alglib 0.1.1
Sign up to get free protection for your applications and to get access to all the features.
- data/History.txt +7 -0
- data/Manifest.txt +253 -0
- data/README.txt +33 -0
- data/Rakefile +27 -0
- data/ext/Rakefile +24 -0
- data/ext/alglib.i +24 -0
- data/ext/alglib/Makefile +157 -0
- data/ext/alglib/airyf.cpp +372 -0
- data/ext/alglib/airyf.h +81 -0
- data/ext/alglib/alglib.cpp +8558 -0
- data/ext/alglib/alglib_util.cpp +19 -0
- data/ext/alglib/alglib_util.h +14 -0
- data/ext/alglib/ap.cpp +877 -0
- data/ext/alglib/ap.english.html +364 -0
- data/ext/alglib/ap.h +666 -0
- data/ext/alglib/ap.russian.html +442 -0
- data/ext/alglib/apvt.h +754 -0
- data/ext/alglib/bdss.cpp +1500 -0
- data/ext/alglib/bdss.h +251 -0
- data/ext/alglib/bdsvd.cpp +1339 -0
- data/ext/alglib/bdsvd.h +164 -0
- data/ext/alglib/bessel.cpp +1226 -0
- data/ext/alglib/bessel.h +331 -0
- data/ext/alglib/betaf.cpp +105 -0
- data/ext/alglib/betaf.h +74 -0
- data/ext/alglib/bidiagonal.cpp +1328 -0
- data/ext/alglib/bidiagonal.h +350 -0
- data/ext/alglib/binomialdistr.cpp +247 -0
- data/ext/alglib/binomialdistr.h +153 -0
- data/ext/alglib/blas.cpp +576 -0
- data/ext/alglib/blas.h +132 -0
- data/ext/alglib/cblas.cpp +226 -0
- data/ext/alglib/cblas.h +57 -0
- data/ext/alglib/cdet.cpp +138 -0
- data/ext/alglib/cdet.h +92 -0
- data/ext/alglib/chebyshev.cpp +216 -0
- data/ext/alglib/chebyshev.h +76 -0
- data/ext/alglib/chisquaredistr.cpp +157 -0
- data/ext/alglib/chisquaredistr.h +144 -0
- data/ext/alglib/cholesky.cpp +285 -0
- data/ext/alglib/cholesky.h +86 -0
- data/ext/alglib/cinverse.cpp +298 -0
- data/ext/alglib/cinverse.h +111 -0
- data/ext/alglib/clu.cpp +337 -0
- data/ext/alglib/clu.h +120 -0
- data/ext/alglib/correlation.cpp +280 -0
- data/ext/alglib/correlation.h +77 -0
- data/ext/alglib/correlationtests.cpp +726 -0
- data/ext/alglib/correlationtests.h +134 -0
- data/ext/alglib/crcond.cpp +826 -0
- data/ext/alglib/crcond.h +148 -0
- data/ext/alglib/creflections.cpp +310 -0
- data/ext/alglib/creflections.h +165 -0
- data/ext/alglib/csolve.cpp +312 -0
- data/ext/alglib/csolve.h +99 -0
- data/ext/alglib/ctrinverse.cpp +387 -0
- data/ext/alglib/ctrinverse.h +98 -0
- data/ext/alglib/ctrlinsolve.cpp +297 -0
- data/ext/alglib/ctrlinsolve.h +81 -0
- data/ext/alglib/dawson.cpp +234 -0
- data/ext/alglib/dawson.h +74 -0
- data/ext/alglib/descriptivestatistics.cpp +436 -0
- data/ext/alglib/descriptivestatistics.h +112 -0
- data/ext/alglib/det.cpp +140 -0
- data/ext/alglib/det.h +94 -0
- data/ext/alglib/dforest.cpp +1819 -0
- data/ext/alglib/dforest.h +316 -0
- data/ext/alglib/elliptic.cpp +497 -0
- data/ext/alglib/elliptic.h +217 -0
- data/ext/alglib/estnorm.cpp +429 -0
- data/ext/alglib/estnorm.h +107 -0
- data/ext/alglib/expintegrals.cpp +422 -0
- data/ext/alglib/expintegrals.h +108 -0
- data/ext/alglib/faq.english.html +258 -0
- data/ext/alglib/faq.russian.html +272 -0
- data/ext/alglib/fdistr.cpp +202 -0
- data/ext/alglib/fdistr.h +163 -0
- data/ext/alglib/fresnel.cpp +211 -0
- data/ext/alglib/fresnel.h +91 -0
- data/ext/alglib/gammaf.cpp +338 -0
- data/ext/alglib/gammaf.h +104 -0
- data/ext/alglib/gqgengauss.cpp +235 -0
- data/ext/alglib/gqgengauss.h +92 -0
- data/ext/alglib/gqgenhermite.cpp +268 -0
- data/ext/alglib/gqgenhermite.h +63 -0
- data/ext/alglib/gqgenjacobi.cpp +297 -0
- data/ext/alglib/gqgenjacobi.h +72 -0
- data/ext/alglib/gqgenlaguerre.cpp +265 -0
- data/ext/alglib/gqgenlaguerre.h +69 -0
- data/ext/alglib/gqgenlegendre.cpp +300 -0
- data/ext/alglib/gqgenlegendre.h +62 -0
- data/ext/alglib/gqgenlobatto.cpp +305 -0
- data/ext/alglib/gqgenlobatto.h +97 -0
- data/ext/alglib/gqgenradau.cpp +232 -0
- data/ext/alglib/gqgenradau.h +95 -0
- data/ext/alglib/hbisinv.cpp +480 -0
- data/ext/alglib/hbisinv.h +183 -0
- data/ext/alglib/hblas.cpp +228 -0
- data/ext/alglib/hblas.h +64 -0
- data/ext/alglib/hcholesky.cpp +339 -0
- data/ext/alglib/hcholesky.h +91 -0
- data/ext/alglib/hermite.cpp +114 -0
- data/ext/alglib/hermite.h +49 -0
- data/ext/alglib/hessenberg.cpp +370 -0
- data/ext/alglib/hessenberg.h +152 -0
- data/ext/alglib/hevd.cpp +247 -0
- data/ext/alglib/hevd.h +107 -0
- data/ext/alglib/hsschur.cpp +1316 -0
- data/ext/alglib/hsschur.h +108 -0
- data/ext/alglib/htridiagonal.cpp +734 -0
- data/ext/alglib/htridiagonal.h +180 -0
- data/ext/alglib/ialglib.cpp +6 -0
- data/ext/alglib/ialglib.h +9 -0
- data/ext/alglib/ibetaf.cpp +960 -0
- data/ext/alglib/ibetaf.h +125 -0
- data/ext/alglib/igammaf.cpp +430 -0
- data/ext/alglib/igammaf.h +157 -0
- data/ext/alglib/inv.cpp +274 -0
- data/ext/alglib/inv.h +115 -0
- data/ext/alglib/inverseupdate.cpp +480 -0
- data/ext/alglib/inverseupdate.h +185 -0
- data/ext/alglib/jacobianelliptic.cpp +164 -0
- data/ext/alglib/jacobianelliptic.h +94 -0
- data/ext/alglib/jarquebera.cpp +2271 -0
- data/ext/alglib/jarquebera.h +80 -0
- data/ext/alglib/kmeans.cpp +356 -0
- data/ext/alglib/kmeans.h +76 -0
- data/ext/alglib/laguerre.cpp +94 -0
- data/ext/alglib/laguerre.h +48 -0
- data/ext/alglib/lbfgs.cpp +1167 -0
- data/ext/alglib/lbfgs.h +218 -0
- data/ext/alglib/lda.cpp +434 -0
- data/ext/alglib/lda.h +133 -0
- data/ext/alglib/ldlt.cpp +1130 -0
- data/ext/alglib/ldlt.h +124 -0
- data/ext/alglib/leastsquares.cpp +1252 -0
- data/ext/alglib/leastsquares.h +290 -0
- data/ext/alglib/legendre.cpp +107 -0
- data/ext/alglib/legendre.h +49 -0
- data/ext/alglib/linreg.cpp +1185 -0
- data/ext/alglib/linreg.h +380 -0
- data/ext/alglib/logit.cpp +1523 -0
- data/ext/alglib/logit.h +333 -0
- data/ext/alglib/lq.cpp +399 -0
- data/ext/alglib/lq.h +160 -0
- data/ext/alglib/lu.cpp +462 -0
- data/ext/alglib/lu.h +119 -0
- data/ext/alglib/mannwhitneyu.cpp +4490 -0
- data/ext/alglib/mannwhitneyu.h +115 -0
- data/ext/alglib/minlm.cpp +918 -0
- data/ext/alglib/minlm.h +312 -0
- data/ext/alglib/mlpbase.cpp +3375 -0
- data/ext/alglib/mlpbase.h +589 -0
- data/ext/alglib/mlpe.cpp +1369 -0
- data/ext/alglib/mlpe.h +552 -0
- data/ext/alglib/mlptrain.cpp +1056 -0
- data/ext/alglib/mlptrain.h +283 -0
- data/ext/alglib/nearunityunit.cpp +91 -0
- data/ext/alglib/nearunityunit.h +17 -0
- data/ext/alglib/normaldistr.cpp +377 -0
- data/ext/alglib/normaldistr.h +175 -0
- data/ext/alglib/nsevd.cpp +1869 -0
- data/ext/alglib/nsevd.h +140 -0
- data/ext/alglib/pca.cpp +168 -0
- data/ext/alglib/pca.h +87 -0
- data/ext/alglib/poissondistr.cpp +143 -0
- data/ext/alglib/poissondistr.h +130 -0
- data/ext/alglib/polinterpolation.cpp +685 -0
- data/ext/alglib/polinterpolation.h +206 -0
- data/ext/alglib/psif.cpp +173 -0
- data/ext/alglib/psif.h +88 -0
- data/ext/alglib/qr.cpp +414 -0
- data/ext/alglib/qr.h +168 -0
- data/ext/alglib/ratinterpolation.cpp +134 -0
- data/ext/alglib/ratinterpolation.h +72 -0
- data/ext/alglib/rcond.cpp +705 -0
- data/ext/alglib/rcond.h +140 -0
- data/ext/alglib/reflections.cpp +504 -0
- data/ext/alglib/reflections.h +165 -0
- data/ext/alglib/rotations.cpp +473 -0
- data/ext/alglib/rotations.h +128 -0
- data/ext/alglib/rsolve.cpp +221 -0
- data/ext/alglib/rsolve.h +99 -0
- data/ext/alglib/sbisinv.cpp +217 -0
- data/ext/alglib/sbisinv.h +171 -0
- data/ext/alglib/sblas.cpp +185 -0
- data/ext/alglib/sblas.h +64 -0
- data/ext/alglib/schur.cpp +156 -0
- data/ext/alglib/schur.h +102 -0
- data/ext/alglib/sdet.cpp +193 -0
- data/ext/alglib/sdet.h +101 -0
- data/ext/alglib/sevd.cpp +116 -0
- data/ext/alglib/sevd.h +99 -0
- data/ext/alglib/sinverse.cpp +672 -0
- data/ext/alglib/sinverse.h +138 -0
- data/ext/alglib/spddet.cpp +138 -0
- data/ext/alglib/spddet.h +96 -0
- data/ext/alglib/spdgevd.cpp +842 -0
- data/ext/alglib/spdgevd.h +200 -0
- data/ext/alglib/spdinverse.cpp +509 -0
- data/ext/alglib/spdinverse.h +122 -0
- data/ext/alglib/spdrcond.cpp +421 -0
- data/ext/alglib/spdrcond.h +118 -0
- data/ext/alglib/spdsolve.cpp +275 -0
- data/ext/alglib/spdsolve.h +105 -0
- data/ext/alglib/spline2d.cpp +1192 -0
- data/ext/alglib/spline2d.h +301 -0
- data/ext/alglib/spline3.cpp +1264 -0
- data/ext/alglib/spline3.h +290 -0
- data/ext/alglib/srcond.cpp +595 -0
- data/ext/alglib/srcond.h +127 -0
- data/ext/alglib/ssolve.cpp +895 -0
- data/ext/alglib/ssolve.h +139 -0
- data/ext/alglib/stdafx.h +0 -0
- data/ext/alglib/stest.cpp +131 -0
- data/ext/alglib/stest.h +94 -0
- data/ext/alglib/studenttdistr.cpp +222 -0
- data/ext/alglib/studenttdistr.h +115 -0
- data/ext/alglib/studentttests.cpp +377 -0
- data/ext/alglib/studentttests.h +178 -0
- data/ext/alglib/svd.cpp +620 -0
