alglib 0.1.1
Sign up to get free protection for your applications and to get access to all the features.
- data/History.txt +7 -0
- data/Manifest.txt +253 -0
- data/README.txt +33 -0
- data/Rakefile +27 -0
- data/ext/Rakefile +24 -0
- data/ext/alglib.i +24 -0
- data/ext/alglib/Makefile +157 -0
- data/ext/alglib/airyf.cpp +372 -0
- data/ext/alglib/airyf.h +81 -0
- data/ext/alglib/alglib.cpp +8558 -0
- data/ext/alglib/alglib_util.cpp +19 -0
- data/ext/alglib/alglib_util.h +14 -0
- data/ext/alglib/ap.cpp +877 -0
- data/ext/alglib/ap.english.html +364 -0
- data/ext/alglib/ap.h +666 -0
- data/ext/alglib/ap.russian.html +442 -0
- data/ext/alglib/apvt.h +754 -0
- data/ext/alglib/bdss.cpp +1500 -0
- data/ext/alglib/bdss.h +251 -0
- data/ext/alglib/bdsvd.cpp +1339 -0
- data/ext/alglib/bdsvd.h +164 -0
- data/ext/alglib/bessel.cpp +1226 -0
- data/ext/alglib/bessel.h +331 -0
- data/ext/alglib/betaf.cpp +105 -0
- data/ext/alglib/betaf.h +74 -0
- data/ext/alglib/bidiagonal.cpp +1328 -0
- data/ext/alglib/bidiagonal.h +350 -0
- data/ext/alglib/binomialdistr.cpp +247 -0
- data/ext/alglib/binomialdistr.h +153 -0
- data/ext/alglib/blas.cpp +576 -0
- data/ext/alglib/blas.h +132 -0
- data/ext/alglib/cblas.cpp +226 -0
- data/ext/alglib/cblas.h +57 -0
- data/ext/alglib/cdet.cpp +138 -0
- data/ext/alglib/cdet.h +92 -0
- data/ext/alglib/chebyshev.cpp +216 -0
- data/ext/alglib/chebyshev.h +76 -0
- data/ext/alglib/chisquaredistr.cpp +157 -0
- data/ext/alglib/chisquaredistr.h +144 -0
- data/ext/alglib/cholesky.cpp +285 -0
- data/ext/alglib/cholesky.h +86 -0
- data/ext/alglib/cinverse.cpp +298 -0
- data/ext/alglib/cinverse.h +111 -0
- data/ext/alglib/clu.cpp +337 -0
- data/ext/alglib/clu.h +120 -0
- data/ext/alglib/correlation.cpp +280 -0
- data/ext/alglib/correlation.h +77 -0
- data/ext/alglib/correlationtests.cpp +726 -0
- data/ext/alglib/correlationtests.h +134 -0
- data/ext/alglib/crcond.cpp +826 -0
- data/ext/alglib/crcond.h +148 -0
- data/ext/alglib/creflections.cpp +310 -0
- data/ext/alglib/creflections.h +165 -0
- data/ext/alglib/csolve.cpp +312 -0
- data/ext/alglib/csolve.h +99 -0
- data/ext/alglib/ctrinverse.cpp +387 -0
- data/ext/alglib/ctrinverse.h +98 -0
- data/ext/alglib/ctrlinsolve.cpp +297 -0
- data/ext/alglib/ctrlinsolve.h +81 -0
- data/ext/alglib/dawson.cpp +234 -0
- data/ext/alglib/dawson.h +74 -0
- data/ext/alglib/descriptivestatistics.cpp +436 -0
- data/ext/alglib/descriptivestatistics.h +112 -0
- data/ext/alglib/det.cpp +140 -0
- data/ext/alglib/det.h +94 -0
- data/ext/alglib/dforest.cpp +1819 -0
- data/ext/alglib/dforest.h +316 -0
- data/ext/alglib/elliptic.cpp +497 -0
- data/ext/alglib/elliptic.h +217 -0
- data/ext/alglib/estnorm.cpp +429 -0
- data/ext/alglib/estnorm.h +107 -0
- data/ext/alglib/expintegrals.cpp +422 -0
- data/ext/alglib/expintegrals.h +108 -0
- data/ext/alglib/faq.english.html +258 -0
- data/ext/alglib/faq.russian.html +272 -0
- data/ext/alglib/fdistr.cpp +202 -0
- data/ext/alglib/fdistr.h +163 -0
- data/ext/alglib/fresnel.cpp +211 -0
- data/ext/alglib/fresnel.h +91 -0
- data/ext/alglib/gammaf.cpp +338 -0
- data/ext/alglib/gammaf.h +104 -0
- data/ext/alglib/gqgengauss.cpp +235 -0
- data/ext/alglib/gqgengauss.h +92 -0
- data/ext/alglib/gqgenhermite.cpp +268 -0
- data/ext/alglib/gqgenhermite.h +63 -0
- data/ext/alglib/gqgenjacobi.cpp +297 -0
- data/ext/alglib/gqgenjacobi.h +72 -0
- data/ext/alglib/gqgenlaguerre.cpp +265 -0
- data/ext/alglib/gqgenlaguerre.h +69 -0
- data/ext/alglib/gqgenlegendre.cpp +300 -0
- data/ext/alglib/gqgenlegendre.h +62 -0
- data/ext/alglib/gqgenlobatto.cpp +305 -0
- data/ext/alglib/gqgenlobatto.h +97 -0
- data/ext/alglib/gqgenradau.cpp +232 -0
- data/ext/alglib/gqgenradau.h +95 -0
- data/ext/alglib/hbisinv.cpp +480 -0
- data/ext/alglib/hbisinv.h +183 -0
- data/ext/alglib/hblas.cpp +228 -0
- data/ext/alglib/hblas.h +64 -0
- data/ext/alglib/hcholesky.cpp +339 -0
- data/ext/alglib/hcholesky.h +91 -0
- data/ext/alglib/hermite.cpp +114 -0
- data/ext/alglib/hermite.h +49 -0
- data/ext/alglib/hessenberg.cpp +370 -0
- data/ext/alglib/hessenberg.h +152 -0
- data/ext/alglib/hevd.cpp +247 -0
- data/ext/alglib/hevd.h +107 -0
- data/ext/alglib/hsschur.cpp +1316 -0
- data/ext/alglib/hsschur.h +108 -0
- data/ext/alglib/htridiagonal.cpp +734 -0
- data/ext/alglib/htridiagonal.h +180 -0
- data/ext/alglib/ialglib.cpp +6 -0
- data/ext/alglib/ialglib.h +9 -0
- data/ext/alglib/ibetaf.cpp +960 -0
- data/ext/alglib/ibetaf.h +125 -0
- data/ext/alglib/igammaf.cpp +430 -0
- data/ext/alglib/igammaf.h +157 -0
- data/ext/alglib/inv.cpp +274 -0
- data/ext/alglib/inv.h +115 -0
- data/ext/alglib/inverseupdate.cpp +480 -0
- data/ext/alglib/inverseupdate.h +185 -0
- data/ext/alglib/jacobianelliptic.cpp +164 -0
- data/ext/alglib/jacobianelliptic.h +94 -0
- data/ext/alglib/jarquebera.cpp +2271 -0
- data/ext/alglib/jarquebera.h +80 -0
- data/ext/alglib/kmeans.cpp +356 -0
- data/ext/alglib/kmeans.h +76 -0
- data/ext/alglib/laguerre.cpp +94 -0
- data/ext/alglib/laguerre.h +48 -0
- data/ext/alglib/lbfgs.cpp +1167 -0
- data/ext/alglib/lbfgs.h +218 -0
- data/ext/alglib/lda.cpp +434 -0
- data/ext/alglib/lda.h +133 -0
- data/ext/alglib/ldlt.cpp +1130 -0
- data/ext/alglib/ldlt.h +124 -0
- data/ext/alglib/leastsquares.cpp +1252 -0
- data/ext/alglib/leastsquares.h +290 -0
- data/ext/alglib/legendre.cpp +107 -0
- data/ext/alglib/legendre.h +49 -0
- data/ext/alglib/linreg.cpp +1185 -0
- data/ext/alglib/linreg.h +380 -0
- data/ext/alglib/logit.cpp +1523 -0
- data/ext/alglib/logit.h +333 -0
- data/ext/alglib/lq.cpp +399 -0
- data/ext/alglib/lq.h +160 -0
- data/ext/alglib/lu.cpp +462 -0
- data/ext/alglib/lu.h +119 -0
- data/ext/alglib/mannwhitneyu.cpp +4490 -0
- data/ext/alglib/mannwhitneyu.h +115 -0
- data/ext/alglib/minlm.cpp +918 -0
- data/ext/alglib/minlm.h +312 -0
- data/ext/alglib/mlpbase.cpp +3375 -0
- data/ext/alglib/mlpbase.h +589 -0
- data/ext/alglib/mlpe.cpp +1369 -0
- data/ext/alglib/mlpe.h +552 -0
- data/ext/alglib/mlptrain.cpp +1056 -0
- data/ext/alglib/mlptrain.h +283 -0
- data/ext/alglib/nearunityunit.cpp +91 -0
- data/ext/alglib/nearunityunit.h +17 -0
- data/ext/alglib/normaldistr.cpp +377 -0
- data/ext/alglib/normaldistr.h +175 -0
- data/ext/alglib/nsevd.cpp +1869 -0
- data/ext/alglib/nsevd.h +140 -0
- data/ext/alglib/pca.cpp +168 -0
- data/ext/alglib/pca.h +87 -0
- data/ext/alglib/poissondistr.cpp +143 -0
- data/ext/alglib/poissondistr.h +130 -0
- data/ext/alglib/polinterpolation.cpp +685 -0
- data/ext/alglib/polinterpolation.h +206 -0
- data/ext/alglib/psif.cpp +173 -0
- data/ext/alglib/psif.h +88 -0
- data/ext/alglib/qr.cpp +414 -0
- data/ext/alglib/qr.h +168 -0
- data/ext/alglib/ratinterpolation.cpp +134 -0
- data/ext/alglib/ratinterpolation.h +72 -0
- data/ext/alglib/rcond.cpp +705 -0
- data/ext/alglib/rcond.h +140 -0
- data/ext/alglib/reflections.cpp +504 -0
- data/ext/alglib/reflections.h +165 -0
- data/ext/alglib/rotations.cpp +473 -0
- data/ext/alglib/rotations.h +128 -0
- data/ext/alglib/rsolve.cpp +221 -0
- data/ext/alglib/rsolve.h +99 -0
