alglib 0.1.1

Sign up to get free protection for your applications and to get access to all the features.
Files changed (255) hide show
  1. data/History.txt +7 -0
  2. data/Manifest.txt +253 -0
  3. data/README.txt +33 -0
  4. data/Rakefile +27 -0
  5. data/ext/Rakefile +24 -0
  6. data/ext/alglib.i +24 -0
  7. data/ext/alglib/Makefile +157 -0
  8. data/ext/alglib/airyf.cpp +372 -0
  9. data/ext/alglib/airyf.h +81 -0
  10. data/ext/alglib/alglib.cpp +8558 -0
  11. data/ext/alglib/alglib_util.cpp +19 -0
  12. data/ext/alglib/alglib_util.h +14 -0
  13. data/ext/alglib/ap.cpp +877 -0
  14. data/ext/alglib/ap.english.html +364 -0
  15. data/ext/alglib/ap.h +666 -0
  16. data/ext/alglib/ap.russian.html +442 -0
  17. data/ext/alglib/apvt.h +754 -0
  18. data/ext/alglib/bdss.cpp +1500 -0
  19. data/ext/alglib/bdss.h +251 -0
  20. data/ext/alglib/bdsvd.cpp +1339 -0
  21. data/ext/alglib/bdsvd.h +164 -0
  22. data/ext/alglib/bessel.cpp +1226 -0
  23. data/ext/alglib/bessel.h +331 -0
  24. data/ext/alglib/betaf.cpp +105 -0
  25. data/ext/alglib/betaf.h +74 -0
  26. data/ext/alglib/bidiagonal.cpp +1328 -0
  27. data/ext/alglib/bidiagonal.h +350 -0
  28. data/ext/alglib/binomialdistr.cpp +247 -0
  29. data/ext/alglib/binomialdistr.h +153 -0
  30. data/ext/alglib/blas.cpp +576 -0
  31. data/ext/alglib/blas.h +132 -0
  32. data/ext/alglib/cblas.cpp +226 -0
  33. data/ext/alglib/cblas.h +57 -0
  34. data/ext/alglib/cdet.cpp +138 -0
  35. data/ext/alglib/cdet.h +92 -0
  36. data/ext/alglib/chebyshev.cpp +216 -0
  37. data/ext/alglib/chebyshev.h +76 -0
  38. data/ext/alglib/chisquaredistr.cpp +157 -0
  39. data/ext/alglib/chisquaredistr.h +144 -0
  40. data/ext/alglib/cholesky.cpp +285 -0
  41. data/ext/alglib/cholesky.h +86 -0
  42. data/ext/alglib/cinverse.cpp +298 -0
  43. data/ext/alglib/cinverse.h +111 -0
  44. data/ext/alglib/clu.cpp +337 -0
  45. data/ext/alglib/clu.h +120 -0
  46. data/ext/alglib/correlation.cpp +280 -0
  47. data/ext/alglib/correlation.h +77 -0
  48. data/ext/alglib/correlationtests.cpp +726 -0
  49. data/ext/alglib/correlationtests.h +134 -0
  50. data/ext/alglib/crcond.cpp +826 -0
  51. data/ext/alglib/crcond.h +148 -0
  52. data/ext/alglib/creflections.cpp +310 -0
  53. data/ext/alglib/creflections.h +165 -0
  54. data/ext/alglib/csolve.cpp +312 -0
  55. data/ext/alglib/csolve.h +99 -0
  56. data/ext/alglib/ctrinverse.cpp +387 -0
  57. data/ext/alglib/ctrinverse.h +98 -0
  58. data/ext/alglib/ctrlinsolve.cpp +297 -0
  59. data/ext/alglib/ctrlinsolve.h +81 -0
  60. data/ext/alglib/dawson.cpp +234 -0
  61. data/ext/alglib/dawson.h +74 -0
  62. data/ext/alglib/descriptivestatistics.cpp +436 -0
  63. data/ext/alglib/descriptivestatistics.h +112 -0
  64. data/ext/alglib/det.cpp +140 -0
  65. data/ext/alglib/det.h +94 -0
