alglib 0.1.1
Sign up to get free protection for your applications and to get access to all the features.
- data/History.txt +7 -0
- data/Manifest.txt +253 -0
- data/README.txt +33 -0
- data/Rakefile +27 -0
- data/ext/Rakefile +24 -0
- data/ext/alglib.i +24 -0
- data/ext/alglib/Makefile +157 -0
- data/ext/alglib/airyf.cpp +372 -0
- data/ext/alglib/airyf.h +81 -0
- data/ext/alglib/alglib.cpp +8558 -0
- data/ext/alglib/alglib_util.cpp +19 -0
- data/ext/alglib/alglib_util.h +14 -0
- data/ext/alglib/ap.cpp +877 -0
- data/ext/alglib/ap.english.html +364 -0
- data/ext/alglib/ap.h +666 -0
- data/ext/alglib/ap.russian.html +442 -0
- data/ext/alglib/apvt.h +754 -0
- data/ext/alglib/bdss.cpp +1500 -0
- data/ext/alglib/bdss.h +251 -0
- data/ext/alglib/bdsvd.cpp +1339 -0
- data/ext/alglib/bdsvd.h +164 -0
- data/ext/alglib/bessel.cpp +1226 -0
- data/ext/alglib/bessel.h +331 -0
- data/ext/alglib/betaf.cpp +105 -0
- data/ext/alglib/betaf.h +74 -0
- data/ext/alglib/bidiagonal.cpp +1328 -0
- data/ext/alglib/bidiagonal.h +350 -0
- data/ext/alglib/binomialdistr.cpp +247 -0
- data/ext/alglib/binomialdistr.h +153 -0
- data/ext/alglib/blas.cpp +576 -0
- data/ext/alglib/blas.h +132 -0
- data/ext/alglib/cblas.cpp +226 -0
- data/ext/alglib/cblas.h +57 -0
- data/ext/alglib/cdet.cpp +138 -0
- data/ext/alglib/cdet.h +92 -0
- data/ext/alglib/chebyshev.cpp +216 -0
- data/ext/alglib/chebyshev.h +76 -0
- data/ext/alglib/chisquaredistr.cpp +157 -0
- data/ext/alglib/chisquaredistr.h +144 -0
- data/ext/alglib/cholesky.cpp +285 -0
- data/ext/alglib/cholesky.h +86 -0
- data/ext/alglib/cinverse.cpp +298 -0
- data/ext/alglib/cinverse.h +111 -0
- data/ext/alglib/clu.cpp +337 -0
- data/ext/alglib/clu.h +120 -0
- data/ext/alglib/correlation.cpp +280 -0
- data/ext/alglib/correlation.h +77 -0
- data/ext/alglib/correlationtests.cpp +726 -0
- data/ext/alglib/correlationtests.h +134 -0
- data/ext/alglib/crcond.cpp +826 -0
- data/ext/alglib/crcond.h +148 -0
- data/ext/alglib/creflections.cpp +310 -0
- data/ext/alglib/creflections.h +165 -0
- data/ext/alglib/csolve.cpp +312 -0
- data/ext/alglib/csolve.h +99 -0
- data/ext/alglib/ctrinverse.cpp +387 -0
- data/ext/alglib/ctrinverse.h +98 -0
- data/ext/alglib/ctrlinsolve.cpp +297 -0
- data/ext/alglib/ctrlinsolve.h +81 -0
- data/ext/alglib/dawson.cpp +234 -0
- data/ext/alglib/dawson.h +74 -0
- data/ext/alglib/descriptivestatistics.cpp +436 -0
- data/ext/alglib/descriptivestatistics.h +112 -0
- data/ext/alglib/det.cpp +140 -0
- data/ext/alglib/det.h +94 -0
- data/ext/alglib/dforest.cpp +1819 -0
- data/ext/alglib/dforest.h +316 -0
- data/ext/alglib/elliptic.cpp +497 -0
- data/ext/alglib/elliptic.h +217 -0
- data/ext/alglib/estnorm.cpp +429 -0
- data/ext/alglib/estnorm.h +107 -0
- data/ext/alglib/expintegrals.cpp +422 -0
- data/ext/alglib/expintegrals.h +108 -0
- data/ext/alglib/faq.english.html +258 -0
- data/ext/alglib/faq.russian.html +272 -0
- data/ext/alglib/fdistr.cpp +202 -0
- data/ext/alglib/fdistr.h +163 -0
- data/ext/alglib/fresnel.cpp +211 -0
- data/ext/alglib/fresnel.h +91 -0
- data/ext/alglib/gammaf.cpp +338 -0
- data/ext/alglib/gammaf.h +104 -0
- data/ext/alglib/gqgengauss.cpp +235 -0
- data/ext/alglib/gqgengauss.h +92 -0
- data/ext/alglib/gqgenhermite.cpp +268 -0
- data/ext/alglib/gqgenhermite.h +63 -0
- data/ext/alglib/gqgenjacobi.cpp +297 -0
- data/ext/alglib/gqgenjacobi.h +72 -0
- data/ext/alglib/gqgenlaguerre.cpp +265 -0
- data/ext/alglib/gqgenlaguerre.h +69 -0
- data/ext/alglib/gqgenlegendre.cpp +300 -0
- data/ext/alglib/gqgenlegendre.h +62 -0
- data/ext/alglib/gqgenlobatto.cpp +305 -0
- data/ext/alglib/gqgenlobatto.h +97 -0
- data/ext/alglib/gqgenradau.cpp +232 -0
- data/ext/alglib/gqgenradau.h +95 -0
- data/ext/alglib/hbisinv.cpp +480 -0
- data/ext/alglib/hbisinv.h +183 -0
- data/ext/alglib/hblas.cpp +228 -0
- data/ext/alglib/hblas.h +64 -0
- data/ext/alglib/hcholesky.cpp +339 -0
- data/ext/alglib/hcholesky.h +91 -0
- data/ext/alglib/hermite.cpp +114 -0
- data/ext/alglib/hermite.h +49 -0
- data/ext/alglib/hessenberg.cpp +370 -0
- data/ext/alglib/hessenberg.h +152 -0
- data/ext/alglib/hevd.cpp +247 -0
- data/ext/alglib/hevd.h +107 -0
- data/ext/alglib/hsschur.cpp +1316 -0
- data/ext/alglib/hsschur.h +108 -0
- data/ext/alglib/htridiagonal.cpp +734 -0
- data/ext/alglib/htridiagonal.h +180 -0
- data/ext/alglib/ialglib.cpp +6 -0
- data/ext/alglib/ialglib.h +9 -0
- data/ext/alglib/ibetaf.cpp +960 -0
- data/ext/alglib/ibetaf.h +125 -0
- data/ext/alglib/igammaf.cpp +430 -0
- data/ext/alglib/igammaf.h +157 -0
- data/ext/alglib/inv.cpp +274 -0
- data/ext/alglib/inv.h +115 -0
- data/ext/alglib/inverseupdate.cpp +480 -0
- data/ext/alglib/inverseupdate.h +185 -0
- data/ext/alglib/jacobianelliptic.cpp +164 -0
- data/ext/alglib/jacobianelliptic.h +94 -0
- data/ext/alglib/jarquebera.cpp +2271 -0
- data/ext/alglib/jarquebera.h +80 -0
- data/ext/alglib/kmeans.cpp +356 -0
- data/ext/alglib/kmeans.h +76 -0