- data/ext/alglib/sbisinv.cpp +217 -0
- data/ext/alglib/sbisinv.h +171 -0
- data/ext/alglib/sblas.cpp +185 -0
- data/ext/alglib/sblas.h +64 -0
- data/ext/alglib/schur.cpp +156 -0
- data/ext/alglib/schur.h +102 -0
- data/ext/alglib/sdet.cpp +193 -0
- data/ext/alglib/sdet.h +101 -0
- data/ext/alglib/sevd.cpp +116 -0
- data/ext/alglib/sevd.h +99 -0
- data/ext/alglib/sinverse.cpp +672 -0
- data/ext/alglib/sinverse.h +138 -0
- data/ext/alglib/spddet.cpp +138 -0
- data/ext/alglib/spddet.h +96 -0
- data/ext/alglib/spdgevd.cpp +842 -0
- data/ext/alglib/spdgevd.h +200 -0
- data/ext/alglib/spdinverse.cpp +509 -0
- data/ext/alglib/spdinverse.h +122 -0
- data/ext/alglib/spdrcond.cpp +421 -0
- data/ext/alglib/spdrcond.h +118 -0
- data/ext/alglib/spdsolve.cpp +275 -0
- data/ext/alglib/spdsolve.h +105 -0
- data/ext/alglib/spline2d.cpp +1192 -0
- data/ext/alglib/spline2d.h +301 -0
- data/ext/alglib/spline3.cpp +1264 -0
- data/ext/alglib/spline3.h +290 -0
- data/ext/alglib/srcond.cpp +595 -0
- data/ext/alglib/srcond.h +127 -0
- data/ext/alglib/ssolve.cpp +895 -0
- data/ext/alglib/ssolve.h +139 -0
- data/ext/alglib/stdafx.h +0 -0
- data/ext/alglib/stest.cpp +131 -0
- data/ext/alglib/stest.h +94 -0
- data/ext/alglib/studenttdistr.cpp +222 -0
- data/ext/alglib/studenttdistr.h +115 -0
- data/ext/alglib/studentttests.cpp +377 -0
- data/ext/alglib/studentttests.h +178 -0
- data/ext/alglib/svd.cpp +620 -0
- data/ext/alglib/svd.h +126 -0
- data/ext/alglib/tdbisinv.cpp +2608 -0
- data/ext/alglib/tdbisinv.h +228 -0
- data/ext/alglib/tdevd.cpp +1229 -0
- data/ext/alglib/tdevd.h +115 -0
- data/ext/alglib/tridiagonal.cpp +594 -0
- data/ext/alglib/tridiagonal.h +171 -0
- data/ext/alglib/trigintegrals.cpp +490 -0
- data/ext/alglib/trigintegrals.h +131 -0
- data/ext/alglib/trinverse.cpp +345 -0
- data/ext/alglib/trinverse.h +98 -0
- data/ext/alglib/trlinsolve.cpp +926 -0
- data/ext/alglib/trlinsolve.h +73 -0
- data/ext/alglib/tsort.cpp +405 -0
- data/ext/alglib/tsort.h +54 -0
- data/ext/alglib/variancetests.cpp +245 -0
- data/ext/alglib/variancetests.h +134 -0
- data/ext/alglib/wsr.cpp +6285 -0
- data/ext/alglib/wsr.h +96 -0
- data/ext/ap.i +97 -0
- data/ext/correlation.i +24 -0
- data/ext/extconf.rb +6 -0
- data/ext/logit.i +89 -0
- data/lib/alglib.rb +71 -0
- data/lib/alglib/correlation.rb +26 -0
- data/lib/alglib/linearregression.rb +63 -0
- data/lib/alglib/logit.rb +42 -0
- data/test/test_alglib.rb +52 -0
- data/test/test_correlation.rb +44 -0
- data/test/test_correlationtest.rb +45 -0
- data/test/test_linreg.rb +35 -0
- data/test/test_logit.rb +43 -0
- data/test/test_pca.rb +27 -0
- metadata +326 -0
@@ -0,0 +1,228 @@
|
|
1
|
+
/*************************************************************************
|
2
|
+
Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
|
3
|
+
|
4
|
+
Contributors:
|
5
|
+
* Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
|
6
|
+
pseudocode.
|
7
|
+
|
8
|
+
See subroutines comments for additional copyrights.
|
9
|
+
|
10
|
+
Redistribution and use in source and binary forms, with or without
|
11
|
+
modification, are permitted provided that the following conditions are
|
12
|
+
met:
|
13
|
+
|
14
|
+
- Redistributions of source code must retain the above copyright
|
15
|
+
notice, this list of conditions and the following disclaimer.
|
16
|
+
|
17
|
+
- Redistributions in binary form must reproduce the above copyright
|
18
|
+
notice, this list of conditions and the following disclaimer listed
|
19
|
+
in this license in the documentation and/or other materials
|
20
|
+
provided with the distribution.
|
21
|
+
|
22
|
+
- Neither the name of the copyright holders nor the names of its
|
23
|
+
contributors may be used to endorse or promote products derived from
|
24
|
+
this software without specific prior written permission.
|
25
|
+
|
26
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
27
|
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
28
|
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
29
|
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
30
|
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
31
|
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
32
|
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
33
|
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
34
|
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
35
|
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
36
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
37
|
+
*************************************************************************/
|
38
|
+
|
39
|
+
#ifndef _tdbisinv_h
|
40
|
+
#define _tdbisinv_h
|
41
|
+
|
42
|
+
#include "ap.h"
|
43
|
+
#include "ialglib.h"
|
44
|
+
|
45
|
+
#include "blas.h"
|
46
|
+
|
47
|
+
|
48
|
+
/*************************************************************************
|
49
|
+
Subroutine for finding the tridiagonal matrix eigenvalues/vectors in a
|
50
|
+
given half-interval (A, B] by using bisection and inverse iteration.
|
51
|
+
|
52
|
+
Input parameters:
|
53
|
+
D - the main diagonal of a tridiagonal matrix.
|
54
|
+
Array whose index ranges within [0..N-1].
|
55
|
+
E - the secondary diagonal of a tridiagonal matrix.
|
56
|
+
Array whose index ranges within [0..N-2].
|
57
|
+
N - size of matrix, N>=0.
|
58
|
+
ZNeeded - flag controlling whether the eigenvectors are needed or not.
|
59
|
+
If ZNeeded is equal to:
|
60
|
+
* 0, the eigenvectors are not needed;
|
61
|
+
* 1, the eigenvectors of a tridiagonal matrix are multiplied
|
62
|
+
by the square matrix Z. It is used if the tridiagonal
|
63
|
+
matrix is obtained by the similarity transformation
|
64
|
+
of a symmetric matrix.
|
65
|
+
* 2, the eigenvectors of a tridiagonal matrix replace matrix Z.
|
66
|
+
A, B - half-interval (A, B] to search eigenvalues in.
|
67
|
+
Z - if ZNeeded is equal to:
|
68
|
+
* 0, Z isn't used and remains unchanged;
|
69
|
+
* 1, Z contains the square matrix (array whose indexes range
|
70
|
+
within [0..N-1, 0..N-1]) which reduces the given symmetric
|
71
|
+
matrix to tridiagonal form;
|
72
|
+
* 2, Z isn't used (but changed on the exit).
|
73
|
+
|
74
|
+
Output parameters:
|
75
|
+
D - array of the eigenvalues found.
|
76
|
+
Array whose index ranges within [0..M-1].
|
77
|
+
M - number of eigenvalues found in the given half-interval (M>=0).
|
78
|
+
Z - if ZNeeded is equal to:
|
79
|
+
* 0, doesn't contain any information;
|
80
|
+
* 1, contains the product of a given NxN matrix Z (from the
|
81
|
+
left) and NxM matrix of the eigenvectors found (from the
|
82
|
+
right). Array whose indexes range within [0..N-1, 0..M-1].
|
83
|
+
* 2, contains the matrix of the eigenvectors found.
|
84
|
+
Array whose indexes range within [0..N-1, 0..M-1].
|
85
|
+
|
86
|
+
Result:
|
87
|
+
|
88
|
+
True, if successful. In that case, M contains the number of eigenvalues
|
89
|
+
in the given half-interval (could be equal to 0), D contains the eigenvalues,
|
90
|
+
Z contains the eigenvectors (if needed).
