
@@ -157,7 +165,9 @@ class Culprit(SearchResult):
|
|
157
165
|
+ "from torch import device\n"
|
158
166
|
+ "import ai_edge_torch\n\n"
|
159
167
|
+ definitions
|
160
|
-
+
|
168
|
+
+ "\n\n_edge_model ="
|
169
|
+
f" ai_edge_torch.convert({_CULPRIT_GRAPH_MODULE_NAME}().eval(),"
|
170
|
+
" _args)\n"
|
161
171
|
)
|
162
172
|
if self._runtime_errors:
|
163
173
|
code += "_edge_model(*_args)\n"
|
@@ -179,8 +189,8 @@ class Culprit(SearchResult):
|
|
179
189
|
|
180
190
|
|
181
191
|
def _normalize_getitem_nodes(fx_gm: torch.fx.GraphModule):
|
182
|
-
"""
|
183
|
-
|
192
|
+
"""This function turns all operator getitem nodes in ExportedProgram FX graph to
|
193
|
+
|
184
194
|
new nodes composed of "computation + getitem". The normalization duplicates
|
185
195
|
some computations in the graph but would make the graph more friendly for
|
186
196
|
partitioning in FX minifier.
|
@@ -212,7 +222,9 @@ def _normalize_getitem_nodes(fx_gm: torch.fx.GraphModule):
|
|
212
222
|
return fx_gm
|
213
223
|
|
214
224
|
|
215
|
-
def _erase_unused_inputs(
|
225
|
+
def _erase_unused_inputs(
|
226
|
+
fx_gm: torch.fx.GraphModule, inputs: Tuple[torch.Tensor]
|
227
|
+
):
|
216
228
|
fx_gm = copy.deepcopy(fx_gm)
|
217
229
|
inputs = tuple(inputs)
|
218
230
|
args = fx_gm.graph.process_inputs(*inputs)
|
@@ -316,7 +328,9 @@ def _erase_sub_gm_from_gm(
|
|
316
328
|
return fx_gm, fx_inputs
|
317
329
|
|
318
330
|
|
319
|
-
def _normalize_minified_fx_gm(
|
331
|
+
def _normalize_minified_fx_gm(
|
332
|
+
fx_gm: torch.fx.GraphModule, inputs: Tuple[torch.Tensor]
|
333
|
+
):
|
320
334
|
fx_gm, inputs = _erase_unused_inputs(fx_gm, inputs)
|
321
335
|
fx_gm = _lift_dead_ops_to_outputs(fx_gm)
|
322
336
|
fx_gm, _ = aot_autograd.aot_export_module(fx_gm, inputs, trace_joint=False)
|
@@ -357,16 +371,15 @@ def _search_model(
|
|
357
371
|
"""Finds subgraphs in the torch model that satify a certain predicate function provided by the users.
|
358
372
|
|
359
373
|
Args:
|
360
|
-
predicate_f: a predicate function the users specify.
|
361
|
-
|
362
|
-
|
363
|
-
return False otherwise.
|
374
|
+
predicate_f: a predicate function the users specify. It takes a FX
|
375
|
+
(sub)graph and the inputs to this graph, return True if the graph
|
376
|
+
satisfies the predicate, return False otherwise.
|
364
377
|
model: model in which to search subgraph.
|
365
|
-
export_args: A set of args to trace the model with,
|
366
|
-
|
367
|
-
|
368
|
-
|
369
|
-
|
378
|
+
export_args: A set of args to trace the model with, i.e. model(*args) must
|
379
|
+
run. max_granularity - FX minifier arg. The maximum granularity (number of
|
380
|
+
nodes) in the returned ATen FX subgraph of the culprit.
|
381
|
+
enable_fx_minifier_logging: If true, allows the underlying FX minifier to
|
382
|
+
log the progress.
|
370
383
|
"""
|
371
384
|
|
372
385
|
if isinstance(model, torch.nn.Module):
|
@@ -374,7 +387,8 @@ def _search_model(
|
|
374
387
|
ep = torch.export.export(model, export_args)
|
375
388
|
except Exception as err:
|
376
389
|
raise ValueError(
|
377
|
-
"Your model is not exportable by torch.export.export. Please modify
|
390
|
+
"Your model is not exportable by torch.export.export. Please modify"
|
391
|
+
" your model to be torch-exportable first."