- data/ext/alglib/laguerre.cpp +94 -0
- data/ext/alglib/laguerre.h +48 -0
- data/ext/alglib/lbfgs.cpp +1167 -0
- data/ext/alglib/lbfgs.h +218 -0
- data/ext/alglib/lda.cpp +434 -0
- data/ext/alglib/lda.h +133 -0
- data/ext/alglib/ldlt.cpp +1130 -0
- data/ext/alglib/ldlt.h +124 -0
- data/ext/alglib/leastsquares.cpp +1252 -0
- data/ext/alglib/leastsquares.h +290 -0
- data/ext/alglib/legendre.cpp +107 -0
- data/ext/alglib/legendre.h +49 -0
- data/ext/alglib/linreg.cpp +1185 -0
- data/ext/alglib/linreg.h +380 -0
- data/ext/alglib/logit.cpp +1523 -0
- data/ext/alglib/logit.h +333 -0
- data/ext/alglib/lq.cpp +399 -0
- data/ext/alglib/lq.h +160 -0
- data/ext/alglib/lu.cpp +462 -0
- data/ext/alglib/lu.h +119 -0
- data/ext/alglib/mannwhitneyu.cpp +4490 -0
- data/ext/alglib/mannwhitneyu.h +115 -0
- data/ext/alglib/minlm.cpp +918 -0
- data/ext/alglib/minlm.h +312 -0
- data/ext/alglib/mlpbase.cpp +3375 -0
- data/ext/alglib/mlpbase.h +589 -0
- data/ext/alglib/mlpe.cpp +1369 -0
- data/ext/alglib/mlpe.h +552 -0
- data/ext/alglib/mlptrain.cpp +1056 -0
- data/ext/alglib/mlptrain.h +283 -0
- data/ext/alglib/nearunityunit.cpp +91 -0
- data/ext/alglib/nearunityunit.h +17 -0
- data/ext/alglib/normaldistr.cpp +377 -0
- data/ext/alglib/normaldistr.h +175 -0
- data/ext/alglib/nsevd.cpp +1869 -0
- data/ext/alglib/nsevd.h +140 -0
- data/ext/alglib/pca.cpp +168 -0
- data/ext/alglib/pca.h +87 -0
- data/ext/alglib/poissondistr.cpp +143 -0
- data/ext/alglib/poissondistr.h +130 -0
- data/ext/alglib/polinterpolation.cpp +685 -0
- data/ext/alglib/polinterpolation.h +206 -0
- data/ext/alglib/psif.cpp +173 -0
- data/ext/alglib/psif.h +88 -0
- data/ext/alglib/qr.cpp +414 -0
- data/ext/alglib/qr.h +168 -0
- data/ext/alglib/ratinterpolation.cpp +134 -0
- data/ext/alglib/ratinterpolation.h +72 -0
- data/ext/alglib/rcond.cpp +705 -0
- data/ext/alglib/rcond.h +140 -0
- data/ext/alglib/reflections.cpp +504 -0
- data/ext/alglib/reflections.h +165 -0
- data/ext/alglib/rotations.cpp +473 -0
- data/ext/alglib/rotations.h +128 -0
- data/ext/alglib/rsolve.cpp +221 -0
- data/ext/alglib/rsolve.h +99 -0
- data/ext/alglib/sbisinv.cpp +217 -0
- data/ext/alglib/sbisinv.h +171 -0
- data/ext/alglib/sblas.cpp +185 -0
- data/ext/alglib/sblas.h +64 -0
- data/ext/alglib/schur.cpp +156 -0
- data/ext/alglib/schur.h +102 -0
- data/ext/alglib/sdet.cpp +193 -0
- data/ext/alglib/sdet.h +101 -0
- data/ext/alglib/sevd.cpp +116 -0
- data/ext/alglib/sevd.h +99 -0
- data/ext/alglib/sinverse.cpp +672 -0
- data/ext/alglib/sinverse.h +138 -0
- data/ext/alglib/spddet.cpp +138 -0
- data/ext/alglib/spddet.h +96 -0
- data/ext/alglib/spdgevd.cpp +842 -0
- data/ext/alglib/spdgevd.h +200 -0
- data/ext/alglib/spdinverse.cpp +509 -0
- data/ext/alglib/spdinverse.h +122 -0
- data/ext/alglib/spdrcond.cpp +421 -0
- data/ext/alglib/spdrcond.h +118 -0
- data/ext/alglib/spdsolve.cpp +275 -0
- data/ext/alglib/spdsolve.h +105 -0
- data/ext/alglib/spline2d.cpp +1192 -0
- data/ext/alglib/spline2d.h +301 -0
- data/ext/alglib/spline3.cpp +1264 -0
- data/ext/alglib/spline3.h +290 -0
- data/ext/alglib/srcond.cpp +595 -0
- data/ext/alglib/srcond.h +127 -0
- data/ext/alglib/ssolve.cpp +895 -0
- data/ext/alglib/ssolve.h +139 -0
- data/ext/alglib/stdafx.h +0 -0
- data/ext/alglib/stest.cpp +131 -0
- data/ext/alglib/stest.h +94 -0
- data/ext/alglib/studenttdistr.cpp +222 -0
- data/ext/alglib/studenttdistr.h +115 -0
- data/ext/alglib/studentttests.cpp +377 -0
- data/ext/alglib/studentttests.h +178 -0
- data/ext/alglib/svd.cpp +620 -0
- data/ext/alglib/svd.h +126 -0
- data/ext/alglib/tdbisinv.cpp +2608 -0
- data/ext/alglib/tdbisinv.h +228 -0
- data/ext/alglib/tdevd.cpp +1229 -0
- data/ext/alglib/tdevd.h +115 -0
- data/ext/alglib/tridiagonal.cpp +594 -0
- data/ext/alglib/tridiagonal.h +171 -0
- data/ext/alglib/trigintegrals.cpp +490 -0
- data/ext/alglib/trigintegrals.h +131 -0
- data/ext/alglib/trinverse.cpp +345 -0
- data/ext/alglib/trinverse.h +98 -0
- data/ext/alglib/trlinsolve.cpp +926 -0
- data/ext/alglib/trlinsolve.h +73 -0
- data/ext/alglib/tsort.cpp +405 -0
- data/ext/alglib/tsort.h +54 -0
- data/ext/alglib/variancetests.cpp +245 -0
- data/ext/alglib/variancetests.h +134 -0
- data/ext/alglib/wsr.cpp +6285 -0
- data/ext/alglib/wsr.h +96 -0
- data/ext/ap.i +97 -0
- data/ext/correlation.i +24 -0
- data/ext/extconf.rb +6 -0
- data/ext/logit.i +89 -0
- data/lib/alglib.rb +71 -0
- data/lib/alglib/correlation.rb +26 -0
- data/lib/alglib/linearregression.rb +63 -0
- data/lib/alglib/logit.rb +42 -0
- data/test/test_alglib.rb +52 -0
- data/test/test_correlation.rb +44 -0
- data/test/test_correlationtest.rb +45 -0
- data/test/test_linreg.rb +35 -0
- data/test/test_logit.rb +43 -0
- data/test/test_pca.rb +27 -0
- metadata +326 -0
data/ext/alglib/sevd.h
ADDED
@@ -0,0 +1,99 @@
|
|
1
|
+
/*************************************************************************
|
2
|
+
Copyright (c) 2005-2007, Sergey Bochkanov (ALGLIB project).
