alglib 0.1.1

Sign up to get free protection for your applications and to get access to all the features.
Files changed (255) hide show
  1. data/History.txt +7 -0
  2. data/Manifest.txt +253 -0
  3. data/README.txt +33 -0
  4. data/Rakefile +27 -0
  5. data/ext/Rakefile +24 -0
  6. data/ext/alglib.i +24 -0
  7. data/ext/alglib/Makefile +157 -0
  8. data/ext/alglib/airyf.cpp +372 -0
  9. data/ext/alglib/airyf.h +81 -0
  10. data/ext/alglib/alglib.cpp +8558 -0
  11. data/ext/alglib/alglib_util.cpp +19 -0
  12. data/ext/alglib/alglib_util.h +14 -0
  13. data/ext/alglib/ap.cpp +877 -0
  14. data/ext/alglib/ap.english.html +364 -0
  15. data/ext/alglib/ap.h +666 -0
  16. data/ext/alglib/ap.russian.html +442 -0
  17. data/ext/alglib/apvt.h +754 -0
  18. data/ext/alglib/bdss.cpp +1500 -0
  19. data/ext/alglib/bdss.h +251 -0
  20. data/ext/alglib/bdsvd.cpp +1339 -0
  21. data/ext/alglib/bdsvd.h +164 -0
  22. data/ext/alglib/bessel.cpp +1226 -0
  23. data/ext/alglib/bessel.h +331 -0
  24. data/ext/alglib/betaf.cpp +105 -0
  25. data/ext/alglib/betaf.h +74 -0
  26. data/ext/alglib/bidiagonal.cpp +1328 -0
  27. data/ext/alglib/bidiagonal.h +350 -0
  28. data/ext/alglib/binomialdistr.cpp +247 -0
  29. data/ext/alglib/binomialdistr.h +153 -0
  30. data/ext/alglib/blas.cpp +576 -0
  31. data/ext/alglib/blas.h +132 -0
  32. data/ext/alglib/cblas.cpp +226 -0
  33. data/ext/alglib/cblas.h +57 -0
  34. data/ext/alglib/cdet.cpp +138 -0
  35. data/ext/alglib/cdet.h +92 -0
  36. data/ext/alglib/chebyshev.cpp +216 -0
  37. data/ext/alglib/chebyshev.h +76 -0
  38. data/ext/alglib/chisquaredistr.cpp +157 -0
  39. data/ext/alglib/chisquaredistr.h +144 -0
  40. data/ext/alglib/cholesky.cpp +285 -0
  41. data/ext/alglib/cholesky.h +86 -0
  42. data/ext/alglib/cinverse.cpp +298 -0
  43. data/ext/alglib/cinverse.h +111 -0
  44. data/ext/alglib/clu.cpp +337 -0
  45. data/ext/alglib/clu.h +120 -0
  46. data/ext/alglib/correlation.cpp +280 -0
  47. data/ext/alglib/correlation.h +77 -0
  48. data/ext/alglib/correlationtests.cpp +726 -0
  49. data/ext/alglib/correlationtests.h +134 -0
  50. data/ext/alglib/crcond.cpp +826 -0
  51. data/ext/alglib/crcond.h +148 -0
  52. data/ext/alglib/creflections.cpp +310 -0
  53. data/ext/alglib/creflections.h +165 -0
  54. data/ext/alglib/csolve.cpp +312 -0
  55. data/ext/alglib/csolve.h +99 -0
  56. data/ext/alglib/ctrinverse.cpp +387 -0
  57. data/ext/alglib/ctrinverse.h +98 -0
  58. data/ext/alglib/ctrlinsolve.cpp +297 -0
  59. data/ext/alglib/ctrlinsolve.h +81 -0
  60. data/ext/alglib/dawson.cpp +234 -0
  61. data/ext/alglib/dawson.h +74 -0
  62. data/ext/alglib/descriptivestatistics.cpp +436 -0
  63. data/ext/alglib/descriptivestatistics.h +112 -0
  64. data/ext/alglib/det.cpp +140 -0
  65. data/ext/alglib/det.h +94 -0
  66. data/ext/alglib/dforest.cpp +1819 -0
  67. data/ext/alglib/dforest.h +316 -0
  68. data/ext/alglib/elliptic.cpp +497 -0
  69. data/ext/alglib/elliptic.h +217 -0
  70. data/ext/alglib/estnorm.cpp +429 -0
  71. data/ext/alglib/estnorm.h +107 -0
  72. data/ext/alglib/expintegrals.cpp +422 -0
  73. data/ext/alglib/expintegrals.h +108 -0
  74. data/ext/alglib/faq.english.html +258 -0
  75. data/ext/alglib/faq.russian.html +272 -0
  76. data/ext/alglib/fdistr.cpp +202 -0
  77. data/ext/alglib/fdistr.h +163 -0
  78. data/ext/alglib/fresnel.cpp +211 -0
  79. data/ext/alglib/fresnel.h +91 -0
  80. data/ext/alglib/gammaf.cpp +338 -0
  81. data/ext/alglib/gammaf.h +104 -0
  82. data/ext/alglib/gqgengauss.cpp +235 -0
  83. data/ext/alglib/gqgengauss.h +92 -0
  84. data/ext/alglib/gqgenhermite.cpp +268 -0
  85. data/ext/alglib/gqgenhermite.h +63 -0
  86. data/ext/alglib/gqgenjacobi.cpp +297 -0
  87. data/ext/alglib/gqgenjacobi.h +72 -0
  88. data/ext/alglib/gqgenlaguerre.cpp +265 -0
  89. data/ext/alglib/gqgenlaguerre.h +69 -0
  90. data/ext/alglib/gqgenlegendre.cpp +300 -0
  91. data/ext/alglib/gqgenlegendre.h +62 -0
  92. data/ext/alglib/gqgenlobatto.cpp +305 -0
  93. data/ext/alglib/gqgenlobatto.h +97 -0
  94. data/ext/alglib/gqgenradau.cpp +232 -0
  95. data/ext/alglib/gqgenradau.h +95 -0
  96. data/ext/alglib/hbisinv.cpp +480 -0