- data/ext/alglib/svd.h +126 -0
- data/ext/alglib/tdbisinv.cpp +2608 -0
- data/ext/alglib/tdbisinv.h +228 -0
- data/ext/alglib/tdevd.cpp +1229 -0
- data/ext/alglib/tdevd.h +115 -0
- data/ext/alglib/tridiagonal.cpp +594 -0
- data/ext/alglib/tridiagonal.h +171 -0
- data/ext/alglib/trigintegrals.cpp +490 -0
- data/ext/alglib/trigintegrals.h +131 -0
- data/ext/alglib/trinverse.cpp +345 -0
- data/ext/alglib/trinverse.h +98 -0
- data/ext/alglib/trlinsolve.cpp +926 -0
- data/ext/alglib/trlinsolve.h +73 -0
- data/ext/alglib/tsort.cpp +405 -0
- data/ext/alglib/tsort.h +54 -0
- data/ext/alglib/variancetests.cpp +245 -0
- data/ext/alglib/variancetests.h +134 -0
- data/ext/alglib/wsr.cpp +6285 -0
- data/ext/alglib/wsr.h +96 -0
- data/ext/ap.i +97 -0
- data/ext/correlation.i +24 -0
- data/ext/extconf.rb +6 -0
- data/ext/logit.i +89 -0
- data/lib/alglib.rb +71 -0
- data/lib/alglib/correlation.rb +26 -0
- data/lib/alglib/linearregression.rb +63 -0
- data/lib/alglib/logit.rb +42 -0
- data/test/test_alglib.rb +52 -0
- data/test/test_correlation.rb +44 -0
- data/test/test_correlationtest.rb +45 -0
- data/test/test_linreg.rb +35 -0
- data/test/test_logit.rb +43 -0
- data/test/test_pca.rb +27 -0
- metadata +326 -0
data/ext/alglib/bdsvd.h
ADDED
@@ -0,0 +1,164 @@
|
|
1
|
+
/*************************************************************************
|
2
|
+
Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
|
3
|
+
|
4
|
+
Contributors:
|
5
|
+
* Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
|
6
|
+
pseudocode.
|
7
|
+
|
8
|
+
See subroutines comments for additional copyrights.
|
9
|
+
|
10
|
+
Redistribution and use in source and binary forms, with or without
|
11
|
+
modification, are permitted provided that the following conditions are
|
12
|
+
met:
|
13
|
+
|
14
|
+
- Redistributions of source code must retain the above copyright
|
15
|
+
notice, this list of conditions and the following disclaimer.
|
16
|
+
|
17
|
+
- Redistributions in binary form must reproduce the above copyright
|
18
|
+
notice, this list of conditions and the following disclaimer listed
|
19
|
+
in this license in the documentation and/or other materials
|
20
|
+
provided with the distribution.
|
21
|
+
|
22
|
+
- Neither the name of the copyright holders nor the names of its
|
23
|
+
contributors may be used to endorse or promote products derived from
|
24
|
+
this software without specific prior written permission.
|
25
|
+
|
26
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
27
|
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
28
|
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
29
|
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
30
|
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
31
|
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
32
|
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
33
|
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
34
|
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
35
|
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
36
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
37
|
+
*************************************************************************/
|
38
|
+
|
39
|
+
#ifndef _bdsvd_h
|
40
|
+
#define _bdsvd_h
|
41
|
+
|
42
|
+
#include "ap.h"
|
43
|
+
#include "ialglib.h"
|
44
|
+
|
45
|
+
#include "rotations.h"
|
46
|
+
|
47
|
+
|
48
|
+
/*************************************************************************
|
49
|
+
Singular value decomposition of a bidiagonal matrix (extended algorithm)
|
50
|
+
|
51
|
+
The algorithm performs the singular value decomposition of a bidiagonal
|
52
|
+
matrix B (upper or lower) representing it as B = Q*S*P^T, where Q and P -
|
53
|
+
orthogonal matrices, S - diagonal matrix with non-negative elements on the
|
54
|
+
main diagonal, in descending order.
|
55
|
+
|
56
|
+
The algorithm finds singular values. In addition, the algorithm can
|
57
|
+
calculate matrices Q and P (more precisely, not the matrices, but their
|
58
|
+
product with given matrices U and VT - U*Q and (P^T)*VT)). Of course,
|
59
|
+
matrices U and VT can be of any type, including identity. Furthermore, the
|
60
|
+
algorithm can calculate Q'*C (this product is calculated more effectively
|
61
|
+
than U*Q, because this calculation operates with rows instead of matrix
|
62
|
+
columns).
|
63
|
+
|
64
|
+
The feature of the algorithm is its ability to find all singular values
|
65
|
+
including those which are arbitrarily close to 0 with relative accuracy
|
66
|
+
close to machine precision. If the parameter IsFractionalAccuracyRequired
|
67
|
+
is set to True, all singular values will have high relative accuracy close
|
68
|
+
to machine precision. If the parameter is set to False, only the biggest
|
69
|
+
singular value will have relative accuracy close to machine precision.
|
70
|
+
The absolute error of other singular values is equal to the absolute error
|
71
|
+
of the biggest singular value.
|
72
|
+
|
73
|
+
Input parameters:
|
74
|
+
D - main diagonal of matrix B.
|
75
|
+
Array whose index ranges within [0..N-1].
|
76
|
+
E - superdiagonal (or subdiagonal) of matrix B.
|
77
|
+
Array whose index ranges within [0..N-2].
|
78
|
+
N - size of matrix B.
|
79
|
+
IsUpper - True, if the matrix is upper bidiagonal.
|
80
|
+
IsFractionalAccuracyRequired -
|
81
|
+
accuracy to search singular values with.
|
82
|
+
U - matrix to be multiplied by Q.
|
83
|
+
Array whose indexes range within [0..NRU-1, 0..N-1].
|
84
|
+
The matrix can be bigger, in that case only the submatrix
|
85
|
+
[0..NRU-1, 0..N-1] will be multiplied by Q.
|
86
|
+
NRU - number of rows in matrix U.
|
87
|
+
C - matrix to be multiplied by Q'.
|
88
|
+
Array whose indexes range within [0..N-1, 0..NCC-1].
|
89
|
+
The matrix can be bigger, in that case only the submatrix
|
90
|
+
[0..N-1, 0..NCC-1] will be multiplied by Q'.
|
91
|
+
NCC - number of columns in matrix C.
|
92
|
+
VT - matrix to be multiplied by P^T.
|
93
|
+
Array whose indexes range within [0..N-1, 0..NCVT-1].
|
94
|
+
The matrix can be bigger, in that case only the submatrix
|
95
|
+
[0..N-1, 0..NCVT-1] will be multiplied by P^T.
|
96
|
+
NCVT - number of columns in matrix VT.
|
97
|
+
|
98
|
+
Output parameters:
|
99
|
+
D - singular values of matrix B in descending order.
|
100
|
+
U - if NRU>0, contains matrix U*Q.
|
101
|
+
VT - if NCVT>0, contains matrix (P^T)*VT.
|
102
|
+
C - if NCC>0, contains matrix Q'*C.
|
103
|
+
|
104
|
+
Result:
|
105
|
+
True, if the algorithm has converged.
|
106
|
+
False, if the algorithm hasn't converged (rare case).
|
107
|
+
|
108
|
+
Additional information:
|
109
|
+
The type of convergence is controlled by the internal parameter TOL.
|
110
|
+
If the parameter is greater than 0, the singular values will have
|
111
|
+
relative accuracy TOL. If TOL<0, the singular values will have
|
112
|
+
absolute accuracy ABS(TOL)*norm(B).
|
113
|
+
By default, |TOL| falls within the range of 10*Epsilon and 100*Epsilon,
|
114
|
+
where Epsilon is the machine precision. It is not recommended to use
|
115
|
+
TOL less than 10*Epsilon since this will considerably slow down the
|
116
|
+
algorithm and may not lead to error decreasing.
|
117
|
+
History:
|
118
|
+
* 31 March, 2007.
|
119
|
+
changed MAXITR from 6 to 12.
|
120
|
+
|
121
|
+
-- LAPACK routine (version 3.0) --
|
122
|
+
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
123
|
+
Courant Institute, Argonne National Lab, and Rice University
|
124
|
+
October 31, 1999.
|
125
|
+
*************************************************************************/
|
126
|
+
bool rmatrixbdsvd(ap::real_1d_array& d,
|
127
|
+
ap::real_1d_array e,
|
128
|
+
int n,
|
129
|
+
bool isupper,
|
130
|
+
bool isfractionalaccuracyrequired,
|
131
|
+
ap::real_2d_array& u,
|
132
|
+
int nru,
|
133
|
+
ap::real_2d_array& c,
|
134
|
+
int ncc,
|
135
|
+
ap::real_2d_array& vt,
|
136
|
+
int ncvt);
|
137
|
+
|
138
|
+
|
139
|
+
/*************************************************************************
|
140
|
+
Obsolete 1-based subroutine. See RMatrixBDSVD for 0-based replacement.
|
141
|
+
|
142
|
+
History:
|
143
|
+
* 31 March, 2007.
|
144
|
+
changed MAXITR from 6 to 12.
|
145
|
+
|
146
|
+
-- LAPACK routine (version 3.0) --
|
147
|
+
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
148
|
+
Courant Institute, Argonne National Lab, and Rice University
|
149
|
+
October 31, 1999.