|
3
|
+
|
4
|
+
Redistribution and use in source and binary forms, with or without
|
5
|
+
modification, are permitted provided that the following conditions are
|
6
|
+
met:
|
7
|
+
|
8
|
+
- Redistributions of source code must retain the above copyright
|
9
|
+
notice, this list of conditions and the following disclaimer.
|
10
|
+
|
11
|
+
- Redistributions in binary form must reproduce the above copyright
|
12
|
+
notice, this list of conditions and the following disclaimer listed
|
13
|
+
in this license in the documentation and/or other materials
|
14
|
+
provided with the distribution.
|
15
|
+
|
16
|
+
- Neither the name of the copyright holders nor the names of its
|
17
|
+
contributors may be used to endorse or promote products derived from
|
18
|
+
this software without specific prior written permission.
|
19
|
+
|
20
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
21
|
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
22
|
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
23
|
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
24
|
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
25
|
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
26
|
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
27
|
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
28
|
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
29
|
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
30
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
31
|
+
*************************************************************************/
|
32
|
+
|
33
|
+
#ifndef _sevd_h
|
34
|
+
#define _sevd_h
|
35
|
+
|
36
|
+
#include "ap.h"
|
37
|
+
#include "ialglib.h"
|
38
|
+
|
39
|
+
#include "blas.h"
|
40
|
+
#include "rotations.h"
|
41
|
+
#include "tdevd.h"
|
42
|
+
#include "sblas.h"
|
43
|
+
#include "reflections.h"
|
44
|
+
#include "tridiagonal.h"
|
45
|
+
|
46
|
+
|
47
|
+
/*************************************************************************
|
48
|
+
Finding the eigenvalues and eigenvectors of a symmetric matrix
|
49
|
+
|
50
|
+
The algorithm finds eigen pairs of a symmetric matrix by reducing it to
|
51
|
+
tridiagonal form and using the QL/QR algorithm.
|
52
|
+
|
53
|
+
Input parameters:
|
54
|
+
A - symmetric matrix which is given by its upper or lower
|
55
|
+
triangular part.
|
56
|
+
Array whose indexes range within [0..N-1, 0..N-1].
|
57
|
+
N - size of matrix A.
|
58
|
+
IsUpper - storage format.
|
59
|
+
ZNeeded - flag controlling whether the eigenvectors are needed or not.
|
60
|
+
If ZNeeded is equal to:
|
61
|
+
* 0, the eigenvectors are not returned;
|
62
|
+
* 1, the eigenvectors are returned.
|
63
|
+
|
64
|
+
Output parameters:
|
65
|
+
D - eigenvalues in ascending order.
|
66
|
+
Array whose index ranges within [0..N-1].
|
67
|
+
Z - if ZNeeded is equal to:
|
68
|
+
* 0, Z hasn�t changed;
|
69
|
+
* 1, Z contains the eigenvectors.
|
70
|
+
Array whose indexes range within [0..N-1, 0..N-1].
|
71
|
+
The eigenvectors are stored in the matrix columns.
|
72
|
+
|
73
|
+
Result:
|
74
|
+
True, if the algorithm has converged.
|
75
|
+
False, if the algorithm hasn't converged (rare case).
|
76
|
+
|
77
|
+
-- ALGLIB --
|
78
|
+
Copyright 2005-2008 by Bochkanov Sergey
|
79
|
+
*************************************************************************/
|
80
|
+
bool smatrixevd(ap::real_2d_array a,
|
81
|
+
int n,
|
82
|
+
int zneeded,
|
83
|
+
bool isupper,
|
84
|
+
ap::real_1d_array& d,
|
85
|
+
ap::real_2d_array& z);
|
86
|
+
|
87
|
+
|
88
|
+
/*************************************************************************
|
89
|
+
Obsolete 1-based subroutine
|
90
|
+
*************************************************************************/
|
91
|
+
bool symmetricevd(ap::real_2d_array a,
|
92
|
+
int n,
|
93
|
+
int zneeded,
|
94
|
+
bool isupper,
|
95
|
+
ap::real_1d_array& d,
|
96
|
+
ap::real_2d_array& z);
|
97
|
+
|
98
|
+
|
99
|
+
#endif
|
@@ -0,0 +1,672 @@
|
|
1
|
+
/*************************************************************************
|
2
|
+
Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
|
3
|
+
|
4
|
+
Contributors:
|
5
|
+
* Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
|
6
|
+
pseudocode.
|
7
|
+
|
8
|
+
See subroutines comments for additional copyrights.
|
9
|
+
|
10
|
+
Redistribution and use in source and binary forms, with or without
|
11
|
+
modification, are permitted provided that the following conditions are
|
12
|
+
met:
|
13
|
+
|
14
|
+
- Redistributions of source code must retain the above copyright
|
15
|
+
notice, this list of conditions and the following disclaimer.
