alglib 0.1.1
Sign up to get free protection for your applications and to get access to all the features.
- data/History.txt +7 -0
- data/Manifest.txt +253 -0
- data/README.txt +33 -0
- data/Rakefile +27 -0
- data/ext/Rakefile +24 -0
- data/ext/alglib.i +24 -0
- data/ext/alglib/Makefile +157 -0
- data/ext/alglib/airyf.cpp +372 -0
- data/ext/alglib/airyf.h +81 -0
- data/ext/alglib/alglib.cpp +8558 -0
- data/ext/alglib/alglib_util.cpp +19 -0
- data/ext/alglib/alglib_util.h +14 -0
- data/ext/alglib/ap.cpp +877 -0
- data/ext/alglib/ap.english.html +364 -0
- data/ext/alglib/ap.h +666 -0
- data/ext/alglib/ap.russian.html +442 -0
- data/ext/alglib/apvt.h +754 -0
- data/ext/alglib/bdss.cpp +1500 -0
- data/ext/alglib/bdss.h +251 -0
- data/ext/alglib/bdsvd.cpp +1339 -0
- data/ext/alglib/bdsvd.h +164 -0
- data/ext/alglib/bessel.cpp +1226 -0
- data/ext/alglib/bessel.h +331 -0
- data/ext/alglib/betaf.cpp +105 -0
- data/ext/alglib/betaf.h +74 -0
- data/ext/alglib/bidiagonal.cpp +1328 -0
- data/ext/alglib/bidiagonal.h +350 -0
- data/ext/alglib/binomialdistr.cpp +247 -0
- data/ext/alglib/binomialdistr.h +153 -0
- data/ext/alglib/blas.cpp +576 -0
- data/ext/alglib/blas.h +132 -0
- data/ext/alglib/cblas.cpp +226 -0
- data/ext/alglib/cblas.h +57 -0
- data/ext/alglib/cdet.cpp +138 -0
- data/ext/alglib/cdet.h +92 -0
- data/ext/alglib/chebyshev.cpp +216 -0
- data/ext/alglib/chebyshev.h +76 -0
- data/ext/alglib/chisquaredistr.cpp +157 -0
- data/ext/alglib/chisquaredistr.h +144 -0
- data/ext/alglib/cholesky.cpp +285 -0
- data/ext/alglib/cholesky.h +86 -0
- data/ext/alglib/cinverse.cpp +298 -0
- data/ext/alglib/cinverse.h +111 -0
- data/ext/alglib/clu.cpp +337 -0
- data/ext/alglib/clu.h +120 -0
- data/ext/alglib/correlation.cpp +280 -0
- data/ext/alglib/correlation.h +77 -0
- data/ext/alglib/correlationtests.cpp +726 -0
- data/ext/alglib/correlationtests.h +134 -0
- data/ext/alglib/crcond.cpp +826 -0
- data/ext/alglib/crcond.h +148 -0
- data/ext/alglib/creflections.cpp +310 -0
- data/ext/alglib/creflections.h +165 -0
- data/ext/alglib/csolve.cpp +312 -0
- data/ext/alglib/csolve.h +99 -0
- data/ext/alglib/ctrinverse.cpp +387 -0
- data/ext/alglib/ctrinverse.h +98 -0
- data/ext/alglib/ctrlinsolve.cpp +297 -0
- data/ext/alglib/ctrlinsolve.h +81 -0
- data/ext/alglib/dawson.cpp +234 -0
- data/ext/alglib/dawson.h +74 -0
- data/ext/alglib/descriptivestatistics.cpp +436 -0
- data/ext/alglib/descriptivestatistics.h +112 -0
- data/ext/alglib/det.cpp +140 -0
- data/ext/alglib/det.h +94 -0
- data/ext/alglib/dforest.cpp +1819 -0
- data/ext/alglib/dforest.h +316 -0
- data/ext/alglib/elliptic.cpp +497 -0
- data/ext/alglib/elliptic.h +217 -0
- data/ext/alglib/estnorm.cpp +429 -0
- data/ext/alglib/estnorm.h +107 -0
- data/ext/alglib/expintegrals.cpp +422 -0
- data/ext/alglib/expintegrals.h +108 -0
- data/ext/alglib/faq.english.html +258 -0
- data/ext/alglib/faq.russian.html +272 -0
- data/ext/alglib/fdistr.cpp +202 -0
- data/ext/alglib/fdistr.h +163 -0
- data/ext/alglib/fresnel.cpp +211 -0
- data/ext/alglib/fresnel.h +91 -0
- data/ext/alglib/gammaf.cpp +338 -0
- data/ext/alglib/gammaf.h +104 -0
- data/ext/alglib/gqgengauss.cpp +235 -0
- data/ext/alglib/gqgengauss.h +92 -0
- data/ext/alglib/gqgenhermite.cpp +268 -0
- data/ext/alglib/gqgenhermite.h +63 -0