  97. data/ext/alglib/hbisinv.h +183 -0
  98. data/ext/alglib/hblas.cpp +228 -0
  99. data/ext/alglib/hblas.h +64 -0
  100. data/ext/alglib/hcholesky.cpp +339 -0
  101. data/ext/alglib/hcholesky.h +91 -0
  102. data/ext/alglib/hermite.cpp +114 -0
  103. data/ext/alglib/hermite.h +49 -0
  104. data/ext/alglib/hessenberg.cpp +370 -0
  105. data/ext/alglib/hessenberg.h +152 -0
  106. data/ext/alglib/hevd.cpp +247 -0
  107. data/ext/alglib/hevd.h +107 -0
  108. data/ext/alglib/hsschur.cpp +1316 -0
  109. data/ext/alglib/hsschur.h +108 -0
  110. data/ext/alglib/htridiagonal.cpp +734 -0
  111. data/ext/alglib/htridiagonal.h +180 -0
  112. data/ext/alglib/ialglib.cpp +6 -0
  113. data/ext/alglib/ialglib.h +9 -0
  114. data/ext/alglib/ibetaf.cpp +960 -0
  115. data/ext/alglib/ibetaf.h +125 -0
  116. data/ext/alglib/igammaf.cpp +430 -0
  117. data/ext/alglib/igammaf.h +157 -0
  118. data/ext/alglib/inv.cpp +274 -0
  119. data/ext/alglib/inv.h +115 -0
  120. data/ext/alglib/inverseupdate.cpp +480 -0
  121. data/ext/alglib/inverseupdate.h +185 -0
  122. data/ext/alglib/jacobianelliptic.cpp +164 -0
  123. data/ext/alglib/jacobianelliptic.h +94 -0
  124. data/ext/alglib/jarquebera.cpp +2271 -0
  125. data/ext/alglib/jarquebera.h +80 -0
  126. data/ext/alglib/kmeans.cpp +356 -0
  127. data/ext/alglib/kmeans.h +76 -0
  128. data/ext/alglib/laguerre.cpp +94 -0
  129. data/ext/alglib/laguerre.h +48 -0
  130. data/ext/alglib/lbfgs.cpp +1167 -0
  131. data/ext/alglib/lbfgs.h +218 -0
  132. data/ext/alglib/lda.cpp +434 -0
  133. data/ext/alglib/lda.h +133 -0
  134. data/ext/alglib/ldlt.cpp +1130 -0
  135. data/ext/alglib/ldlt.h +124 -0
  136. data/ext/alglib/leastsquares.cpp +1252 -0
  137. data/ext/alglib/leastsquares.h +290 -0
  138. data/ext/alglib/legendre.cpp +107 -0
  139. data/ext/alglib/legendre.h +49 -0
  140. data/ext/alglib/linreg.cpp +1185 -0
  141. data/ext/alglib/linreg.h +380 -0
  142. data/ext/alglib/logit.cpp +1523 -0
  143. data/ext/alglib/logit.h +333 -0
  144. data/ext/alglib/lq.cpp +399 -0
  145. data/ext/alglib/lq.h +160 -0
  146. data/ext/alglib/lu.cpp +462 -0
  147. data/ext/alglib/lu.h +119 -0
  148. data/ext/alglib/mannwhitneyu.cpp +4490 -0
  149. data/ext/alglib/mannwhitneyu.h +115 -0
  150. data/ext/alglib/minlm.cpp +918 -0
  151. data/ext/alglib/minlm.h +312 -0
  152. data/ext/alglib/mlpbase.cpp +3375 -0
  153. data/ext/alglib/mlpbase.h +589 -0
  154. data/ext/alglib/mlpe.cpp +1369 -0
  155. data/ext/alglib/mlpe.h +552 -0
  156. data/ext/alglib/mlptrain.cpp +1056 -0
  157. data/ext/alglib/mlptrain.h +283 -0
  158. data/ext/alglib/nearunityunit.cpp +91 -0
  159. data/ext/alglib/nearunityunit.h +17 -0
  160. data/ext/alglib/normaldistr.cpp +377 -0
  161. data/ext/alglib/normaldistr.h +175 -0
  162. data/ext/alglib/nsevd.cpp +1869 -0
  163. data/ext/alglib/nsevd.h +140 -0
  164. data/ext/alglib/pca.cpp +168 -0
  165. data/ext/alglib/pca.h +87 -0
  166. data/ext/alglib/poissondistr.cpp +143 -0
  167. data/ext/alglib/poissondistr.h +130 -0
  168. data/ext/alglib/polinterpolation.cpp +685 -0
  169. data/ext/alglib/polinterpolation.h +206 -0
  170. data/ext/alglib/psif.cpp +173 -0
  171. data/ext/alglib/psif.h +88 -0
  172. data/ext/alglib/qr.cpp +414 -0
  173. data/ext/alglib/qr.h +168 -0
  174. data/ext/alglib/ratinterpolation.cpp +134 -0
  175. data/ext/alglib/ratinterpolation.h +72 -0
  176. data/ext/alglib/rcond.cpp +705 -0
  177. data/ext/alglib/rcond.h +140 -0
  178. data/ext/alglib/reflections.cpp +504 -0
  179. data/ext/alglib/reflections.h +165 -0
  180. data/ext/alglib/rotations.cpp +473 -0
  181. data/ext/alglib/rotations.h +128 -0
  182. data/ext/alglib/rsolve.cpp +221 -0
  183. data/ext/alglib/rsolve.h +99 -0
  184. data/ext/alglib/sbisinv.cpp +217 -0
  185. data/ext/alglib/sbisinv.h +171 -0
  186. data/ext/alglib/sblas.cpp +185 -0
  187. data/ext/alglib/sblas.h +64 -0
  188. data/ext/alglib/schur.cpp +156 -0
  189. data/ext/alglib/schur.h +102 -0
  190. data/ext/alglib/sdet.cpp +193 -0
  191. data/ext/alglib/sdet.h +101 -0
  192. data/ext/alglib/sevd.cpp +116 -0
  193. data/ext/alglib/sevd.h +99 -0
  194. data/ext/alglib/sinverse.cpp +672 -0