|
16
|
+
|
17
|
+
- Redistributions in binary form must reproduce the above copyright
|
18
|
+
notice, this list of conditions and the following disclaimer listed
|
19
|
+
in this license in the documentation and/or other materials
|
20
|
+
provided with the distribution.
|
21
|
+
|
22
|
+
- Neither the name of the copyright holders nor the names of its
|
23
|
+
contributors may be used to endorse or promote products derived from
|
24
|
+
this software without specific prior written permission.
|
25
|
+
|
26
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
27
|
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
28
|
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
29
|
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
30
|
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
31
|
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
32
|
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
33
|
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
34
|
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
35
|
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
36
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
37
|
+
*************************************************************************/
|
38
|
+
|
39
|
+
#include <stdafx.h>
|
40
|
+
#include "sinverse.h"
|
41
|
+
|
42
|
+
/*************************************************************************
|
43
|
+
Inversion of a symmetric indefinite matrix
|
44
|
+
|
45
|
+
The algorithm gets an LDLT-decomposition as an input, generates matrix A^-1
|
46
|
+
and saves the lower or upper triangle of an inverse matrix depending on the
|
47
|
+
input (U*D*U' or L*D*L').
|
48
|
+
|
49
|
+
Input parameters:
|
50
|
+
A - LDLT-decomposition of the matrix,
|
51
|
+
Output of subroutine SMatrixLDLT.
|
52
|
+
N - size of matrix A.
|
53
|
+
IsUpper - storage format. If IsUpper = True, then the symmetric matrix
|
54
|
+
is given as decomposition A = U*D*U' and this decomposition
|
55
|
+
is stored in the upper triangle of matrix A and on the main
|
56
|
+
diagonal, and the lower triangle of matrix A is not used.
|
57
|
+
Pivots - a table of permutations, output of subroutine SMatrixLDLT.
|
58
|
+
|
59
|
+
Output parameters:
|
60
|
+
A - inverse of the matrix, whose LDLT-decomposition was stored
|
61
|
+
in matrix A as a subroutine input.
|
62
|
+
Array with elements [0..N-1, 0..N-1].
|
63
|
+
If IsUpper = True, then A contains the upper triangle of
|
64
|
+
matrix A^-1, and the elements below the main diagonal are
|
65
|
+
not used nor changed. The same applies if IsUpper = False.
|
66
|
+
|
67
|
+
Result:
|
68
|
+
True, if the matrix is not singular.
|
69
|
+
False, if the matrix is singular and could not be inverted.
|
70
|
+
|
71
|
+
-- LAPACK routine (version 3.0) --
|
72
|
+
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
73
|
+
Courant Institute, Argonne National Lab, and Rice University
|
74
|
+
March 31, 1993
|
75
|
+
*************************************************************************/
|
76
|
+
bool smatrixldltinverse(ap::real_2d_array& a,
|
77
|
+
const ap::integer_1d_array& pivots,
|
78
|
+
int n,
|
79
|
+
bool isupper)
|
80
|
+
{
|
81
|
+
bool result;
|
82
|
+
ap::real_1d_array work;
|
83
|
+
ap::real_1d_array work2;
|
84
|
+
int i;
|
85
|
+
int k;
|
86
|
+
int kp;
|
87
|
+
int kstep;
|
88
|
+
double ak;
|
89
|
+
double akkp1;
|
90
|
+
double akp1;
|
91
|
+
double d;
|
92
|
+
double t;
|
93
|
+
double temp;
|
94
|
+
int km1;
|
95
|
+
int kp1;
|
96
|
+
int l;
|
97
|
+
int i1;
|
98
|
+
int i2;
|
99
|
+
double v;
|
100
|
+
|
101
|
+
work.setbounds(1, n);
|
102
|
+
work2.setbounds(1, n);
|
103
|
+
result = true;
|
104
|
+
|
105
|
+
//
|
106
|
+
// Quick return if possible
|
107
|
+
//
|
108
|
+
if( n==0 )
|
109
|
+
{
|
110
|
+
return result;
|
111
|
+
}
|
112
|
+
|
113
|
+
//
|
114
|
+
// Check that the diagonal matrix D is nonsingular.
|
115
|
+
//
|
116
|
+
for(i = 0; i <= n-1; i++)
|
117
|
+
{
|
118
|
+
if( pivots(i)>=0&&a(i,i)==0 )
|
119
|
+
{
|
120
|
+
result = false;
|
121
|
+
return result;
|
122
|
+
}
|
123
|
+
}
|
124
|
+
if( isupper )
|
125
|
+
{
|
126
|
+
|
127
|
+
//
|
128
|
+
// Compute inv(A) from the factorization A = U*D*U'.
|
129
|
+
//
|
130
|
+
// K+1 is the main loop index, increasing from 1 to N in steps of
|
131
|
+
// 1 or 2, depending on the size of the diagonal blocks.
|
132
|
+
//
|
133
|
+
k = 0;
|
134
|
+
while(k<=n-1)
|
135
|
+
{
|
136
|
+
if( pivots(k)>=0 )
|
137
|
+
{
|
138
|
+
|
139
|
+
//
|
140
|
+
// 1 x 1 diagonal block
|
141
|
+
//
|
142
|
+
// Invert the diagonal block.
|
143
|
+
//
|
144
|
+
a(k,k) = 1/a(k,k);
|
145
|
+
|
146
|
+
//
|
147
|
+
// Compute column K+1 of the inverse.
|
148
|
+
//
|
149
|
+
if( k>0 )
|
150
|
+
{
|
151
|
+
ap::vmove(work.getvector(1, k), a.getcolumn(k, 0, k-1));
|
152
|
+
symmetricmatrixvectormultiply(a, isupper, 1-1, k+1-1-1, work, double(-1), work2);
|
153
|
+
ap::vmove(a.getcolumn(k, 0, k-1), work2.getvector(1, k));
|
154
|
+
v = ap::vdotproduct(&work2(1), &work(1), ap::vlen(1,k));
|
155
|
+
a(k,k) = a(k,k)-v;
|
156
|
+
}
|
157
|
+
kstep = 1;
|
158
|
+
}
|
159
|
+
else
|
160
|
+
{
|
161
|
+
|
162
|
+
//
|
163
|
+
// 2 x 2 diagonal block
|
164
|
+
//
|
165
|
+
// Invert the diagonal block.
