alglib 0.1.1

Sign up to get free protection for your applications and to get access to all the features.
Files changed (255) hide show
  1. data/History.txt +7 -0
  2. data/Manifest.txt +253 -0
  3. data/README.txt +33 -0
  4. data/Rakefile +27 -0
  5. data/ext/Rakefile +24 -0
  6. data/ext/alglib.i +24 -0
  7. data/ext/alglib/Makefile +157 -0
  8. data/ext/alglib/airyf.cpp +372 -0
  9. data/ext/alglib/airyf.h +81 -0
  10. data/ext/alglib/alglib.cpp +8558 -0
  11. data/ext/alglib/alglib_util.cpp +19 -0
  12. data/ext/alglib/alglib_util.h +14 -0
  13. data/ext/alglib/ap.cpp +877 -0
  14. data/ext/alglib/ap.english.html +364 -0
  15. data/ext/alglib/ap.h +666 -0
  16. data/ext/alglib/ap.russian.html +442 -0
  17. data/ext/alglib/apvt.h +754 -0
  18. data/ext/alglib/bdss.cpp +1500 -0
  19. data/ext/alglib/bdss.h +251 -0
  20. data/ext/alglib/bdsvd.cpp +1339 -0
  21. data/ext/alglib/bdsvd.h +164 -0
  22. data/ext/alglib/bessel.cpp +1226 -0
  23. data/ext/alglib/bessel.h +331 -0
  24. data/ext/alglib/betaf.cpp +105 -0
  25. data/ext/alglib/betaf.h +74 -0
  26. data/ext/alglib/bidiagonal.cpp +1328 -0
  27. data/ext/alglib/bidiagonal.h +350 -0
  28. data/ext/alglib/binomialdistr.cpp +247 -0
  29. data/ext/alglib/binomialdistr.h +153 -0
  30. data/ext/alglib/blas.cpp +576 -0
  31. data/ext/alglib/blas.h +132 -0
  32. data/ext/alglib/cblas.cpp +226 -0
  33. data/ext/alglib/cblas.h +57 -0
  34. data/ext/alglib/cdet.cpp +138 -0
  35. data/ext/alglib/cdet.h +92 -0
  36. data/ext/alglib/chebyshev.cpp +216 -0
  37. data/ext/alglib/chebyshev.h +76 -0
  38. data/ext/alglib/chisquaredistr.cpp +157 -0
  39. data/ext/alglib/chisquaredistr.h +144 -0
  40. data/ext/alglib/cholesky.cpp +285 -0
  41. data/ext/alglib/cholesky.h +86 -0
  42. data/ext/alglib/cinverse.cpp +298 -0
  43. data/ext/alglib/cinverse.h +111 -0
  44. data/ext/alglib/clu.cpp +337 -0
  45. data/ext/alglib/clu.h +120 -0
  46. data/ext/alglib/correlation.cpp +280 -0
  47. data/ext/alglib/correlation.h +77 -0
  48. data/ext/alglib/correlationtests.cpp +726 -0
  49. data/ext/alglib/correlationtests.h +134 -0
  50. data/ext/alglib/crcond.cpp +826 -0
  51. data/ext/alglib/crcond.h +148 -0
  52. data/ext/alglib/creflections.cpp +310 -0
  53. data/ext/alglib/creflections.h +165 -0
  54. data/ext/alglib/csolve.cpp +312 -0
  55. data/ext/alglib/csolve.h +99 -0
  56. data/ext/alglib/ctrinverse.cpp +387 -0
  57. data/ext/alglib/ctrinverse.h +98 -0
  58. data/ext/alglib/ctrlinsolve.cpp +297 -0
  59. data/ext/alglib/ctrlinsolve.h +81 -0
  60. data/ext/alglib/dawson.cpp +234 -0
  61. data/ext/alglib/dawson.h +74 -0
  62. data/ext/alglib/descriptivestatistics.cpp +436 -0
  63. data/ext/alglib/descriptivestatistics.h +112 -0
  64. data/ext/alglib/det.cpp +140 -0
  65. data/ext/alglib/det.h +94 -0
  66. data/ext/alglib/dforest.cpp +1819 -0
  67. data/ext/alglib/dforest.h +316 -0
  68. data/ext/alglib/elliptic.cpp +497 -0
  69. data/ext/alglib/elliptic.h +217 -0
  70. data/ext/alglib/estnorm.cpp +429 -0
  71. data/ext/alglib/estnorm.h +107 -0
  72. data/ext/alglib/expintegrals.cpp +422 -0
  73. data/ext/alglib/expintegrals.h +108 -0
  74. data/ext/alglib/faq.english.html +258 -0
  75. data/ext/alglib/faq.russian.html +272 -0
  76. data/ext/alglib/fdistr.cpp +202 -0
  77. data/ext/alglib/fdistr.h +163 -0
  78. data/ext/alglib/fresnel.cpp +211 -0
  79. data/ext/alglib/fresnel.h +91 -0
  80. data/ext/alglib/gammaf.cpp +338 -0
  81. data/ext/alglib/gammaf.h +104 -0
  82. data/ext/alglib/gqgengauss.cpp +235 -0
  83. data/ext/alglib/gqgengauss.h +92 -0
  84. data/ext/alglib/gqgenhermite.cpp +268 -0
  85. data/ext/alglib/gqgenhermite.h +63 -0
  86. data/ext/alglib/gqgenjacobi.cpp +297 -0
  87. data/ext/alglib/gqgenjacobi.h +72 -0
  88. data/ext/alglib/gqgenlaguerre.cpp +265 -0
  89. data/ext/alglib/gqgenlaguerre.h +69 -0
  90. data/ext/alglib/gqgenlegendre.cpp +300 -0
  91. data/ext/alglib/gqgenlegendre.h +62 -0
  92. data/ext/alglib/gqgenlobatto.cpp +305 -0
  93. data/ext/alglib/gqgenlobatto.h +97 -0
  94. data/ext/alglib/gqgenradau.cpp +232 -0
  95. data/ext/alglib/gqgenradau.h +95 -0
  96. data/ext/alglib/hbisinv.cpp +480 -0
  97. data/ext/alglib/hbisinv.h +183 -0
  98. data/ext/alglib/hblas.cpp +228 -0
  99. data/ext/alglib/hblas.h +64 -0
  100. data/ext/alglib/hcholesky.cpp +339 -0