  195. data/ext/alglib/sinverse.h +138 -0
  196. data/ext/alglib/spddet.cpp +138 -0
  197. data/ext/alglib/spddet.h +96 -0
  198. data/ext/alglib/spdgevd.cpp +842 -0
  199. data/ext/alglib/spdgevd.h +200 -0
  200. data/ext/alglib/spdinverse.cpp +509 -0
  201. data/ext/alglib/spdinverse.h +122 -0
  202. data/ext/alglib/spdrcond.cpp +421 -0
  203. data/ext/alglib/spdrcond.h +118 -0
  204. data/ext/alglib/spdsolve.cpp +275 -0
  205. data/ext/alglib/spdsolve.h +105 -0
  206. data/ext/alglib/spline2d.cpp +1192 -0
  207. data/ext/alglib/spline2d.h +301 -0
  208. data/ext/alglib/spline3.cpp +1264 -0
  209. data/ext/alglib/spline3.h +290 -0
  210. data/ext/alglib/srcond.cpp +595 -0
  211. data/ext/alglib/srcond.h +127 -0
  212. data/ext/alglib/ssolve.cpp +895 -0
  213. data/ext/alglib/ssolve.h +139 -0
  214. data/ext/alglib/stdafx.h +0 -0
  215. data/ext/alglib/stest.cpp +131 -0
  216. data/ext/alglib/stest.h +94 -0
  217. data/ext/alglib/studenttdistr.cpp +222 -0
  218. data/ext/alglib/studenttdistr.h +115 -0
  219. data/ext/alglib/studentttests.cpp +377 -0
  220. data/ext/alglib/studentttests.h +178 -0
  221. data/ext/alglib/svd.cpp +620 -0
  222. data/ext/alglib/svd.h +126 -0
  223. data/ext/alglib/tdbisinv.cpp +2608 -0
  224. data/ext/alglib/tdbisinv.h +228 -0
  225. data/ext/alglib/tdevd.cpp +1229 -0
  226. data/ext/alglib/tdevd.h +115 -0
  227. data/ext/alglib/tridiagonal.cpp +594 -0
  228. data/ext/alglib/tridiagonal.h +171 -0
  229. data/ext/alglib/trigintegrals.cpp +490 -0
  230. data/ext/alglib/trigintegrals.h +131 -0
  231. data/ext/alglib/trinverse.cpp +345 -0
  232. data/ext/alglib/trinverse.h +98 -0
  233. data/ext/alglib/trlinsolve.cpp +926 -0
  234. data/ext/alglib/trlinsolve.h +73 -0
  235. data/ext/alglib/tsort.cpp +405 -0
  236. data/ext/alglib/tsort.h +54 -0
  237. data/ext/alglib/variancetests.cpp +245 -0
  238. data/ext/alglib/variancetests.h +134 -0
  239. data/ext/alglib/wsr.cpp +6285 -0
  240. data/ext/alglib/wsr.h +96 -0
  241. data/ext/ap.i +97 -0
  242. data/ext/correlation.i +24 -0
  243. data/ext/extconf.rb +6 -0
  244. data/ext/logit.i +89 -0
  245. data/lib/alglib.rb +71 -0
  246. data/lib/alglib/correlation.rb +26 -0
  247. data/lib/alglib/linearregression.rb +63 -0
  248. data/lib/alglib/logit.rb +42 -0
  249. data/test/test_alglib.rb +52 -0
  250. data/test/test_correlation.rb +44 -0
  251. data/test/test_correlationtest.rb +45 -0
  252. data/test/test_linreg.rb +35 -0
  253. data/test/test_logit.rb +43 -0
  254. data/test/test_pca.rb +27 -0
  255. metadata +326 -0
@@ -0,0 +1,99 @@
1
+ /*************************************************************************
2
+ Copyright (c) 2005-2007, Sergey Bochkanov (ALGLIB project).
3
+
4
+ Redistribution and use in source and binary forms, with or without
5
+ modification, are permitted provided that the following conditions are
6
+ met:
7
+
8
+ - Redistributions of source code must retain the above copyright
9
+ notice, this list of conditions and the following disclaimer.
10
+
11
+ - Redistributions in binary form must reproduce the above copyright
12
+ notice, this list of conditions and the following disclaimer listed
13
+ in this license in the documentation and/or other materials
14
+ provided with the distribution.
15
+
16
+ - Neither the name of the copyright holders nor the names of its
17
+ contributors may be used to endorse or promote products derived from
18
+ this software without specific prior written permission.
19
+
20
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31
+ *************************************************************************/
32
+
33
+ #ifndef _sevd_h
34
+ #define _sevd_h
35
+
36
+ #include "ap.h"
37
+ #include "ialglib.h"
38
+
39
+ #include "blas.h"
40
+ #include "rotations.h"
41
+ #include "tdevd.h"
42
+ #include "sblas.h"
43
+ #include "reflections.h"
44
+ #include "tridiagonal.h"
45
+
46
+
47
+ /*************************************************************************
48
+ Finding the eigenvalues and eigenvectors of a symmetric matrix
49
+
50
+ The algorithm finds eigen pairs of a symmetric matrix by reducing it to
51
+ tridiagonal form and using the QL/QR algorithm.