|
150
|
+
*************************************************************************/
|
151
|
+
bool bidiagonalsvddecomposition(ap::real_1d_array& d,
|
152
|
+
ap::real_1d_array e,
|
153
|
+
int n,
|
154
|
+
bool isupper,
|
155
|
+
bool isfractionalaccuracyrequired,
|
156
|
+
ap::real_2d_array& u,
|
157
|
+
int nru,
|
158
|
+
ap::real_2d_array& c,
|
159
|
+
int ncc,
|
160
|
+
ap::real_2d_array& vt,
|
161
|
+
int ncvt);
|
162
|
+
|
163
|
+
|
164
|
+
#endif
|
@@ -0,0 +1,1226 @@
|
|
1
|
+
/*************************************************************************
|
2
|
+
Cephes Math Library Release 2.8: June, 2000
|
3
|
+
Copyright by Stephen L. Moshier
|
4
|
+
|
5
|
+
Contributors:
|
6
|
+
* Sergey Bochkanov (ALGLIB project). Translation from C to
|
7
|
+
pseudocode.
|
8
|
+
|
9
|
+
See subroutines comments for additional copyrights.
|
10
|
+
|
11
|
+
Redistribution and use in source and binary forms, with or without
|
12
|
+
modification, are permitted provided that the following conditions are
|
13
|
+
met:
|
14
|
+
|
15
|
+
- Redistributions of source code must retain the above copyright
|
16
|
+
notice, this list of conditions and the following disclaimer.
|
17
|
+
|
18
|
+
- Redistributions in binary form must reproduce the above copyright
|
19
|
+
notice, this list of conditions and the following disclaimer listed
|
20
|
+
in this license in the documentation and/or other materials
|
21
|
+
provided with the distribution.
|
22
|
+
|
23
|
+
- Neither the name of the copyright holders nor the names of its
|
24
|
+
contributors may be used to endorse or promote products derived from
|
25
|
+
this software without specific prior written permission.
|
26
|
+
|
27
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
28
|
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
29
|
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
30
|
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
31
|
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
32
|
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
33
|
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
34
|
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
35
|
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
36
|
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
37
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
38
|
+
*************************************************************************/
|
39
|
+
|
40
|
+
#include <stdafx.h>
|
41
|
+
#include "bessel.h"
|
42
|
+
|
43
|
+
static void besselmfirstcheb(double c, double& b0, double& b1, double& b2);
|
44
|
+
static void besselmnextcheb(double x,
|
45
|
+
double c,
|
46
|
+
double& b0,
|
47
|
+
double& b1,
|
48
|
+
double& b2);
|
49
|
+
static void besselm1firstcheb(double c, double& b0, double& b1, double& b2);
|
50
|
+
static void besselm1nextcheb(double x,
|
51
|
+
double c,
|
52
|
+
double& b0,
|
53
|
+
double& b1,
|
54
|
+
double& b2);
|
55
|
+
static void besselasympt0(double x, double& pzero, double& qzero);
|
56
|
+
static void besselasympt1(double x, double& pzero, double& qzero);
|
57
|
+
|
58
|
+
/*************************************************************************
|
59
|
+
Bessel function of order zero
|
60
|
+
|
61
|
+
Returns Bessel function of order zero of the argument.
|
62
|
+
|
63
|
+
The domain is divided into the intervals [0, 5] and
|
64
|
+
(5, infinity). In the first interval the following rational
|
65
|
+
approximation is used:
|
66
|
+
|
67
|
+
|
68
|
+
2 2
|
69
|
+
(w - r ) (w - r ) P (w) / Q (w)
|
70
|
+
1 2 3 8
|
71
|
+
|
72
|
+
2
|
73
|
+
where w = x and the two r's are zeros of the function.
|
74
|
+
|
75
|
+
In the second interval, the Hankel asymptotic expansion
|
76
|
+
is employed with two rational functions of degree 6/6
|
77
|
+
and 7/7.
|
78
|
+
|
79
|
+
ACCURACY:
|
80
|
+
|
81
|
+
Absolute error:
|
82
|
+
arithmetic domain # trials peak rms
|
83
|
+
IEEE 0, 30 60000 4.2e-16 1.1e-16
|
84
|
+
|
85
|
+
Cephes Math Library Release 2.8: June, 2000
|
86
|
+
Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
|
87
|
+
*************************************************************************/
|
88
|
+
double besselj0(double x)
|
89
|
+
{
|
90
|
+
double result;
|
91
|
+
double xsq;
|
92
|
+
double nn;
|
93
|
+
double pzero;
|
94
|
+
double qzero;
|
95
|
+
double p1;
|
96
|
+
double q1;
|
97
|
+
|
98
|
+
if( x<0 )
|
99
|
+
{
|
100
|
+
x = -x;
|
101
|
+
}
|
102
|
+
if( x>8.0 )
|
103
|
+
{
|
104
|
+
besselasympt0(x, pzero, qzero);
|
105
|
+
nn = x-ap::pi()/4;
|
106
|
+
result = sqrt(2/ap::pi()/x)*(pzero*cos(nn)-qzero*sin(nn));
|
107
|
+
return result;
|
108
|
+
}
|
109
|
+
xsq = ap::sqr(x);
|
110
|
+
p1 = 26857.86856980014981415848441;
|
111
|
+
p1 = -40504123.71833132706360663322+xsq*p1;
|
112
|
+
p1 = 25071582855.36881945555156435+xsq*p1;
|
113
|
+
p1 = -8085222034853.793871199468171+xsq*p1;
|
114
|
+
p1 = 1434354939140344.111664316553+xsq*p1;
|
115
|
+
p1 = -136762035308817138.6865416609+xsq*p1;
|
116
|
+
p1 = 6382059341072356562.289432465+xsq*p1;
|
117
|
+
p1 = -117915762910761053603.8440800+xsq*p1;
|
118
|
+
p1 = 493378725179413356181.6813446+xsq*p1;
|
119
|
+
q1 = 1.0;
|
120
|
+
q1 = 1363.063652328970604442810507+xsq*q1;
|
121
|
+
q1 = 1114636.098462985378182402543+xsq*q1;
|
122
|
+
q1 = 669998767.2982239671814028660+xsq*q1;
|
123
|
+
q1 = 312304311494.1213172572469442+xsq*q1;
|
124
|
+
q1 = 112775673967979.8507056031594+xsq*q1;
|
125
|
+
q1 = 30246356167094626.98627330784+xsq*q1;
|
126
|
+
q1 = 5428918384092285160.200195092+xsq*q1;
|
127
|
+
q1 = 493378725179413356211.3278438+xsq*q1;
|
128
|
+
result = p1/q1;
|
129
|
+
return result;
|
130
|
+
}
|
131
|
+
|
132
|
+
|
133
|
+
/*************************************************************************
|
134
|
+
Bessel function of order one
|
135
|
+
|
136
|
+
Returns Bessel function of order one of the argument.
|
137
|
+
|
138
|
+
The domain is divided into the intervals [0, 8] and
|
139
|
+
(8, infinity). In the first interval a 24 term Chebyshev
|
140
|
+
expansion is used. In the second, the asymptotic
|
141
|
+
trigonometric representation is employed using two
|
142
|
+
rational functions of degree 5/5.
|
143
|
+
|
144
|
+
ACCURACY:
|
145
|
+
|
146
|
+
Absolute error:
|
147
|
+
arithmetic domain # trials peak rms
|
148
|
+
IEEE 0, 30 30000 2.6e-16 1.1e-16
|
149
|
+
|
150
|
+
Cephes Math Library Release 2.8: June, 2000
|
151
|
+
Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
|
152
|
+
*************************************************************************/
|
153
|
+
double besselj1(double x)
|
154
|
+
{
|
155
|
+
double result;
|
156
|
+
double s;
|
157
|
+
double xsq;
|
158
|
+
double nn;
|
159
|
+
double pzero;
|
160
|
+
double qzero;
|
161
|
+
double p1;
|
162
|
+
double q1;
|
163
|
+
|
164
|
+
s = ap::sign(x);
|
165
|
+
if( x<0 )
|
166
|
+
{
|
167
|
+
x = -x;
|
168
|
+
}
|
169
|
+
if( x>8.0 )
|
170
|
+
{
|
171
|
+
besselasympt1(x, pzero, qzero);
|
172
|
+
nn = x-3*ap::pi()/4;
|
173
|
+
result = sqrt(2/ap::pi()/x)*(pzero*cos(nn)-qzero*sin(nn));
|
174
|
+
if( s<0 )
|
175
|
+
{
|
176
|
+
result = -result;
|
177
|
+
}
|
178
|
+
return result;
|
179
|
+
}
|
180
|
+
xsq = ap::sqr(x);
|
181
|
+
p1 = 2701.122710892323414856790990;
|
182
|
+
p1 = -4695753.530642995859767162166+xsq*p1;
|
183
|
+
p1 = 3413234182.301700539091292655+xsq*p1;
|
184
|
+
p1 = -1322983480332.126453125473247+xsq*p1;
|
185
|
+
p1 = 290879526383477.5409737601689+xsq*p1;
|
186
|
+
p1 = -35888175699101060.50743641413+xsq*p1;
|
187
|
+
p1 = 2316433580634002297.931815435+xsq*p1;
|
188
|
+
p1 = -66721065689249162980.20941484+xsq*p1;
|
189
|
+
p1 = 581199354001606143928.050809+xsq*p1;
|
190
|
+
q1 = 1.0;
|
191
|
+
q1 = 1606.931573481487801970916749+xsq*q1;
|
192
|
+
q1 = 1501793.594998585505921097578+xsq*q1;
|
193
|
+
q1 = 1013863514.358673989967045588+xsq*q1;
|
194
|
+
q1 = 524371026216.7649715406728642+xsq*q1;
|
195
|
+
q1 = 208166122130760.7351240184229+xsq*q1;
|
196
|
+
q1 = 60920613989175217.46105196863+xsq*q1;
|
197
|
+
q1 = 11857707121903209998.37113348+xsq*q1;
|
198
|
+
q1 = 1162398708003212287858.529400+xsq*q1;
|
199
|
+
result = s*x*p1/q1;
|
200
|
+
return result;
|
201
|
+
}
|
202
|
+
|
203
|
+
|
204
|
+
/*************************************************************************
|
205
|
+
Bessel function of integer order
|
206
|
+
|
207
|
+
Returns Bessel function of order n, where n is a
|
208
|
+
(possibly negative) integer.
|
209
|
+
|
210
|
+
The ratio of jn(x) to j0(x) is computed by backward
|
211
|
+
recurrence. First the ratio jn/jn-1 is found by a
|
212
|
+
continued fraction expansion. Then the recurrence
|
213
|
+
relating successive orders is applied until j0 or j1 is
|
214
|
+
reached.
|
215
|
+
|
216
|
+
If n = 0 or 1 the routine for j0 or j1 is called
|
217
|
+
directly.
|
218
|
+
|
219
|
+
ACCURACY:
|
220
|
+
|
221
|
+
Absolute error:
|
222
|
+
arithmetic range # trials peak rms
|
223
|
+
IEEE 0, 30 5000 4.4e-16 7.9e-17
|
224
|
+
|
225
|
+
|
226
|
+
Not suitable for large n or x. Use jv() (fractional order) instead.