- data/ext/alglib/gqgenjacobi.cpp +297 -0
- data/ext/alglib/gqgenjacobi.h +72 -0
- data/ext/alglib/gqgenlaguerre.cpp +265 -0
- data/ext/alglib/gqgenlaguerre.h +69 -0
- data/ext/alglib/gqgenlegendre.cpp +300 -0
- data/ext/alglib/gqgenlegendre.h +62 -0
- data/ext/alglib/gqgenlobatto.cpp +305 -0
- data/ext/alglib/gqgenlobatto.h +97 -0
- data/ext/alglib/gqgenradau.cpp +232 -0
- data/ext/alglib/gqgenradau.h +95 -0
- data/ext/alglib/hbisinv.cpp +480 -0
- data/ext/alglib/hbisinv.h +183 -0
- data/ext/alglib/hblas.cpp +228 -0
- data/ext/alglib/hblas.h +64 -0
- data/ext/alglib/hcholesky.cpp +339 -0
- data/ext/alglib/hcholesky.h +91 -0
- data/ext/alglib/hermite.cpp +114 -0
- data/ext/alglib/hermite.h +49 -0
- data/ext/alglib/hessenberg.cpp +370 -0
- data/ext/alglib/hessenberg.h +152 -0
- data/ext/alglib/hevd.cpp +247 -0
- data/ext/alglib/hevd.h +107 -0
- data/ext/alglib/hsschur.cpp +1316 -0
- data/ext/alglib/hsschur.h +108 -0
- data/ext/alglib/htridiagonal.cpp +734 -0
- data/ext/alglib/htridiagonal.h +180 -0
- data/ext/alglib/ialglib.cpp +6 -0
- data/ext/alglib/ialglib.h +9 -0
- data/ext/alglib/ibetaf.cpp +960 -0
- data/ext/alglib/ibetaf.h +125 -0
- data/ext/alglib/igammaf.cpp +430 -0
- data/ext/alglib/igammaf.h +157 -0
- data/ext/alglib/inv.cpp +274 -0
- data/ext/alglib/inv.h +115 -0
- data/ext/alglib/inverseupdate.cpp +480 -0
- data/ext/alglib/inverseupdate.h +185 -0
- data/ext/alglib/jacobianelliptic.cpp +164 -0
- data/ext/alglib/jacobianelliptic.h +94 -0
- data/ext/alglib/jarquebera.cpp +2271 -0
- data/ext/alglib/jarquebera.h +80 -0
- data/ext/alglib/kmeans.cpp +356 -0
- data/ext/alglib/kmeans.h +76 -0
- data/ext/alglib/laguerre.cpp +94 -0
- data/ext/alglib/laguerre.h +48 -0
- data/ext/alglib/lbfgs.cpp +1167 -0
- data/ext/alglib/lbfgs.h +218 -0
- data/ext/alglib/lda.cpp +434 -0
- data/ext/alglib/lda.h +133 -0
- data/ext/alglib/ldlt.cpp +1130 -0
- data/ext/alglib/ldlt.h +124 -0
- data/ext/alglib/leastsquares.cpp +1252 -0
- data/ext/alglib/leastsquares.h +290 -0
- data/ext/alglib/legendre.cpp +107 -0
- data/ext/alglib/legendre.h +49 -0
- data/ext/alglib/linreg.cpp +1185 -0
- data/ext/alglib/linreg.h +380 -0
- data/ext/alglib/logit.cpp +1523 -0
- data/ext/alglib/logit.h +333 -0
- data/ext/alglib/lq.cpp +399 -0
- data/ext/alglib/lq.h +160 -0
- data/ext/alglib/lu.cpp +462 -0
- data/ext/alglib/lu.h +119 -0
- data/ext/alglib/mannwhitneyu.cpp +4490 -0
- data/ext/alglib/mannwhitneyu.h +115 -0
- data/ext/alglib/minlm.cpp +918 -0
- data/ext/alglib/minlm.h +312 -0
- data/ext/alglib/mlpbase.cpp +3375 -0
- data/ext/alglib/mlpbase.h +589 -0
- data/ext/alglib/mlpe.cpp +1369 -0
- data/ext/alglib/mlpe.h +552 -0
- data/ext/alglib/mlptrain.cpp +1056 -0
- data/ext/alglib/mlptrain.h +283 -0
- data/ext/alglib/nearunityunit.cpp +91 -0
- data/ext/alglib/nearunityunit.h +17 -0
- data/ext/alglib/normaldistr.cpp +377 -0
- data/ext/alglib/normaldistr.h +175 -0
- data/ext/alglib/nsevd.cpp +1869 -0
- data/ext/alglib/nsevd.h +140 -0
- data/ext/alglib/pca.cpp +168 -0
- data/ext/alglib/pca.h +87 -0
- data/ext/alglib/poissondistr.cpp +143 -0
- data/ext/alglib/poissondistr.h +130 -0
- data/ext/alglib/polinterpolation.cpp +685 -0
- data/ext/alglib/polinterpolation.h +206 -0
- data/ext/alglib/psif.cpp +173 -0
- data/ext/alglib/psif.h +88 -0