52
+
53
+ Input parameters:
54
+ A - symmetric matrix which is given by its upper or lower
55
+ triangular part.
56
+ Array whose indexes range within [0..N-1, 0..N-1].
57
+ N - size of matrix A.
58
+ IsUpper - storage format.
59
+ ZNeeded - flag controlling whether the eigenvectors are needed or not.
60
+ If ZNeeded is equal to:
61
+ * 0, the eigenvectors are not returned;
62
+ * 1, the eigenvectors are returned.
63
+
64
+ Output parameters:
65
+ D - eigenvalues in ascending order.
66
+ Array whose index ranges within [0..N-1].
67
+ Z - if ZNeeded is equal to:
68
+ * 0, Z hasn�t changed;
69
+ * 1, Z contains the eigenvectors.
70
+ Array whose indexes range within [0..N-1, 0..N-1].
71
+ The eigenvectors are stored in the matrix columns.
72
+
73
+ Result:
74
+ True, if the algorithm has converged.
75
+ False, if the algorithm hasn't converged (rare case).
76
+
77
+ -- ALGLIB --
78
+ Copyright 2005-2008 by Bochkanov Sergey
79
+ *************************************************************************/
80
+ bool smatrixevd(ap::real_2d_array a,
81
+ int n,
82
+ int zneeded,
83
+ bool isupper,
84
+ ap::real_1d_array& d,
85
+ ap::real_2d_array& z);
86
+
87
+
88
+ /*************************************************************************
89
+ Obsolete 1-based subroutine
90
+ *************************************************************************/
91
+ bool symmetricevd(ap::real_2d_array a,
92
+ int n,
93
+ int zneeded,
94
+ bool isupper,
95
+ ap::real_1d_array& d,
96
+ ap::real_2d_array& z);
97
+
98
+
99
+ #endif
@@ -0,0 +1,672 @@
1
+ /*************************************************************************
2
+ Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
3
+
4
+ Contributors:
5
+ * Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
6
+ pseudocode.
7
+
8
+ See subroutines comments for additional copyrights.
9
+
10
+ Redistribution and use in source and binary forms, with or without
11
+ modification, are permitted provided that the following conditions are
12
+ met:
13
+
14
+ - Redistributions of source code must retain the above copyright
15
+ notice, this list of conditions and the following disclaimer.
16
+
17
+ - Redistributions in binary form must reproduce the above copyright
18
+ notice, this list of conditions and the following disclaimer listed
19
+ in this license in the documentation and/or other materials
20
+ provided with the distribution.
21
+
22
+ - Neither the name of the copyright holders nor the names of its
23
+ contributors may be used to endorse or promote products derived from
24
+ this software without specific prior written permission.
25
+
26
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
29
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
30
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
31
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
32
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
33
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
34
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
35
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
36
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
37
+ *************************************************************************/
38
+
39
+ #include <stdafx.h>
40
+ #include "sinverse.h"
41
+
42
+ /*************************************************************************
43
+ Inversion of a symmetric indefinite matrix
44
+
45
+ The algorithm gets an LDLT-decomposition as an input, generates matrix A^-1
46
+ and saves the lower or upper triangle of an inverse matrix depending on the
47
+ input (U*D*U' or L*D*L').
48
+
49
+ Input parameters:
50
+ A - LDLT-decomposition of the matrix,
51
+ Output of subroutine SMatrixLDLT.
52
+ N - size of matrix A.
53
+ IsUpper - storage format. If IsUpper = True, then the symmetric matrix
54
+ is given as decomposition A = U*D*U' and this decomposition
55
+ is stored in the upper triangle of matrix A and on the main
56
+ diagonal, and the lower triangle of matrix A is not used.
57
+ Pivots - a table of permutations, output of subroutine SMatrixLDLT.
58
+
59
+ Output parameters:
60
+ A - inverse of the matrix, whose LDLT-decomposition was stored
61
+ in matrix A as a subroutine input.
62
+ Array with elements [0..N-1, 0..N-1].
63
+ If IsUpper = True, then A contains the upper triangle of
64
+ matrix A^-1, and the elements below the main diagonal are
65
+ not used nor changed. The same applies if IsUpper = False.
66
+
67
+ Result:
68
+ True, if the matrix is not singular.
69
+ False, if the matrix is singular and could not be inverted.
70
+
71
+ -- LAPACK routine (version 3.0) --
72
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
73
+ Courant Institute, Argonne National Lab, and Rice University
74
+ March 31, 1993
75
+ *************************************************************************/
76
+ bool smatrixldltinverse(ap::real_2d_array& a,
77
+ const ap::integer_1d_array& pivots,
78
+ int n,
79
+ bool isupper)
80
+ {
81
+ bool result;
82
+ ap::real_1d_array work;
83
+ ap::real_1d_array work2;
84
+ int i;
85
+ int k;
86
+ int kp;
87
+ int kstep;
88
+ double ak;
89
+ double akkp1;
90
+ double akp1;
91
+ double d;
92
+ double t;
93
+ double temp;
94
+ int km1;
95
+ int kp1;
96
+ int l;
97
+ int i1;
98
+ int i2;
99
+ double v;
100
+
101
+ work.setbounds(1, n);
102
+ work2.setbounds(1, n);
103
+ result = true;
104
+
105
+ //
106
+ // Quick return if possible
107
+ //
108
+ if( n==0 )
109
+ {
110
+ return result;
111
+ }
112
+
113
+ //
114
+ // Check that the diagonal matrix D is nonsingular.