|
227
|
+
|
228
|
+
Cephes Math Library Release 2.8: June, 2000
|
229
|
+
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
230
|
+
*************************************************************************/
|
231
|
+
double besseljn(int n, double x)
|
232
|
+
{
|
233
|
+
double result;
|
234
|
+
double pkm2;
|
235
|
+
double pkm1;
|
236
|
+
double pk;
|
237
|
+
double xk;
|
238
|
+
double r;
|
239
|
+
double ans;
|
240
|
+
int k;
|
241
|
+
int sg;
|
242
|
+
|
243
|
+
if( n<0 )
|
244
|
+
{
|
245
|
+
n = -n;
|
246
|
+
if( n%2==0 )
|
247
|
+
{
|
248
|
+
sg = 1;
|
249
|
+
}
|
250
|
+
else
|
251
|
+
{
|
252
|
+
sg = -1;
|
253
|
+
}
|
254
|
+
}
|
255
|
+
else
|
256
|
+
{
|
257
|
+
sg = 1;
|
258
|
+
}
|
259
|
+
if( x<0 )
|
260
|
+
{
|
261
|
+
if( n%2!=0 )
|
262
|
+
{
|
263
|
+
sg = -sg;
|
264
|
+
}
|
265
|
+
x = -x;
|
266
|
+
}
|
267
|
+
if( n==0 )
|
268
|
+
{
|
269
|
+
result = sg*besselj0(x);
|
270
|
+
return result;
|
271
|
+
}
|
272
|
+
if( n==1 )
|
273
|
+
{
|
274
|
+
result = sg*besselj1(x);
|
275
|
+
return result;
|
276
|
+
}
|
277
|
+
if( n==2 )
|
278
|
+
{
|
279
|
+
if( x==0 )
|
280
|
+
{
|
281
|
+
result = 0;
|
282
|
+
}
|
283
|
+
else
|
284
|
+
{
|
285
|
+
result = sg*(2.0*besselj1(x)/x-besselj0(x));
|
286
|
+
}
|
287
|
+
return result;
|
288
|
+
}
|
289
|
+
if( x<ap::machineepsilon )
|
290
|
+
{
|
291
|
+
result = 0;
|
292
|
+
return result;
|
293
|
+
}
|
294
|
+
k = 53;
|
295
|
+
pk = 2*(n+k);
|
296
|
+
ans = pk;
|
297
|
+
xk = x*x;
|
298
|
+
do
|
299
|
+
{
|
300
|
+
pk = pk-2.0;
|
301
|
+
ans = pk-xk/ans;
|
302
|
+
k = k-1;
|
303
|
+
}
|
304
|
+
while(k!=0);
|
305
|
+
ans = x/ans;
|
306
|
+
pk = 1.0;
|
307
|
+
pkm1 = 1.0/ans;
|
308
|
+
k = n-1;
|
309
|
+
r = 2*k;
|
310
|
+
do
|
311
|
+
{
|
312
|
+
pkm2 = (pkm1*r-pk*x)/x;
|
313
|
+
pk = pkm1;
|
314
|
+
pkm1 = pkm2;
|
315
|
+
r = r-2.0;
|
316
|
+
k = k-1;
|
317
|
+
}
|
318
|
+
while(k!=0);
|
319
|
+
if( fabs(pk)>fabs(pkm1) )
|
320
|
+
{
|
321
|
+
ans = besselj1(x)/pk;
|
322
|
+
}
|
323
|
+
else
|
324
|
+
{
|
325
|
+
ans = besselj0(x)/pkm1;
|
326
|
+
}
|
327
|
+
result = sg*ans;
|
328
|
+
return result;
|
329
|
+
}
|
330
|
+
|
331
|
+
|
332
|
+
/*************************************************************************
|
333
|
+
Bessel function of the second kind, order zero
|
334
|
+
|
335
|
+
Returns Bessel function of the second kind, of order
|
336
|
+
zero, of the argument.
|
337
|
+
|
338
|
+
The domain is divided into the intervals [0, 5] and
|
339
|
+
(5, infinity). In the first interval a rational approximation
|
340
|
+
R(x) is employed to compute
|
341
|
+
y0(x) = R(x) + 2 * log(x) * j0(x) / PI.
|
342
|
+
Thus a call to j0() is required.
|
343
|
+
|
344
|
+
In the second interval, the Hankel asymptotic expansion
|
345
|
+
is employed with two rational functions of degree 6/6
|
346
|
+
and 7/7.
|
347
|
+
|
348
|
+
|
349
|
+
|
350
|
+
ACCURACY:
|
351
|
+
|
352
|
+
Absolute error, when y0(x) < 1; else relative error:
|
353
|
+
|
354
|
+
arithmetic domain # trials peak rms
|
355
|
+
IEEE 0, 30 30000 1.3e-15 1.6e-16
|
356
|
+
|
357
|
+
Cephes Math Library Release 2.8: June, 2000
|
358
|
+
Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
|
359
|
+
*************************************************************************/
|
360
|
+
double bessely0(double x)
|
361
|
+
{
|
362
|
+
double result;
|
363
|
+
double nn;
|
364
|
+
double xsq;
|
365
|
+
double pzero;
|
366
|
+
double qzero;
|
367
|
+
double p4;
|
368
|
+
double q4;
|
369
|
+
|
370
|
+
if( x>8.0 )
|
371
|
+
{
|
372
|
+
besselasympt0(x, pzero, qzero);
|
373
|
+
nn = x-ap::pi()/4;
|
374
|
+
result = sqrt(2/ap::pi()/x)*(pzero*sin(nn)+qzero*cos(nn));
|
375
|
+
return result;
|
376
|
+
}
|
377
|
+
xsq = ap::sqr(x);
|
378
|
+
p4 = -41370.35497933148554125235152;
|
379
|
+
p4 = 59152134.65686889654273830069+xsq*p4;
|
380
|
+
p4 = -34363712229.79040378171030138+xsq*p4;
|
381
|
+
p4 = 10255208596863.94284509167421+xsq*p4;
|
382
|
+
p4 = -1648605817185729.473122082537+xsq*p4;
|
383
|
+
p4 = 137562431639934407.8571335453+xsq*p4;
|
384
|
+
p4 = -5247065581112764941.297350814+xsq*p4;
|
385
|
+
p4 = 65874732757195549259.99402049+xsq*p4;
|
386
|
+
p4 = -27502866786291095837.01933175+xsq*p4;
|
387
|
+
q4 = 1.0;
|
388
|
+
q4 = 1282.452772478993804176329391+xsq*q4;
|
389
|
+
q4 = 1001702.641288906265666651753+xsq*q4;
|
390
|
+
q4 = 579512264.0700729537480087915+xsq*q4;
|
391
|
+
q4 = 261306575504.1081249568482092+xsq*q4;
|
392
|
+
q4 = 91620380340751.85262489147968+xsq*q4;
|
393
|
+
q4 = 23928830434997818.57439356652+xsq*q4;
|
394
|
+
q4 = 4192417043410839973.904769661+xsq*q4;
|
395
|
+
q4 = 372645883898616588198.9980+xsq*q4;
|
396
|
+
result = p4/q4+2/ap::pi()*besselj0(x)*log(x);
|
397
|
+
return result;
|
398
|
+
}
|
399
|
+
|
400
|
+
|
401
|
+
/*************************************************************************
|
402
|
+
Bessel function of second kind of order one
|
403
|
+
|
404
|
+
Returns Bessel function of the second kind of order one
|
405
|
+
of the argument.
|
406
|
+
|
407
|
+
The domain is divided into the intervals [0, 8] and
|
408
|
+
(8, infinity). In the first interval a 25 term Chebyshev
|
409
|
+
expansion is used, and a call to j1() is required.
|
410
|
+
In the second, the asymptotic trigonometric representation
|
411
|
+
is employed using two rational functions of degree 5/5.
|
412
|
+
|
413
|
+
ACCURACY:
|
414
|
+
|
415
|
+
Absolute error:
|
416
|
+
arithmetic domain # trials peak rms
|
417
|
+
IEEE 0, 30 30000 1.0e-15 1.3e-16
|
418
|
+
|
419
|
+
Cephes Math Library Release 2.8: June, 2000
|
420
|
+
Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
|
421
|
+
*************************************************************************/
|
422
|
+
double bessely1(double x)
|
423
|
+
{
|
424
|
+
double result;
|
425
|
+
double nn;
|
426
|
+
double xsq;
|
427
|
+
double pzero;
|
428
|
+
double qzero;
|
429
|
+
double p4;
|
430
|
+
double q4;
|
431
|
+
|
432
|
+
if( x>8.0 )
|
433
|
+
{
|
434
|
+
besselasympt1(x, pzero, qzero);
|
435
|
+
nn = x-3*ap::pi()/4;
|
436
|
+
result = sqrt(2/ap::pi()/x)*(pzero*sin(nn)+qzero*cos(nn));
|
437
|
+
return result;
|
438
|
+
}
|
439
|
+
xsq = ap::sqr(x);
|
440
|
+
p4 = -2108847.540133123652824139923;
|
441
|
+
p4 = 3639488548.124002058278999428+xsq*p4;
|
442
|
+
p4 = -2580681702194.450950541426399+xsq*p4;
|
443
|
+
p4 = 956993023992168.3481121552788+xsq*p4;
|
444
|
+
p4 = -196588746272214065.8820322248+xsq*p4;
|
445
|
+
p4 = 21931073399177975921.11427556+xsq*p4;
|
446
|
+
p4 = -1212297555414509577913.561535+xsq*p4;
|
447
|
+
p4 = 26554738314348543268942.48968+xsq*p4;
|
448
|
+
p4 = -99637534243069222259967.44354+xsq*p4;
|
449
|
+
q4 = 1.0;
|
450
|
+
q4 = 1612.361029677000859332072312+xsq*q4;
|
451
|
+
q4 = 1563282.754899580604737366452+xsq*q4;
|
452
|
+
q4 = 1128686837.169442121732366891+xsq*q4;
|
453
|
+
q4 = 646534088126.5275571961681500+xsq*q4;
|
454
|
+
q4 = 297663212564727.6729292742282+xsq*q4;
|
455
|
+
q4 = 108225825940881955.2553850180+xsq*q4;
|
456
|
+
q4 = 29549879358971486742.90758119+xsq*q4;
|
457
|
+
q4 = 5435310377188854170800.653097+xsq*q4;
|
458
|
+
q4 = 508206736694124324531442.4152+xsq*q4;
|
459
|
+
result = x*p4/q4+2/ap::pi()*(besselj1(x)*log(x)-1/x);
|
460
|
+
return result;
|
461
|
+
}
|
462
|
+
|
463
|
+
|
464
|
+
/*************************************************************************
|
465
|
+
Bessel function of second kind of integer order
|
466
|
+
|
467
|
+
Returns Bessel function of order n, where n is a
|
468
|
+
(possibly negative) integer.
|
469
|
+
|
470
|
+
The function is evaluated by forward recurrence on
|
471
|
+
n, starting with values computed by the routines
|
472
|
+
y0() and y1().
|
473
|
+
|
474
|
+
If n = 0 or 1 the routine for y0 or y1 is called
|
475
|
+
directly.