- data/ext/alglib/qr.cpp +414 -0
- data/ext/alglib/qr.h +168 -0
- data/ext/alglib/ratinterpolation.cpp +134 -0
- data/ext/alglib/ratinterpolation.h +72 -0
- data/ext/alglib/rcond.cpp +705 -0
- data/ext/alglib/rcond.h +140 -0
- data/ext/alglib/reflections.cpp +504 -0
- data/ext/alglib/reflections.h +165 -0
- data/ext/alglib/rotations.cpp +473 -0
- data/ext/alglib/rotations.h +128 -0
- data/ext/alglib/rsolve.cpp +221 -0
- data/ext/alglib/rsolve.h +99 -0
- data/ext/alglib/sbisinv.cpp +217 -0
- data/ext/alglib/sbisinv.h +171 -0
- data/ext/alglib/sblas.cpp +185 -0
- data/ext/alglib/sblas.h +64 -0
- data/ext/alglib/schur.cpp +156 -0
- data/ext/alglib/schur.h +102 -0
- data/ext/alglib/sdet.cpp +193 -0
- data/ext/alglib/sdet.h +101 -0
- data/ext/alglib/sevd.cpp +116 -0
- data/ext/alglib/sevd.h +99 -0
- data/ext/alglib/sinverse.cpp +672 -0
- data/ext/alglib/sinverse.h +138 -0
- data/ext/alglib/spddet.cpp +138 -0
- data/ext/alglib/spddet.h +96 -0
- data/ext/alglib/spdgevd.cpp +842 -0
- data/ext/alglib/spdgevd.h +200 -0
- data/ext/alglib/spdinverse.cpp +509 -0
- data/ext/alglib/spdinverse.h +122 -0
- data/ext/alglib/spdrcond.cpp +421 -0
- data/ext/alglib/spdrcond.h +118 -0
- data/ext/alglib/spdsolve.cpp +275 -0
- data/ext/alglib/spdsolve.h +105 -0
- data/ext/alglib/spline2d.cpp +1192 -0
- data/ext/alglib/spline2d.h +301 -0
- data/ext/alglib/spline3.cpp +1264 -0
- data/ext/alglib/spline3.h +290 -0
- data/ext/alglib/srcond.cpp +595 -0
- data/ext/alglib/srcond.h +127 -0
- data/ext/alglib/ssolve.cpp +895 -0
- data/ext/alglib/ssolve.h +139 -0
- data/ext/alglib/stdafx.h +0 -0
- data/ext/alglib/stest.cpp +131 -0
- data/ext/alglib/stest.h +94 -0
- data/ext/alglib/studenttdistr.cpp +222 -0
- data/ext/alglib/studenttdistr.h +115 -0
- data/ext/alglib/studentttests.cpp +377 -0
- data/ext/alglib/studentttests.h +178 -0
- data/ext/alglib/svd.cpp +620 -0
- data/ext/alglib/svd.h +126 -0
- data/ext/alglib/tdbisinv.cpp +2608 -0
- data/ext/alglib/tdbisinv.h +228 -0
- data/ext/alglib/tdevd.cpp +1229 -0
- data/ext/alglib/tdevd.h +115 -0
- data/ext/alglib/tridiagonal.cpp +594 -0
- data/ext/alglib/tridiagonal.h +171 -0
- data/ext/alglib/trigintegrals.cpp +490 -0
- data/ext/alglib/trigintegrals.h +131 -0
- data/ext/alglib/trinverse.cpp +345 -0
- data/ext/alglib/trinverse.h +98 -0
- data/ext/alglib/trlinsolve.cpp +926 -0
- data/ext/alglib/trlinsolve.h +73 -0
- data/ext/alglib/tsort.cpp +405 -0
- data/ext/alglib/tsort.h +54 -0
- data/ext/alglib/variancetests.cpp +245 -0
- data/ext/alglib/variancetests.h +134 -0
- data/ext/alglib/wsr.cpp +6285 -0
- data/ext/alglib/wsr.h +96 -0
- data/ext/ap.i +97 -0
- data/ext/correlation.i +24 -0
- data/ext/extconf.rb +6 -0
- data/ext/logit.i +89 -0
- data/lib/alglib.rb +71 -0
- data/lib/alglib/correlation.rb +26 -0
- data/lib/alglib/linearregression.rb +63 -0
- data/lib/alglib/logit.rb +42 -0
- data/test/test_alglib.rb +52 -0
- data/test/test_correlation.rb +44 -0
- data/test/test_correlationtest.rb +45 -0
- data/test/test_linreg.rb +35 -0
- data/test/test_logit.rb +43 -0
- data/test/test_pca.rb +27 -0
- metadata +326 -0
data/ext/alglib/cdet.h
ADDED
@@ -0,0 +1,92 @@
|
|
1
|
+
/*************************************************************************
|
2
|
+
Copyright (c) 2005-2007, Sergey Bochkanov (ALGLIB project).