|
166
|
+
//
|
167
|
+
t = fabs(a(k,k+1));
|
168
|
+
ak = a(k,k)/t;
|
169
|
+
akp1 = a(k+1,k+1)/t;
|
170
|
+
akkp1 = a(k,k+1)/t;
|
171
|
+
d = t*(ak*akp1-1);
|
172
|
+
a(k,k) = akp1/d;
|
173
|
+
a(k+1,k+1) = ak/d;
|
174
|
+
a(k,k+1) = -akkp1/d;
|
175
|
+
|
176
|
+
//
|
177
|
+
// Compute columns K+1 and K+1+1 of the inverse.
|
178
|
+
//
|
179
|
+
if( k>0 )
|
180
|
+
{
|
181
|
+
ap::vmove(work.getvector(1, k), a.getcolumn(k, 0, k-1));
|
182
|
+
symmetricmatrixvectormultiply(a, isupper, 0, k-1, work, double(-1), work2);
|
183
|
+
ap::vmove(a.getcolumn(k, 0, k-1), work2.getvector(1, k));
|
184
|
+
v = ap::vdotproduct(&work(1), &work2(1), ap::vlen(1,k));
|
185
|
+
a(k,k) = a(k,k)-v;
|
186
|
+
v = ap::vdotproduct(a.getcolumn(k, 0, k-1), a.getcolumn(k+1, 0, k-1));
|
187
|
+
a(k,k+1) = a(k,k+1)-v;
|
188
|
+
ap::vmove(work.getvector(1, k), a.getcolumn(k+1, 0, k-1));
|
189
|
+
symmetricmatrixvectormultiply(a, isupper, 0, k-1, work, double(-1), work2);
|
190
|
+
ap::vmove(a.getcolumn(k+1, 0, k-1), work2.getvector(1, k));
|
191
|
+
v = ap::vdotproduct(&work(1), &work2(1), ap::vlen(1,k));
|
192
|
+
a(k+1,k+1) = a(k+1,k+1)-v;
|
193
|
+
}
|
194
|
+
kstep = 2;
|
195
|
+
}
|
196
|
+
if( pivots(k)>=0 )
|
197
|
+
{
|
198
|
+
kp = pivots(k);
|
199
|
+
}
|
200
|
+
else
|
201
|
+
{
|
202
|
+
kp = n+pivots(k);
|
203
|
+
}
|
204
|
+
if( kp!=k )
|
205
|
+
{
|
206
|
+
|
207
|
+
//
|
208
|
+
// Interchange rows and columns K and KP in the leading
|
209
|
+
// submatrix
|
210
|
+
//
|
211
|
+
ap::vmove(work.getvector(1, kp), a.getcolumn(k, 0, kp-1));
|
212
|
+
ap::vmove(a.getcolumn(k, 0, kp-1), a.getcolumn(kp, 0, kp-1));
|
213
|
+
ap::vmove(a.getcolumn(kp, 0, kp-1), work.getvector(1, kp));
|
214
|
+
ap::vmove(work.getvector(1, k-1-kp), a.getcolumn(k, kp+1, k-1));
|
215
|
+
ap::vmove(a.getcolumn(k, kp+1, k-1), a.getrow(kp, kp+1, k-1));
|
216
|
+
ap::vmove(&a(kp, kp+1), &work(1), ap::vlen(kp+1,k-1));
|
217
|
+
temp = a(k,k);
|
218
|
+
a(k,k) = a(kp,kp);
|
219
|
+
a(kp,kp) = temp;
|
220
|
+
if( kstep==2 )
|
221
|
+
{
|
222
|
+
temp = a(k,k+1);
|
223
|
+
a(k,k+1) = a(kp,k+1);
|
224
|
+
a(kp,k+1) = temp;
|
225
|
+
}
|
226
|
+
}
|
227
|
+
k = k+kstep;
|
228
|
+
}
|
229
|
+
}
|
230
|
+
else
|
231
|
+
{
|
232
|
+
|
233
|
+
//
|
234
|
+
// Compute inv(A) from the factorization A = L*D*L'.
|
235
|
+
//
|
236
|
+
// K is the main loop index, increasing from 0 to N-1 in steps of
|
237
|
+
// 1 or 2, depending on the size of the diagonal blocks.
|
238
|
+
//
|
239
|
+
k = n-1;
|
240
|
+
while(k>=0)
|
241
|
+
{
|
242
|
+
if( pivots(k)>=0 )
|
243
|
+
{
|
244
|
+
|
245
|
+
//
|
246
|
+
// 1 x 1 diagonal block
|
247
|
+
//
|
248
|
+
// Invert the diagonal block.
|
249
|
+
//
|
250
|
+
a(k,k) = 1/a(k,k);
|
251
|
+
|
252
|
+
//
|
253
|
+
// Compute column K+1 of the inverse.
|
254
|
+
//
|
255
|
+
if( k<n-1 )
|
256
|
+
{
|
257
|
+
ap::vmove(work.getvector(1, n-k-1), a.getcolumn(k, k+1, n-1));
|
258
|
+
symmetricmatrixvectormultiply(a, isupper, k+1, n-1, work, double(-1), work2);
|
259
|
+
ap::vmove(a.getcolumn(k, k+1, n-1), work2.getvector(1, n-k-1));
|
260
|
+
v = ap::vdotproduct(&work(1), &work2(1), ap::vlen(1,n-k-1));
|
261
|
+
a(k,k) = a(k,k)-v;
|
262
|
+
}
|
263
|
+
kstep = 1;
|
264
|
+
}
|
265
|
+
else
|
266
|
+
{
|
267
|
+
|
268
|
+
//
|
269
|
+
// 2 x 2 diagonal block
|
270
|
+
//
|
271
|
+
// Invert the diagonal block.
|
272
|
+
//
|
273
|
+
t = fabs(a(k,k-1));
|
274
|
+
ak = a(k-1,k-1)/t;
|
275
|
+
akp1 = a(k,k)/t;
|
276
|
+
akkp1 = a(k,k-1)/t;
|
277
|
+
d = t*(ak*akp1-1);
|
278
|
+
a(k-1,k-1) = akp1/d;
|
279
|
+
a(k,k) = ak/d;
|
280
|
+
a(k,k-1) = -akkp1/d;
|
281
|
+
|
282
|
+
//
|
283
|
+
// Compute columns K+1-1 and K+1 of the inverse.