  66. data/ext/alglib/dforest.cpp +1819 -0
  67. data/ext/alglib/dforest.h +316 -0
  68. data/ext/alglib/elliptic.cpp +497 -0
  69. data/ext/alglib/elliptic.h +217 -0
  70. data/ext/alglib/estnorm.cpp +429 -0
  71. data/ext/alglib/estnorm.h +107 -0
  72. data/ext/alglib/expintegrals.cpp +422 -0
  73. data/ext/alglib/expintegrals.h +108 -0
  74. data/ext/alglib/faq.english.html +258 -0
  75. data/ext/alglib/faq.russian.html +272 -0
  76. data/ext/alglib/fdistr.cpp +202 -0
  77. data/ext/alglib/fdistr.h +163 -0
  78. data/ext/alglib/fresnel.cpp +211 -0
  79. data/ext/alglib/fresnel.h +91 -0
  80. data/ext/alglib/gammaf.cpp +338 -0
  81. data/ext/alglib/gammaf.h +104 -0
  82. data/ext/alglib/gqgengauss.cpp +235 -0
  83. data/ext/alglib/gqgengauss.h +92 -0
  84. data/ext/alglib/gqgenhermite.cpp +268 -0
  85. data/ext/alglib/gqgenhermite.h +63 -0
  86. data/ext/alglib/gqgenjacobi.cpp +297 -0
  87. data/ext/alglib/gqgenjacobi.h +72 -0
  88. data/ext/alglib/gqgenlaguerre.cpp +265 -0
  89. data/ext/alglib/gqgenlaguerre.h +69 -0
  90. data/ext/alglib/gqgenlegendre.cpp +300 -0
  91. data/ext/alglib/gqgenlegendre.h +62 -0
  92. data/ext/alglib/gqgenlobatto.cpp +305 -0
  93. data/ext/alglib/gqgenlobatto.h +97 -0
  94. data/ext/alglib/gqgenradau.cpp +232 -0
  95. data/ext/alglib/gqgenradau.h +95 -0
  96. data/ext/alglib/hbisinv.cpp +480 -0
  97. data/ext/alglib/hbisinv.h +183 -0
  98. data/ext/alglib/hblas.cpp +228 -0
  99. data/ext/alglib/hblas.h +64 -0
  100. data/ext/alglib/hcholesky.cpp +339 -0
  101. data/ext/alglib/hcholesky.h +91 -0
  102. data/ext/alglib/hermite.cpp +114 -0
  103. data/ext/alglib/hermite.h +49 -0
  104. data/ext/alglib/hessenberg.cpp +370 -0
  105. data/ext/alglib/hessenberg.h +152 -0
  106. data/ext/alglib/hevd.cpp +247 -0
  107. data/ext/alglib/hevd.h +107 -0
  108. data/ext/alglib/hsschur.cpp +1316 -0
  109. data/ext/alglib/hsschur.h +108 -0
  110. data/ext/alglib/htridiagonal.cpp +734 -0
  111. data/ext/alglib/htridiagonal.h +180 -0
  112. data/ext/alglib/ialglib.cpp +6 -0
  113. data/ext/alglib/ialglib.h +9 -0
  114. data/ext/alglib/ibetaf.cpp +960 -0
  115. data/ext/alglib/ibetaf.h +125 -0
  116. data/ext/alglib/igammaf.cpp +430 -0
  117. data/ext/alglib/igammaf.h +157 -0
  118. data/ext/alglib/inv.cpp +274 -0
  119. data/ext/alglib/inv.h +115 -0
  120. data/ext/alglib/inverseupdate.cpp +480 -0
  121. data/ext/alglib/inverseupdate.h +185 -0
  122. data/ext/alglib/jacobianelliptic.cpp +164 -0
  123. data/ext/alglib/jacobianelliptic.h +94 -0
  124. data/ext/alglib/jarquebera.cpp +2271 -0
  125. data/ext/alglib/jarquebera.h +80 -0
  126. data/ext/alglib/kmeans.cpp +356 -0
  127. data/ext/alglib/kmeans.h +76 -0
  128. data/ext/alglib/laguerre.cpp +94 -0
  129. data/ext/alglib/laguerre.h +48 -0