|
3
|
+
|
4
|
+
Redistribution and use in source and binary forms, with or without
|
5
|
+
modification, are permitted provided that the following conditions are
|
6
|
+
met:
|
7
|
+
|
8
|
+
- Redistributions of source code must retain the above copyright
|
9
|
+
notice, this list of conditions and the following disclaimer.
|
10
|
+
|
11
|
+
- Redistributions in binary form must reproduce the above copyright
|
12
|
+
notice, this list of conditions and the following disclaimer listed
|
13
|
+
in this license in the documentation and/or other materials
|
14
|
+
provided with the distribution.
|
15
|
+
|
16
|
+
- Neither the name of the copyright holders nor the names of its
|
17
|
+
contributors may be used to endorse or promote products derived from
|
18
|
+
this software without specific prior written permission.
|
19
|
+
|
20
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
21
|
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
22
|
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
23
|
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
24
|
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
25
|
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
26
|
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
27
|
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
28
|
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
29
|
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
30
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
31
|
+
*************************************************************************/
|
32
|
+
|
33
|
+
#ifndef _cdet_h
|
34
|
+
#define _cdet_h
|
35
|
+
|
36
|
+
#include "ap.h"
|
37
|
+
#include "ialglib.h"
|
38
|
+
|
39
|
+
#include "clu.h"
|
40
|
+
|
41
|
+
|
42
|
+
/*************************************************************************
|
43
|
+
Determinant calculation of the matrix given by its LU decomposition.
|
44
|
+
|
45
|
+
Input parameters:
|
46
|
+
A - LU decomposition of the matrix (output of
|
47
|
+
RMatrixLU subroutine).
|
48
|
+
Pivots - table of permutations which were made during
|
49
|
+
the LU decomposition.
|
50
|
+
Output of RMatrixLU subroutine.
|
51
|
+
N - size of matrix A.
|
52
|
+
|
53
|
+
Result: matrix determinant.
|
54
|
+
|
55
|
+
-- ALGLIB --
|
56
|
+
Copyright 2005 by Bochkanov Sergey
|
57
|
+
*************************************************************************/
|
58
|
+
ap::complex cmatrixludet(const ap::complex_2d_array& a,
|
59
|
+
const ap::integer_1d_array& pivots,
|
60
|
+
int n);
|
61
|
+
|
62
|
+
|
63
|
+
/*************************************************************************
|
64
|
+
Calculation of the determinant of a general matrix
|
65
|
+
|
66
|
+
Input parameters:
|
67
|
+
A - matrix, array[0..N-1, 0..N-1]
|
68
|
+
N - size of matrix A.
|
69
|
+
|
70
|
+
Result: determinant of matrix A.
|
71
|
+
|
72
|
+
-- ALGLIB --
|
73
|
+
Copyright 2005 by Bochkanov Sergey
|
74
|
+
*************************************************************************/
|
75
|
+
ap::complex cmatrixdet(ap::complex_2d_array a, int n);
|
76
|
+
|
77
|
+
|
78
|
+
/*************************************************************************
|
79
|
+
Obsolete 1-based subroutine.
|
80
|
+
*************************************************************************/
|
81
|
+
ap::complex complexdeterminantlu(const ap::complex_2d_array& a,
|
82
|
+
const ap::integer_1d_array& pivots,
|
83
|
+
int n);
|
84
|
+
|
85
|
+
|
86
|
+
/*************************************************************************
|
87
|
+
Obsolete 1-based subroutine.