  101. data/ext/alglib/hcholesky.h +91 -0
  102. data/ext/alglib/hermite.cpp +114 -0
  103. data/ext/alglib/hermite.h +49 -0
  104. data/ext/alglib/hessenberg.cpp +370 -0
  105. data/ext/alglib/hessenberg.h +152 -0
  106. data/ext/alglib/hevd.cpp +247 -0
  107. data/ext/alglib/hevd.h +107 -0
  108. data/ext/alglib/hsschur.cpp +1316 -0
  109. data/ext/alglib/hsschur.h +108 -0
  110. data/ext/alglib/htridiagonal.cpp +734 -0
  111. data/ext/alglib/htridiagonal.h +180 -0
  112. data/ext/alglib/ialglib.cpp +6 -0
  113. data/ext/alglib/ialglib.h +9 -0
  114. data/ext/alglib/ibetaf.cpp +960 -0
  115. data/ext/alglib/ibetaf.h +125 -0
  116. data/ext/alglib/igammaf.cpp +430 -0
  117. data/ext/alglib/igammaf.h +157 -0
  118. data/ext/alglib/inv.cpp +274 -0
  119. data/ext/alglib/inv.h +115 -0
  120. data/ext/alglib/inverseupdate.cpp +480 -0
  121. data/ext/alglib/inverseupdate.h +185 -0
  122. data/ext/alglib/jacobianelliptic.cpp +164 -0
  123. data/ext/alglib/jacobianelliptic.h +94 -0
  124. data/ext/alglib/jarquebera.cpp +2271 -0
  125. data/ext/alglib/jarquebera.h +80 -0
  126. data/ext/alglib/kmeans.cpp +356 -0
  127. data/ext/alglib/kmeans.h +76 -0
  128. data/ext/alglib/laguerre.cpp +94 -0
  129. data/ext/alglib/laguerre.h +48 -0
  130. data/ext/alglib/lbfgs.cpp +1167 -0
  131. data/ext/alglib/lbfgs.h +218 -0
  132. data/ext/alglib/lda.cpp +434 -0
  133. data/ext/alglib/lda.h +133 -0
  134. data/ext/alglib/ldlt.cpp +1130 -0
  135. data/ext/alglib/ldlt.h +124 -0
  136. data/ext/alglib/leastsquares.cpp +1252 -0
  137. data/ext/alglib/leastsquares.h +290 -0
  138. data/ext/alglib/legendre.cpp +107 -0
  139. data/ext/alglib/legendre.h +49 -0
  140. data/ext/alglib/linreg.cpp +1185 -0
  141. data/ext/alglib/linreg.h +380 -0
  142. data/ext/alglib/logit.cpp +1523 -0
  143. data/ext/alglib/logit.h +333 -0
  144. data/ext/alglib/lq.cpp +399 -0
  145. data/ext/alglib/lq.h +160 -0
  146. data/ext/alglib/lu.cpp +462 -0
  147. data/ext/alglib/lu.h +119 -0
  148. data/ext/alglib/mannwhitneyu.cpp +4490 -0
  149. data/ext/alglib/mannwhitneyu.h +115 -0
  150. data/ext/alglib/minlm.cpp +918 -0
  151. data/ext/alglib/minlm.h +312 -0
  152. data/ext/alglib/mlpbase.cpp +3375 -0
  153. data/ext/alglib/mlpbase.h +589 -0
  154. data/ext/alglib/mlpe.cpp +1369 -0
  155. data/ext/alglib/mlpe.h +552 -0
  156. data/ext/alglib/mlptrain.cpp +1056 -0
  157. data/ext/alglib/mlptrain.h +283 -0
  158. data/ext/alglib/nearunityunit.cpp +91 -0
  159. data/ext/alglib/nearunityunit.h +17 -0
  160. data/ext/alglib/normaldistr.cpp +377 -0
  161. data/ext/alglib/normaldistr.h +175 -0
  162. data/ext/alglib/nsevd.cpp +1869 -0
  163. data/ext/alglib/nsevd.h +140 -0
  164. data/ext/alglib/pca.cpp +168 -0
  165. data/ext/alglib/pca.h +87 -0
  166. data/ext/alglib/poissondistr.cpp +143 -0
  167. data/ext/alglib/poissondistr.h +130 -0
  168. data/ext/alglib/polinterpolation.cpp +685 -0
  169. data/ext/alglib/polinterpolation.h +206 -0
  170. data/ext/alglib/psif.cpp +173 -0
  171. data/ext/alglib/psif.h +88 -0
  172. data/ext/alglib/qr.cpp +414 -0
  173. data/ext/alglib/qr.h +168 -0
  174. data/ext/alglib/ratinterpolation.cpp +134 -0
  175. data/ext/alglib/ratinterpolation.h +72 -0
  176. data/ext/alglib/rcond.cpp +705 -0
  177. data/ext/alglib/rcond.h +140 -0
  178. data/ext/alglib/reflections.cpp +504 -0
  179. data/ext/alglib/reflections.h +165 -0
  180. data/ext/alglib/rotations.cpp +473 -0
  181. data/ext/alglib/rotations.h +128 -0
  182. data/ext/alglib/rsolve.cpp +221 -0
  183. data/ext/alglib/rsolve.h +99 -0
  184. data/ext/alglib/sbisinv.cpp +217 -0
  185. data/ext/alglib/sbisinv.h +171 -0
  186. data/ext/alglib/sblas.cpp +185 -0
  187. data/ext/alglib/sblas.h +64 -0
  188. data/ext/alglib/schur.cpp +156 -0
  189. data/ext/alglib/schur.h +102 -0
  190. data/ext/alglib/sdet.cpp +193 -0
  191. data/ext/alglib/sdet.h +101 -0
  192. data/ext/alglib/sevd.cpp +116 -0
  193. data/ext/alglib/sevd.h +99 -0
  194. data/ext/alglib/sinverse.cpp +672 -0
  195. data/ext/alglib/sinverse.h +138 -0
  196. data/ext/alglib/spddet.cpp +138 -0
  197. data/ext/alglib/spddet.h +96 -0
  198. data/ext/alglib/spdgevd.cpp +842 -0
  199. data/ext/alglib/spdgevd.h +200 -0
  200. data/ext/alglib/spdinverse.cpp +509 -0
  201. data/ext/alglib/spdinverse.h +122 -0
  202. data/ext/alglib/spdrcond.cpp +421 -0