  130. data/ext/alglib/lbfgs.cpp +1167 -0
  131. data/ext/alglib/lbfgs.h +218 -0
  132. data/ext/alglib/lda.cpp +434 -0
  133. data/ext/alglib/lda.h +133 -0
  134. data/ext/alglib/ldlt.cpp +1130 -0
  135. data/ext/alglib/ldlt.h +124 -0
  136. data/ext/alglib/leastsquares.cpp +1252 -0
  137. data/ext/alglib/leastsquares.h +290 -0
  138. data/ext/alglib/legendre.cpp +107 -0
  139. data/ext/alglib/legendre.h +49 -0
  140. data/ext/alglib/linreg.cpp +1185 -0
  141. data/ext/alglib/linreg.h +380 -0
  142. data/ext/alglib/logit.cpp +1523 -0
  143. data/ext/alglib/logit.h +333 -0
  144. data/ext/alglib/lq.cpp +399 -0
  145. data/ext/alglib/lq.h +160 -0
  146. data/ext/alglib/lu.cpp +462 -0
  147. data/ext/alglib/lu.h +119 -0
  148. data/ext/alglib/mannwhitneyu.cpp +4490 -0
  149. data/ext/alglib/mannwhitneyu.h +115 -0
  150. data/ext/alglib/minlm.cpp +918 -0
  151. data/ext/alglib/minlm.h +312 -0
  152. data/ext/alglib/mlpbase.cpp +3375 -0
  153. data/ext/alglib/mlpbase.h +589 -0
  154. data/ext/alglib/mlpe.cpp +1369 -0
  155. data/ext/alglib/mlpe.h +552 -0
  156. data/ext/alglib/mlptrain.cpp +1056 -0
  157. data/ext/alglib/mlptrain.h +283 -0
  158. data/ext/alglib/nearunityunit.cpp +91 -0
  159. data/ext/alglib/nearunityunit.h +17 -0
  160. data/ext/alglib/normaldistr.cpp +377 -0
  161. data/ext/alglib/normaldistr.h +175 -0
  162. data/ext/alglib/nsevd.cpp +1869 -0
  163. data/ext/alglib/nsevd.h +140 -0
  164. data/ext/alglib/pca.cpp +168 -0
  165. data/ext/alglib/pca.h +87 -0
  166. data/ext/alglib/poissondistr.cpp +143 -0
  167. data/ext/alglib/poissondistr.h +130 -0
  168. data/ext/alglib/polinterpolation.cpp +685 -0
  169. data/ext/alglib/polinterpolation.h +206 -0
  170. data/ext/alglib/psif.cpp +173 -0
  171. data/ext/alglib/psif.h +88 -0
  172. data/ext/alglib/qr.cpp +414 -0
  173. data/ext/alglib/qr.h +168 -0
  174. data/ext/alglib/ratinterpolation.cpp +134 -0
  175. data/ext/alglib/ratinterpolation.h +72 -0
  176. data/ext/alglib/rcond.cpp +705 -0
  177. data/ext/alglib/rcond.h +140 -0
  178. data/ext/alglib/reflections.cpp +504 -0
  179. data/ext/alglib/reflections.h +165 -0
  180. data/ext/alglib/rotations.cpp +473 -0
  181. data/ext/alglib/rotations.h +128 -0
  182. data/ext/alglib/rsolve.cpp +221 -0
  183. data/ext/alglib/rsolve.h +99 -0
  184. data/ext/alglib/sbisinv.cpp +217 -0
  185. data/ext/alglib/sbisinv.h +171 -0
  186. data/ext/alglib/sblas.cpp +185 -0
  187. data/ext/alglib/sblas.h +64 -0
  188. data/ext/alglib/schur.cpp +156 -0
  189. data/ext/alglib/schur.h +102 -0
  190. data/ext/alglib/sdet.cpp +193 -0
  191. data/ext/alglib/sdet.h +101 -0
  192. data/ext/alglib/sevd.cpp +116 -0
  193. data/ext/alglib/sevd.h +99 -0
  194. data/ext/alglib/sinverse.cpp +672 -0
  195. data/ext/alglib/sinverse.h +138 -0
  196. data/ext/alglib/spddet.cpp +138 -0