|
91
|
+
It should be noted that the subroutine changes the size of arrays D and Z.
|
92
|
+
|
93
|
+
False, if the bisection method subroutine wasn't able to find the
|
94
|
+
eigenvalues in the given interval or if the inverse iteration subroutine
|
95
|
+
wasn't able to find all the corresponding eigenvectors. In that case,
|
96
|
+
the eigenvalues and eigenvectors are not returned, M is equal to 0.
|
97
|
+
|
98
|
+
-- ALGLIB --
|
99
|
+
Copyright 31.03.2008 by Bochkanov Sergey
|
100
|
+
*************************************************************************/
|
101
|
+
bool smatrixtdevdr(ap::real_1d_array& d,
|
102
|
+
const ap::real_1d_array& e,
|
103
|
+
int n,
|
104
|
+
int zneeded,
|
105
|
+
double a,
|
106
|
+
double b,
|
107
|
+
int& m,
|
108
|
+
ap::real_2d_array& z);
|
109
|
+
|
110
|
+
|
111
|
+
/*************************************************************************
|
112
|
+
Subroutine for finding tridiagonal matrix eigenvalues/vectors with given
|
113
|
+
indexes (in ascending order) by using the bisection and inverse iteraion.
|
114
|
+
|
115
|
+
Input parameters:
|
116
|
+
D - the main diagonal of a tridiagonal matrix.
|
117
|
+
Array whose index ranges within [0..N-1].
|
118
|
+
E - the secondary diagonal of a tridiagonal matrix.
|
119
|
+
Array whose index ranges within [0..N-2].
|
120
|
+
N - size of matrix. N>=0.
|
121
|
+
ZNeeded - flag controlling whether the eigenvectors are needed or not.
|
122
|
+
If ZNeeded is equal to:
|
123
|
+
* 0, the eigenvectors are not needed;
|
124
|
+
* 1, the eigenvectors of a tridiagonal matrix are multiplied
|
125
|
+
by the square matrix Z. It is used if the
|
126
|
+
tridiagonal matrix is obtained by the similarity transformation
|
127
|
+
of a symmetric matrix.
|
128
|
+
* 2, the eigenvectors of a tridiagonal matrix replace
|
129
|
+
matrix Z.
|
130
|
+
I1, I2 - index interval for searching (from I1 to I2).
|
131
|
+
0 <= I1 <= I2 <= N-1.
|
132
|
+
Z - if ZNeeded is equal to:
|
133
|
+
* 0, Z isn't used and remains unchanged;
|
134
|
+
* 1, Z contains the square matrix (array whose indexes range within [0..N-1, 0..N-1])
|
135
|
+
which reduces the given symmetric matrix to tridiagonal form;
|
136
|
+
* 2, Z isn't used (but changed on the exit).
|
137
|
+
|
138
|
+
Output parameters:
|
139
|
+
D - array of the eigenvalues found.
|
140
|
+
Array whose index ranges within [0..I2-I1].
|
141
|
+
Z - if ZNeeded is equal to:
|
142
|
+
* 0, doesn't contain any information;
|
143
|
+
* 1, contains the product of a given NxN matrix Z (from the left) and
|
144
|
+
Nx(I2-I1) matrix of the eigenvectors found (from the right).
|
145
|
+
Array whose indexes range within [0..N-1, 0..I2-I1].
|
146
|
+
* 2, contains the matrix of the eigenvalues found.
|
147
|
+
Array whose indexes range within [0..N-1, 0..I2-I1].
|
148
|
+
|
149
|
+
|
150
|
+
Result:
|
151
|
+
|
152
|
+
True, if successful. In that case, D contains the eigenvalues,
|
153
|
+
Z contains the eigenvectors (if needed).
|
154
|
+
It should be noted that the subroutine changes the size of arrays D and Z.
|
155
|
+
|
156
|
+
False, if the bisection method subroutine wasn't able to find the eigenvalues
|
157
|
+
in the given interval or if the inverse iteration subroutine wasn't able
|
158
|
+
to find all the corresponding eigenvectors. In that case, the eigenvalues
|
159
|
+
and eigenvectors are not returned.
|
160
|
+
|
161
|
+
-- ALGLIB --
|
162
|
+
Copyright 25.12.2005 by Bochkanov Sergey
|
163
|
+
*************************************************************************/
|
164
|
+
bool smatrixtdevdi(ap::real_1d_array& d,
|
165
|
+
const ap::real_1d_array& e,
|
166
|
+
int n,
|
167
|
+
int zneeded,
|
168
|
+
int i1,
|
169
|
+
int i2,
|
170
|
+
ap::real_2d_array& z);
|
171
|
+
|
172
|
+
|
173
|
+
/*************************************************************************
|
174
|
+
Obsolete 1-based subroutine
|
175
|
+
*************************************************************************/
|
176
|
+
bool tridiagonaleigenvaluesandvectorsininterval(ap::real_1d_array& d,
|
177
|
+
const ap::real_1d_array& e,
|
178
|
+
int n,
|
179
|
+
int zneeded,
|
180
|
+
double a,
|
181
|
+
double b,
|
182
|
+
int& m,
|
183
|
+
ap::real_2d_array& z);
|
184
|
+
|
185
|
+
|
186
|
+
/*************************************************************************
|
187
|
+
Obsolete 1-based subroutine
|
188
|
+
*************************************************************************/
|
189
|
+
bool tridiagonaleigenvaluesandvectorsbyindexes(ap::real_1d_array& d,
|
190
|
+
const ap::real_1d_array& e,
|
191
|
+
int n,
|
192
|
+
int zneeded,
|
193
|
+
int i1,
|
194
|
+
int i2,
|
195
|
+
ap::real_2d_array& z);
|
196
|
+
|
197
|
+
|
198
|
+
bool internalbisectioneigenvalues(ap::real_1d_array d,
|
199
|
+
ap::real_1d_array e,
|
200
|
+
int n,
|
201
|
+
int irange,
|
202
|
+
int iorder,
|
203
|
+
double vl,
|
204
|
+
double vu,
|
205
|
+
int il,
|
206
|
+
int iu,
|
207
|
+
double abstol,
|
208
|
+
ap::real_1d_array& w,
|
209
|
+
int& m,
|
210
|
+
int& nsplit,
|
211
|
+
ap::integer_1d_array& iblock,
|
212
|
+
ap::integer_1d_array& isplit,
|
213
|
+
int& errorcode);
|
214
|
+
|
215
|
+
|
216
|
+
void internaldstein(const int& n,
|
217
|
+
const ap::real_1d_array& d,
|
218
|
+
ap::real_1d_array e,
|
219
|
+
const int& m,
|
220
|
+
ap::real_1d_array w,
|
221
|
+
const ap::integer_1d_array& iblock,
|
222
|
+
const ap::integer_1d_array& isplit,
|
223
|
+
ap::real_2d_array& z,
|
224
|
+
ap::integer_1d_array& ifail,
|
225
|
+
int& info);
|
226
|
+
|
227
|
+
|
228
|
+
#endif
|
@@ -0,0 +1,1229 @@
|
|
1
|
+
/*************************************************************************
|
2
|
+
Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
|
3
|
+
|
4
|
+
Contributors:
|
5
|
+
* Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
|
6
|
+
pseudocode.
|
7
|
+
|
8
|
+
See subroutines comments for additional copyrights.
|
9
|
+
|
10
|
+
Redistribution and use in source and binary forms, with or without
|
11
|
+
modification, are permitted provided that the following conditions are
|
12
|
+
met:
|
13
|
+
|
14
|
+
- Redistributions of source code must retain the above copyright
|
15
|
+
notice, this list of conditions and the following disclaimer.
|
16
|
+
|
17
|
+
- Redistributions in binary form must reproduce the above copyright
|
18
|
+
notice, this list of conditions and the following disclaimer listed
|
19
|
+
in this license in the documentation and/or other materials
|
20
|
+
provided with the distribution.
|
21
|
+
|
22
|
+
- Neither the name of the copyright holders nor the names of its
|
23
|
+
contributors may be used to endorse or promote products derived from
|
24
|
+
this software without specific prior written permission.
|
25
|
+
|
26
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
27
|
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
28
|
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
29
|
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
30
|
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
31
|
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
32
|
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
33
|
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
34
|
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
35
|
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
36
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
37
|
+
*************************************************************************/
|
38
|
+
|
39
|
+
#include <stdafx.h>
|
40
|
+
#include "tdevd.h"
|
41
|
+
|
42
|
+
static void tdevde2(const double& a,
|
43
|
+
const double& b,
|
44
|
+
const double& c,
|
45
|
+
double& rt1,
|
46
|
+
double& rt2);
|
47
|
+
static void tdevdev2(const double& a,
|
48
|
+
const double& b,
|
49
|
+
const double& c,
|
50
|
+
double& rt1,
|
51
|
+
double& rt2,
|
52
|
+
double& cs1,
|
53
|
+
double& sn1);
|
54
|
+
static double tdevdpythag(double a, double b);
|
55
|
+
static double tdevdextsign(double a, double b);
|
56
|
+
|
57
|
+
/*************************************************************************
|
58
|
+
Finding the eigenvalues and eigenvectors of a tridiagonal symmetric matrix
|
59
|
+
|
60
|
+
The algorithm finds the eigen pairs of a tridiagonal symmetric matrix by
|
61
|
+
using an QL/QR algorithm with implicit shifts.