|
378
392
|
) from err
|
379
393
|
else:
|
380
394
|
ep = model
|
@@ -382,26 +396,37 @@ def _search_model(
|
|
382
396
|
fx_gm, fx_inputs = utils.exported_program_to_fx_graph_module_and_inputs(ep)
|
383
397
|
fx_gm = _normalize_getitem_nodes(fx_gm)
|
384
398
|
|
385
|
-
# HACK: temporarily disable XLA_HLO_DEBUG so that
|
386
|
-
# intermediate stablehlo files to storage.
|
399
|
+
# HACK: temporarily disable XLA_HLO_DEBUG and create_minified_hlo_graph so that
|
400
|
+
# fx_minifier won't dump intermediate stablehlo files to storage.
|
387
401
|
# https://github.com/pytorch/pytorch/blob/main/torch/_functorch/fx_minifier.py#L440
|
388
402
|
@contextlib.contextmanager
|
389
|
-
def
|
403
|
+
def disable_minifier_xla_debug():
|
390
404
|
xla_hlo_debug_value = None
|
391
405
|
if "XLA_HLO_DEBUG" in os.environ:
|
392
406
|
xla_hlo_debug_value = os.environ["XLA_HLO_DEBUG"]
|
393
407
|
del os.environ["XLA_HLO_DEBUG"]
|
394
408
|
|
409
|
+
create_minified_hlo_graph = (
|
410
|
+
torch._functorch.fx_minifier.create_minified_hlo_graph
|
411
|
+
)
|
412
|
+
torch._functorch.fx_minifier.create_minified_hlo_graph = (
|
413
|
+
lambda *args, **kwargs: None
|
414
|
+
)
|
415
|
+
|
395
416
|
try:
|
396
|
-
yield
|
417
|
+
yield
|
397
418
|
finally:
|
398
419
|
if xla_hlo_debug_value is not None:
|
399
420
|
os.environ["XLA_HLO_DEBUG"] = xla_hlo_debug_value
|
400
421
|
|
422
|
+
torch._functorch.fx_minifier.create_minified_hlo_graph = (
|
423
|
+
create_minified_hlo_graph
|
424
|
+
)
|
425
|
+
|
401
426
|
found_culprits_num = 0
|
402
427
|
while True:
|
403
428
|
try:
|
404
|
-
with
|
429
|
+
with disable_minifier_xla_debug(), open(os.devnull, "w") as devnull:
|
405
430
|
with contextlib.nullcontext() if enable_fx_minifier_logging else utils.redirect_stdio(
|
406
431
|
stdout=devnull,
|
407
432
|
stderr=devnull,
|
@@ -413,7 +438,9 @@ def _search_model(
|
|
413
438
|
max_granularity=max_granularity,
|
414
439
|
)
|
415
440
|
|
416
|
-
min_fx_gm, min_inputs = _normalize_minified_fx_gm(
|
441
|
+
min_fx_gm, min_inputs = _normalize_minified_fx_gm(
|
442
|
+
raw_min_fx_gm, raw_min_inputs
|
443
|
+
)
|
417
444
|
found_culprits_num += 1
|
418
445
|
yield SearchResult(min_fx_gm, min_inputs)
|
419
446
|
|
@@ -422,7 +449,10 @@ def _search_model(
|
|
422
449
|
)
|
423
450
|
|
424
451
|
except RuntimeError as e:
|
425
|
-
if
|
452
|
+
if (
|
453
|
+
str(e) == "Input graph did not fail the tester"
|
454
|
+
and found_culprits_num > 0
|
455
|
+
):
|
426
456
|
break
|
427
457
|
raise e
|
428
458
|
|
@@ -439,13 +469,13 @@ def find_culprits(
|
|
439
469
|
|
440
470
|
Args:
|
441
471
|
torch_model: model to export and save
|
442
|
-
args: A set of args to trace the model with, i.e.