|
284
|
+
//
|
285
|
+
if( k<n-1 )
|
286
|
+
{
|
287
|
+
ap::vmove(work.getvector(1, n-k-1), a.getcolumn(k, k+1, n-1));
|
288
|
+
symmetricmatrixvectormultiply(a, isupper, k+1, n-1, work, double(-1), work2);
|
289
|
+
ap::vmove(a.getcolumn(k, k+1, n-1), work2.getvector(1, n-k-1));
|
290
|
+
v = ap::vdotproduct(&work(1), &work2(1), ap::vlen(1,n-k-1));
|
291
|
+
a(k,k) = a(k,k)-v;
|
292
|
+
v = ap::vdotproduct(a.getcolumn(k, k+1, n-1), a.getcolumn(k-1, k+1, n-1));
|
293
|
+
a(k,k-1) = a(k,k-1)-v;
|
294
|
+
ap::vmove(work.getvector(1, n-k-1), a.getcolumn(k-1, k+1, n-1));
|
295
|
+
symmetricmatrixvectormultiply(a, isupper, k+1, n-1, work, double(-1), work2);
|
296
|
+
ap::vmove(a.getcolumn(k-1, k+1, n-1), work2.getvector(1, n-k-1));
|
297
|
+
v = ap::vdotproduct(&work(1), &work2(1), ap::vlen(1,n-k-1));
|
298
|
+
a(k-1,k-1) = a(k-1,k-1)-v;
|
299
|
+
}
|
300
|
+
kstep = 2;
|
301
|
+
}
|
302
|
+
if( pivots(k)>=0 )
|
303
|
+
{
|
304
|
+
kp = pivots(k);
|
305
|
+
}
|
306
|
+
else
|
307
|
+
{
|
308
|
+
kp = pivots(k)+n;
|
309
|
+
}
|
310
|
+
if( kp!=k )
|
311
|
+
{
|
312
|
+
|
313
|
+
//
|
314
|
+
// Interchange rows and columns K and KP
|
315
|
+
//
|
316
|
+
if( kp<n-1 )
|
317
|
+
{
|
318
|
+
ap::vmove(work.getvector(1, n-kp-1), a.getcolumn(k, kp+1, n-1));
|
319
|
+
ap::vmove(a.getcolumn(k, kp+1, n-1), a.getcolumn(kp, kp+1, n-1));
|
320
|
+
ap::vmove(a.getcolumn(kp, kp+1, n-1), work.getvector(1, n-kp-1));
|
321
|
+
}
|
322
|
+
ap::vmove(work.getvector(1, kp-k-1), a.getcolumn(k, k+1, kp-1));
|
323
|
+
ap::vmove(a.getcolumn(k, k+1, kp-1), a.getrow(kp, k+1, kp-1));
|
324
|
+
ap::vmove(&a(kp, k+1), &work(1), ap::vlen(k+1,kp-1));
|
325
|
+
temp = a(k,k);
|
326
|
+
a(k,k) = a(kp,kp);
|
327
|
+
a(kp,kp) = temp;
|
328
|
+
if( kstep==2 )
|
329
|
+
{
|
330
|
+
temp = a(k,k-1);
|
331
|
+
a(k,k-1) = a(kp,k-1);
|
332
|
+
a(kp,k-1) = temp;
|
333
|
+
}
|
334
|
+
}
|
335
|
+
k = k-kstep;
|
336
|
+
}
|
337
|
+
}
|
338
|
+
return result;
|
339
|
+
}
|
340
|
+
|
341
|
+
|
342
|
+
/*************************************************************************
|
343
|
+
Inversion of a symmetric indefinite matrix
|
344
|
+
|
345
|
+
Given a lower or upper triangle of matrix A, the algorithm generates
|
346
|
+
matrix A^-1 and saves the lower or upper triangle depending on the input.
|
347
|
+
|
348
|
+
Input parameters:
|
349
|
+
A - matrix to be inverted (upper or lower triangle).
|
350
|
+
Array with elements [0..N-1, 0..N-1].
|
351
|
+
N - size of matrix A.
|
352
|
+
IsUpper - storage format. If IsUpper = True, then the upper
|
353
|
+
triangle of matrix A is given, otherwise the lower
|
354
|
+
triangle is given.
|
355
|
+
|
356
|
+
Output parameters:
|
357
|
+
A - inverse of matrix A.
|
358
|
+
Array with elements [0..N-1, 0..N-1].
|
359
|
+
If IsUpper = True, then A contains the upper triangle of
|
360
|
+
matrix A^-1, and the elements below the main diagonal are
|
361
|
+
not used nor changed.
|
362
|
+
The same applies if IsUpper = False.
|
363
|
+
|
364
|
+
Result:
|
365
|
+
True, if the matrix is not singular.
|
366
|
+
False, if the matrix is singular and could not be inverted.
|
367
|
+
|
368
|
+
-- LAPACK routine (version 3.0) --
|
369
|
+
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
370
|
+
Courant Institute, Argonne National Lab, and Rice University
|
371
|
+
March 31, 1993
|
372
|
+
*************************************************************************/
|
373
|
+
bool smatrixinverse(ap::real_2d_array& a, int n, bool isupper)
|
374
|
+
{
|
375
|
+
bool result;
|
376
|
+
ap::integer_1d_array pivots;
|
377
|
+
|
378
|
+
smatrixldlt(a, n, isupper, pivots);
|
379
|
+
result = smatrixldltinverse(a, pivots, n, isupper);
|
380
|
+
return result;
|
381
|
+
}
|
382
|
+
|
383
|
+
|
384
|
+
/*************************************************************************
|
385
|
+
Obsolete 1-based subroutine
|
386
|
+
*************************************************************************/
|
387
|
+
bool inverseldlt(ap::real_2d_array& a,
|
388
|
+
const ap::integer_1d_array& pivots,
|
389
|
+
int n,
|
390
|
+
bool isupper)
|
391
|
+
{
|
392
|
+
bool result;
|
393
|
+
ap::real_1d_array work;
|
394
|
+
ap::real_1d_array work2;
|
395
|
+
int i;
|
396
|
+
int k;
|
397
|
+
int kp;
|
398
|
+
int kstep;
|
399
|
+
double ak;
|
400
|
+
double akkp1;
|
401
|
+
double akp1;
|
402
|
+
double d;
|
403
|
+
double t;
|
404
|
+
double temp;
|
405
|
+
int km1;
|
406
|
+
int kp1;
|
407
|
+
int l;
|
408
|
+
int i1;
|
409
|
+
int i2;
|
410
|
+
double v;
|
411
|
+
|
412
|
+
work.setbounds(1, n);
|
413
|
+
work2.setbounds(1, n);
|
414
|
+
result = true;
|
415
|
+
|
416
|
+
//
|
417
|
+
// Quick return if possible
|
418
|
+
//
|
419
|
+
if( n==0 )
|
420
|
+
{
|
421
|
+
return result;
|
422
|
+
}
|
423
|
+
|
424
|
+
//
|
425
|
+
// Check that the diagonal matrix D is nonsingular.