115
+ //
116
+ for(i = 0; i <= n-1; i++)
117
+ {
118
+ if( pivots(i)>=0&&a(i,i)==0 )
119
+ {
120
+ result = false;
121
+ return result;
122
+ }
123
+ }
124
+ if( isupper )
125
+ {
126
+
127
+ //
128
+ // Compute inv(A) from the factorization A = U*D*U'.
129
+ //
130
+ // K+1 is the main loop index, increasing from 1 to N in steps of
131
+ // 1 or 2, depending on the size of the diagonal blocks.
132
+ //
133
+ k = 0;
134
+ while(k<=n-1)
135
+ {
136
+ if( pivots(k)>=0 )
137
+ {
138
+
139
+ //
140
+ // 1 x 1 diagonal block
141
+ //
142
+ // Invert the diagonal block.
143
+ //
144
+ a(k,k) = 1/a(k,k);
145
+
146
+ //
147
+ // Compute column K+1 of the inverse.
148
+ //
149
+ if( k>0 )
150
+ {
151
+ ap::vmove(work.getvector(1, k), a.getcolumn(k, 0, k-1));
152
+ symmetricmatrixvectormultiply(a, isupper, 1-1, k+1-1-1, work, double(-1), work2);
153
+ ap::vmove(a.getcolumn(k, 0, k-1), work2.getvector(1, k));
154
+ v = ap::vdotproduct(&work2(1), &work(1), ap::vlen(1,k));
155
+ a(k,k) = a(k,k)-v;
156
+ }
157
+ kstep = 1;
158
+ }
159
+ else
160
+ {
161
+
162
+ //
163
+ // 2 x 2 diagonal block
164
+ //
165
+ // Invert the diagonal block.
166
+ //
167
+ t = fabs(a(k,k+1));
168
+ ak = a(k,k)/t;
169
+ akp1 = a(k+1,k+1)/t;
170
+ akkp1 = a(k,k+1)/t;
171
+ d = t*(ak*akp1-1);
172
+ a(k,k) = akp1/d;
173
+ a(k+1,k+1) = ak/d;
174
+ a(k,k+1) = -akkp1/d;
175
+
176
+ //
177
+ // Compute columns K+1 and K+1+1 of the inverse.
178
+ //
179
+ if( k>0 )
180
+ {
181
+ ap::vmove(work.getvector(1, k), a.getcolumn(k, 0, k-1));
182
+ symmetricmatrixvectormultiply(a, isupper, 0, k-1, work, double(-1), work2);
183
+ ap::vmove(a.getcolumn(k, 0, k-1), work2.getvector(1, k));
184
+ v = ap::vdotproduct(&work(1), &work2(1), ap::vlen(1,k));
185
+ a(k,k) = a(k,k)-v;
186
+ v = ap::vdotproduct(a.getcolumn(k, 0, k-1), a.getcolumn(k+1, 0, k-1));
187
+ a(k,k+1) = a(k,k+1)-v;
188
+ ap::vmove(work.getvector(1, k), a.getcolumn(k+1, 0, k-1));
189
+ symmetricmatrixvectormultiply(a, isupper, 0, k-1, work, double(-1), work2);
190
+ ap::vmove(a.getcolumn(k+1, 0, k-1), work2.getvector(1, k));
191
+ v = ap::vdotproduct(&work(1), &work2(1), ap::vlen(1,k));
192
+ a(k+1,k+1) = a(k+1,k+1)-v;
193
+ }
194
+ kstep = 2;
195
+ }
196
+ if( pivots(k)>=0 )
197
+ {
198
+ kp = pivots(k);
199
+ }
200
+ else
201
+ {
202
+ kp = n+pivots(k);
203
+ }
204
+ if( kp!=k )
205
+ {
206
+
207
+ //
208
+ // Interchange rows and columns K and KP in the leading
209
+ // submatrix
210
+ //
211
+ ap::vmove(work.getvector(1, kp), a.getcolumn(k, 0, kp-1));
212
+ ap::vmove(a.getcolumn(k, 0, kp-1), a.getcolumn(kp, 0, kp-1));
213
+ ap::vmove(a.getcolumn(kp, 0, kp-1), work.getvector(1, kp));
214
+ ap::vmove(work.getvector(1, k-1-kp), a.getcolumn(k, kp+1, k-1));
215
+ ap::vmove(a.getcolumn(k, kp+1, k-1), a.getrow(kp, kp+1, k-1));
216
+ ap::vmove(&a(kp, kp+1), &work(1), ap::vlen(kp+1,k-1));
217
+ temp = a(k,k);
218
+ a(k,k) = a(kp,kp);
219
+ a(kp,kp) = temp;
220
+ if( kstep==2 )
221
+ {
222
+ temp = a(k,k+1);
223
+ a(k,k+1) = a(kp,k+1);
224
+ a(kp,k+1) = temp;
225
+ }
226
+ }
227
+ k = k+kstep;
228
+ }
229
+ }
230
+ else
231
+ {
232
+
233
+ //
234
+ // Compute inv(A) from the factorization A = L*D*L'.
235
+ //
236
+ // K is the main loop index, increasing from 0 to N-1 in steps of
237
+ // 1 or 2, depending on the size of the diagonal blocks.
238
+ //
239
+ k = n-1;
240
+ while(k>=0)
241
+ {
242
+ if( pivots(k)>=0 )
243
+ {
244
+
245
+ //
246
+ // 1 x 1 diagonal block
247
+ //
248
+ // Invert the diagonal block.
249
+ //
250
+ a(k,k) = 1/a(k,k);
251
+
252
+ //
253
+ // Compute column K+1 of the inverse.