|
476
|
+
|
477
|
+
ACCURACY:
|
478
|
+
Absolute error, except relative
|
479
|
+
when y > 1:
|
480
|
+
arithmetic domain # trials peak rms
|
481
|
+
IEEE 0, 30 30000 3.4e-15 4.3e-16
|
482
|
+
|
483
|
+
Cephes Math Library Release 2.8: June, 2000
|
484
|
+
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
485
|
+
*************************************************************************/
|
486
|
+
double besselyn(int n, double x)
|
487
|
+
{
|
488
|
+
double result;
|
489
|
+
int i;
|
490
|
+
double a;
|
491
|
+
double b;
|
492
|
+
double tmp;
|
493
|
+
double s;
|
494
|
+
|
495
|
+
s = 1;
|
496
|
+
if( n<0 )
|
497
|
+
{
|
498
|
+
n = -n;
|
499
|
+
if( n%2!=0 )
|
500
|
+
{
|
501
|
+
s = -1;
|
502
|
+
}
|
503
|
+
}
|
504
|
+
if( n==0 )
|
505
|
+
{
|
506
|
+
result = bessely0(x);
|
507
|
+
return result;
|
508
|
+
}
|
509
|
+
if( n==1 )
|
510
|
+
{
|
511
|
+
result = s*bessely1(x);
|
512
|
+
return result;
|
513
|
+
}
|
514
|
+
a = bessely0(x);
|
515
|
+
b = bessely1(x);
|
516
|
+
for(i = 1; i <= n-1; i++)
|
517
|
+
{
|
518
|
+
tmp = b;
|
519
|
+
b = 2*i/x*b-a;
|
520
|
+
a = tmp;
|
521
|
+
}
|
522
|
+
result = s*b;
|
523
|
+
return result;
|
524
|
+
}
|
525
|
+
|
526
|
+
|
527
|
+
/*************************************************************************
|
528
|
+
Modified Bessel function of order zero
|
529
|
+
|
530
|
+
Returns modified Bessel function of order zero of the
|
531
|
+
argument.
|
532
|
+
|
533
|
+
The function is defined as i0(x) = j0( ix ).
|
534
|
+
|
535
|
+
The range is partitioned into the two intervals [0,8] and
|
536
|
+
(8, infinity). Chebyshev polynomial expansions are employed
|
537
|
+
in each interval.
|
538
|
+
|
539
|
+
ACCURACY:
|
540
|
+
|
541
|
+
Relative error:
|
542
|
+
arithmetic domain # trials peak rms
|
543
|
+
IEEE 0,30 30000 5.8e-16 1.4e-16
|
544
|
+
|
545
|
+
Cephes Math Library Release 2.8: June, 2000
|
546
|
+
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
547
|
+
*************************************************************************/
|
548
|
+
double besseli0(double x)
|
549
|
+
{
|
550
|
+
double result;
|
551
|
+
double y;
|
552
|
+
double v;
|
553
|
+
double z;
|
554
|
+
double b0;
|
555
|
+
double b1;
|
556
|
+
double b2;
|
557
|
+
|
558
|
+
if( x<0 )
|
559
|
+
{
|
560
|
+
x = -x;
|
561
|
+
}
|
562
|
+
if( x<=8.0 )
|
563
|
+
{
|
564
|
+
y = x/2.0-2.0;
|
565
|
+
besselmfirstcheb(-4.41534164647933937950E-18, b0, b1, b2);
|
566
|
+
besselmnextcheb(y, 3.33079451882223809783E-17, b0, b1, b2);
|
567
|
+
besselmnextcheb(y, -2.43127984654795469359E-16, b0, b1, b2);
|
568
|
+
besselmnextcheb(y, 1.71539128555513303061E-15, b0, b1, b2);
|
569
|
+
besselmnextcheb(y, -1.16853328779934516808E-14, b0, b1, b2);
|
570
|
+
besselmnextcheb(y, 7.67618549860493561688E-14, b0, b1, b2);
|
571
|
+
besselmnextcheb(y, -4.85644678311192946090E-13, b0, b1, b2);
|
572
|
+
besselmnextcheb(y, 2.95505266312963983461E-12, b0, b1, b2);
|
573
|
+
besselmnextcheb(y, -1.72682629144155570723E-11, b0, b1, b2);
|
574
|
+
besselmnextcheb(y, 9.67580903537323691224E-11, b0, b1, b2);
|
575
|
+
besselmnextcheb(y, -5.18979560163526290666E-10, b0, b1, b2);
|
576
|
+
besselmnextcheb(y, 2.65982372468238665035E-9, b0, b1, b2);
|
577
|
+
besselmnextcheb(y, -1.30002500998624804212E-8, b0, b1, b2);
|
578
|
+
besselmnextcheb(y, 6.04699502254191894932E-8, b0, b1, b2);
|
579
|
+
besselmnextcheb(y, -2.67079385394061173391E-7, b0, b1, b2);
|
580
|
+
besselmnextcheb(y, 1.11738753912010371815E-6, b0, b1, b2);
|
581
|
+
besselmnextcheb(y, -4.41673835845875056359E-6, b0, b1, b2);
|
582
|
+
besselmnextcheb(y, 1.64484480707288970893E-5, b0, b1, b2);
|
583
|
+
besselmnextcheb(y, -5.75419501008210370398E-5, b0, b1, b2);
|
584
|
+
besselmnextcheb(y, 1.88502885095841655729E-4, b0, b1, b2);
|
585
|
+
besselmnextcheb(y, -5.76375574538582365885E-4, b0, b1, b2);
|
586
|
+
besselmnextcheb(y, 1.63947561694133579842E-3, b0, b1, b2);
|
587
|
+
besselmnextcheb(y, -4.32430999505057594430E-3, b0, b1, b2);
|
588
|
+
besselmnextcheb(y, 1.05464603945949983183E-2, b0, b1, b2);
|
589
|
+
besselmnextcheb(y, -2.37374148058994688156E-2, b0, b1, b2);
|
590
|
+
besselmnextcheb(y, 4.93052842396707084878E-2, b0, b1, b2);
|
591
|
+
besselmnextcheb(y, -9.49010970480476444210E-2, b0, b1, b2);
|
592
|
+
besselmnextcheb(y, 1.71620901522208775349E-1, b0, b1, b2);
|
593
|
+
besselmnextcheb(y, -3.04682672343198398683E-1, b0, b1, b2);
|
594
|
+
besselmnextcheb(y, 6.76795274409476084995E-1, b0, b1, b2);
|
595
|
+
v = 0.5*(b0-b2);
|
596
|
+
result = exp(x)*v;
|
597
|
+
return result;
|
598
|
+
}
|
599
|
+
z = 32.0/x-2.0;
|
600
|
+
besselmfirstcheb(-7.23318048787475395456E-18, b0, b1, b2);
|
601
|
+
besselmnextcheb(z, -4.83050448594418207126E-18, b0, b1, b2);
|
602
|
+
besselmnextcheb(z, 4.46562142029675999901E-17, b0, b1, b2);
|
603
|
+
besselmnextcheb(z, 3.46122286769746109310E-17, b0, b1, b2);
|
604
|
+
besselmnextcheb(z, -2.82762398051658348494E-16, b0, b1, b2);
|
605
|
+
besselmnextcheb(z, -3.42548561967721913462E-16, b0, b1, b2);
|
606
|
+
besselmnextcheb(z, 1.77256013305652638360E-15, b0, b1, b2);
|
607
|
+
besselmnextcheb(z, 3.81168066935262242075E-15, b0, b1, b2);
|
608
|
+
besselmnextcheb(z, -9.55484669882830764870E-15, b0, b1, b2);
|
609
|
+
besselmnextcheb(z, -4.15056934728722208663E-14, b0, b1, b2);
|
610
|
+
besselmnextcheb(z, 1.54008621752140982691E-14, b0, b1, b2);
|
611
|
+
besselmnextcheb(z, 3.85277838274214270114E-13, b0, b1, b2);
|
612
|
+
besselmnextcheb(z, 7.18012445138366623367E-13, b0, b1, b2);
|
613
|
+
besselmnextcheb(z, -1.79417853150680611778E-12, b0, b1, b2);
|
614
|
+
besselmnextcheb(z, -1.32158118404477131188E-11, b0, b1, b2);
|
615
|
+
besselmnextcheb(z, -3.14991652796324136454E-11, b0, b1, b2);
|
616
|
+
besselmnextcheb(z, 1.18891471078464383424E-11, b0, b1, b2);
|
617
|
+
besselmnextcheb(z, 4.94060238822496958910E-10, b0, b1, b2);
|
618
|
+
besselmnextcheb(z, 3.39623202570838634515E-9, b0, b1, b2);
|
619
|
+
besselmnextcheb(z, 2.26666899049817806459E-8, b0, b1, b2);
|
620
|
+
besselmnextcheb(z, 2.04891858946906374183E-7, b0, b1, b2);
|
621
|
+
besselmnextcheb(z, 2.89137052083475648297E-6, b0, b1, b2);
|
622
|
+
besselmnextcheb(z, 6.88975834691682398426E-5, b0, b1, b2);
|
623
|
+
besselmnextcheb(z, 3.36911647825569408990E-3, b0, b1, b2);
|
624
|
+
besselmnextcheb(z, 8.04490411014108831608E-1, b0, b1, b2);
|
625
|
+
v = 0.5*(b0-b2);
|
626
|
+
result = exp(x)*v/sqrt(x);
|
627
|
+
return result;
|
628
|
+
}
|
629
|
+
|
630
|
+
|
631
|
+
/*************************************************************************
|
632
|
+
Modified Bessel function of order one
|
633
|
+
|
634
|
+
Returns modified Bessel function of order one of the
|
635
|
+
argument.
|
636
|
+
|
637
|
+
The function is defined as i1(x) = -i j1( ix ).
|
638
|
+
|
639
|
+
The range is partitioned into the two intervals [0,8] and
|
640
|
+
(8, infinity). Chebyshev polynomial expansions are employed
|
641
|
+
in each interval.