|
426
|
+
//
|
427
|
+
for(i = 1; i <= n; i++)
|
428
|
+
{
|
429
|
+
if( pivots(i)>0&&a(i,i)==0 )
|
430
|
+
{
|
431
|
+
result = false;
|
432
|
+
return result;
|
433
|
+
}
|
434
|
+
}
|
435
|
+
if( isupper )
|
436
|
+
{
|
437
|
+
|
438
|
+
//
|
439
|
+
// Compute inv(A) from the factorization A = U*D*U'.
|
440
|
+
//
|
441
|
+
// K is the main loop index, increasing from 1 to N in steps of
|
442
|
+
// 1 or 2, depending on the size of the diagonal blocks.
|
443
|
+
//
|
444
|
+
k = 1;
|
445
|
+
while(k<=n)
|
446
|
+
{
|
447
|
+
if( pivots(k)>0 )
|
448
|
+
{
|
449
|
+
|
450
|
+
//
|
451
|
+
// 1 x 1 diagonal block
|
452
|
+
//
|
453
|
+
// Invert the diagonal block.
|
454
|
+
//
|
455
|
+
a(k,k) = 1/a(k,k);
|
456
|
+
|
457
|
+
//
|
458
|
+
// Compute column K of the inverse.
|
459
|
+
//
|
460
|
+
if( k>1 )
|
461
|
+
{
|
462
|
+
km1 = k-1;
|
463
|
+
ap::vmove(work.getvector(1, km1), a.getcolumn(k, 1, km1));
|
464
|
+
symmetricmatrixvectormultiply(a, isupper, 1, k-1, work, double(-1), work2);
|
465
|
+
ap::vmove(a.getcolumn(k, 1, km1), work2.getvector(1, km1));
|
466
|
+
v = ap::vdotproduct(&work2(1), &work(1), ap::vlen(1,km1));
|
467
|
+
a(k,k) = a(k,k)-v;
|
468
|
+
}
|
469
|
+
kstep = 1;
|
470
|
+
}
|
471
|
+
else
|
472
|
+
{
|
473
|
+
|
474
|
+
//
|
475
|
+
// 2 x 2 diagonal block
|
476
|
+
//
|
477
|
+
// Invert the diagonal block.
|
478
|
+
//
|
479
|
+
t = fabs(a(k,k+1));
|
480
|
+
ak = a(k,k)/t;
|
481
|
+
akp1 = a(k+1,k+1)/t;
|
482
|
+
akkp1 = a(k,k+1)/t;
|
483
|
+
d = t*(ak*akp1-1);
|
484
|
+
a(k,k) = akp1/d;
|
485
|
+
a(k+1,k+1) = ak/d;
|
486
|
+
a(k,k+1) = -akkp1/d;
|
487
|
+
|
488
|
+
//
|
489
|
+
// Compute columns K and K+1 of the inverse.
|
490
|
+
//
|
491
|
+
if( k>1 )
|
492
|
+
{
|
493
|
+
km1 = k-1;
|
494
|
+
kp1 = k+1;
|
495
|
+
ap::vmove(work.getvector(1, km1), a.getcolumn(k, 1, km1));
|
496
|
+
symmetricmatrixvectormultiply(a, isupper, 1, k-1, work, double(-1), work2);
|
497
|
+
ap::vmove(a.getcolumn(k, 1, km1), work2.getvector(1, km1));
|
498
|
+
v = ap::vdotproduct(&work(1), &work2(1), ap::vlen(1,km1));
|
499
|
+
a(k,k) = a(k,k)-v;
|
500
|
+
v = ap::vdotproduct(a.getcolumn(k, 1, km1), a.getcolumn(kp1, 1, km1));
|
501
|
+
a(k,k+1) = a(k,k+1)-v;
|
502
|
+
ap::vmove(work.getvector(1, km1), a.getcolumn(kp1, 1, km1));
|
503
|
+
symmetricmatrixvectormultiply(a, isupper, 1, k-1, work, double(-1), work2);
|
504
|
+
ap::vmove(a.getcolumn(kp1, 1, km1), work2.getvector(1, km1));
|
505
|
+
v = ap::vdotproduct(&work(1), &work2(1), ap::vlen(1,km1));
|
506
|
+
a(k+1,k+1) = a(k+1,k+1)-v;
|
507
|
+
}
|
508
|
+
kstep = 2;
|
509
|
+
}
|
510
|
+
kp = abs(pivots(k));
|
511
|
+
if( kp!=k )
|
512
|
+
{
|
513
|
+
|
514
|
+
//
|
515
|
+
// Interchange rows and columns K and KP in the leading
|
516
|
+
// submatrix A(1:k+1,1:k+1)
|
517
|
+
//
|
518
|
+
l = kp-1;
|
519
|
+
ap::vmove(work.getvector(1, l), a.getcolumn(k, 1, l));
|
520
|
+
ap::vmove(a.getcolumn(k, 1, l), a.getcolumn(kp, 1, l));
|
521
|
+
ap::vmove(a.getcolumn(kp, 1, l), work.getvector(1, l));
|
522
|
+
l = k-kp-1;
|
523
|
+
i1 = kp+1;
|
524
|
+
i2 = k-1;
|
525
|
+
ap::vmove(work.getvector(1, l), a.getcolumn(k, i1, i2));
|
526
|
+
ap::vmove(a.getcolumn(k, i1, i2), a.getrow(kp, i1, i2));
|
527
|
+
ap::vmove(&a(kp, i1), &work(1), ap::vlen(i1,i2));
|
528
|
+
temp = a(k,k);
|
529
|
+
a(k,k) = a(kp,kp);
|
530
|
+
a(kp,kp) = temp;
|
531
|
+
if( kstep==2 )
|
532
|
+
{
|
533
|
+
temp = a(k,k+1);
|
534
|
+
a(k,k+1) = a(kp,k+1);
|
535
|
+
a(kp,k+1) = temp;
|
536
|
+
}
|
537
|
+
}
|
538
|
+
k = k+kstep;
|
539
|
+
}
|
540
|
+
}
|
541
|
+
else
|
542
|
+
{
|
543
|
+
|
544
|
+
//
|
545
|
+
// Compute inv(A) from the factorization A = L*D*L'.