254
+ //
255
+ if( k<n-1 )
256
+ {
257
+ ap::vmove(work.getvector(1, n-k-1), a.getcolumn(k, k+1, n-1));
258
+ symmetricmatrixvectormultiply(a, isupper, k+1, n-1, work, double(-1), work2);
259
+ ap::vmove(a.getcolumn(k, k+1, n-1), work2.getvector(1, n-k-1));
260
+ v = ap::vdotproduct(&work(1), &work2(1), ap::vlen(1,n-k-1));
261
+ a(k,k) = a(k,k)-v;
262
+ }
263
+ kstep = 1;
264
+ }
265
+ else
266
+ {
267
+
268
+ //
269
+ // 2 x 2 diagonal block
270
+ //
271
+ // Invert the diagonal block.
272
+ //
273
+ t = fabs(a(k,k-1));
274
+ ak = a(k-1,k-1)/t;
275
+ akp1 = a(k,k)/t;
276
+ akkp1 = a(k,k-1)/t;
277
+ d = t*(ak*akp1-1);
278
+ a(k-1,k-1) = akp1/d;
279
+ a(k,k) = ak/d;
280
+ a(k,k-1) = -akkp1/d;
281
+
282
+ //
283
+ // Compute columns K+1-1 and K+1 of the inverse.
284
+ //
285
+ if( k<n-1 )
286
+ {
287
+ ap::vmove(work.getvector(1, n-k-1), a.getcolumn(k, k+1, n-1));
288
+ symmetricmatrixvectormultiply(a, isupper, k+1, n-1, work, double(-1), work2);
289
+ ap::vmove(a.getcolumn(k, k+1, n-1), work2.getvector(1, n-k-1));
290
+ v = ap::vdotproduct(&work(1), &work2(1), ap::vlen(1,n-k-1));
291
+ a(k,k) = a(k,k)-v;
292
+ v = ap::vdotproduct(a.getcolumn(k, k+1, n-1), a.getcolumn(k-1, k+1, n-1));
293
+ a(k,k-1) = a(k,k-1)-v;
294
+ ap::vmove(work.getvector(1, n-k-1), a.getcolumn(k-1, k+1, n-1));
295
+ symmetricmatrixvectormultiply(a, isupper, k+1, n-1, work, double(-1), work2);
296
+ ap::vmove(a.getcolumn(k-1, k+1, n-1), work2.getvector(1, n-k-1));
297
+ v = ap::vdotproduct(&work(1), &work2(1), ap::vlen(1,n-k-1));
298
+ a(k-1,k-1) = a(k-1,k-1)-v;
299
+ }
300
+ kstep = 2;
301
+ }
302
+ if( pivots(k)>=0 )
303
+ {
304
+ kp = pivots(k);
305
+ }
306
+ else
307
+ {
308
+ kp = pivots(k)+n;
309
+ }
310
+ if( kp!=k )
311
+ {
312
+
313
+ //
314
+ // Interchange rows and columns K and KP
315
+ //
316
+ if( kp<n-1 )
317
+ {
318
+ ap::vmove(work.getvector(1, n-kp-1), a.getcolumn(k, kp+1, n-1));
319
+ ap::vmove(a.getcolumn(k, kp+1, n-1), a.getcolumn(kp, kp+1, n-1));
320
+ ap::vmove(a.getcolumn(kp, kp+1, n-1), work.getvector(1, n-kp-1));
321
+ }
322
+ ap::vmove(work.getvector(1, kp-k-1), a.getcolumn(k, k+1, kp-1));
323
+ ap::vmove(a.getcolumn(k, k+1, kp-1), a.getrow(kp, k+1, kp-1));
324
+ ap::vmove(&a(kp, k+1), &work(1), ap::vlen(k+1,kp-1));
325
+ temp = a(k,k);
326
+ a(k,k) = a(kp,kp);
327
+ a(kp,kp) = temp;
328
+ if( kstep==2 )
329
+ {
330
+ temp = a(k,k-1);
331
+ a(k,k-1) = a(kp,k-1);
332
+ a(kp,k-1) = temp;
333
+ }
334
+ }
335
+ k = k-kstep;
336
+ }
337
+ }
338
+ return result;
339
+ }
340
+
341
+
342
+ /*************************************************************************
343
+ Inversion of a symmetric indefinite matrix
344
+
345
+ Given a lower or upper triangle of matrix A, the algorithm generates
346
+ matrix A^-1 and saves the lower or upper triangle depending on the input.
347
+
348
+ Input parameters:
349
+ A - matrix to be inverted (upper or lower triangle).
350
+ Array with elements [0..N-1, 0..N-1].
351
+ N - size of matrix A.
352
+ IsUpper - storage format. If IsUpper = True, then the upper
353
+ triangle of matrix A is given, otherwise the lower
354
+ triangle is given.
355
+
356
+ Output parameters:
357
+ A - inverse of matrix A.
358
+ Array with elements [0..N-1, 0..N-1].
359
+ If IsUpper = True, then A contains the upper triangle of
360
+ matrix A^-1, and the elements below the main diagonal are
361
+ not used nor changed.
362
+ The same applies if IsUpper = False.
363
+
364
+ Result:
365
+ True, if the matrix is not singular.
366
+ False, if the matrix is singular and could not be inverted.