|
62
|
+
|
63
|
+
Input parameters:
|
64
|
+
D - the main diagonal of a tridiagonal matrix.
|
65
|
+
Array whose index ranges within [0..N-1].
|
66
|
+
E - the secondary diagonal of a tridiagonal matrix.
|
67
|
+
Array whose index ranges within [0..N-2].
|
68
|
+
N - size of matrix A.
|
69
|
+
ZNeeded - flag controlling whether the eigenvectors are needed or not.
|
70
|
+
If ZNeeded is equal to:
|
71
|
+
* 0, the eigenvectors are not needed;
|
72
|
+
* 1, the eigenvectors of a tridiagonal matrix
|
73
|
+
are multiplied by the square matrix Z. It is used if the
|
74
|
+
tridiagonal matrix is obtained by the similarity
|
75
|
+
transformation of a symmetric matrix;
|
76
|
+
* 2, the eigenvectors of a tridiagonal matrix replace the
|
77
|
+
square matrix Z;
|
78
|
+
* 3, matrix Z contains the first row of the eigenvectors
|
79
|
+
matrix.
|
80
|
+
Z - if ZNeeded=1, Z contains the square matrix by which the
|
81
|
+
eigenvectors are multiplied.
|
82
|
+
Array whose indexes range within [0..N-1, 0..N-1].
|
83
|
+
|
84
|
+
Output parameters:
|
85
|
+
D - eigenvalues in ascending order.
|
86
|
+
Array whose index ranges within [0..N-1].
|
87
|
+
Z - if ZNeeded is equal to:
|
88
|
+
* 0, Z hasn�t changed;
|
89
|
+
* 1, Z contains the product of a given matrix (from the left)
|
90
|
+
and the eigenvectors matrix (from the right);
|
91
|
+
* 2, Z contains the eigenvectors.
|
92
|
+
* 3, Z contains the first row of the eigenvectors matrix.
|
93
|
+
If ZNeeded<3, Z is the array whose indexes range within [0..N-1, 0..N-1].
|
94
|
+
In that case, the eigenvectors are stored in the matrix columns.
|
95
|
+
If ZNeeded=3, Z is the array whose indexes range within [0..0, 0..N-1].
|
96
|
+
|
97
|
+
Result:
|
98
|
+
True, if the algorithm has converged.
|
99
|
+
False, if the algorithm hasn't converged.
|
100
|
+
|
101
|
+
-- LAPACK routine (version 3.0) --
|
102
|
+
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
103
|
+
Courant Institute, Argonne National Lab, and Rice University
|
104
|
+
September 30, 1994
|
105
|
+
*************************************************************************/
|
106
|
+
bool smatrixtdevd(ap::real_1d_array& d,
|
107
|
+
ap::real_1d_array e,
|
108
|
+
int n,
|
109
|
+
int zneeded,
|
110
|
+
ap::real_2d_array& z)
|
111
|
+
{
|
112
|
+
bool result;
|
113
|
+
ap::real_1d_array d1;
|
114
|
+
ap::real_1d_array e1;
|
115
|
+
ap::real_2d_array z1;
|
116
|
+
int i;
|
117
|
+
|
118
|
+
|
119
|
+
//
|
120
|
+
// Prepare 1-based task
|
121
|
+
//
|
122
|
+
d1.setbounds(1, n);
|
123
|
+
e1.setbounds(1, n);
|
124
|
+
ap::vmove(&d1(1), &d(0), ap::vlen(1,n));
|
125
|
+
if( n>1 )
|
126
|
+
{
|
127
|
+
ap::vmove(&e1(1), &e(0), ap::vlen(1,n-1));
|
128
|
+
}
|
129
|
+
if( zneeded==1 )
|
130
|
+
{
|
131
|
+
z1.setbounds(1, n, 1, n);
|
132
|
+
for(i = 1; i <= n; i++)
|
133
|
+
{
|
134
|
+
ap::vmove(&z1(i, 1), &z(i-1, 0), ap::vlen(1,n));
|
135
|
+
}
|
136
|
+
}
|
137
|
+
|
138
|
+
//
|
139
|
+
// Solve 1-based task
|
140
|
+
//
|
141
|
+
result = tridiagonalevd(d1, e1, n, zneeded, z1);
|
142
|
+
if( !result )
|
143
|
+
{
|
144
|
+
return result;
|
145
|
+
}
|
146
|
+
|
147
|
+
//
|
148
|
+
// Convert back to 0-based result
|
149
|
+
//
|
150
|
+
ap::vmove(&d(0), &d1(1), ap::vlen(0,n-1));
|
151
|
+
if( zneeded!=0 )
|
152
|
+
{
|
153
|
+
if( zneeded==1 )
|
154
|
+
{
|
155
|
+
for(i = 1; i <= n; i++)
|
156
|
+
{
|
157
|
+
ap::vmove(&z(i-1, 0), &z1(i, 1), ap::vlen(0,n-1));
|
158
|
+
}
|
159
|
+
return result;
|
160
|
+
}
|
161
|
+
if( zneeded==2 )
|
162
|
+
{
|
163
|
+
z.setbounds(0, n-1, 0, n-1);
|
164
|
+
for(i = 1; i <= n; i++)
|
165
|
+
{
|
166
|
+
ap::vmove(&z(i-1, 0), &z1(i, 1), ap::vlen(0,n-1));
|
167
|
+
}
|
168
|
+
return result;
|
169
|
+
}
|
170
|
+
if( zneeded==3 )
|
171
|
+
{
|
172
|
+
z.setbounds(0, 0, 0, n-1);
|
173
|
+
ap::vmove(&z(0, 0), &z1(1, 1), ap::vlen(0,n-1));
|
174
|
+
return result;
|
175
|
+
}
|
176
|
+
ap::ap_error::make_assertion(false, "SMatrixTDEVD: Incorrect ZNeeded!");
|
177
|
+
}
|
178
|
+
return result;
|
179
|
+
}
|
180
|
+
|
181
|
+
|
182
|
+
/*************************************************************************
|
183
|
+
Obsolete 1-based subroutine.
|
184
|
+
*************************************************************************/
|
185
|
+
bool tridiagonalevd(ap::real_1d_array& d,
|
186
|
+
ap::real_1d_array e,
|
187
|
+
int n,
|
188
|
+
int zneeded,
|
189
|
+
ap::real_2d_array& z)
|
190
|
+
{
|
191
|
+
bool result;
|
192
|
+
int maxit;
|
193
|
+
int i;
|
194
|
+
int icompz;
|
195
|
+
int ii;
|
196
|
+
int iscale;
|
197
|
+
int j;
|
198
|
+
int jtot;
|
199
|
+
int k;
|
200
|
+
int t;
|
201
|
+
int l;
|
202
|
+
int l1;
|
203
|
+
int lend;
|
204
|
+
int lendm1;
|
205
|
+
int lendp1;
|
206
|
+
int lendsv;
|
207
|
+
int lm1;
|
208
|
+
int lsv;
|
209
|
+
int m;
|
210
|
+
int mm;
|
211
|
+
int mm1;
|
212
|
+
int nm1;
|
213
|
+
int nmaxit;
|
214
|
+
int tmpint;
|
215
|
+
double anorm;
|
216
|
+
double b;
|
217
|
+
double c;
|
218
|
+
double eps;
|
219
|
+
double eps2;
|
220
|
+
double f;
|
221
|
+
double g;
|
222
|
+
double p;
|
223
|
+
double r;
|
224
|
+
double rt1;
|
225
|
+
double rt2;
|
226
|
+
double s;
|
227
|
+
double safmax;
|
228
|
+
double safmin;
|
229
|
+
double ssfmax;
|
230
|
+
double ssfmin;
|
231
|
+
double tst;
|
232
|
+
double tmp;
|
233
|
+
ap::real_1d_array work1;
|
234
|
+
ap::real_1d_array work2;
|
235
|
+
ap::real_1d_array workc;
|
236
|
+
ap::real_1d_array works;
|
237
|
+
ap::real_1d_array wtemp;
|
238
|
+
bool gotoflag;
|
239
|
+
int zrows;
|
240
|
+
bool wastranspose;
|
241
|
+
|
242
|
+
ap::ap_error::make_assertion(zneeded>=0&&zneeded<=3, "TridiagonalEVD: Incorrent ZNeeded");
|
243
|
+
|
244
|
+
//
|
245
|
+
// Quick return if possible
|
246
|
+
//
|
247
|
+
if( zneeded<0||zneeded>3 )
|
248
|
+
{
|
249
|
+
result = false;
|
250
|
+
return result;
|
251
|
+
}
|
252
|
+
result = true;
|
253
|
+
if( n==0 )
|
254
|
+
{
|
255
|
+
return result;
|
256
|
+
}
|
257
|
+
if( n==1 )
|
258
|
+
{
|
259
|
+
if( zneeded==2||zneeded==3 )
|
260
|
+
{
|
261
|
+
z.setbounds(1, 1, 1, 1);
|
262
|
+
z(1,1) = 1;
|
263
|
+
}
|
264
|
+
return result;
|
265
|
+
}
|
266
|
+
maxit = 30;
|
267
|
+
|
268
|
+
//
|
269
|
+
// Initialize arrays
|
270
|
+
//
|
271
|
+
wtemp.setbounds(1, n);
|
272
|
+
work1.setbounds(1, n-1);
|
273
|
+
work2.setbounds(1, n-1);
|
274
|
+
workc.setbounds(1, n);
|
275
|
+
works.setbounds(1, n);
|
276
|
+
|
277
|
+
//
|
278
|
+
// Determine the unit roundoff and over/underflow thresholds.