  203. data/ext/alglib/spdrcond.h +118 -0
  204. data/ext/alglib/spdsolve.cpp +275 -0
  205. data/ext/alglib/spdsolve.h +105 -0
  206. data/ext/alglib/spline2d.cpp +1192 -0
  207. data/ext/alglib/spline2d.h +301 -0
  208. data/ext/alglib/spline3.cpp +1264 -0
  209. data/ext/alglib/spline3.h +290 -0
  210. data/ext/alglib/srcond.cpp +595 -0
  211. data/ext/alglib/srcond.h +127 -0
  212. data/ext/alglib/ssolve.cpp +895 -0
  213. data/ext/alglib/ssolve.h +139 -0
  214. data/ext/alglib/stdafx.h +0 -0
  215. data/ext/alglib/stest.cpp +131 -0
  216. data/ext/alglib/stest.h +94 -0
  217. data/ext/alglib/studenttdistr.cpp +222 -0
  218. data/ext/alglib/studenttdistr.h +115 -0
  219. data/ext/alglib/studentttests.cpp +377 -0
  220. data/ext/alglib/studentttests.h +178 -0
  221. data/ext/alglib/svd.cpp +620 -0
  222. data/ext/alglib/svd.h +126 -0
  223. data/ext/alglib/tdbisinv.cpp +2608 -0
  224. data/ext/alglib/tdbisinv.h +228 -0
  225. data/ext/alglib/tdevd.cpp +1229 -0
  226. data/ext/alglib/tdevd.h +115 -0
  227. data/ext/alglib/tridiagonal.cpp +594 -0
  228. data/ext/alglib/tridiagonal.h +171 -0
  229. data/ext/alglib/trigintegrals.cpp +490 -0
  230. data/ext/alglib/trigintegrals.h +131 -0
  231. data/ext/alglib/trinverse.cpp +345 -0
  232. data/ext/alglib/trinverse.h +98 -0
  233. data/ext/alglib/trlinsolve.cpp +926 -0
  234. data/ext/alglib/trlinsolve.h +73 -0
  235. data/ext/alglib/tsort.cpp +405 -0
  236. data/ext/alglib/tsort.h +54 -0
  237. data/ext/alglib/variancetests.cpp +245 -0
  238. data/ext/alglib/variancetests.h +134 -0
  239. data/ext/alglib/wsr.cpp +6285 -0
  240. data/ext/alglib/wsr.h +96 -0
  241. data/ext/ap.i +97 -0
  242. data/ext/correlation.i +24 -0
  243. data/ext/extconf.rb +6 -0
  244. data/ext/logit.i +89 -0
  245. data/lib/alglib.rb +71 -0
  246. data/lib/alglib/correlation.rb +26 -0
  247. data/lib/alglib/linearregression.rb +63 -0
  248. data/lib/alglib/logit.rb +42 -0
  249. data/test/test_alglib.rb +52 -0
  250. data/test/test_correlation.rb +44 -0
  251. data/test/test_correlationtest.rb +45 -0
  252. data/test/test_linreg.rb +35 -0
  253. data/test/test_logit.rb +43 -0
  254. data/test/test_pca.rb +27 -0
  255. metadata +326 -0
@@ -0,0 +1,178 @@
1
+ /*************************************************************************
2
+ Copyright (c) 2007, Sergey Bochkanov (ALGLIB project).
3
+
4
+ Redistribution and use in source and binary forms, with or without
5
+ modification, are permitted provided that the following conditions are
6
+ met:
7
+
8
+ - Redistributions of source code must retain the above copyright
9
+ notice, this list of conditions and the following disclaimer.
10
+
11
+ - Redistributions in binary form must reproduce the above copyright
12
+ notice, this list of conditions and the following disclaimer listed
13
+ in this license in the documentation and/or other materials
14
+ provided with the distribution.
15
+
16
+ - Neither the name of the copyright holders nor the names of its
17
+ contributors may be used to endorse or promote products derived from
18
+ this software without specific prior written permission.
19
+
20
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31
+ *************************************************************************/
32
+
33
+ #ifndef _studentttests_h
34
+ #define _studentttests_h
35
+
36
+ #include "ap.h"
37
+ #include "ialglib.h"
38
+
39
+ #include "gammaf.h"
40
+ #include "normaldistr.h"
41
+ #include "ibetaf.h"
42
+ #include "studenttdistr.h"
43
+
44
+
45
+ /*************************************************************************
46
+ One-sample t-test
47
+
48
+ This test checks three hypotheses about the mean of the given sample. The
49
+ following tests are performed:
50
+ * two-tailed test (null hypothesis - the mean is equal to the given
51
+ value)
52
+ * left-tailed test (null hypothesis - the mean is greater than or
53
+ equal to the given value)
54
+ * right-tailed test (null hypothesis - the mean is less than or equal
55
+ to the given value).
56
+
57
+ The test is based on the assumption that a given sample has a normal
58
+ distribution and an unknown dispersion. If the distribution sharply
59
+ differs from normal, the test will work incorrectly.
60
+
61
+ Input parameters:
62
+ X - sample. Array whose index goes from 0 to N-1.