|
88
|
+
*************************************************************************/
|
89
|
+
ap::complex complexdeterminant(ap::complex_2d_array a, int n);
|
90
|
+
|
91
|
+
|
92
|
+
#endif
|
@@ -0,0 +1,216 @@
|
|
1
|
+
|
2
|
+
#include <stdafx.h>
|
3
|
+
#include "chebyshev.h"
|
4
|
+
|
5
|
+
/*************************************************************************
|
6
|
+
Calculation of the value of the Chebyshev polynomials of the
|
7
|
+
first and second kinds.
|
8
|
+
|
9
|
+
Parameters:
|
10
|
+
r - polynomial kind, either 1 or 2.
|
11
|
+
n - degree, n>=0
|
12
|
+
x - argument, -1 <= x <= 1
|
13
|
+
|
14
|
+
Result:
|
15
|
+
the value of the Chebyshev polynomial at x
|
16
|
+
*************************************************************************/
|
17
|
+
double chebyshevcalculate(const int& r, const int& n, const double& x)
|
18
|
+
{
|
19
|
+
double result;
|
20
|
+
int i;
|
21
|
+
double a;
|
22
|
+
double b;
|
23
|
+
|
24
|
+
|
25
|
+
//
|
26
|
+
// Prepare A and B
|
27
|
+
//
|
28
|
+
if( r==1 )
|
29
|
+
{
|
30
|
+
a = 1;
|
31
|
+
b = x;
|
32
|
+
}
|
33
|
+
else
|
34
|
+
{
|
35
|
+
a = 1;
|
36
|
+
b = 2*x;
|
37
|
+
}
|
38
|
+
|
39
|
+
//
|
40
|
+
// Special cases: N=0 or N=1
|
41
|
+
//
|
42
|
+
if( n==0 )
|
43
|
+
{
|
44
|
+
result = a;
|
45
|
+
return result;
|
46
|
+
}
|
47
|
+
if( n==1 )
|
48
|
+
{
|
49
|
+
result = b;
|
50
|
+
return result;
|
51
|
+
}
|
52
|
+
|
53
|
+
//
|
54
|
+
// General case: N>=2
|
55
|
+
//
|
56
|
+
for(i = 2; i <= n; i++)
|
57
|
+
{
|
58
|
+
result = 2*x*b-a;
|
59
|
+
a = b;
|
60
|
+
b = result;
|
61
|
+
}
|
62
|
+
return result;
|
63
|
+
}
|
64
|
+
|
65
|
+
|
66
|
+
/*************************************************************************
|
67
|
+
Summation of Chebyshev polynomials using Clenshaw�s recurrence formula.
|
68
|
+
|
69
|
+
This routine calculates
|
70
|
+
c[0]*T0(x) + c[1]*T1(x) + ... + c[N]*TN(x)
|
71
|
+
or
|
72
|
+
c[0]*U0(x) + c[1]*U1(x) + ... + c[N]*UN(x)
|
73
|
+
depending on the R.
|
74
|
+
|
75
|
+
Parameters:
|
76
|
+
r - polynomial kind, either 1 or 2.
|
77
|
+
n - degree, n>=0
|
78
|
+
x - argument
|
79
|
+
|
80
|
+
Result:
|
81
|
+
the value of the Chebyshev polynomial at x
|
82
|
+
*************************************************************************/
|
83
|
+
double chebyshevsum(const ap::real_1d_array& c,
|
84
|
+
const int& r,
|
85
|
+
const int& n,
|
86
|
+
const double& x)
|
87
|
+
{
|
88
|
+
double result;
|
89
|
+
double b1;
|
90
|
+
double b2;
|
91
|
+
int i;
|
92
|
+
|
93
|
+
b1 = 0;
|
94
|
+
b2 = 0;
|
95
|
+
for(i = n; i >= 1; i--)
|
96
|
+
{
|
97
|
+
result = 2*x*b1-b2+c(i);
|
98
|
+
b2 = b1;
|
99
|
+
b1 = result;
|
100
|
+
}
|
101
|
+
if( r==1 )
|
102
|
+
{
|
103
|
+
result = -b2+x*b1+c(0);
|
104
|
+
}
|
105
|
+
else
|
106
|
+
{
|
107
|
+
result = -b2+2*x*b1+c(0);
|
108
|
+
}
|
109
|
+
return result;
|
110
|
+
}
|
111
|
+
|
112
|
+
|
113
|
+