  197. data/ext/alglib/spddet.h +96 -0
  198. data/ext/alglib/spdgevd.cpp +842 -0
  199. data/ext/alglib/spdgevd.h +200 -0
  200. data/ext/alglib/spdinverse.cpp +509 -0
  201. data/ext/alglib/spdinverse.h +122 -0
  202. data/ext/alglib/spdrcond.cpp +421 -0
  203. data/ext/alglib/spdrcond.h +118 -0
  204. data/ext/alglib/spdsolve.cpp +275 -0
  205. data/ext/alglib/spdsolve.h +105 -0
  206. data/ext/alglib/spline2d.cpp +1192 -0
  207. data/ext/alglib/spline2d.h +301 -0
  208. data/ext/alglib/spline3.cpp +1264 -0
  209. data/ext/alglib/spline3.h +290 -0
  210. data/ext/alglib/srcond.cpp +595 -0
  211. data/ext/alglib/srcond.h +127 -0
  212. data/ext/alglib/ssolve.cpp +895 -0
  213. data/ext/alglib/ssolve.h +139 -0
  214. data/ext/alglib/stdafx.h +0 -0
  215. data/ext/alglib/stest.cpp +131 -0
  216. data/ext/alglib/stest.h +94 -0
  217. data/ext/alglib/studenttdistr.cpp +222 -0
  218. data/ext/alglib/studenttdistr.h +115 -0
  219. data/ext/alglib/studentttests.cpp +377 -0
  220. data/ext/alglib/studentttests.h +178 -0
  221. data/ext/alglib/svd.cpp +620 -0
  222. data/ext/alglib/svd.h +126 -0
  223. data/ext/alglib/tdbisinv.cpp +2608 -0
  224. data/ext/alglib/tdbisinv.h +228 -0
  225. data/ext/alglib/tdevd.cpp +1229 -0
  226. data/ext/alglib/tdevd.h +115 -0
  227. data/ext/alglib/tridiagonal.cpp +594 -0
  228. data/ext/alglib/tridiagonal.h +171 -0
  229. data/ext/alglib/trigintegrals.cpp +490 -0
  230. data/ext/alglib/trigintegrals.h +131 -0
  231. data/ext/alglib/trinverse.cpp +345 -0
  232. data/ext/alglib/trinverse.h +98 -0
  233. data/ext/alglib/trlinsolve.cpp +926 -0
  234. data/ext/alglib/trlinsolve.h +73 -0
  235. data/ext/alglib/tsort.cpp +405 -0
  236. data/ext/alglib/tsort.h +54 -0
  237. data/ext/alglib/variancetests.cpp +245 -0
  238. data/ext/alglib/variancetests.h +134 -0
  239. data/ext/alglib/wsr.cpp +6285 -0
  240. data/ext/alglib/wsr.h +96 -0
  241. data/ext/ap.i +97 -0
  242. data/ext/correlation.i +24 -0
  243. data/ext/extconf.rb +6 -0
  244. data/ext/logit.i +89 -0
  245. data/lib/alglib.rb +71 -0
  246. data/lib/alglib/correlation.rb +26 -0
  247. data/lib/alglib/linearregression.rb +63 -0
  248. data/lib/alglib/logit.rb +42 -0
  249. data/test/test_alglib.rb +52 -0
  250. data/test/test_correlation.rb +44 -0
  251. data/test/test_correlationtest.rb +45 -0
  252. data/test/test_linreg.rb +35 -0
  253. data/test/test_logit.rb +43 -0
  254. data/test/test_pca.rb +27 -0
  255. metadata +326 -0
@@ -0,0 +1,180 @@
1
+ /*************************************************************************
2
+ Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
3
+
4
+ Contributors:
5
+ * Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
6
+ pseudocode.
7
+
8
+ See subroutines comments for additional copyrights.