|
642
|
+
|
643
|
+
ACCURACY:
|
644
|
+
|
645
|
+
Relative error:
|
646
|
+
arithmetic domain # trials peak rms
|
647
|
+
IEEE 0, 30 30000 1.9e-15 2.1e-16
|
648
|
+
|
649
|
+
Cephes Math Library Release 2.8: June, 2000
|
650
|
+
Copyright 1985, 1987, 2000 by Stephen L. Moshier
|
651
|
+
*************************************************************************/
|
652
|
+
double besseli1(double x)
|
653
|
+
{
|
654
|
+
double result;
|
655
|
+
double y;
|
656
|
+
double z;
|
657
|
+
double v;
|
658
|
+
double b0;
|
659
|
+
double b1;
|
660
|
+
double b2;
|
661
|
+
|
662
|
+
z = fabs(x);
|
663
|
+
if( z<=8.0 )
|
664
|
+
{
|
665
|
+
y = z/2.0-2.0;
|
666
|
+
besselm1firstcheb(2.77791411276104639959E-18, b0, b1, b2);
|
667
|
+
besselm1nextcheb(y, -2.11142121435816608115E-17, b0, b1, b2);
|
668
|
+
besselm1nextcheb(y, 1.55363195773620046921E-16, b0, b1, b2);
|
669
|
+
besselm1nextcheb(y, -1.10559694773538630805E-15, b0, b1, b2);
|
670
|
+
besselm1nextcheb(y, 7.60068429473540693410E-15, b0, b1, b2);
|
671
|
+
besselm1nextcheb(y, -5.04218550472791168711E-14, b0, b1, b2);
|
672
|
+
besselm1nextcheb(y, 3.22379336594557470981E-13, b0, b1, b2);
|
673
|
+
besselm1nextcheb(y, -1.98397439776494371520E-12, b0, b1, b2);
|
674
|
+
besselm1nextcheb(y, 1.17361862988909016308E-11, b0, b1, b2);
|
675
|
+
besselm1nextcheb(y, -6.66348972350202774223E-11, b0, b1, b2);
|
676
|
+
besselm1nextcheb(y, 3.62559028155211703701E-10, b0, b1, b2);
|
677
|
+
besselm1nextcheb(y, -1.88724975172282928790E-9, b0, b1, b2);
|
678
|
+
besselm1nextcheb(y, 9.38153738649577178388E-9, b0, b1, b2);
|
679
|
+
besselm1nextcheb(y, -4.44505912879632808065E-8, b0, b1, b2);
|
680
|
+
besselm1nextcheb(y, 2.00329475355213526229E-7, b0, b1, b2);
|
681
|
+
besselm1nextcheb(y, -8.56872026469545474066E-7, b0, b1, b2);
|
682
|
+
besselm1nextcheb(y, 3.47025130813767847674E-6, b0, b1, b2);
|
683
|
+
besselm1nextcheb(y, -1.32731636560394358279E-5, b0, b1, b2);
|
684
|
+
besselm1nextcheb(y, 4.78156510755005422638E-5, b0, b1, b2);
|
685
|
+
besselm1nextcheb(y, -1.61760815825896745588E-4, b0, b1, b2);
|
686
|
+
besselm1nextcheb(y, 5.12285956168575772895E-4, b0, b1, b2);
|
687
|
+
besselm1nextcheb(y, -1.51357245063125314899E-3, b0, b1, b2);
|
688
|
+
besselm1nextcheb(y, 4.15642294431288815669E-3, b0, b1, b2);
|
689
|
+
besselm1nextcheb(y, -1.05640848946261981558E-2, b0, b1, b2);
|
690
|
+
besselm1nextcheb(y, 2.47264490306265168283E-2, b0, b1, b2);
|
691
|
+
besselm1nextcheb(y, -5.29459812080949914269E-2, b0, b1, b2);
|
692
|
+
besselm1nextcheb(y, 1.02643658689847095384E-1, b0, b1, b2);
|
693
|
+
besselm1nextcheb(y, -1.76416518357834055153E-1, b0, b1, b2);
|
694
|
+
besselm1nextcheb(y, 2.52587186443633654823E-1, b0, b1, b2);
|
695
|
+
v = 0.5*(b0-b2);
|
696
|
+
z = v*z*exp(z);
|
697
|
+
}
|
698
|
+
else
|
699
|
+
{
|
700
|
+
y = 32.0/z-2.0;
|
701
|
+
besselm1firstcheb(7.51729631084210481353E-18, b0, b1, b2);
|
702
|
+
besselm1nextcheb(y, 4.41434832307170791151E-18, b0, b1, b2);
|
703
|
+
besselm1nextcheb(y, -4.65030536848935832153E-17, b0, b1, b2);
|
704
|
+
besselm1nextcheb(y, -3.20952592199342395980E-17, b0, b1, b2);
|
705
|
+
besselm1nextcheb(y, 2.96262899764595013876E-16, b0, b1, b2);
|
706
|
+
besselm1nextcheb(y, 3.30820231092092828324E-16, b0, b1, b2);
|
707
|
+
besselm1nextcheb(y, -1.88035477551078244854E-15, b0, b1, b2);
|
708
|
+
besselm1nextcheb(y, -3.81440307243700780478E-15, b0, b1, b2);
|
709
|
+
besselm1nextcheb(y, 1.04202769841288027642E-14, b0, b1, b2);
|
710
|
+
besselm1nextcheb(y, 4.27244001671195135429E-14, b0, b1, b2);
|
711
|
+
besselm1nextcheb(y, -2.10154184277266431302E-14, b0, b1, b2);
|
712
|
+
besselm1nextcheb(y, -4.08355111109219731823E-13, b0, b1, b2);
|
713
|
+
besselm1nextcheb(y, -7.19855177624590851209E-13, b0, b1, b2);
|
714
|
+
besselm1nextcheb(y, 2.03562854414708950722E-12, b0, b1, b2);
|
715
|
+
besselm1nextcheb(y, 1.41258074366137813316E-11, b0, b1, b2);
|
716
|
+
besselm1nextcheb(y, 3.25260358301548823856E-11, b0, b1, b2);
|
717
|
+
besselm1nextcheb(y, -1.89749581235054123450E-11, b0, b1, b2);
|
718
|
+
besselm1nextcheb(y, -5.58974346219658380687E-10, b0, b1, b2);
|
719
|
+
besselm1nextcheb(y, -3.83538038596423702205E-9, b0, b1, b2);
|
720
|
+
besselm1nextcheb(y, -2.63146884688951950684E-8, b0, b1, b2);
|
721
|
+
besselm1nextcheb(y, -2.51223623787020892529E-7, b0, b1, b2);
|
722
|
+
besselm1nextcheb(y, -3.88256480887769039346E-6, b0, b1, b2);
|
723
|
+
besselm1nextcheb(y, -1.10588938762623716291E-4, b0, b1, b2);
|
724
|
+
besselm1nextcheb(y, -9.76109749136146840777E-3, b0, b1, b2);
|
725
|
+
besselm1nextcheb(y, 7.78576235018280120474E-1, b0, b1, b2);
|
726
|
+
v = 0.5*(b0-b2);
|
727
|
+
z = v*exp(z)/sqrt(z);
|
728
|
+
}
|
729
|
+
if( x<0 )
|
730
|
+
{
|
731
|
+
z = -z;
|
732
|
+
}
|
733
|
+
result = z;
|
734
|
+
return result;
|
735
|
+
}
|
736
|
+
|
737
|
+
|
738
|
+
/*************************************************************************
|
739
|
+
Modified Bessel function, second kind, order zero
|
740
|
+
|
741
|
+
Returns modified Bessel function of the second kind
|
742
|
+
of order zero of the argument.
|
743
|
+
|
744
|
+
The range is partitioned into the two intervals [0,8] and
|
745
|
+
(8, infinity). Chebyshev polynomial expansions are employed
|
746
|
+
in each interval.
|
747
|
+
|
748
|
+
ACCURACY:
|
749
|
+
|
750
|
+
Tested at 2000 random points between 0 and 8. Peak absolute
|
751
|
+
error (relative when K0 > 1) was 1.46e-14; rms, 4.26e-15.
|
752
|
+
Relative error:
|
753
|
+
arithmetic domain # trials peak rms
|
754
|
+
IEEE 0, 30 30000 1.2e-15 1.6e-16
|
755
|
+
|
756
|
+
Cephes Math Library Release 2.8: June, 2000
|
757
|
+
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
758
|
+
*************************************************************************/
|
759
|
+
double besselk0(double x)
|
760
|
+
{
|
761
|
+
double result;
|
762
|
+
double y;
|
763
|
+
double z;
|
764
|
+
double v;
|
765
|
+
double b0;
|
766
|
+
double b1;
|
767
|
+
double b2;
|
768
|
+
|
769
|
+
ap::ap_error::make_assertion(x>0, "Domain error in BesselK0: x<=0");
|
770
|
+
if( x<=2 )
|
771
|
+
{
|
772
|
+
y = x*x-2.0;
|
773
|
+
besselmfirstcheb(1.37446543561352307156E-16, b0, b1, b2);
|
774
|
+
besselmnextcheb(y, 4.25981614279661018399E-14, b0, b1, b2);
|
775
|
+
besselmnextcheb(y, 1.03496952576338420167E-11, b0, b1, b2);
|
776
|
+
besselmnextcheb(y, 1.90451637722020886025E-9, b0, b1, b2);
|
777
|
+
besselmnextcheb(y, 2.53479107902614945675E-7, b0, b1, b2);
|
778
|
+
besselmnextcheb(y, 2.28621210311945178607E-5, b0, b1, b2);
|
779
|
+
besselmnextcheb(y, 1.26461541144692592338E-3, b0, b1, b2);
|
780
|
+
besselmnextcheb(y, 3.59799365153615016266E-2, b0, b1, b2);
|
781
|
+
besselmnextcheb(y, 3.44289899924628486886E-1, b0, b1, b2);
|
782
|
+
besselmnextcheb(y, -5.35327393233902768720E-1, b0, b1, b2);
|
783
|
+
v = 0.5*(b0-b2);
|
784
|
+
v = v-log(0.5*x)*besseli0(x);
|
785
|
+
}
|
786
|
+
else
|
787
|
+
{
|
788
|
+
z = 8.0/x-2.0;
|
789
|
+
besselmfirstcheb(5.30043377268626276149E-18, b0, b1, b2);
|
790
|
+
besselmnextcheb(z, -1.64758043015242134646E-17, b0, b1, b2);
|
791
|
+
besselmnextcheb(z, 5.21039150503902756861E-17, b0, b1, b2);
|
792
|
+
besselmnextcheb(z, -1.67823109680541210385E-16, b0, b1, b2);
|
793
|
+
besselmnextcheb(z, 5.51205597852431940784E-16, b0, b1, b2);
|
794
|
+
besselmnextcheb(z, -1.84859337734377901440E-15, b0, b1, b2);
|
795
|
+
besselmnextcheb(z, 6.34007647740507060557E-15, b0, b1, b2);
|
796
|
+
besselmnextcheb(z, -2.22751332699166985548E-14, b0, b1, b2);
|
797
|
+
besselmnextcheb(z, 8.03289077536357521100E-14, b0, b1, b2);
|
798
|
+
besselmnextcheb(z, -2.98009692317273043925E-13, b0, b1, b2);
|
799
|
+
besselmnextcheb(z, 1.14034058820847496303E-12, b0, b1, b2);
|
800
|
+
besselmnextcheb(z, -4.51459788337394416547E-12, b0, b1, b2);
|
801
|
+
besselmnextcheb(z, 1.85594911495471785253E-11, b0, b1, b2);
|
802
|
+
besselmnextcheb(z, -7.95748924447710747776E-11, b0, b1, b2);
|
803
|
+
besselmnextcheb(z, 3.57739728140030116597E-10, b0, b1, b2);
|
804
|
+
besselmnextcheb(z, -1.69753450938905987466E-9, b0, b1, b2);
|
805
|
+
besselmnextcheb(z, 8.57403401741422608519E-9, b0, b1, b2);
|
806
|
+
besselmnextcheb(z, -4.66048989768794782956E-8, b0, b1, b2);
|
807
|
+
besselmnextcheb(z, 2.76681363944501510342E-7, b0, b1, b2);
|
808
|
+
besselmnextcheb(z, -1.83175552271911948767E-6, b0, b1, b2);
|
809
|
+
besselmnextcheb(z, 1.39498137188764993662E-5, b0, b1, b2);
|
810
|
+
besselmnextcheb(z, -1.28495495816278026384E-4, b0, b1, b2);
|
811
|
+
besselmnextcheb(z, 1.56988388573005337491E-3, b0, b1, b2);
|
812
|
+
besselmnextcheb(z, -3.14481013119645005427E-2, b0, b1, b2);
|
813
|
+
besselmnextcheb(z, 2.44030308206595545468E0, b0, b1, b2);
|
814
|
+
v = 0.5*(b0-b2);
|
815
|
+
v = v*exp(-x)/sqrt(x);
|
816
|
+
}
|
817
|
+
result = v;
|
818
|
+
return result;
|
819
|
+
}
|
820
|
+
|
821
|
+
|
822
|
+
/*************************************************************************
|
823
|
+
Modified Bessel function, second kind, order one
|
824
|
+
|
825
|
+
Computes the modified Bessel function of the second kind
|
826
|
+
of order one of the argument.