367
+
368
+ -- LAPACK routine (version 3.0) --
369
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
370
+ Courant Institute, Argonne National Lab, and Rice University
371
+ March 31, 1993
372
+ *************************************************************************/
373
+ bool smatrixinverse(ap::real_2d_array& a, int n, bool isupper)
374
+ {
375
+ bool result;
376
+ ap::integer_1d_array pivots;
377
+
378
+ smatrixldlt(a, n, isupper, pivots);
379
+ result = smatrixldltinverse(a, pivots, n, isupper);
380
+ return result;
381
+ }
382
+
383
+
384
+ /*************************************************************************
385
+ Obsolete 1-based subroutine
386
+ *************************************************************************/
387
+ bool inverseldlt(ap::real_2d_array& a,
388
+ const ap::integer_1d_array& pivots,
389
+ int n,
390
+ bool isupper)
391
+ {
392
+ bool result;
393
+ ap::real_1d_array work;
394
+ ap::real_1d_array work2;
395
+ int i;
396
+ int k;
397
+ int kp;
398
+ int kstep;
399
+ double ak;
400
+ double akkp1;
401
+ double akp1;
402
+ double d;
403
+ double t;
404
+ double temp;
405
+ int km1;
406
+ int kp1;
407
+ int l;
408
+ int i1;
409
+ int i2;
410
+ double v;
411
+
412
+ work.setbounds(1, n);
413
+ work2.setbounds(1, n);
414
+ result = true;
415
+
416
+ //
417
+ // Quick return if possible
418
+ //
419
+ if( n==0 )
420
+ {
421
+ return result;
422
+ }
423
+
424
+ //
425
+ // Check that the diagonal matrix D is nonsingular.
426
+ //
427
+ for(i = 1; i <= n; i++)
428
+ {
429
+ if( pivots(i)>0&&a(i,i)==0 )
430
+ {
431
+ result = false;
432
+ return result;
433
+ }
434
+ }
435
+ if( isupper )
436
+ {
437
+
438
+ //
439
+ // Compute inv(A) from the factorization A = U*D*U'.
440
+ //
441
+ // K is the main loop index, increasing from 1 to N in steps of
442
+ // 1 or 2, depending on the size of the diagonal blocks.
443
+ //
444
+ k = 1;
445
+ while(k<=n)
446
+ {
447
+ if( pivots(k)>0 )
448
+ {
449
+
450
+ //
451
+ // 1 x 1 diagonal block
452
+ //
453
+ // Invert the diagonal block.
454
+ //
455
+ a(k,k) = 1/a(k,k);
456
+
457
+ //
458
+ // Compute column K of the inverse.
459
+ //
460
+ if( k>1 )
461
+ {
462
+ km1 = k-1;
463
+ ap::vmove(work.getvector(1, km1), a.getcolumn(k, 1, km1));
464
+ symmetricmatrixvectormultiply(a, isupper, 1, k-1, work, double(-1), work2);
465
+ ap::vmove(a.getcolumn(k, 1, km1), work2.getvector(1, km1));
466
+ v = ap::vdotproduct(&work2(1), &work(1), ap::vlen(1,km1));
467
+ a(k,k) = a(k,k)-v;
468
+ }
469
+ kstep = 1;
470
+ }
471
+ else
472
+ {
473
+
474
+ //
475
+ // 2 x 2 diagonal block
476
+ //
477
+ // Invert the diagonal block.
478
+ //
479
+ t = fabs(a(k,k+1));
480
+ ak = a(k,k)/t;
481
+ akp1 = a(k+1,k+1)/t;
482
+ akkp1 = a(k,k+1)/t;
483
+ d = t*(ak*akp1-1);
484
+ a(k,k) = akp1/d;
485
+ a(k+1,k+1) = ak/d;
486
+ a(k,k+1) = -akkp1/d;
487
+
488
+ //
489
+ // Compute columns K and K+1 of the inverse.
490
+ //
491
+ if( k>1 )
492
+ {
493
+ km1 = k-1;
494
+ kp1 = k+1;
495
+ ap::vmove(work.getvector(1, km1), a.getcolumn(k, 1, km1));
496
+ symmetricmatrixvectormultiply(a, isupper, 1, k-1, work, double(-1), work2);
497
+ ap::vmove(a.getcolumn(k, 1, km1), work2.getvector(1, km1));
498
+ v = ap::vdotproduct(&work(1), &work2(1), ap::vlen(1,km1));
499
+ a(k,k) = a(k,k)-v;
500
+ v = ap::vdotproduct(a.getcolumn(k, 1, km1), a.getcolumn(kp1, 1, km1));
501
+ a(k,k+1) = a(k,k+1)-v;
502
+ ap::vmove(work.getvector(1, km1), a.getcolumn(kp1, 1, km1));
503
+ symmetricmatrixvectormultiply(a, isupper, 1, k-1, work, double(-1), work2);
504
+ ap::vmove(a.getcolumn(kp1, 1, km1), work2.getvector(1, km1));
505
+ v = ap::vdotproduct(&work(1), &work2(1), ap::vlen(1,km1));
506
+ a(k+1,k+1) = a(k+1,k+1)-v;
507
+ }
508
+ kstep = 2;
509
+ }
510
+ kp = abs(pivots(k));
511
+ if( kp!=k )
512
+ {
513
+
514
+ //
515
+ // Interchange rows and columns K and KP in the leading
516
+ // submatrix A(1:k+1,1:k+1)
517
+ //
518
+ l = kp-1;
519
+ ap::vmove(work.getvector(1, l), a.getcolumn(k, 1, l));
520
+ ap::vmove(a.getcolumn(k, 1, l), a.getcolumn(kp, 1, l));
521
+ ap::vmove(a.getcolumn(kp, 1, l), work.getvector(1, l));
522
+ l = k-kp-1;
523
+ i1 = kp+1;
524
+ i2 = k-1;
525
+ ap::vmove(work.getvector(1, l), a.getcolumn(k, i1, i2));
526
+ ap::vmove(a.getcolumn(k, i1, i2), a.getrow(kp, i1, i2));
527
+ ap::vmove(&a(kp, i1), &work(1), ap::vlen(i1,i2));
528
+ temp = a(k,k);
529
+ a(k,k) = a(kp,kp);
530
+ a(kp,kp) = temp;
531
+ if( kstep==2 )
532
+ {
533
+ temp = a(k,k+1);
534
+ a(k,k+1) = a(kp,k+1);
535
+ a(kp,k+1) = temp;
536
+ }
537
+ }
538
+ k = k+kstep;
539
+ }
540
+ }
541
+ else
542
+ {
543
+
544
+ //
545
+ // Compute inv(A) from the factorization A = L*D*L'.