|
443
|
-
|
444
|
-
|
445
|
-
|
446
|
-
|
447
|
-
|
448
|
-
|
472
|
+
args: A set of args to trace the model with, i.e. torch_model(*args) must
|
473
|
+
run max_granularity - FX minifier arg. The maximum granularity (number of
|
474
|
+
nodes) in the returned ATen FX subgraph of the culprit.
|
475
|
+
runtime_errors: If true, find culprits for Python runtime errors with
|
476
|
+
converted model.
|
477
|
+
enable_fx_minifier_logging: If true, allows the underlying FX minifier to
|
478
|
+
log the progress.
|
449
479
|
"""
|
450
480
|
|
451
481
|
fx_minifier_checker = functools.partial(
|
@@ -460,5 +490,7 @@ def find_culprits(
|
|
460
490
|
enable_fx_minifier_logging=enable_fx_minifier_logging,
|
461
491
|
):
|
462
492
|
yield Culprit(
|
463
|
-
search_result.graph_module,
|
493
|
+
search_result.graph_module,
|
494
|
+
search_result.inputs,
|
495
|
+
_runtime_errors=runtime_errors,
|
464
496
|
)
|
@@ -17,18 +17,20 @@
|
|
17
17
|
import ast
|
18
18
|
import io
|
19
19
|
import sys
|
20
|
-
import unittest
|
21
20
|
|
21
|
+
from ai_edge_torch.debug import find_culprits
|
22
22
|
import torch
|
23
23
|
|
24
|
-
from
|
24
|
+
from absl.testing import absltest as googletest
|
25
25
|
|
26
26
|
_test_culprit_lib = torch.library.Library("test_culprit", "DEF")
|
27
27
|
|
28
28
|
_test_culprit_lib.define("non_lowerable_op(Tensor x) -> Tensor")
|
29
29
|
|
30
30
|
|
31
|
-
@torch.library.impl(
|
31
|
+
@torch.library.impl(
|
32
|
+
_test_culprit_lib, "non_lowerable_op", "CompositeExplicitAutograd"
|
33
|
+
)
|
32
34
|
def non_lowerable_op(x):
|
33
35
|
if x.max() > 10.0:
|
34
36
|
return x + 1.0
|
@@ -48,7 +50,7 @@ class BadModel(torch.nn.Module):
|
|
48
50
|
return x
|
49
51
|
|
50
52
|
|
51
|
-
class TestCulprit(
|
53
|
+
class TestCulprit(googletest.TestCase):
|
52
54
|
|
53
55
|
def test_find_culprits(self):
|
54
56
|
model = BadModel().eval()
|
@@ -130,4 +132,4 @@ class TestCulprit(unittest.TestCase):
|
|
130
132
|
|
131
133
|
|
132
134
|
if __name__ == "__main__":
|
133
|
-
|
135
|
+
googletest.main()
|
@@ -12,16 +12,15 @@
|
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
|
+
"""Tests for search_model."""
|
15
16
|
|
16
|
-
|
17
|
-
import unittest
|
18
|
-
|
17
|
+
from ai_edge_torch.debug import _search_model
|
19
18
|
import torch
|
20
19
|
|
21
|
-
from
|
20
|
+
from absl.testing import absltest as googletest
|
22
21
|
|
23
22
|
|
24
|
-
class TestSearchModel(
|
23
|
+
class TestSearchModel(googletest.TestCase):
|
25
24
|
|
26
25
|
def test_search_model_with_ops(self):
|
27
26
|
class MultipleOpsModel(torch.nn.Module):
|
@@ -43,8 +42,10 @@ class TestSearchModel(unittest.TestCase):
|
|
43
42
|
|
44
43
|
results = list(_search_model(find_subgraph_with_sub, model, args))
|
45
44
|
self.assertEqual(len(results), 2)
|
46
|
-
self.assertIn(
|
45
|
+
self.assertIn(
|
46
|
+
torch.ops.aten.sub.Tensor, [n.target for n in results[0].graph.nodes]
|
47
|
+
)
|
47
48
|
|
48
49
|
|
49
50
|
if __name__ == "__main__":
|
50
|
-
|
51
|
+
googletest.main()
|
ai_edge_torch/debug/utils.py
CHANGED
@@ -12,16 +12,18 @@
|
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
|
+
"""Utils for debugging."""