9
+
10
+ Redistribution and use in source and binary forms, with or without
11
+ modification, are permitted provided that the following conditions are
12
+ met:
13
+
14
+ - Redistributions of source code must retain the above copyright
15
+ notice, this list of conditions and the following disclaimer.
16
+
17
+ - Redistributions in binary form must reproduce the above copyright
18
+ notice, this list of conditions and the following disclaimer listed
19
+ in this license in the documentation and/or other materials
20
+ provided with the distribution.
21
+
22
+ - Neither the name of the copyright holders nor the names of its
23
+ contributors may be used to endorse or promote products derived from
24
+ this software without specific prior written permission.
25
+
26
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
29
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
30
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
31
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
32
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
33
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
34
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
35
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
36
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
37
+ *************************************************************************/
38
+
39
+ #ifndef _htridiagonal_h
40
+ #define _htridiagonal_h
41
+
42
+ #include "ap.h"
43
+ #include "ialglib.h"
44
+
45
+ #include "cblas.h"
46
+ #include "creflections.h"
47
+ #include "hblas.h"
48
+
49
+
50
+ /*************************************************************************
51
+ Reduction of a Hermitian matrix which is given by its higher or lower
52
+ triangular part to a real tridiagonal matrix using unitary similarity
53
+ transformation: Q'*A*Q = T.
54
+
55
+ Input parameters:
56
+ A - matrix to be transformed
57
+ array with elements [0..N-1, 0..N-1].
58
+ N - size of matrix A.
59
+ IsUpper - storage format. If IsUpper = True, then matrix A is given
60
+ by its upper triangle, and the lower triangle is not used
61
+ and not modified by the algorithm, and vice versa
62
+ if IsUpper = False.
63
+
64
+ Output parameters:
65
+ A - matrices T and Q in compact form (see lower)
66
+ Tau - array of factors which are forming matrices H(i)
67
+ array with elements [0..N-2].
68
+ D - main diagonal of real symmetric matrix T.
69
+ array with elements [0..N-1].
70
+ E - secondary diagonal of real symmetric matrix T.
71
+ array with elements [0..N-2].
72
+
73
+
74
+ If IsUpper=True, the matrix Q is represented as a product of elementary
75
+ reflectors
76
+
77
+ Q = H(n-2) . . . H(2) H(0).
78
+
79
+ Each H(i) has the form
80
+
81
+ H(i) = I - tau * v * v'
82
+
83
+ where tau is a complex scalar, and v is a complex vector with
84
+ v(i+1:n-1) = 0, v(i) = 1, v(0:i-1) is stored on exit in
85
+ A(0:i-1,i+1), and tau in TAU(i).
86
+
87
+ If IsUpper=False, the matrix Q is represented as a product of elementary
88
+ reflectors
89
+
90
+ Q = H(0) H(2) . . . H(n-2).
91
+
92
+ Each H(i) has the form
93
+
94
+ H(i) = I - tau * v * v'
95
+
96
+ where tau is a complex scalar, and v is a complex vector with
97
+ v(0:i) = 0, v(i+1) = 1, v(i+2:n-1) is stored on exit in A(i+2:n-1,i),
98
+ and tau in TAU(i).
99
+
100
+ The contents of A on exit are illustrated by the following examples
101
+ with n = 5:
102
+
103
+ if UPLO = 'U': if UPLO = 'L':
104
+
105
+ ( d e v1 v2 v3 ) ( d )
106
+ ( d e v2 v3 ) ( e d )
107
+ ( d e v3 ) ( v0 e d )
108
+ ( d e ) ( v0 v1 e d )
109
+ ( d ) ( v0 v1 v2 e d )
110
+
111
+ where d and e denote diagonal and off-diagonal elements of T, and vi
112
+ denotes an element of the vector defining H(i).
113
+
114
+ -- LAPACK routine (version 3.0) --
115
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
116
+ Courant Institute, Argonne National Lab, and Rice University
117
+ October 31, 1992
118
+ *************************************************************************/
119
+ void hmatrixtd(ap::complex_2d_array& a,
120
+ int n,
121
+ bool isupper,
122
+ ap::complex_1d_array& tau,
123
+ ap::real_1d_array& d,
124
+ ap::real_1d_array& e);
125
+
126
+
127
+ /*************************************************************************
128
+ Unpacking matrix Q which reduces a Hermitian matrix to a real tridiagonal
129
+ form.