63
+ N - size of sample.
64
+ Mean - assumed value of the mean.
65
+
66
+ Output parameters:
67
+ BothTails - p-value for two-tailed test.
68
+ If BothTails is less than the given significance level
69
+ the null hypothesis is rejected.
70
+ LeftTail - p-value for left-tailed test.
71
+ If LeftTail is less than the given significance level,
72
+ the null hypothesis is rejected.
73
+ RightTail - p-value for right-tailed test.
74
+ If RightTail is less than the given significance level
75
+ the null hypothesis is rejected.
76
+
77
+ -- ALGLIB --
78
+ Copyright 08.09.2006 by Bochkanov Sergey
79
+ *************************************************************************/
80
+ void studentttest1(const ap::real_1d_array& x,
81
+ int n,
82
+ double mean,
83
+ double& bothtails,
84
+ double& lefttail,
85
+ double& righttail);
86
+
87
+
88
+ /*************************************************************************
89
+ Two-sample pooled test
90
+
91
+ This test checks three hypotheses about the mean of the given samples. The
92
+ following tests are performed:
93
+ * two-tailed test (null hypothesis - the means are equal)
94
+ * left-tailed test (null hypothesis - the mean of the first sample is
95
+ greater than or equal to the mean of the second sample)
96
+ * right-tailed test (null hypothesis - the mean of the first sample is
97
+ less than or equal to the mean of the second sample).
98
+
99
+ Test is based on the following assumptions:
100
+ * given samples have normal distributions
101
+ * dispersions are equal
102
+ * samples are independent.
103
+
104
+ Input parameters:
105
+ X - sample 1. Array whose index goes from 0 to N-1.
106
+ N - size of sample.
107
+ Y - sample 2. Array whose index goes from 0 to M-1.
108
+ M - size of sample.
109
+
110
+ Output parameters:
111
+ BothTails - p-value for two-tailed test.
112
+ If BothTails is less than the given significance level
113
+ the null hypothesis is rejected.
114
+ LeftTail - p-value for left-tailed test.
115
+ If LeftTail is less than the given significance level,
116
+ the null hypothesis is rejected.
117
+ RightTail - p-value for right-tailed test.
118
+ If RightTail is less than the given significance level
119
+ the null hypothesis is rejected.
120
+
121
+ -- ALGLIB --
122
+ Copyright 18.09.2006 by Bochkanov Sergey
123
+ *************************************************************************/
124
+ void studentttest2(const ap::real_1d_array& x,
125
+ int n,
126
+ const ap::real_1d_array& y,
127
+ int m,
128
+ double& bothtails,
129
+ double& lefttail,
130
+ double& righttail);
131
+
132
+
133
+ /*************************************************************************
134
+ Two-sample unpooled test
135
+
136
+ This test checks three hypotheses about the mean of the given samples. The
137
+ following tests are performed:
138
+ * two-tailed test (null hypothesis - the means are equal)
139
+ * left-tailed test (null hypothesis - the mean of the first sample is
140
+ greater than or equal to the mean of the second sample)
141
+ * right-tailed test (null hypothesis - the mean of the first sample is
142
+ less than or equal to the mean of the second sample).
143
+
144
+ Test is based on the following assumptions:
145
+ * given samples have normal distributions
146
+ * samples are independent.
147
+ Dispersion equality is not required
148
+
149
+ Input parameters:
150
+ X - sample 1. Array whose index goes from 0 to N-1.
151
+ N - size of the sample.
152
+ Y - sample 2. Array whose index goes from 0 to M-1.
153
+ M - size of the sample.
154
+
155
+ Output parameters:
156
+ BothTails - p-value for two-tailed test.
157
+ If BothTails is less than the given significance level
158
+ the null hypothesis is rejected.
159
+ LeftTail - p-value for left-tailed test.
160
+ If LeftTail is less than the given significance level,
161
+ the null hypothesis is rejected.
162
+ RightTail - p-value for right-tailed test.
163
+ If RightTail is less than the given significance level
164
+ the null hypothesis is rejected.
165
+
166
+ -- ALGLIB --
167
+ Copyright 18.09.2006 by Bochkanov Sergey
168
+ *************************************************************************/
169
+ void unequalvariancettest(const ap::real_1d_array& x,
170
+ int n,
171
+ const ap::real_1d_array& y,
172
+ int m,
173
+ double& bothtails,
174
+ double& lefttail,
175
+ double& righttail);
176
+
177
+
178
+ #endif
@@ -0,0 +1,620 @@
1
+ /*************************************************************************
2
+ Copyright (c) 2005-2007, Sergey Bochkanov (ALGLIB project).
3
+
4
+ Redistribution and use in source and binary forms, with or without
5
+ modification, are permitted provided that the following conditions are
6
+ met:
7
+
8
+ - Redistributions of source code must retain the above copyright
9
+ notice, this list of conditions and the following disclaimer.
10
+
11
+ - Redistributions in binary form must reproduce the above copyright
12
+ notice, this list of conditions and the following disclaimer listed
13
+ in this license in the documentation and/or other materials
14
+ provided with the distribution.
15
+
16
+ - Neither the name of the copyright holders nor the names of its
17
+ contributors may be used to endorse or promote products derived from
18
+ this software without specific prior written permission.
19
+
20
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31
+ *************************************************************************/
32
+
33
+ #include <stdafx.h>
34
+ #include "svd.h"
35
+
36
+ /*************************************************************************
37
+ Singular value decomposition of a rectangular matrix.
38
+
39
+ The algorithm calculates the singular value decomposition of a matrix of
40
+ size MxN: A = U * S * V^T
41
+
42
+ The algorithm finds the singular values and, optionally, matrices U and V^T.
43
+ The algorithm can find both first min(M,N) columns of matrix U and rows of
44
+ matrix V^T (singular vectors), and matrices U and V^T wholly (of sizes MxM
45
+ and NxN respectively).
46
+
47
+ Take into account that the subroutine does not return matrix V but V^T.