|
16
|
+
|
15
17
|
import contextlib
|
16
18
|
import sys
|
17
19
|
|
18
20
|
import torch
|
19
|
-
from torch.export.graph_signature import InputKind
|
20
|
-
import torch.fx._pytree as fx_pytree
|
21
21
|
from torch.utils import _pytree as pytree
|
22
22
|
|
23
23
|
|
24
|
-
def exported_program_to_fx_graph_module_and_inputs(
|
24
|
+
def exported_program_to_fx_graph_module_and_inputs(
|
25
|
+
ep: torch.export.ExportedProgram,
|
26
|
+
):
|
25
27
|
fx_gm = ep.graph_module
|
26
28
|
fx_inputs = pytree.tree_map(
|
27
29
|
torch.tensor, ep._graph_module_flat_inputs(*ep.example_inputs)
|
@@ -31,6 +33,15 @@ def exported_program_to_fx_graph_module_and_inputs(ep: torch.export.ExportedProg
|
|
31
33
|
|
32
34
|
@contextlib.contextmanager
|
33
35
|
def redirect_stdio(stdout, stderr):
|
36
|
+
"""Redirects stdout and stderr to the given file objects.
|
37
|
+
|
38
|
+
Args:
|
39
|
+
stdout: A file object to redirect stdout to.
|
40
|
+
stderr: A file object to redirect stderr to.
|
41
|
+
|
42
|
+
Yields:
|
43
|
+
The file objects that stdout and stderr were redirected to.
|
44
|
+
"""
|
34
45
|
old_stdout = sys.stdout
|
35
46
|
old_stderr = sys.stderr
|
36
47
|
|
@@ -0,0 +1,101 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
import abc
|
17
|
+
import collections
|
18
|
+
from typing import Sequence, Union
|
19
|
+
|
20
|
+
import torch
|
21
|
+
from torch.fx.passes.infra.pass_base import PassBase
|
22
|
+
from torch.fx.passes.infra.pass_base import PassResult
|
23
|
+
from torch.fx.passes.infra.pass_manager import pass_result_wrapper
|
24
|
+
import torch.utils._pytree as pytree
|
25
|
+
|
26
|
+
FxPassBase = PassBase
|
27
|
+
FxPassResult = PassResult
|
28
|
+
ExportedProgramPassResult = collections.namedtuple(
|
29
|
+
"ExportedProgramPassResult", ["exported_program", "modified"]
|
30
|
+
)
|
31
|
+
|
32
|
+
|
33
|
+
class ExportedProgramPassBase(abc.ABC):
|
34
|
+
|
35
|
+
def __call__(
|
36
|
+
self, exported_program: torch.export.ExportedProgram
|
37
|
+
) -> ExportedProgramPassResult:
|
38
|
+
self.requires(exported_program)
|
39
|
+
res = self.call(exported_program)
|
40
|
+
self.ensures(exported_program)
|
41
|
+
return res
|
42
|
+
|
43
|
+
@abc.abstractmethod
|
44
|
+
def call(
|
45
|
+
self, exported_program: torch.export.ExportedProgram
|
46
|
+
) -> ExportedProgramPassResult:
|
47
|
+
pass
|
48
|
+
|
49
|
+
def requires(self, exported_program: torch.export.ExportedProgram) -> None:
|
50
|
+
pass
|
51
|
+
|
52
|
+
def ensures(self, exported_program: torch.export.ExportedProgram) -> None:
|
53
|
+
pass
|
54
|
+
|
55
|
+
|
56
|
+
# TODO(cnchan): make a PassManager class.
|
57
|
+
def run_passes(
|
58
|
+
exported_program: torch.export.ExportedProgram,
|
59
|
+
passes: Sequence[Union[ExportedProgramPassBase, FxPassBase]],
|
60
|
+
) -> torch.export.ExportedProgram:
|
61
|
+
passes, _ = pytree.tree_flatten(passes)
|
62
|
+
for pass_ in passes:
|
63
|
+
if not isinstance(pass_, ExportedProgramPassBase):
|
64
|
+
pass_ = pass_result_wrapper(pass_)
|
65
|
+
if isinstance(pass_, ExportedProgramPassBase):
|
66
|
+
exported_program = pass_(exported_program).exported_program
|
67
|
+
else:
|
68
|
+
gm = exported_program.graph_module
|
69
|
+
gm, modified = pass_(gm)
|
70
|
+
if modified and gm is not exported_program.graph_module:
|
71
|
+
exported_program = torch.export.ExportedProgram(
|
72
|
+
root=gm,
|
73
|
+
graph=gm.graph,
|
74
|
+
graph_signature=exported_program.graph_signature,
|
75
|
+
state_dict=exported_program.state_dict,
|
76
|
+
range_constraints=exported_program.range_constraints,
|
77
|
+
module_call_graph=exported_program.module_call_graph,
|
78
|
+
example_inputs=exported_program.example_inputs,
|
79
|
+
verifier=exported_program.verifier,
|
80
|
+
constants=exported_program.constants,
|
81
|
+
)
|
82
|
+
return exported_program
|
83
|
+
|
84
|
+
|
85
|
+
class CanonicalizePass(ExportedProgramPassBase):
|
86
|
+
|
87
|
+
# A dummy decomp table for running ExportedProgram.run_decompositions without
|
88
|
+
# any op decompositions but just aot_export_module. Due to the check in
|
89
|
+
# run_decompositions, if None or an empty dict is passed as decomp_table,
|
90
|
+
# it will run the default aten-coreaten decompositions. Therefore a non-empty
|
91
|
+
# dummy decomp table is needed.
|
92
|
+
# Ref: https://github.com/pytorch/pytorch/blob/db895ace1d36726e64781774f53b3d3098206116/torch/export/exported_program.py#L543
|
93
|
+
_DUMMY_DECOMP_TABLE = {
|
94
|
+
torch._ops.OperatorBase(): lambda: None,
|
95
|
+
}
|
96
|
+
|
97
|
+
def call(self, exported_program: torch.export.ExportedProgram):
|
98
|
+
exported_program = exported_program.run_decompositions(
|
99
|
+
self._DUMMY_DECOMP_TABLE
|
100
|
+
)
|
101
|
+
return ExportedProgramPassResult(exported_program, True)
|
@@ -0,0 +1,68 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Example of converting a Gemma1 model to multi-signature tflite model."""
|
17
|
+
|
18
|
+
import os
|
19
|
+
import pathlib
|
20
|
+
|
21
|
+
from absl import app
|
22
|
+
from absl import flags
|
23
|
+
from ai_edge_torch.generative.examples.gemma import gemma1
|
24
|
+
from ai_edge_torch.generative.utilities import converter
|
25
|
+
|
26
|
+
_CHECKPOINT_PATH = flags.DEFINE_string(
|
27
|
+
'checkpoint_path',
|
28
|
+
os.path.join(pathlib.Path.home(), 'Downloads/llm_data/gemma-2b'),
|
29
|
+
'The path to the model checkpoint, or directory holding the checkpoint.',
|
30
|
+
)
|
31
|
+
_TFLITE_PATH = flags.DEFINE_string(
|
32
|
+
'tflite_path',
|
33
|
+
'/tmp/',
|
34
|
+
'The tflite file path to export.',
|
35
|
+
)
|
36
|
+