|
279
|
+
//
|
280
|
+
eps = ap::machineepsilon;
|
281
|
+
eps2 = ap::sqr(eps);
|
282
|
+
safmin = ap::minrealnumber;
|
283
|
+
safmax = ap::maxrealnumber;
|
284
|
+
ssfmax = sqrt(safmax)/3;
|
285
|
+
ssfmin = sqrt(safmin)/eps2;
|
286
|
+
|
287
|
+
//
|
288
|
+
// Prepare Z
|
289
|
+
//
|
290
|
+
// Here we are using transposition to get rid of column operations
|
291
|
+
//
|
292
|
+
//
|
293
|
+
wastranspose = false;
|
294
|
+
if( zneeded==0 )
|
295
|
+
{
|
296
|
+
zrows = 0;
|
297
|
+
}
|
298
|
+
if( zneeded==1 )
|
299
|
+
{
|
300
|
+
zrows = n;
|
301
|
+
}
|
302
|
+
if( zneeded==2 )
|
303
|
+
{
|
304
|
+
zrows = n;
|
305
|
+
}
|
306
|
+
if( zneeded==3 )
|
307
|
+
{
|
308
|
+
zrows = 1;
|
309
|
+
}
|
310
|
+
if( zneeded==1 )
|
311
|
+
{
|
312
|
+
wastranspose = true;
|
313
|
+
inplacetranspose(z, 1, n, 1, n, wtemp);
|
314
|
+
}
|
315
|
+
if( zneeded==2 )
|
316
|
+
{
|
317
|
+
wastranspose = true;
|
318
|
+
z.setbounds(1, n, 1, n);
|
319
|
+
for(i = 1; i <= n; i++)
|
320
|
+
{
|
321
|
+
for(j = 1; j <= n; j++)
|
322
|
+
{
|
323
|
+
if( i==j )
|
324
|
+
{
|
325
|
+
z(i,j) = 1;
|
326
|
+
}
|
327
|
+
else
|
328
|
+
{
|
329
|
+
z(i,j) = 0;
|
330
|
+
}
|
331
|
+
}
|
332
|
+
}
|
333
|
+
}
|
334
|
+
if( zneeded==3 )
|
335
|
+
{
|
336
|
+
wastranspose = false;
|
337
|
+
z.setbounds(1, 1, 1, n);
|
338
|
+
for(j = 1; j <= n; j++)
|
339
|
+
{
|
340
|
+
if( j==1 )
|
341
|
+
{
|
342
|
+
z(1,j) = 1;
|
343
|
+
}
|
344
|
+
else
|
345
|
+
{
|
346
|
+
z(1,j) = 0;
|
347
|
+
}
|
348
|
+
}
|
349
|
+
}
|
350
|
+
nmaxit = n*maxit;
|
351
|
+
jtot = 0;
|
352
|
+
|
353
|
+
//
|
354
|
+
// Determine where the matrix splits and choose QL or QR iteration
|
355
|
+
// for each block, according to whether top or bottom diagonal
|
356
|
+
// element is smaller.
|
357
|
+
//
|
358
|
+
l1 = 1;
|
359
|
+
nm1 = n-1;
|
360
|
+
while(true)
|
361
|
+
{
|
362
|
+
if( l1>n )
|
363
|
+
{
|
364
|
+
break;
|
365
|
+
}
|
366
|
+
if( l1>1 )
|
367
|
+
{
|
368
|
+
e(l1-1) = 0;
|
369
|
+
}
|
370
|
+
gotoflag = false;
|
371
|
+
if( l1<=nm1 )
|
372
|
+
{
|
373
|
+
for(m = l1; m <= nm1; m++)
|
374
|
+
{
|
375
|
+
tst = fabs(e(m));
|
376
|
+
if( tst==0 )
|
377
|
+
{
|
378
|
+
gotoflag = true;
|
379
|
+
break;
|
380
|
+
}
|
381
|
+
if( tst<=sqrt(fabs(d(m)))*sqrt(fabs(d(m+1)))*eps )
|
382
|
+
{
|
383
|
+
e(m) = 0;
|
384
|
+
gotoflag = true;
|
385
|
+
break;
|
386
|
+
}
|
387
|
+
}
|
388
|
+
}
|
389
|
+
if( !gotoflag )
|
390
|
+
{
|
391
|
+
m = n;
|
392
|
+
}
|
393
|
+
|
394
|
+
//
|
395
|
+
// label 30:
|
396
|
+
//
|
397
|
+
l = l1;
|
398
|
+
lsv = l;
|
399
|
+
lend = m;
|
400
|
+
lendsv = lend;
|
401
|
+
l1 = m+1;
|
402
|
+
if( lend==l )
|
403
|
+
{
|
404
|
+
continue;
|
405
|
+
}
|
406
|
+
|
407
|
+
//
|
408
|
+
// Scale submatrix in rows and columns L to LEND
|
409
|
+
//
|
410
|
+
if( l==lend )
|
411
|
+
{
|
412
|
+
anorm = fabs(d(l));
|
413
|
+
}
|
414
|
+
else
|
415
|
+
{
|
416
|
+
anorm = ap::maxreal(fabs(d(l))+fabs(e(l)), fabs(e(lend-1))+fabs(d(lend)));
|
417
|
+
for(i = l+1; i <= lend-1; i++)
|
418
|
+
{
|
419
|
+
anorm = ap::maxreal(anorm, fabs(d(i))+fabs(e(i))+fabs(e(i-1)));
|
420
|
+
}
|
421
|
+
}
|
422
|
+
iscale = 0;
|
423
|
+
if( anorm==0 )
|
424
|
+
{
|
425
|
+
continue;
|
426
|
+
}
|
427
|
+
if( anorm>ssfmax )
|
428
|
+
{
|
429
|
+
iscale = 1;
|
430
|
+
tmp = ssfmax/anorm;
|
431
|
+
tmpint = lend-1;
|
432
|
+
ap::vmul(&d(l), ap::vlen(l,lend), tmp);
|
433
|
+
ap::vmul(&e(l), ap::vlen(l,tmpint), tmp);
|
434
|
+
}
|
435
|
+
if( anorm<ssfmin )
|
436
|
+
{
|
437
|
+
iscale = 2;
|
438
|
+
tmp = ssfmin/anorm;
|
439
|
+
tmpint = lend-1;
|
440
|
+
ap::vmul(&d(l), ap::vlen(l,lend), tmp);
|
441
|
+
ap::vmul(&e(l), ap::vlen(l,tmpint), tmp);
|
442
|
+
}
|
443
|
+
|
444
|
+
//
|
445
|
+
// Choose between QL and QR iteration
|
446
|
+
//
|
447
|
+
if( fabs(d(lend))<fabs(d(l)) )
|
448
|
+
{
|
449
|
+
lend = lsv;
|
450
|
+
l = lendsv;
|
451
|
+
}
|
452
|
+
if( lend>l )
|
453
|
+
{
|
454
|
+
|
455
|
+
//
|
456
|
+
// QL Iteration
|
457
|
+
//
|
458
|
+
// Look for small subdiagonal element.
|
459
|
+
//
|
460
|
+
while(true)
|
461
|
+
{
|
462
|
+
gotoflag = false;
|
463
|
+
if( l!=lend )
|
464
|
+
{
|
465
|
+
lendm1 = lend-1;
|
466
|
+
for(m = l; m <= lendm1; m++)
|
467
|
+
{
|
468
|
+
tst = ap::sqr(fabs(e(m)));
|
469
|
+
if( tst<=eps2*fabs(d(m))*fabs(d(m+1))+safmin )
|
470
|
+
{
|
471
|
+
gotoflag = true;
|
472
|
+
break;
|
473
|
+
}
|
474
|
+
}
|
475
|
+
}
|
476
|
+
if( !gotoflag )
|
477
|
+
{
|
478
|
+
m = lend;
|
479
|
+
}
|
480
|
+
if( m<lend )
|
481
|
+
{
|
482
|
+
e(m) = 0;
|
483
|
+
}
|
484
|
+
p = d(l);
|
485
|
+
if( m!=l )
|
486
|
+
{
|
487
|
+
|
488
|
+
//
|
489
|
+
// If remaining matrix is 2-by-2, use DLAE2 or SLAEV2
|
490
|
+
// to compute its eigensystem.