546
+ //
547
+ // K is the main loop index, increasing from 1 to N in steps of
548
+ // 1 or 2, depending on the size of the diagonal blocks.
549
+ //
550
+ k = n;
551
+ while(k>=1)
552
+ {
553
+ if( pivots(k)>0 )
554
+ {
555
+
556
+ //
557
+ // 1 x 1 diagonal block
558
+ //
559
+ // Invert the diagonal block.
560
+ //
561
+ a(k,k) = 1/a(k,k);
562
+
563
+ //
564
+ // Compute column K of the inverse.
565
+ //
566
+ if( k<n )
567
+ {
568
+ kp1 = k+1;
569
+ km1 = k-1;
570
+ l = n-k;
571
+ ap::vmove(work.getvector(1, l), a.getcolumn(k, kp1, n));
572
+ symmetricmatrixvectormultiply(a, isupper, k+1, n, work, double(-1), work2);
573
+ ap::vmove(a.getcolumn(k, kp1, n), work2.getvector(1, l));
574
+ v = ap::vdotproduct(&work(1), &work2(1), ap::vlen(1,l));
575
+ a(k,k) = a(k,k)-v;
576
+ }
577
+ kstep = 1;
578
+ }
579
+ else
580
+ {
581
+
582
+ //
583
+ // 2 x 2 diagonal block
584
+ //
585
+ // Invert the diagonal block.
586
+ //
587
+ t = fabs(a(k,k-1));
588
+ ak = a(k-1,k-1)/t;
589
+ akp1 = a(k,k)/t;
590
+ akkp1 = a(k,k-1)/t;
591
+ d = t*(ak*akp1-1);
592
+ a(k-1,k-1) = akp1/d;
593
+ a(k,k) = ak/d;
594
+ a(k,k-1) = -akkp1/d;
595
+
596
+ //
597
+ // Compute columns K-1 and K of the inverse.
598
+ //
599
+ if( k<n )
600
+ {
601
+ kp1 = k+1;
602
+ km1 = k-1;
603
+ l = n-k;
604
+ ap::vmove(work.getvector(1, l), a.getcolumn(k, kp1, n));
605
+ symmetricmatrixvectormultiply(a, isupper, k+1, n, work, double(-1), work2);
606
+ ap::vmove(a.getcolumn(k, kp1, n), work2.getvector(1, l));
607
+ v = ap::vdotproduct(&work(1), &work2(1), ap::vlen(1,l));
608
+ a(k,k) = a(k,k)-v;
609
+ v = ap::vdotproduct(a.getcolumn(k, kp1, n), a.getcolumn(km1, kp1, n));
610
+ a(k,k-1) = a(k,k-1)-v;
611
+ ap::vmove(work.getvector(1, l), a.getcolumn(km1, kp1, n));
612
+ symmetricmatrixvectormultiply(a, isupper, k+1, n, work, double(-1), work2);
613
+ ap::vmove(a.getcolumn(km1, kp1, n), work2.getvector(1, l));
614
+ v = ap::vdotproduct(&work(1), &work2(1), ap::vlen(1,l));
615
+ a(k-1,k-1) = a(k-1,k-1)-v;
616
+ }
617
+ kstep = 2;
618
+ }
619
+ kp = abs(pivots(k));
620
+ if( kp!=k )
621
+ {
622
+
623
+ //
624
+ // Interchange rows and columns K and KP in the trailing
625
+ // submatrix A(k-1:n,k-1:n)
626
+ //
627
+ if( kp<n )
628
+ {
629
+ l = n-kp;
630
+ kp1 = kp+1;
631
+ ap::vmove(work.getvector(1, l), a.getcolumn(k, kp1, n));
632
+ ap::vmove(a.getcolumn(k, kp1, n), a.getcolumn(kp, kp1, n));
633
+ ap::vmove(a.getcolumn(kp, kp1, n), work.getvector(1, l));
634
+ }
635
+ l = kp-k-1;
636
+ i1 = k+1;
637
+ i2 = kp-1;
638
+ ap::vmove(work.getvector(1, l), a.getcolumn(k, i1, i2));
639
+ ap::vmove(a.getcolumn(k, i1, i2), a.getrow(kp, i1, i2));
640
+ ap::vmove(&a(kp, i1), &work(1), ap::vlen(i1,i2));
641
+ temp = a(k,k);
642
+ a(k,k) = a(kp,kp);
643
+ a(kp,kp) = temp;
644
+ if( kstep==2 )
645
+ {
646
+ temp = a(k,k-1);
647
+ a(k,k-1) = a(kp,k-1);
648
+ a(kp,k-1) = temp;
649
+ }
650
+ }
651
+ k = k-kstep;
652
+ }
653
+ }
654
+ return result;
655
+ }
656
+
657
+
658
+ /*************************************************************************
659
+ Obsolete 1-based subroutine
660
+ *************************************************************************/
661
+ bool inversesymmetricindefinite(ap::real_2d_array& a, int n, bool isupper)
662
+ {
663
+ bool result;
664
+ ap::integer_1d_array pivots;
665
+
666
+ ldltdecomposition(a, n, isupper, pivots);
667
+ result = inverseldlt(a, pivots, n, isupper);
668
+ return result;
669
+ }
670
+
671
+
672
+