/*************************************************************************
|
114
|
+
Representation of Tn as C[0] + C[1]*X + ... + C[N]*X^N
|
115
|
+
|
116
|
+
Input parameters:
|
117
|
+
N - polynomial degree, n>=0
|
118
|
+
|
119
|
+
Output parameters:
|
120
|
+
C - coefficients
|
121
|
+
*************************************************************************/
|
122
|
+
void chebyshevcoefficients(const int& n, ap::real_1d_array& c)
|
123
|
+
{
|
124
|
+
int i;
|
125
|
+
|
126
|
+
c.setbounds(0, n);
|
127
|
+
for(i = 0; i <= n; i++)
|
128
|
+
{
|
129
|
+
c(i) = 0;
|
130
|
+
}
|
131
|
+
if( n==0||n==1 )
|
132
|
+
{
|
133
|
+
c(n) = 1;
|
134
|
+
}
|
135
|
+
else
|
136
|
+
{
|
137
|
+
c(n) = exp((n-1)*log(double(2)));
|
138
|
+
for(i = 0; i <= n/2-1; i++)
|
139
|
+
{
|
140
|
+
c(n-2*(i+1)) = -c(n-2*i)*(n-2*i)*(n-2*i-1)/4/(i+1)/(n-i-1);
|
141
|
+
}
|
142
|
+
}
|
143
|
+
}
|
144
|
+
|
145
|
+
|
146
|
+
/*************************************************************************
|
147
|
+
Conversion of a series of Chebyshev polynomials to a power series.
|
148
|
+
|
149
|
+
Represents A[0]*T0(x) + A[1]*T1(x) + ... + A[N]*Tn(x) as
|
150
|
+
B[0] + B[1]*X + ... + B[N]*X^N.
|
151
|
+
|
152
|
+
Input parameters:
|
153
|
+
A - Chebyshev series coefficients
|
154
|
+
N - degree, N>=0
|
155
|
+
|
156
|
+
Output parameters
|
157
|
+
B - power series coefficients
|
158
|
+
*************************************************************************/
|
159
|
+
void fromchebyshev(const ap::real_1d_array& a,
|
160
|
+
const int& n,
|
161
|
+
ap::real_1d_array& b)
|
162
|
+
{
|
163
|
+
int i;
|
164
|
+
int k;
|
165
|
+
double e;
|
166
|
+
double d;
|
167
|
+
|
168
|
+
b.setbounds(0, n);
|
169
|
+
for(i = 0; i <= n; i++)
|
170
|
+
{
|
171
|
+
b(i) = 0;
|
172
|
+
}
|
173
|
+
d = 0;
|
174
|
+
i = 0;
|
175
|
+
do
|
176
|
+
{
|
177
|
+
k = i;
|
178
|
+
do
|
179
|
+
{
|
180
|
+
e = b(k);
|
181
|
+
b(k) = 0;
|
182
|
+
if( i<=1&&k==i )
|
183
|
+
{
|
184
|
+
b(k) = 1;
|
185
|
+
}
|
186
|
+
else
|
187
|
+
{
|
188
|
+
if( i!=0 )
|
189
|
+
{
|
190
|
+
b(k) = 2*d;
|
191
|
+
}
|
192
|
+
if( k>i+1 )
|
193
|
+
{
|
194
|
+
b(k) = b(k)-b(k-2);
|
195
|
+
}
|
196
|
+
}
|
197
|
+
d = e;
|
198
|
+
k = k+1;
|
199
|
+
}
|
200
|
+
while(k<=n);
|
201
|
+
d = b(i);
|
202
|
+
e = 0;
|
203
|
+
k = i;
|
204
|
+
while(k<=n)
|
205
|
+
{
|
206
|
+
e = e+b(k)*a(k);
|
207
|
+
k = k+2;
|
208
|
+
}
|
209
|
+
b(i) = e;
|
210
|
+
i = i+1;
|
211
|
+
}
|
212
|
+
while(i<=n);
|
213
|
+
}
|
214
|
+
|
215
|
+
|
216
|
+
|
@@ -0,0 +1,76 @@
|
|
1
|
+
|
2
|
+
#ifndef _chebyshev_h
|
3
|
+
#define _chebyshev_h
|
4
|
+
|
5
|
+
#include "ap.h"
|
6
|
+
#include "ialglib.h"
|
7
|
+
|
8
|
+
/*************************************************************************
|
9
|
+
Calculation of the value of the Chebyshev polynomials of the
|
10
|
+
first and second kinds.
|
11
|
+
|
12
|
+
Parameters:
|
13
|
+
r - polynomial kind, either 1 or 2.