48
+
49
+ Input parameters:
50
+ A - matrix to be decomposed.
51
+ Array whose indexes range within [0..M-1, 0..N-1].
52
+ M - number of rows in matrix A.
53
+ N - number of columns in matrix A.
54
+ UNeeded - 0, 1 or 2. See the description of the parameter U.
55
+ VTNeeded - 0, 1 or 2. See the description of the parameter VT.
56
+ AdditionalMemory -
57
+ If the parameter:
58
+ * equals 0, the algorithm doesn�t use additional
59
+ memory (lower requirements, lower performance).
60
+ * equals 1, the algorithm uses additional
61
+ memory of size min(M,N)*min(M,N) of real numbers.
62
+ It often speeds up the algorithm.
63
+ * equals 2, the algorithm uses additional
64
+ memory of size M*min(M,N) of real numbers.
65
+ It allows to get a maximum performance.
66
+ The recommended value of the parameter is 2.
67
+
68
+ Output parameters:
69
+ W - contains singular values in descending order.
70
+ U - if UNeeded=0, U isn't changed, the left singular vectors
71
+ are not calculated.
72
+ if Uneeded=1, U contains left singular vectors (first
73
+ min(M,N) columns of matrix U). Array whose indexes range
74
+ within [0..M-1, 0..Min(M,N)-1].
75
+ if UNeeded=2, U contains matrix U wholly. Array whose
76
+ indexes range within [0..M-1, 0..M-1].
77
+ VT - if VTNeeded=0, VT isn�t changed, the right singular vectors
78
+ are not calculated.
79
+ if VTNeeded=1, VT contains right singular vectors (first
80
+ min(M,N) rows of matrix V^T). Array whose indexes range
81
+ within [0..min(M,N)-1, 0..N-1].
82
+ if VTNeeded=2, VT contains matrix V^T wholly. Array whose
83
+ indexes range within [0..N-1, 0..N-1].
84
+
85
+ -- ALGLIB --
86
+ Copyright 2005 by Bochkanov Sergey
87
+ *************************************************************************/
88
+ bool rmatrixsvd(ap::real_2d_array a,
89
+ int m,
90
+ int n,
91
+ int uneeded,
92
+ int vtneeded,
93
+ int additionalmemory,
94
+ ap::real_1d_array& w,
95
+ ap::real_2d_array& u,
96
+ ap::real_2d_array& vt)
97
+ {
98
+ #ifndef ALGLIB_OPTIMIZED
99
+ bool result;
100
+ ap::real_1d_array tauq;
101
+ ap::real_1d_array taup;
102
+ ap::real_1d_array tau;
103
+ ap::real_1d_array e;
104
+ ap::real_1d_array work;
105
+ ap::real_2d_array t2;
106
+ bool isupper;
107
+ int minmn;
108
+ int ncu;
109
+ int nrvt;
110
+ int nru;
111
+ int ncvt;
112
+ int i;
113
+ int j;
114
+ int im1;
115
+ double sm;
116
+
117
+ result = true;
118
+ if( m==0||n==0 )
119
+ {
120
+ return result;
121
+ }
122
+ ap::ap_error::make_assertion(uneeded>=0&&uneeded<=2, "SVDDecomposition: wrong parameters!");
123
+ ap::ap_error::make_assertion(vtneeded>=0&&vtneeded<=2, "SVDDecomposition: wrong parameters!");
124
+ ap::ap_error::make_assertion(additionalmemory>=0&&additionalmemory<=2, "SVDDecomposition: wrong parameters!");
125
+
126
+ //
127
+ // initialize
128
+ //
129
+ minmn = ap::minint(m, n);
130
+ w.setbounds(1, minmn);
131
+ ncu = 0;
132
+ nru = 0;
133
+ if( uneeded==1 )
134
+ {
135
+ nru = m;
136
+ ncu = minmn;
137
+ u.setbounds(0, nru-1, 0, ncu-1);
138
+ }
139
+ if( uneeded==2 )
140
+ {
141
+ nru = m;
142
+ ncu = m;
143
+ u.setbounds(0, nru-1, 0, ncu-1);
144
+ }
145
+ nrvt = 0;
146
+ ncvt = 0;
147
+ if( vtneeded==1 )
148
+ {
149
+ nrvt = minmn;
150
+ ncvt = n;
151
+ vt.setbounds(0, nrvt-1, 0, ncvt-1);
152
+ }
153
+ if( vtneeded==2 )
154
+ {
155
+ nrvt = n;
156
+ ncvt = n;
157
+ vt.setbounds(0, nrvt-1, 0, ncvt-1);
158
+ }
159
+
160
+ //
161
+ // M much larger than N
162
+ // Use bidiagonal reduction with QR-decomposition
163
+ //
164
+ if( m>1.6*n )
165
+ {
166
+ if( uneeded==0 )
167
+ {
168
+
169
+ //
170
+ // No left singular vectors to be computed
171
+ //
172
+ rmatrixqr(a, m, n, tau);
173
+ for(i = 0; i <= n-1; i++)
174
+ {
175
+ for(j = 0; j <= i-1; j++)
176
+ {
177
+ a(i,j) = 0;
178
+ }
179
+ }
180
+ rmatrixbd(a, n, n, tauq, taup);
181
+ rmatrixbdunpackpt(a, n, n, taup, nrvt, vt);
182
+ rmatrixbdunpackdiagonals(a, n, n, isupper, w, e);
183
+ result = rmatrixbdsvd(w, e, n, isupper, false, u, 0, a, 0, vt, ncvt);
184
+ return result;
185
+ }
186
+ else
187
+ {
188
+
189
+ //
190
+ // Left singular vectors (may be full matrix U) to be computed
191
+ //
192
+ rmatrixqr(a, m, n, tau);
193
+ rmatrixqrunpackq(a, m, n, tau, ncu, u);
194
+ for(i = 0; i <= n-1; i++)
195
+ {
196
+ for(j = 0; j <= i-1; j++)
197
+ {
198
+ a(i,j) = 0;
199
+ }
200
+ }
201
+ rmatrixbd(a, n, n, tauq, taup);
202
+ rmatrixbdunpackpt(a, n, n, taup, nrvt, vt);
203
+ rmatrixbdunpackdiagonals(a, n, n, isupper, w, e);
204
+ if( additionalmemory<1 )
205
+ {