|
491
|
+
//
|
492
|
+
if( m==l+1 )
|
493
|
+
{
|
494
|
+
if( zneeded>0 )
|
495
|
+
{
|
496
|
+
tdevdev2(d(l), e(l), d(l+1), rt1, rt2, c, s);
|
497
|
+
work1(l) = c;
|
498
|
+
work2(l) = s;
|
499
|
+
workc(1) = work1(l);
|
500
|
+
works(1) = work2(l);
|
501
|
+
if( !wastranspose )
|
502
|
+
{
|
503
|
+
applyrotationsfromtheright(false, 1, zrows, l, l+1, workc, works, z, wtemp);
|
504
|
+
}
|
505
|
+
else
|
506
|
+
{
|
507
|
+
applyrotationsfromtheleft(false, l, l+1, 1, zrows, workc, works, z, wtemp);
|
508
|
+
}
|
509
|
+
}
|
510
|
+
else
|
511
|
+
{
|
512
|
+
tdevde2(d(l), e(l), d(l+1), rt1, rt2);
|
513
|
+
}
|
514
|
+
d(l) = rt1;
|
515
|
+
d(l+1) = rt2;
|
516
|
+
e(l) = 0;
|
517
|
+
l = l+2;
|
518
|
+
if( l<=lend )
|
519
|
+
{
|
520
|
+
continue;
|
521
|
+
}
|
522
|
+
|
523
|
+
//
|
524
|
+
// GOTO 140
|
525
|
+
//
|
526
|
+
break;
|
527
|
+
}
|
528
|
+
if( jtot==nmaxit )
|
529
|
+
{
|
530
|
+
|
531
|
+
//
|
532
|
+
// GOTO 140
|
533
|
+
//
|
534
|
+
break;
|
535
|
+
}
|
536
|
+
jtot = jtot+1;
|
537
|
+
|
538
|
+
//
|
539
|
+
// Form shift.
|
540
|
+
//
|
541
|
+
g = (d(l+1)-p)/(2*e(l));
|
542
|
+
r = tdevdpythag(g, double(1));
|
543
|
+
g = d(m)-p+e(l)/(g+tdevdextsign(r, g));
|
544
|
+
s = 1;
|
545
|
+
c = 1;
|
546
|
+
p = 0;
|
547
|
+
|
548
|
+
//
|
549
|
+
// Inner loop
|
550
|
+
//
|
551
|
+
mm1 = m-1;
|
552
|
+
for(i = mm1; i >= l; i--)
|
553
|
+
{
|
554
|
+
f = s*e(i);
|
555
|
+
b = c*e(i);
|
556
|
+
generaterotation(g, f, c, s, r);
|
557
|
+
if( i!=m-1 )
|
558
|
+
{
|
559
|
+
e(i+1) = r;
|
560
|
+
}
|
561
|
+
g = d(i+1)-p;
|
562
|
+
r = (d(i)-g)*s+2*c*b;
|
563
|
+
p = s*r;
|
564
|
+
d(i+1) = g+p;
|
565
|
+
g = c*r-b;
|
566
|
+
|
567
|
+
//
|
568
|
+
// If eigenvectors are desired, then save rotations.
|
569
|
+
//
|
570
|
+
if( zneeded>0 )
|
571
|
+
{
|
572
|
+
work1(i) = c;
|
573
|
+
work2(i) = -s;
|
574
|
+
}
|
575
|
+
}
|
576
|
+
|
577
|
+
//
|
578
|
+
// If eigenvectors are desired, then apply saved rotations.
|
579
|
+
//
|
580
|
+
if( zneeded>0 )
|
581
|
+
{
|
582
|
+
for(i = l; i <= m-1; i++)
|
583
|
+
{
|
584
|
+
workc(i-l+1) = work1(i);
|
585
|
+
works(i-l+1) = work2(i);
|
586
|
+
}
|
587
|
+
if( !wastranspose )
|
588
|
+
{
|
589
|
+
applyrotationsfromtheright(false, 1, zrows, l, m, workc, works, z, wtemp);
|
590
|
+
}
|
591
|
+
else
|
592
|
+
{
|
593
|
+
applyrotationsfromtheleft(false, l, m, 1, zrows, workc, works, z, wtemp);
|
594
|
+
}
|
595
|
+
}
|
596
|
+
d(l) = d(l)-p;
|
597
|
+
e(l) = g;
|
598
|
+
continue;
|
599
|
+
}
|
600
|
+
|
601
|
+
//
|
602
|
+
// Eigenvalue found.
|
603
|
+
//
|
604
|
+
d(l) = p;
|
605
|
+
l = l+1;
|
606
|
+
if( l<=lend )
|
607
|
+
{
|
608
|
+
continue;
|
609
|
+
}
|
610
|
+
break;
|
611
|
+
}
|
612
|
+
}
|
613
|
+
else
|
614
|
+
{
|
615
|
+
|
616
|
+
//
|
617
|
+
// QR Iteration
|
618
|
+
//
|
619
|
+
// Look for small superdiagonal element.
|
620
|
+
//
|
621
|
+
while(true)
|
622
|
+
{
|
623
|
+
gotoflag = false;
|
624
|
+
if( l!=lend )
|
625
|
+
{
|
626
|
+
lendp1 = lend+1;
|
627
|
+
for(m = l; m >= lendp1; m--)
|
628
|
+
{
|
629
|
+
tst = ap::sqr(fabs(e(m-1)));
|
630
|
+
if( tst<=eps2*fabs(d(m))*fabs(d(m-1))+safmin )
|
631
|
+
{
|
632
|
+
gotoflag = true;
|
633
|
+
break;
|
634
|
+
}
|
635
|
+
}
|
636
|
+
}
|
637
|
+
if( !gotoflag )
|
638
|
+
{
|
639
|
+
m = lend;
|
640
|
+
}
|
641
|
+
if( m>lend )
|
642
|
+
{
|
643
|
+
e(m-1) = 0;
|
644
|
+
}
|
645
|
+
p = d(l);
|
646
|
+
if( m!=l )
|
647
|
+
{
|
648
|
+
|
649
|
+
//
|
650
|
+
// If remaining matrix is 2-by-2, use DLAE2 or SLAEV2
|
651
|
+
// to compute its eigensystem.
|
652
|
+
//
|
653
|
+
if( m==l-1 )
|
654
|
+
{
|
655
|
+
if( zneeded>0 )
|
656
|
+
{
|
657
|
+
tdevdev2(d(l-1), e(l-1), d(l), rt1, rt2, c, s);
|
658
|
+
work1(m) = c;
|
659
|
+
work2(m) = s;
|
660
|
+
workc(1) = c;
|
661
|
+
works(1) = s;
|
662
|
+
if( !wastranspose )
|
663
|
+
{
|
664
|
+
applyrotationsfromtheright(true, 1, zrows, l-1, l, workc, works, z, wtemp);
|
665
|
+
}
|
666
|
+
else
|
667
|
+
{
|
668
|
+
applyrotationsfromtheleft(true, l-1, l, 1, zrows, workc, works, z, wtemp);
|
669
|
+
}
|
670
|
+
}
|
671
|
+
else
|
672
|
+
{
|
673
|
+
tdevde2(d(l-1), e(l-1), d(l), rt1, rt2);
|
674
|
+
}
|
675
|
+
d(l-1) = rt1;
|
676
|
+
d(l) = rt2;
|
677
|
+
e(l-1) = 0;
|
678
|
+
l = l-2;
|
679
|
+
if( l>=lend )
|
680
|
+
{
|
681
|
+
continue;
|
682
|
+
}
|
683
|
+
break;
|
684
|
+
}
|
685
|
+
if( jtot==nmaxit )
|
686
|
+
{
|
687
|
+
break;
|
688
|
+
}
|
689
|
+
jtot = jtot+1;
|
690
|
+
|
691
|
+
//
|
692
|
+
// Form shift.
|
693
|
+
//
|
694
|
+
g = (d(l-1)-p)/(2*e(l-1));
|
695
|
+
r = tdevdpythag(g, double(1));
|
696
|
+
g = d(m)-p+e(l-1)/(g+tdevdextsign(r, g));
|
697
|
+
s = 1;
|
698
|
+
c = 1;
|
699
|
+
p = 0;
|
700
|
+
|
701
|
+
//
|
702
|
+
// Inner loop
|
703
|
+
//
|
704
|
+
lm1 = l-1;
|
705
|
+
for(i = m; i <= lm1; i++)
|
706
|
+
{
|
707
|
+
f = s*e(i);
|
708
|
+
b = c*e(i);
|
709
|
+
generaterotation(g, f, c, s, r);
|
710
|
+
if( i!=m )
|
711
|
+
{
|
712
|
+
e(i-1) = r;
|
713
|
+
}
|
714
|
+
g = d(i)-p;
|
715
|
+
r = (d(i+1)-g)*s+2*c*b;
|
716
|
+
p = s*r;
|
717
|
+
d(i) = g+p;
|
718
|
+
g = c*r-b;
|
719
|
+
|
720
|
+
//
|
721
|
+
// If eigenvectors are desired, then save rotations.
|
722
|
+
//
|
723
|
+
if( zneeded>0 )
|
724
|
+
{
|
725
|
+
work1(i) = c;
|
726
|
+
work2(i) = s;
|
727
|
+
}
|
728
|
+
}
|
729
|
+
|
730
|
+
//
|
731
|
+
// If eigenvectors are desired, then apply saved rotations.
|
732
|
+
//
|
733
|
+
if( zneeded>0 )
|
734
|
+
{
|
735
|
+
mm = l-m+1;
|
736
|
+
for(i = m; i <= l-1; i++)
|
737
|
+
{
|
738
|
+
workc(i-m+1) = work1(i);
|
739
|
+
works(i-m+1) = work2(i);
|
740
|
+
}
|
741
|
+
if( !wastranspose )
|
742
|
+
{
|
743
|
+
applyrotationsfromtheright(true, 1, zrows, m, l, workc, works, z, wtemp);
|
744
|
+
}
|
745
|
+
else
|
746
|
+
{
|
747
|
+
applyrotationsfromtheleft(true, m, l, 1, zrows, workc, works, z, wtemp);
|
748
|
+
}
|
749
|
+
}
|
750
|
+
d(l) = d(l)-p;
|
751
|
+
e(lm1) = g;
|
752
|
+
continue;
|
753
|
+
}
|
754
|
+
|
755
|
+
//
|
756
|
+
// Eigenvalue found.