130
+
131
+ Input parameters:
132
+ A - the result of a HMatrixTD subroutine
133
+ N - size of matrix A.
134
+ IsUpper - storage format (a parameter of HMatrixTD subroutine)
135
+ Tau - the result of a HMatrixTD subroutine
136
+
137
+ Output parameters:
138
+ Q - transformation matrix.
139
+ array with elements [0..N-1, 0..N-1].
140
+
141
+ -- ALGLIB --
142
+ Copyright 2005, 2007, 2008 by Bochkanov Sergey
143
+ *************************************************************************/
144
+ void hmatrixtdunpackq(const ap::complex_2d_array& a,
145
+ const int& n,
146
+ const bool& isupper,
147
+ const ap::complex_1d_array& tau,
148
+ ap::complex_2d_array& q);
149
+
150
+
151
+ /*************************************************************************
152
+ Obsolete 1-based subroutine
153
+
154
+ -- LAPACK routine (version 3.0) --
155
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
156
+ Courant Institute, Argonne National Lab, and Rice University
157
+ October 31, 1992
158
+ *************************************************************************/
159
+ void hermitiantotridiagonal(ap::complex_2d_array& a,
160
+ int n,
161
+ bool isupper,
162
+ ap::complex_1d_array& tau,
163
+ ap::real_1d_array& d,
164
+ ap::real_1d_array& e);
165
+
166
+
167
+ /*************************************************************************
168
+ Obsolete 1-based subroutine
169
+
170
+ -- ALGLIB --
171
+ Copyright 2005, 2007 by Bochkanov Sergey
172
+ *************************************************************************/
173
+ void unpackqfromhermitiantridiagonal(const ap::complex_2d_array& a,
174
+ const int& n,
175
+ const bool& isupper,
176
+ const ap::complex_1d_array& tau,
177
+ ap::complex_2d_array& q);
178
+
179
+
180
+ #endif
@@ -0,0 +1,6 @@
1
+ /********************************************************************
2
+ Stub file for assembly optimized ALGLIB subroutines.
3
+ ********************************************************************/
4
+
5
+ #include "stdafx.h"
6
+ #include "ialglib.h"
@@ -0,0 +1,9 @@
1
+ /********************************************************************
2
+ Stub file for assembly optimized ALGLIB subroutines.
3
+ ********************************************************************/
4
+ #ifndef IALGLIB_H
5
+ #define IALGLIB_H
6
+
7
+ #include "ap.h"
8
+
9
+ #endif
@@ -0,0 +1,960 @@
1
+ /*************************************************************************
2
+ Cephes Math Library Release 2.8: June, 2000
3
+ Copyright by Stephen L. Moshier
4
+
5
+ Contributors:
6
+ * Sergey Bochkanov (ALGLIB project). Translation from C to
7
+ pseudocode.
8
+
9
+ See subroutines comments for additional copyrights.
10
+
11
+ Redistribution and use in source and binary forms, with or without
12
+ modification, are permitted provided that the following conditions are
13
+ met:
14
+
15
+ - Redistributions of source code must retain the above copyright
16
+ notice, this list of conditions and the following disclaimer.
17
+
18
+ - Redistributions in binary form must reproduce the above copyright
19
+ notice, this list of conditions and the following disclaimer listed
20
+ in this license in the documentation and/or other materials
21
+ provided with the distribution.
22
+
23
+ - Neither the name of the copyright holders nor the names of its
24
+ contributors may be used to endorse or promote products derived from
25
+ this software without specific prior written permission.