206
+
207
+ //
208
+ // No additional memory can be used
209
+ //
210
+ rmatrixbdmultiplybyq(a, n, n, tauq, u, m, n, true, false);
211
+ result = rmatrixbdsvd(w, e, n, isupper, false, u, m, a, 0, vt, ncvt);
212
+ }
213
+ else
214
+ {
215
+
216
+ //
217
+ // Large U. Transforming intermediate matrix T2
218
+ //
219
+ work.setbounds(1, ap::maxint(m, n));
220
+ rmatrixbdunpackq(a, n, n, tauq, n, t2);
221
+ copymatrix(u, 0, m-1, 0, n-1, a, 0, m-1, 0, n-1);
222
+ inplacetranspose(t2, 0, n-1, 0, n-1, work);
223
+ result = rmatrixbdsvd(w, e, n, isupper, false, u, 0, t2, n, vt, ncvt);
224
+ matrixmatrixmultiply(a, 0, m-1, 0, n-1, false, t2, 0, n-1, 0, n-1, true, 1.0, u, 0, m-1, 0, n-1, 0.0, work);
225
+ }
226
+ return result;
227
+ }
228
+ }
229
+
230
+ //
231
+ // N much larger than M
232
+ // Use bidiagonal reduction with LQ-decomposition
233
+ //
234
+ if( n>1.6*m )
235
+ {
236
+ if( vtneeded==0 )
237
+ {
238
+
239
+ //
240
+ // No right singular vectors to be computed
241
+ //
242
+ rmatrixlq(a, m, n, tau);
243
+ for(i = 0; i <= m-1; i++)
244
+ {
245
+ for(j = i+1; j <= m-1; j++)
246
+ {
247
+ a(i,j) = 0;
248
+ }
249
+ }
250
+ rmatrixbd(a, m, m, tauq, taup);
251
+ rmatrixbdunpackq(a, m, m, tauq, ncu, u);
252
+ rmatrixbdunpackdiagonals(a, m, m, isupper, w, e);
253
+ work.setbounds(1, m);
254
+ inplacetranspose(u, 0, nru-1, 0, ncu-1, work);
255
+ result = rmatrixbdsvd(w, e, m, isupper, false, a, 0, u, nru, vt, 0);
256
+ inplacetranspose(u, 0, nru-1, 0, ncu-1, work);
257
+ return result;
258
+ }
259
+ else
260
+ {
261
+
262
+ //
263
+ // Right singular vectors (may be full matrix VT) to be computed
264
+ //
265
+ rmatrixlq(a, m, n, tau);
266
+ rmatrixlqunpackq(a, m, n, tau, nrvt, vt);
267
+ for(i = 0; i <= m-1; i++)
268
+ {
269
+ for(j = i+1; j <= m-1; j++)
270
+ {
271
+ a(i,j) = 0;
272
+ }
273
+ }
274
+ rmatrixbd(a, m, m, tauq, taup);
275
+ rmatrixbdunpackq(a, m, m, tauq, ncu, u);
276
+ rmatrixbdunpackdiagonals(a, m, m, isupper, w, e);
277
+ work.setbounds(1, ap::maxint(m, n));
278
+ inplacetranspose(u, 0, nru-1, 0, ncu-1, work);
279
+ if( additionalmemory<1 )
280
+ {
281
+
282
+ //
283
+ // No additional memory available
284
+ //
285
+ rmatrixbdmultiplybyp(a, m, m, taup, vt, m, n, false, true);
286
+ result = rmatrixbdsvd(w, e, m, isupper, false, a, 0, u, nru, vt, n);
287
+ }
288
+ else
289
+ {
290
+
291
+ //
292
+ // Large VT. Transforming intermediate matrix T2
293
+ //
294
+ rmatrixbdunpackpt(a, m, m, taup, m, t2);
295
+ result = rmatrixbdsvd(w, e, m, isupper, false, a, 0, u, nru, t2, m);
296
+ copymatrix(vt, 0, m-1, 0, n-1, a, 0, m-1, 0, n-1);
297
+ matrixmatrixmultiply(t2, 0, m-1, 0, m-1, false, a, 0, m-1, 0, n-1, false, 1.0, vt, 0, m-1, 0, n-1, 0.0, work);
298
+ }
299
+ inplacetranspose(u, 0, nru-1, 0, ncu-1, work);
300
+ return result;
301
+ }
302
+ }
303
+
304
+ //
305
+ // M<=N
306
+ // We can use inplace transposition of U to get rid of columnwise operations
307
+ //
308
+ if( m<=n )
309
+ {
310
+ rmatrixbd(a, m, n, tauq, taup);
311
+ rmatrixbdunpackq(a, m, n, tauq, ncu, u);
312
+ rmatrixbdunpackpt(a, m, n, taup, nrvt, vt);
313
+ rmatrixbdunpackdiagonals(a, m, n, isupper, w, e);
314
+ work.setbounds(1, m);
315
+ inplacetranspose(u, 0, nru-1, 0, ncu-1, work);
316
+ result = rmatrixbdsvd(w, e, minmn, isupper, false, a, 0, u, nru, vt, ncvt);
317
+ inplacetranspose(u, 0, nru-1, 0, ncu-1, work);
318
+ return result;
319
+ }
320
+
321
+ //
322
+ // Simple bidiagonal reduction
323
+ //
324
+ rmatrixbd(a, m, n, tauq, taup);
325
+ rmatrixbdunpackq(a, m, n, tauq, ncu, u);
326
+ rmatrixbdunpackpt(a, m, n, taup, nrvt, vt);
327
+ rmatrixbdunpackdiagonals(a, m, n, isupper, w, e);
328
+ if( additionalmemory<2||uneeded==0 )
329
+ {
330
+
331
+ //
332
+ // We cant use additional memory or there is no need in such operations
333
+ //
334
+ result = rmatrixbdsvd(w, e, minmn, isupper, false, u, nru, a, 0, vt, ncvt);
335
+ }
336
+ else
337
+ {
338
+
339
+ //
340
+ // We can use additional memory
341
+ //
342
+ t2.setbounds(0, minmn-1, 0, m-1);
343
+ copyandtranspose(u, 0, m-1, 0, minmn-1, t2, 0, minmn-1, 0, m-1);
344
+ result = rmatrixbdsvd(w, e, minmn, isupper, false, u, 0, t2, m, vt, ncvt);
345
+ copyandtranspose(t2, 0, minmn-1, 0, m-1, u, 0, m-1, 0, minmn-1);
346
+ }
347
+ return result;
348
+ #else
349
+ return _i_rmatrixsvd(a, m, n, uneeded, vtneeded, additionalmemory, w, u, vt);
350
+ #endif
351
+ }
352
+
353
+
354
+ /*************************************************************************
355
+ Obsolete 1-based subroutine.