|
757
|
+
//
|
758
|
+
d(l) = p;
|
759
|
+
l = l-1;
|
760
|
+
if( l>=lend )
|
761
|
+
{
|
762
|
+
continue;
|
763
|
+
}
|
764
|
+
break;
|
765
|
+
}
|
766
|
+
}
|
767
|
+
|
768
|
+
//
|
769
|
+
// Undo scaling if necessary
|
770
|
+
//
|
771
|
+
if( iscale==1 )
|
772
|
+
{
|
773
|
+
tmp = anorm/ssfmax;
|
774
|
+
tmpint = lendsv-1;
|
775
|
+
ap::vmul(&d(lsv), ap::vlen(lsv,lendsv), tmp);
|
776
|
+
ap::vmul(&e(lsv), ap::vlen(lsv,tmpint), tmp);
|
777
|
+
}
|
778
|
+
if( iscale==2 )
|
779
|
+
{
|
780
|
+
tmp = anorm/ssfmin;
|
781
|
+
tmpint = lendsv-1;
|
782
|
+
ap::vmul(&d(lsv), ap::vlen(lsv,lendsv), tmp);
|
783
|
+
ap::vmul(&e(lsv), ap::vlen(lsv,tmpint), tmp);
|
784
|
+
}
|
785
|
+
|
786
|
+
//
|
787
|
+
// Check for no convergence to an eigenvalue after a total
|
788
|
+
// of N*MAXIT iterations.
|
789
|
+
//
|
790
|
+
if( jtot>=nmaxit )
|
791
|
+
{
|
792
|
+
result = false;
|
793
|
+
if( wastranspose )
|
794
|
+
{
|
795
|
+
inplacetranspose(z, 1, n, 1, n, wtemp);
|
796
|
+
}
|
797
|
+
return result;
|
798
|
+
}
|
799
|
+
}
|
800
|
+
|
801
|
+
//
|
802
|
+
// Order eigenvalues and eigenvectors.
|
803
|
+
//
|
804
|
+
if( zneeded==0 )
|
805
|
+
{
|
806
|
+
|
807
|
+
//
|
808
|
+
// Sort
|
809
|
+
//
|
810
|
+
if( n==1 )
|
811
|
+
{
|
812
|
+
return result;
|
813
|
+
}
|
814
|
+
if( n==2 )
|
815
|
+
{
|
816
|
+
if( d(1)>d(2) )
|
817
|
+
{
|
818
|
+
tmp = d(1);
|
819
|
+
d(1) = d(2);
|
820
|
+
d(2) = tmp;
|
821
|
+
}
|
822
|
+
return result;
|
823
|
+
}
|
824
|
+
i = 2;
|
825
|
+
do
|
826
|
+
{
|
827
|
+
t = i;
|
828
|
+
while(t!=1)
|
829
|
+
{
|
830
|
+
k = t/2;
|
831
|
+
if( d(k)>=d(t) )
|
832
|
+
{
|
833
|
+
t = 1;
|
834
|
+
}
|
835
|
+
else
|
836
|
+
{
|
837
|
+
tmp = d(k);
|
838
|
+
d(k) = d(t);
|
839
|
+
d(t) = tmp;
|
840
|
+
t = k;
|
841
|
+
}
|
842
|
+
}
|
843
|
+
i = i+1;
|
844
|
+
}
|
845
|
+
while(i<=n);
|
846
|
+
i = n-1;
|
847
|
+
do
|
848
|
+
{
|
849
|
+
tmp = d(i+1);
|
850
|
+
d(i+1) = d(1);
|
851
|
+
d(+1) = tmp;
|
852
|
+
t = 1;
|
853
|
+
while(t!=0)
|
854
|
+
{
|
855
|
+
k = 2*t;
|
856
|
+
if( k>i )
|
857
|
+
{
|
858
|
+
t = 0;
|
859
|
+
}
|
860
|
+
else
|
861
|
+
{
|
862
|
+
if( k<i )
|
863
|
+
{
|
864
|
+
if( d(k+1)>d(k) )
|
865
|
+
{
|
866
|
+
k = k+1;
|
867
|
+
}
|
868
|
+
}
|
869
|
+
if( d(t)>=d(k) )
|
870
|
+
{
|
871
|
+
t = 0;
|
872
|
+
}
|
873
|
+
else
|
874
|
+
{
|
875
|
+
tmp = d(k);
|
876
|
+
d(k) = d(t);
|
877
|
+
d(t) = tmp;
|
878
|
+
t = k;
|
879
|
+
}
|
880
|
+
}
|
881
|
+
}
|
882
|
+
i = i-1;
|
883
|
+
}
|
884
|
+
while(i>=1);
|
885
|
+
}
|
886
|
+
else
|
887
|
+
{
|
888
|
+
|
889
|
+
//
|
890
|
+
// Use Selection Sort to minimize swaps of eigenvectors
|
891
|
+
//
|
892
|
+
for(ii = 2; ii <= n; ii++)
|
893
|
+
{
|
894
|
+
i = ii-1;
|
895
|
+
k = i;
|
896
|
+
p = d(i);
|
897
|
+
for(j = ii; j <= n; j++)
|
898
|
+
{
|
899
|
+
if( d(j)<p )
|
900
|
+
{
|
901
|
+
k = j;
|
902
|
+
p = d(j);
|
903
|
+
}
|
904
|
+
}
|
905
|
+
if( k!=i )
|
906
|
+
{
|
907
|
+
d(k) = d(i);
|
908
|
+
d(i) = p;
|
909
|
+
if( wastranspose )
|
910
|
+
{
|
911
|
+
ap::vmove(&wtemp(1), &z(i, 1), ap::vlen(1,n));
|
912
|
+
ap::vmove(&z(i, 1), &z(k, 1), ap::vlen(1,n));
|
913
|
+
ap::vmove(&z(k, 1), &wtemp(1), ap::vlen(1,n));
|
914
|
+
}
|
915
|
+
else
|
916
|
+
{
|
917
|
+
ap::vmove(wtemp.getvector(1, zrows), z.getcolumn(i, 1, zrows));
|
918
|
+
ap::vmove(z.getcolumn(i, 1, zrows), z.getcolumn(k, 1, zrows));
|
919
|
+
ap::vmove(z.getcolumn(k, 1, zrows), wtemp.getvector(1, zrows));
|
920
|
+
}
|
921
|
+
}
|
922
|
+
}
|
923
|
+
if( wastranspose )
|
924
|
+
{
|
925
|
+
inplacetranspose(z, 1, n, 1, n, wtemp);
|
926
|
+
}
|
927
|
+
}
|
928
|
+
return result;
|
929
|
+
}
|
930
|
+
|
931
|
+
|
932
|
+
/*************************************************************************
|
933
|
+
DLAE2 computes the eigenvalues of a 2-by-2 symmetric matrix
|
934
|
+
[ A B ]
|
935
|
+
[ B C ].
|
936
|
+
On return, RT1 is the eigenvalue of larger absolute value, and RT2
|
937
|
+
is the eigenvalue of smaller absolute value.
|
938
|
+
|
939
|
+
-- LAPACK auxiliary routine (version 3.0) --
|
940
|
+
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
941
|
+
Courant Institute, Argonne National Lab, and Rice University
|
942
|
+
October 31, 1992
|
943
|
+
*************************************************************************/
|
944
|
+
static void tdevde2(const double& a,
|
945
|
+
const double& b,
|
946
|
+
const double& c,
|
947
|
+
double& rt1,
|
948
|
+
double& rt2)
|
949
|
+
{
|
950
|
+
double ab;
|
951
|
+
double acmn;
|
952
|
+
double acmx;
|
953
|
+
double adf;
|
954
|
+
double df;
|
955
|
+
double rt;
|
956
|
+
double sm;
|
957
|
+
double tb;
|
958
|
+
|
959
|
+
sm = a+c;
|
960
|
+
df = a-c;
|
961
|
+
adf = fabs(df);
|
962
|
+
tb = b+b;
|
963
|
+
ab = fabs(tb);
|
964
|
+
if( fabs(a)>fabs(c) )
|
965
|
+
{
|
966
|
+
acmx = a;
|
967
|
+
acmn = c;
|
968
|
+
}
|
969
|
+
else
|
970
|
+
{
|
971
|
+
acmx = c;
|
972
|
+
acmn = a;
|
973
|
+
}
|
974
|
+
if( adf>ab )
|
975
|
+
{
|
976
|
+
rt = adf*sqrt(1+ap::sqr(ab/adf));
|
977
|
+
}
|
978
|
+
else
|
979
|
+
{
|
980
|
+
if( adf<ab )
|
981
|
+
{
|
982
|
+
rt = ab*sqrt(1+ap::sqr(adf/ab));
|
983
|
+
}
|
984
|
+
else
|
985
|
+
{
|
986
|
+
|
987
|
+
//
|
988
|
+
// Includes case AB=ADF=0
|
989
|
+
//
|
990
|
+
rt = ab*sqrt(double(2));
|
991
|
+
}
|
992
|
+
}
|
993
|
+
if( sm<0 )
|
994
|
+
{
|
995
|
+
rt1 = 0.5*(sm-rt);
|
996
|
+
|
997
|
+
//
|
998
|
+
// Order of execution important.