|
14
|
+
n - degree, n>=0
|
15
|
+
x - argument, -1 <= x <= 1
|
16
|
+
|
17
|
+
Result:
|
18
|
+
the value of the Chebyshev polynomial at x
|
19
|
+
*************************************************************************/
|
20
|
+
double chebyshevcalculate(const int& r, const int& n, const double& x);
|
21
|
+
|
22
|
+
|
23
|
+
/*************************************************************************
|
24
|
+
Summation of Chebyshev polynomials using Clenshaw�s recurrence formula.
|
25
|
+
|
26
|
+
This routine calculates
|
27
|
+
c[0]*T0(x) + c[1]*T1(x) + ... + c[N]*TN(x)
|
28
|
+
or
|
29
|
+
c[0]*U0(x) + c[1]*U1(x) + ... + c[N]*UN(x)
|
30
|
+
depending on the R.
|
31
|
+
|
32
|
+
Parameters:
|
33
|
+
r - polynomial kind, either 1 or 2.
|
34
|
+
n - degree, n>=0
|
35
|
+
x - argument
|
36
|
+
|
37
|
+
Result:
|
38
|
+
the value of the Chebyshev polynomial at x
|
39
|
+
*************************************************************************/
|
40
|
+
double chebyshevsum(const ap::real_1d_array& c,
|
41
|
+
const int& r,
|
42
|
+
const int& n,
|
43
|
+
const double& x);
|
44
|
+
|
45
|
+
|
46
|
+
/*************************************************************************
|
47
|
+
Representation of Tn as C[0] + C[1]*X + ... + C[N]*X^N
|
48
|
+
|
49
|
+
Input parameters:
|
50
|
+
N - polynomial degree, n>=0
|
51
|
+
|
52
|
+
Output parameters:
|
53
|
+
C - coefficients
|
54
|
+
*************************************************************************/
|
55
|
+
void chebyshevcoefficients(const int& n, ap::real_1d_array& c);
|
56
|
+
|
57
|
+
|
58
|
+
/*************************************************************************
|
59
|
+
Conversion of a series of Chebyshev polynomials to a power series.
|
60
|
+
|
61
|
+
Represents A[0]*T0(x) + A[1]*T1(x) + ... + A[N]*Tn(x) as
|
62
|
+
B[0] + B[1]*X + ... + B[N]*X^N.
|
63
|
+
|
64
|
+
Input parameters:
|
65
|
+
A - Chebyshev series coefficients
|
66
|
+
N - degree, N>=0
|
67
|
+
|
68
|
+
Output parameters
|
69
|
+
B - power series coefficients
|
70
|
+
*************************************************************************/
|
71
|
+
void fromchebyshev(const ap::real_1d_array& a,
|
72
|
+
const int& n,
|
73
|
+
ap::real_1d_array& b);
|
74
|
+
|
75
|
+
|
76
|
+
#endif
|
@@ -0,0 +1,157 @@
|
|
1
|
+
/*************************************************************************
|
2
|
+
Cephes Math Library Release 2.8: June, 2000
|
3
|
+
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
4
|
+
|
5
|
+
Contributors:
|
6
|
+
* Sergey Bochkanov (ALGLIB project). Translation from C to
|
7
|
+
pseudocode.
|
8
|
+
|
9
|
+
See subroutines comments for additional copyrights.
|
10
|
+
|
11
|
+
Redistribution and use in source and binary forms, with or without
|
12
|
+
modification, are permitted provided that the following conditions are
|
13
|
+
met:
|
14
|
+
|
15
|
+
- Redistributions of source code must retain the above copyright
|
16
|
+
notice, this list of conditions and the following disclaimer.
|
17
|
+
|
18
|
+
- Redistributions in binary form must reproduce the above copyright
|
19
|
+
notice, this list of conditions and the following disclaimer listed
|
20
|
+
in this license in the documentation and/or other materials
|
21
|
+
provided with the distribution.
|
22
|
+
|
23
|
+
- Neither the name of the copyright holders nor the names of its
|
24
|
+
contributors may be used to endorse or promote products derived from
|
25
|
+
this software without specific prior written permission.
|
26
|
+
|
27
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
28
|
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
29
|
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
30
|
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
31
|
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
32
|
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
33
|
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
34
|
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
35
|
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
36
|
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
37
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
38
|
+
*************************************************************************/
|
39
|
+
|
40
|
+
#include <stdafx.h>
|
41
|
+
#include "chisquaredistr.h"
|
42
|
+
|
43
|
+
/*************************************************************************
|
44
|
+
Chi-square distribution
|
45
|
+
|
46
|
+
Returns the area under the left hand tail (from 0 to x)
|
47
|
+
of the Chi square probability density function with
|
48
|
+
v degrees of freedom.