356
+ See RMatrixSVD for 0-based replacement.
357
+ *************************************************************************/
358
+ bool svddecomposition(ap::real_2d_array a,
359
+ int m,
360
+ int n,
361
+ int uneeded,
362
+ int vtneeded,
363
+ int additionalmemory,
364
+ ap::real_1d_array& w,
365
+ ap::real_2d_array& u,
366
+ ap::real_2d_array& vt)
367
+ {
368
+ bool result;
369
+ ap::real_1d_array tauq;
370
+ ap::real_1d_array taup;
371
+ ap::real_1d_array tau;
372
+ ap::real_1d_array e;
373
+ ap::real_1d_array work;
374
+ ap::real_2d_array t2;
375
+ bool isupper;
376
+ int minmn;
377
+ int ncu;
378
+ int nrvt;
379
+ int nru;
380
+ int ncvt;
381
+ int i;
382
+ int j;
383
+ int im1;
384
+ double sm;
385
+
386
+ result = true;
387
+ if( m==0||n==0 )
388
+ {
389
+ return result;
390
+ }
391
+ ap::ap_error::make_assertion(uneeded>=0&&uneeded<=2, "SVDDecomposition: wrong parameters!");
392
+ ap::ap_error::make_assertion(vtneeded>=0&&vtneeded<=2, "SVDDecomposition: wrong parameters!");
393
+ ap::ap_error::make_assertion(additionalmemory>=0&&additionalmemory<=2, "SVDDecomposition: wrong parameters!");
394
+
395
+ //
396
+ // initialize
397
+ //
398
+ minmn = ap::minint(m, n);
399
+ w.setbounds(1, minmn);
400
+ ncu = 0;
401
+ nru = 0;
402
+ if( uneeded==1 )
403
+ {
404
+ nru = m;
405
+ ncu = minmn;
406
+ u.setbounds(1, nru, 1, ncu);
407
+ }
408
+ if( uneeded==2 )
409
+ {
410
+ nru = m;
411
+ ncu = m;
412
+ u.setbounds(1, nru, 1, ncu);
413
+ }
414
+ nrvt = 0;
415
+ ncvt = 0;
416
+ if( vtneeded==1 )
417
+ {
418
+ nrvt = minmn;
419
+ ncvt = n;
420
+ vt.setbounds(1, nrvt, 1, ncvt);
421
+ }
422
+ if( vtneeded==2 )
423
+ {
424
+ nrvt = n;
425
+ ncvt = n;
426
+ vt.setbounds(1, nrvt, 1, ncvt);
427
+ }
428
+
429
+ //
430
+ // M much larger than N
431
+ // Use bidiagonal reduction with QR-decomposition
432
+ //
433
+ if( m>1.6*n )
434
+ {
435
+ if( uneeded==0 )
436
+ {
437
+
438
+ //
439
+ // No left singular vectors to be computed
440
+ //
441
+ qrdecomposition(a, m, n, tau);
442
+ for(i = 2; i <= n; i++)
443
+ {
444
+ for(j = 1; j <= i-1; j++)
445
+ {
446
+ a(i,j) = 0;
447
+ }
448
+ }
449
+ tobidiagonal(a, n, n, tauq, taup);
450
+ unpackptfrombidiagonal(a, n, n, taup, nrvt, vt);
451
+ unpackdiagonalsfrombidiagonal(a, n, n, isupper, w, e);
452
+ result = bidiagonalsvddecomposition(w, e, n, isupper, false, u, 0, a, 0, vt, ncvt);
453
+ return result;
454
+ }
455
+ else
456
+ {
457
+
458
+ //
459
+ // Left singular vectors (may be full matrix U) to be computed
460
+ //
461
+ qrdecomposition(a, m, n, tau);
462
+ unpackqfromqr(a, m, n, tau, ncu, u);
463
+ for(i = 2; i <= n; i++)
464
+ {
465
+ for(j = 1; j <= i-1; j++)
466
+ {
467
+ a(i,j) = 0;
468
+ }
469
+ }
470
+ tobidiagonal(a, n, n, tauq, taup);
471
+ unpackptfrombidiagonal(a, n, n, taup, nrvt, vt);
472
+ unpackdiagonalsfrombidiagonal(a, n, n, isupper, w, e);
473
+ if( additionalmemory<1 )
474
+ {
475
+
476
+ //
477
+ // No additional memory can be used
478
+ //
479
+ multiplybyqfrombidiagonal(a, n, n, tauq, u, m, n, true, false);
480
+ result = bidiagonalsvddecomposition(w, e, n, isupper, false, u, m, a, 0, vt, ncvt);
481
+ }
482
+ else
483
+ {
484
+
485
+ //
486
+ // Large U. Transforming intermediate matrix T2
487
+ //
488
+ work.setbounds(1, ap::maxint(m, n));
489
+ unpackqfrombidiagonal(a, n, n, tauq, n, t2);
490
+ copymatrix(u, 1, m, 1, n, a, 1, m, 1, n);
491
+ inplacetranspose(t2, 1, n, 1, n, work);
492
+ result = bidiagonalsvddecomposition(w, e, n, isupper, false, u, 0, t2, n, vt, ncvt);
493
+ matrixmatrixmultiply(a, 1, m, 1, n, false, t2, 1, n, 1, n, true, 1.0, u, 1, m, 1, n, 0.0, work);
494
+ }
495
+ return result;
496
+ }