|
827
|
+
|
828
|
+
The range is partitioned into the two intervals [0,2] and
|
829
|
+
(2, infinity). Chebyshev polynomial expansions are employed
|
830
|
+
in each interval.
|
831
|
+
|
832
|
+
ACCURACY:
|
833
|
+
|
834
|
+
Relative error:
|
835
|
+
arithmetic domain # trials peak rms
|
836
|
+
IEEE 0, 30 30000 1.2e-15 1.6e-16
|
837
|
+
|
838
|
+
Cephes Math Library Release 2.8: June, 2000
|
839
|
+
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
840
|
+
*************************************************************************/
|
841
|
+
double besselk1(double x)
|
842
|
+
{
|
843
|
+
double result;
|
844
|
+
double y;
|
845
|
+
double z;
|
846
|
+
double v;
|
847
|
+
double b0;
|
848
|
+
double b1;
|
849
|
+
double b2;
|
850
|
+
|
851
|
+
z = 0.5*x;
|
852
|
+
ap::ap_error::make_assertion(z>0, "Domain error in K1");
|
853
|
+
if( x<=2 )
|
854
|
+
{
|
855
|
+
y = x*x-2.0;
|
856
|
+
besselm1firstcheb(-7.02386347938628759343E-18, b0, b1, b2);
|
857
|
+
besselm1nextcheb(y, -2.42744985051936593393E-15, b0, b1, b2);
|
858
|
+
besselm1nextcheb(y, -6.66690169419932900609E-13, b0, b1, b2);
|
859
|
+
besselm1nextcheb(y, -1.41148839263352776110E-10, b0, b1, b2);
|
860
|
+
besselm1nextcheb(y, -2.21338763073472585583E-8, b0, b1, b2);
|
861
|
+
besselm1nextcheb(y, -2.43340614156596823496E-6, b0, b1, b2);
|
862
|
+
besselm1nextcheb(y, -1.73028895751305206302E-4, b0, b1, b2);
|
863
|
+
besselm1nextcheb(y, -6.97572385963986435018E-3, b0, b1, b2);
|
864
|
+
besselm1nextcheb(y, -1.22611180822657148235E-1, b0, b1, b2);
|
865
|
+
besselm1nextcheb(y, -3.53155960776544875667E-1, b0, b1, b2);
|
866
|
+
besselm1nextcheb(y, 1.52530022733894777053E0, b0, b1, b2);
|
867
|
+
v = 0.5*(b0-b2);
|
868
|
+
result = log(z)*besseli1(x)+v/x;
|
869
|
+
}
|
870
|
+
else
|
871
|
+
{
|
872
|
+
y = 8.0/x-2.0;
|
873
|
+
besselm1firstcheb(-5.75674448366501715755E-18, b0, b1, b2);
|
874
|
+
besselm1nextcheb(y, 1.79405087314755922667E-17, b0, b1, b2);
|
875
|
+
besselm1nextcheb(y, -5.68946255844285935196E-17, b0, b1, b2);
|
876
|
+
besselm1nextcheb(y, 1.83809354436663880070E-16, b0, b1, b2);
|
877
|
+
besselm1nextcheb(y, -6.05704724837331885336E-16, b0, b1, b2);
|
878
|
+
besselm1nextcheb(y, 2.03870316562433424052E-15, b0, b1, b2);
|
879
|
+
besselm1nextcheb(y, -7.01983709041831346144E-15, b0, b1, b2);
|
880
|
+
besselm1nextcheb(y, 2.47715442448130437068E-14, b0, b1, b2);
|
881
|
+
besselm1nextcheb(y, -8.97670518232499435011E-14, b0, b1, b2);
|
882
|
+
besselm1nextcheb(y, 3.34841966607842919884E-13, b0, b1, b2);
|
883
|
+
besselm1nextcheb(y, -1.28917396095102890680E-12, b0, b1, b2);
|
884
|
+
besselm1nextcheb(y, 5.13963967348173025100E-12, b0, b1, b2);
|
885
|
+
besselm1nextcheb(y, -2.12996783842756842877E-11, b0, b1, b2);
|
886
|
+
besselm1nextcheb(y, 9.21831518760500529508E-11, b0, b1, b2);
|
887
|
+
besselm1nextcheb(y, -4.19035475934189648750E-10, b0, b1, b2);
|
888
|
+
besselm1nextcheb(y, 2.01504975519703286596E-9, b0, b1, b2);
|
889
|
+
besselm1nextcheb(y, -1.03457624656780970260E-8, b0, b1, b2);
|
890
|
+
besselm1nextcheb(y, 5.74108412545004946722E-8, b0, b1, b2);
|
891
|
+
besselm1nextcheb(y, -3.50196060308781257119E-7, b0, b1, b2);
|
892
|
+
besselm1nextcheb(y, 2.40648494783721712015E-6, b0, b1, b2);
|
893
|
+
besselm1nextcheb(y, -1.93619797416608296024E-5, b0, b1, b2);
|
894
|
+
besselm1nextcheb(y, 1.95215518471351631108E-4, b0, b1, b2);
|
895
|
+
besselm1nextcheb(y, -2.85781685962277938680E-3, b0, b1, b2);
|
896
|
+
besselm1nextcheb(y, 1.03923736576817238437E-1, b0, b1, b2);
|
897
|
+
besselm1nextcheb(y, 2.72062619048444266945E0, b0, b1, b2);
|
898
|
+
v = 0.5*(b0-b2);
|
899
|
+
result = exp(-x)*v/sqrt(x);
|
900
|
+
}
|
901
|
+
return result;
|
902
|
+
}
|
903
|
+
|
904
|
+
|
905
|
+
/*************************************************************************
|
906
|
+
Modified Bessel function, second kind, integer order
|
907
|
+
|
908
|
+
Returns modified Bessel function of the second kind
|
909
|
+
of order n of the argument.
|
910
|
+
|
911
|
+
The range is partitioned into the two intervals [0,9.55] and
|
912
|
+
(9.55, infinity). An ascending power series is used in the
|
913
|
+
low range, and an asymptotic expansion in the high range.
|
914
|
+
|
915
|
+
ACCURACY:
|
916
|
+
|
917
|
+
Relative error:
|
918
|
+
arithmetic domain # trials peak rms
|
919
|
+
IEEE 0,30 90000 1.8e-8 3.0e-10
|
920
|
+
|
921
|
+
Error is high only near the crossover point x = 9.55
|
922
|
+
between the two expansions used.
|
923
|
+
|
924
|
+
Cephes Math Library Release 2.8: June, 2000
|
925
|
+
Copyright 1984, 1987, 1988, 2000 by Stephen L. Moshier
|
926
|
+
*************************************************************************/
|
927
|
+
double besselkn(int nn, double x)
|
928
|
+
{
|
929
|
+
double result;
|
930
|
+
double k;
|
931
|
+
double kf;
|
932
|
+
double nk1f;
|
933
|
+
double nkf;
|
934
|
+
double zn;
|
935
|
+
double t;
|
936
|
+
double s;
|
937
|
+
double z0;
|
938
|
+
double z;
|
939
|
+
double ans;
|
940
|
+
double fn;
|
941
|
+
double pn;
|
942
|
+
double pk;
|
943
|
+
double zmn;
|
944
|
+
double tlg;
|
945
|
+
double tox;
|
946
|
+
int i;
|
947
|
+
int n;
|
948
|
+
double eul;
|
949
|
+
|
950
|
+
eul = 5.772156649015328606065e-1;
|
951
|
+
if( nn<0 )
|
952
|
+
{
|
953
|
+
n = -nn;
|
954
|
+
}
|
955
|
+
else
|
956
|
+
{
|
957
|
+
n = nn;
|
958
|
+
}
|
959
|
+
ap::ap_error::make_assertion(n<=31, "Overflow in BesselKN");
|
960
|
+
ap::ap_error::make_assertion(x>0, "Domain error in BesselKN");
|
961
|
+
if( x<=9.55 )
|
962
|
+
{
|
963
|
+
ans = 0.0;
|
964
|
+
z0 = 0.25*x*x;
|
965
|
+
fn = 1.0;
|
966
|
+
pn = 0.0;
|
967
|
+
zmn = 1.0;
|
968
|
+
tox = 2.0/x;
|
969
|
+
if( n>0 )
|
970
|
+
{
|
971
|
+
pn = -eul;
|
972
|
+
k = 1.0;
|
973
|
+
for(i = 1; i <= n-1; i++)
|
974
|
+
{
|
975
|
+
pn = pn+1.0/k;
|
976
|
+
k = k+1.0;
|
977
|
+
fn = fn*k;
|
978
|
+
}
|
979
|
+
zmn = tox;
|
980
|
+
if( n==1 )
|
981
|
+
{
|
982
|
+
ans = 1.0/x;
|
983
|
+
}
|
984
|
+
else
|
985
|
+
{
|
986
|
+
nk1f = fn/n;
|
987
|
+
kf = 1.0;
|
988
|
+
s = nk1f;
|
989
|
+
z = -z0;
|
990
|
+
zn = 1.0;
|
991
|
+
for(i = 1; i <= n-1; i++)
|
992
|
+
{
|
993
|
+
nk1f = nk1f/(n-i);
|
994
|
+
kf = kf*i;
|
995
|
+
zn = zn*z;
|
996
|
+
t = nk1f*zn/kf;
|
997
|
+
s = s+t;
|
998
|
+
ap::ap_error::make_assertion(ap::maxrealnumber-fabs(t)>fabs(s), "Overflow in BesselKN");
|
999
|
+
ap::ap_error::make_assertion(!(tox>1.0&&ap::maxrealnumber/tox<zmn), "Overflow in BesselKN");
|
1000
|
+
zmn = zmn*tox;
|
1001
|
+
}
|
1002
|
+
s = s*0.5;
|
1003
|
+
t = fabs(s);
|
1004
|
+
ap::ap_error::make_assertion(!(zmn>1.0&&ap::maxrealnumber/zmn<t), "Overflow in BesselKN");
|
1005
|
+
ap::ap_error::make_assertion(!(t>1.0&&ap::maxrealnumber/t<zmn), "Overflow in BesselKN");
|
1006
|
+
ans = s*zmn;
|
1007
|
+
}
|
1008
|
+
}
|
1009
|
+
tlg = 2.0*log(0.5*x);
|
1010
|
+
pk = -eul;
|
1011
|
+
if( n==0 )
|
1012
|
+
{
|
1013
|
+
pn = pk;
|
1014
|
+
t = 1.0;
|
1015
|
+
}
|
1016
|
+
else
|
1017
|
+
{
|
1018
|
+
pn = pn+1.0/n;
|