26
+
27
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38
+ *************************************************************************/
39
+
40
+ #include <stdafx.h>
41
+ #include "ibetaf.h"
42
+
43
+ static double incompletebetafe(double a,
44
+ double b,
45
+ double x,
46
+ double big,
47
+ double biginv);
48
+ static double incompletebetafe2(double a,
49
+ double b,
50
+ double x,
51
+ double big,
52
+ double biginv);
53
+ static double incompletebetaps(double a, double b, double x, double maxgam);
54
+
55
+ /*************************************************************************
56
+ Incomplete beta integral
57
+
58
+ Returns incomplete beta integral of the arguments, evaluated
59
+ from zero to x. The function is defined as
60
+
61
+ x
62
+ - -
63
+ | (a+b) | | a-1 b-1
64
+ ----------- | t (1-t) dt.
65
+ - - | |
66
+ | (a) | (b) -
67
+ 0
68
+
69
+ The domain of definition is 0 <= x <= 1. In this
70
+ implementation a and b are restricted to positive values.
71
+ The integral from x to 1 may be obtained by the symmetry
72
+ relation
73
+
74
+ 1 - incbet( a, b, x ) = incbet( b, a, 1-x ).
75
+
76
+ The integral is evaluated by a continued fraction expansion
77
+ or, when b*x is small, by a power series.
78
+
79
+ ACCURACY:
80
+
81
+ Tested at uniformly distributed random points (a,b,x) with a and b
82
+ in "domain" and x between 0 and 1.
83
+ Relative error
84
+ arithmetic domain # trials peak rms
85
+ IEEE 0,5 10000 6.9e-15 4.5e-16
86
+ IEEE 0,85 250000 2.2e-13 1.7e-14
87
+ IEEE 0,1000 30000 5.3e-12 6.3e-13
88
+ IEEE 0,10000 250000 9.3e-11 7.1e-12
89
+ IEEE 0,100000 10000 8.7e-10 4.8e-11
90
+ Outputs smaller than the IEEE gradual underflow threshold
91
+ were excluded from these statistics.
92
+
93
+ Cephes Math Library, Release 2.8: June, 2000
94
+ Copyright 1984, 1995, 2000 by Stephen L. Moshier
95
+ *************************************************************************/
96
+ double incompletebeta(double a, double b, double x)
97
+ {
98
+ double result;
99
+ double t;
100
+ double xc;
101
+ double w;
102
+ double y;
103
+ int flag;
104
+ double sg;
105
+ double big;
106
+ double biginv;
107
+ double maxgam;
108
+ double minlog;
109
+ double maxlog;
110
+
111
+ big = 4.503599627370496e15;
112
+ biginv = 2.22044604925031308085e-16;
113
+ maxgam = 171.624376956302725;
114
+ minlog = log(ap::minrealnumber);
115
+ maxlog = log(ap::maxrealnumber);
116
+ ap::ap_error::make_assertion(a>0&&b>0, "Domain error in IncompleteBeta");
117
+ ap::ap_error::make_assertion(x>=0&&x<=1, "Domain error in IncompleteBeta");
118
+ if( x==0 )
119
+ {
120
+ result = 0;
121
+ return result;
122
+ }
123
+ if( x==1 )
124
+ {
125
+ result = 1;
126
+ return result;
127
+ }
128
+ flag = 0;
129
+ if( b*x<=1.0&&x<=0.95 )
130
+ {
131
+ result = incompletebetaps(a, b, x, maxgam);
132
+ return result;
133
+ }
134
+ w = 1.0-x;
135
+ if( x>a/(a+b) )
136
+ {
137
+ flag = 1;
138
+ t = a;
139
+ a = b;
140
+ b = t;
141
+ xc = x;
142
+ x = w;
143
+ }
144
+ else
145
+ {
146
+ xc = w;
147
+ }
148
+ if( flag==1&&b*x<=1.0&&x<=0.95 )
149
+ {
150
+ t = incompletebetaps(a, b, x, maxgam);
151
+ if( t<=ap::machineepsilon )