_PREFILL_SEQ_LEN = flags.DEFINE_integer(
|
37
|
+
'prefill_seq_len',
|
38
|
+
1024,
|
39
|
+
'The maximum size of prefill input tensor.',
|
40
|
+
)
|
41
|
+
_KV_CACHE_MAX_LEN = flags.DEFINE_integer(
|
42
|
+
'kv_cache_max_len',
|
43
|
+
1280,
|
44
|
+
'The maximum size of KV cache buffer, including both prefill and decode.',
|
45
|
+
)
|
46
|
+
_QUANTIZE = flags.DEFINE_bool(
|
47
|
+
'quantize',
|
48
|
+
True,
|
49
|
+
'Whether the model should be quantized.',
|
50
|
+
)
|
51
|
+
|
52
|
+
|
53
|
+
def main(_):
|
54
|
+
pytorch_model = gemma1.build_2b_model(
|
55
|
+
_CHECKPOINT_PATH.value, kv_cache_max_len=_KV_CACHE_MAX_LEN.value
|
56
|
+
)
|
57
|
+
quant_suffix = 'q8' if _QUANTIZE.value else 'f32'
|
58
|
+
output_filename = f'gemma_{quant_suffix}_seq{_PREFILL_SEQ_LEN.value}_ekv{_KV_CACHE_MAX_LEN.value}.tflite'
|
59
|
+
converter.convert_to_tflite(
|
60
|
+
pytorch_model,
|
61
|
+
tflite_path=os.path.join(_TFLITE_PATH.value, output_filename),
|
62
|
+
prefill_seq_len=_PREFILL_SEQ_LEN.value,
|
63
|
+
quantize=_QUANTIZE.value,
|
64
|
+
)
|
65
|
+
|
66
|
+
|
67
|
+
if __name__ == '__main__':
|
68
|
+
app.run(main)
|
@@ -0,0 +1,68 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Example of converting a Gemma2 model to multi-signature tflite model."""
|
17
|
+
|
18
|
+
import os
|
19
|
+
import pathlib
|
20
|
+
|
21
|
+
from absl import app
|
22
|
+
from absl import flags
|
23
|
+
from ai_edge_torch.generative.examples.gemma import gemma2
|
24
|
+
from ai_edge_torch.generative.utilities import converter
|
25
|
+
|
26
|
+
_CHECKPOINT_PATH = flags.DEFINE_string(
|
27
|
+
'checkpoint_path',
|
28
|
+
os.path.join(pathlib.Path.home(), 'Downloads/llm_data/gemma2-2b'),
|
29
|
+
'The path to the model checkpoint, or directory holding the checkpoint.',
|
30
|
+
)
|
31
|
+
_TFLITE_PATH = flags.DEFINE_string(
|
32
|
+
'tflite_path',
|
33
|
+
'/tmp/',
|
34
|
+
'The tflite file path to export.',
|
35
|
+
)
|
36
|
+
_PREFILL_SEQ_LEN = flags.DEFINE_integer(
|
37
|
+
'prefill_seq_len',
|
38
|
+
1024,
|
39
|
+
'The maximum size of prefill input tensor.',
|
40
|
+
)
|
41
|
+
_KV_CACHE_MAX_LEN = flags.DEFINE_integer(
|
42
|
+
'kv_cache_max_len',
|
43
|
+
1280,
|
44
|
+
'The maximum size of KV cache buffer, including both prefill and decode.',
|
45
|
+
)
|
46
|
+
_QUANTIZE = flags.DEFINE_bool(
|
47
|
+
'quantize',
|
48
|
+
True,
|
49
|
+
'Whether the model should be quantized.',
|
50
|
+
)
|
51
|
+
|
52
|
+
|
53
|
+
def main(_):
|
54
|
+
pytorch_model = gemma2.build_2b_model(
|
55
|
+
_CHECKPOINT_PATH.value, kv_cache_max_len=_KV_CACHE_MAX_LEN.value
|
56
|
+
)
|
57
|
+
quant_suffix = 'q8' if _QUANTIZE.value else 'f32'
|
58
|
+
output_filename = f'gemma2_{quant_suffix}_seq{_PREFILL_SEQ_LEN.value}_ekv{_KV_CACHE_MAX_LEN.value}.tflite'
|
59
|
+
converter.convert_to_tflite(
|
60
|
+
pytorch_model,
|
61
|
+
tflite_path=os.path.join(_TFLITE_PATH.value, output_filename),
|
62
|
+
prefill_seq_len=_PREFILL_SEQ_LEN.value,
|
63
|
+
quantize=_QUANTIZE.value,
|
64
|
+
)
|
65
|
+
|
66
|
+
|
67
|
+
if __name__ == '__main__':
|
68
|
+
app.run(main)
|