|
49
|
+
|
50
|
+
|
51
|
+
x
|
52
|
+
-
|
53
|
+
1 | | v/2-1 -t/2
|
54
|
+
P( x | v ) = ----------- | t e dt
|
55
|
+
v/2 - | |
|
56
|
+
2 | (v/2) -
|
57
|
+
0
|
58
|
+
|
59
|
+
where x is the Chi-square variable.
|
60
|
+
|
61
|
+
The incomplete gamma integral is used, according to the
|
62
|
+
formula
|
63
|
+
|
64
|
+
y = chdtr( v, x ) = igam( v/2.0, x/2.0 ).
|
65
|
+
|
66
|
+
The arguments must both be positive.
|
67
|
+
|
68
|
+
ACCURACY:
|
69
|
+
|
70
|
+
See incomplete gamma function
|
71
|
+
|
72
|
+
|
73
|
+
Cephes Math Library Release 2.8: June, 2000
|
74
|
+
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
75
|
+
*************************************************************************/
|
76
|
+
double chisquaredistribution(double v, double x)
|
77
|
+
{
|
78
|
+
double result;
|
79
|
+
|
80
|
+
ap::ap_error::make_assertion(x>=0&&v>=1, "Domain error in ChiSquareDistribution");
|
81
|
+
result = incompletegamma(v/2.0, x/2.0);
|
82
|
+
return result;
|
83
|
+
}
|
84
|
+
|
85
|
+
|
86
|
+
/*************************************************************************
|
87
|
+
Complemented Chi-square distribution
|
88
|
+
|
89
|
+
Returns the area under the right hand tail (from x to
|
90
|
+
infinity) of the Chi square probability density function
|
91
|
+
with v degrees of freedom:
|
92
|
+
|
93
|
+
inf.
|
94
|
+
-
|
95
|
+
1 | | v/2-1 -t/2
|
96
|
+
P( x | v ) = ----------- | t e dt
|
97
|
+
v/2 - | |
|
98
|
+
2 | (v/2) -
|
99
|
+
x
|
100
|
+
|
101
|
+
where x is the Chi-square variable.
|
102
|
+
|
103
|
+
The incomplete gamma integral is used, according to the
|
104
|
+
formula
|
105
|
+
|
106
|
+
y = chdtr( v, x ) = igamc( v/2.0, x/2.0 ).
|
107
|
+
|
108
|
+
The arguments must both be positive.
|
109
|
+
|
110
|
+
ACCURACY:
|
111
|
+
|
112
|
+
See incomplete gamma function
|
113
|
+
|
114
|
+
Cephes Math Library Release 2.8: June, 2000
|
115
|
+
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
116
|
+
*************************************************************************/
|
117
|
+
double chisquarecdistribution(double v, double x)
|
118
|
+
{
|
119
|
+
double result;
|
120
|
+
|
121
|
+
ap::ap_error::make_assertion(x>=0&&v>=1, "Domain error in ChiSquareDistributionC");
|
122
|
+
result = incompletegammac(v/2.0, x/2.0);
|
123
|
+
return result;
|
124
|
+
}
|
125
|
+
|
126
|
+
|
127
|
+
/*************************************************************************
|
128
|
+
Inverse of complemented Chi-square distribution
|
129
|
+
|
130
|
+
Finds the Chi-square argument x such that the integral
|
131
|
+
from x to infinity of the Chi-square density is equal
|
132
|
+
to the given cumulative probability y.
|
133
|
+
|
134
|
+
This is accomplished using the inverse gamma integral
|
135
|
+
function and the relation
|
136
|
+
|
137
|
+
x/2 = igami( df/2, y );
|
138
|
+
|
139
|
+
ACCURACY:
|
140
|
+
|
141
|
+
See inverse incomplete gamma function
|
142
|
+
|
143
|
+
|
144
|
+
Cephes Math Library Release 2.8: June, 2000
|
145
|
+
Copyright 1984, 1987, 2000 by Stephen L. Moshier
|
146
|
+
*************************************************************************/
|
147
|
+
double invchisquaredistribution(double v, double y)
|
148
|
+
{
|
149
|
+
double result;
|
150
|
+
|
151
|
+
ap::ap_error::make_assertion(y>=0&&y<=1&&v>=1, "Domain error in InvChiSquareDistribution");
|
152
|
+
result = 2*invincompletegammac(0.5*v, y);
|
153
|
+
return result;
|
154
|
+
}
|
155
|
+
|
156
|
+
|
157
|
+
|