|
546
|
+
//
|
547
|
+
// K is the main loop index, increasing from 1 to N in steps of
|
548
|
+
// 1 or 2, depending on the size of the diagonal blocks.
|
549
|
+
//
|
550
|
+
k = n;
|
551
|
+
while(k>=1)
|
552
|
+
{
|
553
|
+
if( pivots(k)>0 )
|
554
|
+
{
|
555
|
+
|
556
|
+
//
|
557
|
+
// 1 x 1 diagonal block
|
558
|
+
//
|
559
|
+
// Invert the diagonal block.
|
560
|
+
//
|
561
|
+
a(k,k) = 1/a(k,k);
|
562
|
+
|
563
|
+
//
|
564
|
+
// Compute column K of the inverse.
|
565
|
+
//
|
566
|
+
if( k<n )
|
567
|
+
{
|
568
|
+
kp1 = k+1;
|
569
|
+
km1 = k-1;
|
570
|
+
l = n-k;
|
571
|
+
ap::vmove(work.getvector(1, l), a.getcolumn(k, kp1, n));
|
572
|
+
symmetricmatrixvectormultiply(a, isupper, k+1, n, work, double(-1), work2);
|
573
|
+
ap::vmove(a.getcolumn(k, kp1, n), work2.getvector(1, l));
|
574
|
+
v = ap::vdotproduct(&work(1), &work2(1), ap::vlen(1,l));
|
575
|
+
a(k,k) = a(k,k)-v;
|
576
|
+
}
|
577
|
+
kstep = 1;
|
578
|
+
}
|
579
|
+
else
|
580
|
+
{
|
581
|
+
|
582
|
+
//
|
583
|
+
// 2 x 2 diagonal block
|
584
|
+
//
|
585
|
+
// Invert the diagonal block.
|
586
|
+
//
|
587
|
+
t = fabs(a(k,k-1));
|
588
|
+
ak = a(k-1,k-1)/t;
|
589
|
+
akp1 = a(k,k)/t;
|
590
|
+
akkp1 = a(k,k-1)/t;
|
591
|
+
d = t*(ak*akp1-1);
|
592
|
+
a(k-1,k-1) = akp1/d;
|
593
|
+
a(k,k) = ak/d;
|
594
|
+
a(k,k-1) = -akkp1/d;
|
595
|
+
|
596
|
+
//
|
597
|
+
// Compute columns K-1 and K of the inverse.
|
598
|
+
//
|
599
|
+
if( k<n )
|
600
|
+
{
|
601
|
+
kp1 = k+1;
|
602
|
+
km1 = k-1;
|
603
|
+
l = n-k;
|
604
|
+
ap::vmove(work.getvector(1, l), a.getcolumn(k, kp1, n));
|
605
|
+
symmetricmatrixvectormultiply(a, isupper, k+1, n, work, double(-1), work2);
|
606
|
+
ap::vmove(a.getcolumn(k, kp1, n), work2.getvector(1, l));
|
607
|
+
v = ap::vdotproduct(&work(1), &work2(1), ap::vlen(1,l));
|
608
|
+
a(k,k) = a(k,k)-v;
|
609
|
+
v = ap::vdotproduct(a.getcolumn(k, kp1, n), a.getcolumn(km1, kp1, n));
|
610
|
+
a(k,k-1) = a(k,k-1)-v;
|
611
|
+
ap::vmove(work.getvector(1, l), a.getcolumn(km1, kp1, n));
|
612
|
+
symmetricmatrixvectormultiply(a, isupper, k+1, n, work, double(-1), work2);
|
613
|
+
ap::vmove(a.getcolumn(km1, kp1, n), work2.getvector(1, l));
|
614
|
+
v = ap::vdotproduct(&work(1), &work2(1), ap::vlen(1,l));
|
615
|
+
a(k-1,k-1) = a(k-1,k-1)-v;
|
616
|
+
}
|
617
|
+
kstep = 2;
|
618
|
+
}
|
619
|
+
kp = abs(pivots(k));
|
620
|
+
if( kp!=k )
|
621
|
+
{
|
622
|
+
|
623
|
+
//
|
624
|
+
// Interchange rows and columns K and KP in the trailing
|
625
|
+
// submatrix A(k-1:n,k-1:n)
|
626
|
+
//
|
627
|
+
if( kp<n )
|
628
|
+
{
|
629
|
+
l = n-kp;
|
630
|
+
kp1 = kp+1;
|
631
|
+
ap::vmove(work.getvector(1, l), a.getcolumn(k, kp1, n));
|
632
|
+
ap::vmove(a.getcolumn(k, kp1, n), a.getcolumn(kp, kp1, n));
|
633
|
+
ap::vmove(a.getcolumn(kp, kp1, n), work.getvector(1, l));
|
634
|
+
}
|
635
|
+
l = kp-k-1;
|
636
|
+
i1 = k+1;
|
637
|
+
i2 = kp-1;
|
638
|
+
ap::vmove(work.getvector(1, l), a.getcolumn(k, i1, i2));
|
639
|
+
ap::vmove(a.getcolumn(k, i1, i2), a.getrow(kp, i1, i2));
|
640
|
+
ap::vmove(&a(kp, i1), &work(1), ap::vlen(i1,i2));
|
641
|
+
temp = a(k,k);
|
642
|
+
a(k,k) = a(kp,kp);
|
643
|
+
a(kp,kp) = temp;
|
644
|
+
if( kstep==2 )
|
645
|
+
{
|
646
|
+
temp = a(k,k-1);
|
647
|
+
a(k,k-1) = a(kp,k-1);
|
648
|
+
a(kp,k-1) = temp;
|
649
|
+
}
|
650
|
+
}
|
651
|
+
k = k-kstep;
|
652
|
+
}
|
653
|
+
}
|
654
|
+
return result;
|
655
|
+
}
|
656
|
+
|
657
|
+
|
658
|
+
/*************************************************************************
|
659
|
+
Obsolete 1-based subroutine
|
660
|
+
*************************************************************************/
|
661
|
+
bool inversesymmetricindefinite(ap::real_2d_array& a, int n, bool isupper)
|
662
|
+
{
|
663
|
+
bool result;
|
664
|
+
ap::integer_1d_array pivots;
|
665
|
+
|
666
|
+
ldltdecomposition(a, n, isupper, pivots);
|
667
|
+
result = inverseldlt(a, pivots, n, isupper);
|
668
|
+
return result;
|
669
|
+
}
|
670
|
+
|
671
|
+
|
672
|
+
|