1019
|
+
t = 1.0/fn;
|
1020
|
+
}
|
1021
|
+
s = (pk+pn-tlg)*t;
|
1022
|
+
k = 1.0;
|
1023
|
+
do
|
1024
|
+
{
|
1025
|
+
t = t*(z0/(k*(k+n)));
|
1026
|
+
pk = pk+1.0/k;
|
1027
|
+
pn = pn+1.0/(k+n);
|
1028
|
+
s = s+(pk+pn-tlg)*t;
|
1029
|
+
k = k+1.0;
|
1030
|
+
}
|
1031
|
+
while(fabs(t/s)>ap::machineepsilon);
|
1032
|
+
s = 0.5*s/zmn;
|
1033
|
+
if( n%2!=0 )
|
1034
|
+
{
|
1035
|
+
s = -s;
|
1036
|
+
}
|
1037
|
+
ans = ans+s;
|
1038
|
+
result = ans;
|
1039
|
+
return result;
|
1040
|
+
}
|
1041
|
+
if( x>log(ap::maxrealnumber) )
|
1042
|
+
{
|
1043
|
+
result = 0;
|
1044
|
+
return result;
|
1045
|
+
}
|
1046
|
+
k = n;
|
1047
|
+
pn = 4.0*k*k;
|
1048
|
+
pk = 1.0;
|
1049
|
+
z0 = 8.0*x;
|
1050
|
+
fn = 1.0;
|
1051
|
+
t = 1.0;
|
1052
|
+
s = t;
|
1053
|
+
nkf = ap::maxrealnumber;
|
1054
|
+
i = 0;
|
1055
|
+
do
|
1056
|
+
{
|
1057
|
+
z = pn-pk*pk;
|
1058
|
+
t = t*z/(fn*z0);
|
1059
|
+
nk1f = fabs(t);
|
1060
|
+
if( i>=n&&nk1f>nkf )
|
1061
|
+
{
|
1062
|
+
break;
|
1063
|
+
}
|
1064
|
+
nkf = nk1f;
|
1065
|
+
s = s+t;
|
1066
|
+
fn = fn+1.0;
|
1067
|
+
pk = pk+2.0;
|
1068
|
+
i = i+1;
|
1069
|
+
}
|
1070
|
+
while(fabs(t/s)>ap::machineepsilon);
|
1071
|
+
result = exp(-x)*sqrt(ap::pi()/(2.0*x))*s;
|
1072
|
+
return result;
|
1073
|
+
}
|
1074
|
+
|
1075
|
+
|
1076
|
+
/*************************************************************************
|
1077
|
+
Internal subroutine
|
1078
|
+
|
1079
|
+
Cephes Math Library Release 2.8: June, 2000
|
1080
|
+
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
1081
|
+
*************************************************************************/
|
1082
|
+
static void besselmfirstcheb(double c, double& b0, double& b1, double& b2)
|
1083
|
+
{
|
1084
|
+
|
1085
|
+
b0 = c;
|
1086
|
+
b1 = 0.0;
|
1087
|
+
b2 = 0.0;
|
1088
|
+
}
|
1089
|
+
|
1090
|
+
|
1091
|
+
/*************************************************************************
|
1092
|
+
Internal subroutine
|
1093
|
+
|
1094
|
+
Cephes Math Library Release 2.8: June, 2000
|
1095
|
+
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
1096
|
+
*************************************************************************/
|
1097
|
+
static void besselmnextcheb(double x,
|
1098
|
+
double c,
|
1099
|
+
double& b0,
|
1100
|
+
double& b1,
|
1101
|
+
double& b2)
|
1102
|
+
{
|
1103
|
+
|
1104
|
+
b2 = b1;
|
1105
|
+
b1 = b0;
|
1106
|
+
b0 = x*b1-b2+c;
|
1107
|
+
}
|
1108
|
+
|
1109
|
+
|
1110
|
+
/*************************************************************************
|
1111
|
+
Internal subroutine
|
1112
|
+
|
1113
|
+
Cephes Math Library Release 2.8: June, 2000
|
1114
|
+
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
1115
|
+
*************************************************************************/
|
1116
|
+
static void besselm1firstcheb(double c, double& b0, double& b1, double& b2)
|
1117
|
+
{
|
1118
|
+
|
1119
|
+
b0 = c;
|
1120
|
+
b1 = 0.0;
|
1121
|
+
b2 = 0.0;
|
1122
|
+
}
|
1123
|
+
|
1124
|
+
|
1125
|
+
/*************************************************************************
|
1126
|
+
Internal subroutine
|
1127
|
+
|
1128
|
+
Cephes Math Library Release 2.8: June, 2000
|
1129
|
+
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
1130
|
+
*************************************************************************/
|
1131
|
+
static void besselm1nextcheb(double x,
|
1132
|
+
double c,
|
1133
|
+
double& b0,
|
1134
|
+
double& b1,
|
1135
|
+
double& b2)
|
1136
|
+
{
|
1137
|
+
|
1138
|
+
b2 = b1;
|
1139
|
+
b1 = b0;
|
1140
|
+
b0 = x*b1-b2+c;
|
1141
|
+
}
|
1142
|
+
|
1143
|
+
|
1144
|
+
static void besselasympt0(double x, double& pzero, double& qzero)
|
1145
|
+
{
|
1146
|
+
double xsq;
|
1147
|
+
double p2;
|
1148
|
+
double q2;
|
1149
|
+
double p3;
|
1150
|
+
double q3;
|
1151
|
+
|
1152
|
+
xsq = 64.0/(x*x);
|
1153
|
+
p2 = 0.0;
|
1154
|
+
p2 = 2485.271928957404011288128951+xsq*p2;
|
1155
|
+
p2 = 153982.6532623911470917825993+xsq*p2;
|
1156
|
+
p2 = 2016135.283049983642487182349+xsq*p2;
|
1157
|
+
p2 = 8413041.456550439208464315611+xsq*p2;
|
1158
|
+
p2 = 12332384.76817638145232406055+xsq*p2;
|
1159
|
+
p2 = 5393485.083869438325262122897+xsq*p2;
|
1160
|
+
q2 = 1.0;
|
1161
|
+
q2 = 2615.700736920839685159081813+xsq*q2;
|
1162
|
+
q2 = 156001.7276940030940592769933+xsq*q2;
|
1163
|
+
q2 = 2025066.801570134013891035236+xsq*q2;
|
1164
|
+
q2 = 8426449.050629797331554404810+xsq*q2;
|
1165
|
+
q2 = 12338310.22786324960844856182+xsq*q2;
|
1166
|
+
q2 = 5393485.083869438325560444960+xsq*q2;
|
1167
|
+
p3 = -0.0;
|
1168
|
+
p3 = -4.887199395841261531199129300+xsq*p3;
|
1169
|
+
p3 = -226.2630641933704113967255053+xsq*p3;
|
1170
|
+
p3 = -2365.956170779108192723612816+xsq*p3;
|
1171
|
+
p3 = -8239.066313485606568803548860+xsq*p3;
|
1172
|
+
p3 = -10381.41698748464093880530341+xsq*p3;
|
1173
|
+
p3 = -3984.617357595222463506790588+xsq*p3;
|
1174
|
+
q3 = 1.0;
|
1175
|
+
q3 = 408.7714673983499223402830260+xsq*q3;
|
1176
|
+
q3 = 15704.89191515395519392882766+xsq*q3;
|
1177
|
+
q3 = 156021.3206679291652539287109+xsq*q3;
|
1178
|
+
q3 = 533291.3634216897168722255057+xsq*q3;
|
1179
|
+
q3 = 666745.4239319826986004038103+xsq*q3;
|
1180
|
+
q3 = 255015.5108860942382983170882+xsq*q3;
|
1181
|
+
pzero = p2/q2;
|
1182
|
+
qzero = 8*p3/q3/x;
|
1183
|
+
}
|
1184
|
+
|
1185
|
+
|
1186
|
+
static void besselasympt1(double x, double& pzero, double& qzero)
|
1187
|
+
{
|
1188
|
+
double xsq;
|
1189
|
+
double p2;
|
1190
|
+
double q2;
|
1191
|
+
double p3;
|
1192
|
+
double q3;
|
1193
|
+
|
1194
|
+
xsq = 64.0/(x*x);
|
1195
|
+
p2 = -1611.616644324610116477412898;
|
1196
|
+
p2 = -109824.0554345934672737413139+xsq*p2;
|
1197
|
+
p2 = -1523529.351181137383255105722+xsq*p2;
|
1198
|
+
p2 = -6603373.248364939109255245434+xsq*p2;
|
1199
|
+
p2 = -9942246.505077641195658377899+xsq*p2;
|
1200
|
+
p2 = -4435757.816794127857114720794+xsq*p2;
|
1201
|
+
q2 = 1.0;
|
1202
|
+
q2 = -1455.009440190496182453565068+xsq*q2;
|
1203
|
+
q2 = -107263.8599110382011903063867+xsq*q2;
|
1204
|
+
q2 = -1511809.506634160881644546358+xsq*q2;
|
1205
|
+
q2 = -6585339.479723087072826915069+xsq*q2;
|
1206
|
+
q2 = -9934124.389934585658967556309+xsq*q2;
|
1207
|
+
q2 = -4435757.816794127856828016962+xsq*q2;
|
1208
|
+
p3 = 35.26513384663603218592175580;
|
1209
|
+
p3 = 1706.375429020768002061283546+xsq*p3;
|
1210
|
+
p3 = 18494.26287322386679652009819+xsq*p3;
|
1211
|
+
p3 = 66178.83658127083517939992166+xsq*p3;
|
1212
|
+
p3 = 85145.16067533570196555001171+xsq*p3;
|
1213
|
+
p3 = 33220.91340985722351859704442+xsq*p3;
|
1214
|
+
q3 = 1.0;
|
1215
|
+
q3 = 863.8367769604990967475517183+xsq*q3;
|
1216
|
+
q3 = 37890.22974577220264142952256+xsq*q3;
|
1217
|
+
q3 = 400294.4358226697511708610813+xsq*q3;
|
1218
|
+
q3 = 1419460.669603720892855755253+xsq*q3;
|
1219
|
+
q3 = 1819458.042243997298924553839+xsq*q3;
|
1220
|
+
q3 = 708712.8194102874357377502472+xsq*q3;
|
1221
|
+
pzero = p2/q2;
|
1222
|
+
qzero = 8*p3/q3/x;
|
1223
|
+
}
|
1224
|
+
|
1225
|
+
|
1226
|
+
|