497
+ }
498
+
499
+ //
500
+ // N much larger than M
501
+ // Use bidiagonal reduction with LQ-decomposition
502
+ //
503
+ if( n>1.6*m )
504
+ {
505
+ if( vtneeded==0 )
506
+ {
507
+
508
+ //
509
+ // No right singular vectors to be computed
510
+ //
511
+ lqdecomposition(a, m, n, tau);
512
+ for(i = 1; i <= m-1; i++)
513
+ {
514
+ for(j = i+1; j <= m; j++)
515
+ {
516
+ a(i,j) = 0;
517
+ }
518
+ }
519
+ tobidiagonal(a, m, m, tauq, taup);
520
+ unpackqfrombidiagonal(a, m, m, tauq, ncu, u);
521
+ unpackdiagonalsfrombidiagonal(a, m, m, isupper, w, e);
522
+ work.setbounds(1, m);
523
+ inplacetranspose(u, 1, nru, 1, ncu, work);
524
+ result = bidiagonalsvddecomposition(w, e, m, isupper, false, a, 0, u, nru, vt, 0);
525
+ inplacetranspose(u, 1, nru, 1, ncu, work);
526
+ return result;
527
+ }
528
+ else
529
+ {
530
+
531
+ //
532
+ // Right singular vectors (may be full matrix VT) to be computed
533
+ //
534
+ lqdecomposition(a, m, n, tau);
535
+ unpackqfromlq(a, m, n, tau, nrvt, vt);
536
+ for(i = 1; i <= m-1; i++)
537
+ {
538
+ for(j = i+1; j <= m; j++)
539
+ {
540
+ a(i,j) = 0;
541
+ }
542
+ }
543
+ tobidiagonal(a, m, m, tauq, taup);
544
+ unpackqfrombidiagonal(a, m, m, tauq, ncu, u);
545
+ unpackdiagonalsfrombidiagonal(a, m, m, isupper, w, e);
546
+ work.setbounds(1, ap::maxint(m, n));
547
+ inplacetranspose(u, 1, nru, 1, ncu, work);
548
+ if( additionalmemory<1 )
549
+ {
550
+
551
+ //
552
+ // No additional memory available
553
+ //
554
+ multiplybypfrombidiagonal(a, m, m, taup, vt, m, n, false, true);
555
+ result = bidiagonalsvddecomposition(w, e, m, isupper, false, a, 0, u, nru, vt, n);
556
+ }
557
+ else
558
+ {
559
+
560
+ //
561
+ // Large VT. Transforming intermediate matrix T2
562
+ //
563
+ unpackptfrombidiagonal(a, m, m, taup, m, t2);
564
+ result = bidiagonalsvddecomposition(w, e, m, isupper, false, a, 0, u, nru, t2, m);
565
+ copymatrix(vt, 1, m, 1, n, a, 1, m, 1, n);
566
+ matrixmatrixmultiply(t2, 1, m, 1, m, false, a, 1, m, 1, n, false, 1.0, vt, 1, m, 1, n, 0.0, work);
567
+ }
568
+ inplacetranspose(u, 1, nru, 1, ncu, work);
569
+ return result;
570
+ }
571
+ }
572
+
573
+ //
574
+ // M<=N
575
+ // We can use inplace transposition of U to get rid of columnwise operations
576
+ //
577
+ if( m<=n )
578
+ {
579
+ tobidiagonal(a, m, n, tauq, taup);
580
+ unpackqfrombidiagonal(a, m, n, tauq, ncu, u);
581
+ unpackptfrombidiagonal(a, m, n, taup, nrvt, vt);
582
+ unpackdiagonalsfrombidiagonal(a, m, n, isupper, w, e);
583
+ work.setbounds(1, m);
584
+ inplacetranspose(u, 1, nru, 1, ncu, work);
585
+ result = bidiagonalsvddecomposition(w, e, minmn, isupper, false, a, 0, u, nru, vt, ncvt);
586
+ inplacetranspose(u, 1, nru, 1, ncu, work);
587
+ return result;
588
+ }
589
+
590
+ //
591
+ // Simple bidiagonal reduction
592
+ //
593
+ tobidiagonal(a, m, n, tauq, taup);
594
+ unpackqfrombidiagonal(a, m, n, tauq, ncu, u);
595
+ unpackptfrombidiagonal(a, m, n, taup, nrvt, vt);
596
+ unpackdiagonalsfrombidiagonal(a, m, n, isupper, w, e);
597
+ if( additionalmemory<2||uneeded==0 )
598
+ {
599
+
600
+ //
601
+ // We cant use additional memory or there is no need in such operations
602
+ //
603
+ result = bidiagonalsvddecomposition(w, e, minmn, isupper, false, u, nru, a, 0, vt, ncvt);
604
+ }
605
+ else
606
+ {
607
+
608
+ //
609
+ // We can use additional memory
610
+ //
611
+ t2.setbounds(1, minmn, 1, m);
612
+ copyandtranspose(u, 1, m, 1, minmn, t2, 1, minmn, 1, m);
613
+ result = bidiagonalsvddecomposition(w, e, minmn, isupper, false, u, 0, t2, m, vt, ncvt);
614
+ copyandtranspose(t2, 1, minmn, 1, m, u, 1, m, 1, minmn);
615
+ }
616
+ return result;
617
+ }
618
+
619
+
620
+