|
999
|
+
// To get fully accurate smaller eigenvalue,
|
1000
|
+
// next line needs to be executed in higher precision.
|
1001
|
+
//
|
1002
|
+
rt2 = acmx/rt1*acmn-b/rt1*b;
|
1003
|
+
}
|
1004
|
+
else
|
1005
|
+
{
|
1006
|
+
if( sm>0 )
|
1007
|
+
{
|
1008
|
+
rt1 = 0.5*(sm+rt);
|
1009
|
+
|
1010
|
+
//
|
1011
|
+
// Order of execution important.
|
1012
|
+
// To get fully accurate smaller eigenvalue,
|
1013
|
+
// next line needs to be executed in higher precision.
|
1014
|
+
//
|
1015
|
+
rt2 = acmx/rt1*acmn-b/rt1*b;
|
1016
|
+
}
|
1017
|
+
else
|
1018
|
+
{
|
1019
|
+
|
1020
|
+
//
|
1021
|
+
// Includes case RT1 = RT2 = 0
|
1022
|
+
//
|
1023
|
+
rt1 = 0.5*rt;
|
1024
|
+
rt2 = -0.5*rt;
|
1025
|
+
}
|
1026
|
+
}
|
1027
|
+
}
|
1028
|
+
|
1029
|
+
|
1030
|
+
/*************************************************************************
|
1031
|
+
DLAEV2 computes the eigendecomposition of a 2-by-2 symmetric matrix
|
1032
|
+
|
1033
|
+
[ A B ]
|
1034
|
+
[ B C ].
|
1035
|
+
|
1036
|
+
On return, RT1 is the eigenvalue of larger absolute value, RT2 is the
|
1037
|
+
eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right
|
1038
|
+
eigenvector for RT1, giving the decomposition
|
1039
|
+
|
1040
|
+
[ CS1 SN1 ] [ A B ] [ CS1 -SN1 ] = [ RT1 0 ]
|
1041
|
+
[-SN1 CS1 ] [ B C ] [ SN1 CS1 ] [ 0 RT2 ].
|
1042
|
+
|
1043
|
+
|
1044
|
+
-- LAPACK auxiliary routine (version 3.0) --
|
1045
|
+
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
1046
|
+
Courant Institute, Argonne National Lab, and Rice University
|
1047
|
+
October 31, 1992
|
1048
|
+
*************************************************************************/
|
1049
|
+
static void tdevdev2(const double& a,
|
1050
|
+
const double& b,
|
1051
|
+
const double& c,
|
1052
|
+
double& rt1,
|
1053
|
+
double& rt2,
|
1054
|
+
double& cs1,
|
1055
|
+
double& sn1)
|
1056
|
+
{
|
1057
|
+
int sgn1;
|
1058
|
+
int sgn2;
|
1059
|
+
double ab;
|
1060
|
+
double acmn;
|
1061
|
+
double acmx;
|
1062
|
+
double acs;
|
1063
|
+
double adf;
|
1064
|
+
double cs;
|
1065
|
+
double ct;
|
1066
|
+
double df;
|
1067
|
+
double rt;
|
1068
|
+
double sm;
|
1069
|
+
double tb;
|
1070
|
+
double tn;
|
1071
|
+
|
1072
|
+
|
1073
|
+
//
|
1074
|
+
// Compute the eigenvalues
|
1075
|
+
//
|
1076
|
+
sm = a+c;
|
1077
|
+
df = a-c;
|
1078
|
+
adf = fabs(df);
|
1079
|
+
tb = b+b;
|
1080
|
+
ab = fabs(tb);
|
1081
|
+
if( fabs(a)>fabs(c) )
|
1082
|
+
{
|
1083
|
+
acmx = a;
|
1084
|
+
acmn = c;
|
1085
|
+
}
|
1086
|
+
else
|
1087
|
+
{
|
1088
|
+
acmx = c;
|
1089
|
+
acmn = a;
|
1090
|
+
}
|
1091
|
+
if( adf>ab )
|
1092
|
+
{
|
1093
|
+
rt = adf*sqrt(1+ap::sqr(ab/adf));
|
1094
|
+
}
|
1095
|
+
else
|
1096
|
+
{
|
1097
|
+
if( adf<ab )
|
1098
|
+
{
|
1099
|
+
rt = ab*sqrt(1+ap::sqr(adf/ab));
|
1100
|
+
}
|
1101
|
+
else
|
1102
|
+
{
|
1103
|
+
|
1104
|
+
//
|
1105
|
+
// Includes case AB=ADF=0
|
1106
|
+
//
|
1107
|
+
rt = ab*sqrt(double(2));
|
1108
|
+
}
|
1109
|
+
}
|
1110
|
+
if( sm<0 )
|
1111
|
+
{
|
1112
|
+
rt1 = 0.5*(sm-rt);
|
1113
|
+
sgn1 = -1;
|
1114
|
+
|
1115
|
+
//
|
1116
|
+
// Order of execution important.
|
1117
|
+
// To get fully accurate smaller eigenvalue,
|
1118
|
+
// next line needs to be executed in higher precision.
|
1119
|
+
//
|
1120
|
+
rt2 = acmx/rt1*acmn-b/rt1*b;
|
1121
|
+
}
|
1122
|
+
else
|
1123
|
+
{
|
1124
|
+
if( sm>0 )
|
1125
|
+
{
|
1126
|
+
rt1 = 0.5*(sm+rt);
|
1127
|
+
sgn1 = 1;
|
1128
|
+
|
1129
|
+
//
|
1130
|
+
// Order of execution important.
|
1131
|
+
// To get fully accurate smaller eigenvalue,
|
1132
|
+
// next line needs to be executed in higher precision.
|
1133
|
+
//
|
1134
|
+
rt2 = acmx/rt1*acmn-b/rt1*b;
|
1135
|
+
}
|
1136
|
+
else
|
1137
|
+
{
|
1138
|
+
|
1139
|
+
//
|
1140
|
+
// Includes case RT1 = RT2 = 0
|
1141
|
+
//
|
1142
|
+
rt1 = 0.5*rt;
|
1143
|
+
rt2 = -0.5*rt;
|
1144
|
+
sgn1 = 1;
|
1145
|
+
}
|
1146
|
+
}
|
1147
|
+
|
1148
|
+
//
|
1149
|
+
// Compute the eigenvector
|
1150
|
+
//
|
1151
|
+
if( df>=0 )
|
1152
|
+
{
|
1153
|
+
cs = df+rt;
|
1154
|
+
sgn2 = 1;
|
1155
|
+
}
|
1156
|
+
else
|
1157
|
+
{
|
1158
|
+
cs = df-rt;
|
1159
|
+
sgn2 = -1;
|
1160
|
+
}
|
1161
|
+
acs = fabs(cs);
|
1162
|
+
if( acs>ab )
|
1163
|
+
{
|
1164
|
+
ct = -tb/cs;
|
1165
|
+
sn1 = 1/sqrt(1+ct*ct);
|
1166
|
+
cs1 = ct*sn1;
|
1167
|
+
}
|
1168
|
+
else
|
1169
|
+
{
|
1170
|
+
if( ab==0 )
|
1171
|
+
{
|
1172
|
+
cs1 = 1;
|
1173
|
+
sn1 = 0;
|
1174
|
+
}
|
1175
|
+
else
|
1176
|
+
{
|
1177
|
+
tn = -cs/tb;
|
1178
|
+
cs1 = 1/sqrt(1+tn*tn);
|
1179
|
+
sn1 = tn*cs1;
|
1180
|
+
}
|
1181
|
+
}
|
1182
|
+
if( sgn1==sgn2 )
|
1183
|
+
{
|
1184
|
+
tn = cs1;
|
1185
|
+
cs1 = -sn1;
|
1186
|
+
sn1 = tn;
|
1187
|
+
}
|
1188
|
+
}
|
1189
|
+
|
1190
|
+
|
1191
|
+
/*************************************************************************
|
1192
|
+
Internal routine
|
1193
|
+
*************************************************************************/
|
1194
|
+
static double tdevdpythag(double a, double b)
|
1195
|
+
{
|
1196
|
+
double result;
|
1197
|
+
|
1198
|
+
if( fabs(a)<fabs(b) )
|
1199
|
+
{
|
1200
|
+
result = fabs(b)*sqrt(1+ap::sqr(a/b));
|
1201
|
+
}
|
1202
|
+
else
|
1203
|
+
{
|
1204
|
+
result = fabs(a)*sqrt(1+ap::sqr(b/a));
|
1205
|
+
}
|
1206
|
+
return result;
|
1207
|
+
}
|
1208
|
+
|
1209
|
+
|
1210
|
+
/*************************************************************************
|
1211
|
+
Internal routine
|
1212
|
+
*************************************************************************/
|
1213
|
+
static double tdevdextsign(double a, double b)
|
1214
|
+
{
|
1215
|
+
double result;
|
1216
|
+
|
1217
|
+
if( b>=0 )
|
1218
|
+
{
|
1219
|
+
result = fabs(a);
|
1220
|
+
}
|
1221
|
+
else
|
1222
|
+
{
|
1223
|
+
result = -fabs(a);
|
1224
|
+
}
|
1225
|
+
return result;
|
1226
|
+
}
|
1227
|
+
|
1228
|
+
|
1229
|
+
|