152
+ {
153
+ result = 1.0-ap::machineepsilon;
154
+ }
155
+ else
156
+ {
157
+ result = 1.0-t;
158
+ }
159
+ return result;
160
+ }
161
+ y = x*(a+b-2.0)-(a-1.0);
162
+ if( y<0.0 )
163
+ {
164
+ w = incompletebetafe(a, b, x, big, biginv);
165
+ }
166
+ else
167
+ {
168
+ w = incompletebetafe2(a, b, x, big, biginv)/xc;
169
+ }
170
+ y = a*log(x);
171
+ t = b*log(xc);
172
+ if( a+b<maxgam&&fabs(y)<maxlog&&fabs(t)<maxlog )
173
+ {
174
+ t = pow(xc, b);
175
+ t = t*pow(x, a);
176
+ t = t/a;
177
+ t = t*w;
178
+ t = t*(gamma(a+b)/(gamma(a)*gamma(b)));
179
+ if( flag==1 )
180
+ {
181
+ if( t<=ap::machineepsilon )
182
+ {
183
+ result = 1.0-ap::machineepsilon;
184
+ }
185
+ else
186
+ {
187
+ result = 1.0-t;
188
+ }
189
+ }
190
+ else
191
+ {
192
+ result = t;
193
+ }
194
+ return result;
195
+ }
196
+ y = y+t+lngamma(a+b, sg)-lngamma(a, sg)-lngamma(b, sg);
197
+ y = y+log(w/a);
198
+ if( y<minlog )
199
+ {
200
+ t = 0.0;
201
+ }
202
+ else
203
+ {
204
+ t = exp(y);
205
+ }
206
+ if( flag==1 )
207
+ {
208
+ if( t<=ap::machineepsilon )
209
+ {
210
+ t = 1.0-ap::machineepsilon;
211
+ }
212
+ else
213
+ {
214
+ t = 1.0-t;
215
+ }
216
+ }
217
+ result = t;
218
+ return result;
219
+ }
220
+
221
+
222
+ /*************************************************************************
223
+ Inverse of imcomplete beta integral
224
+
225
+ Given y, the function finds x such that
226
+
227
+ incbet( a, b, x ) = y .
228
+
229
+ The routine performs interval halving or Newton iterations to find the
230
+ root of incbet(a,b,x) - y = 0.
231
+
232
+
233
+ ACCURACY:
234
+
235
+ Relative error:
236
+ x a,b
237
+ arithmetic domain domain # trials peak rms
238
+ IEEE 0,1 .5,10000 50000 5.8e-12 1.3e-13
239
+ IEEE 0,1 .25,100 100000 1.8e-13 3.9e-15
240
+ IEEE 0,1 0,5 50000 1.1e-12 5.5e-15
241
+ With a and b constrained to half-integer or integer values:
242
+ IEEE 0,1 .5,10000 50000 5.8e-12 1.1e-13
243
+ IEEE 0,1 .5,100 100000 1.7e-14 7.9e-16
244
+ With a = .5, b constrained to half-integer or integer values:
245
+ IEEE 0,1 .5,10000 10000 8.3e-11 1.0e-11
246
+
247
+ Cephes Math Library Release 2.8: June, 2000
248
+ Copyright 1984, 1996, 2000 by Stephen L. Moshier
249
+ *************************************************************************/
250
+ double invincompletebeta(double a, double b, double y)
251
+ {
252
+ double result;
253
+ double aaa;
254
+ double bbb;
255
+ double y0;
256
+ double d;
257
+ double yyy;
258
+ double x;
259
+ double x0;
260
+ double x1;
261
+ double lgm;
262
+ double yp;
263
+ double di;
264
+ double dithresh;
265
+ double yl;
266
+ double yh;
267
+ double xt;
268
+ int i;
269
+ int rflg;
270
+ int dir;
271
+ int nflg;
272
+ double s;
273
+ int mainlooppos;
274
+ int ihalve;
275
+ int ihalvecycle;
276
+ int newt;
277
+ int newtcycle;
278
+ int breaknewtcycle;
279
+ int breakihalvecycle;
280
+
281
+ i = 0;
282
+ ap::ap_error::make_assertion(y>=0&&y<=1, "Domain error in InvIncompleteBeta");
283
+ if( y==0 )
284
+ {
285
+ result = 0;
286
+ return result;
287
+ }
288
+ if( y==1.0 )
289
+ {
290
+ result = 1;
291
+ return result;
292
+ }
293
+ x0 = 0.0;
294
+ yl = 0.0;
295
+ x1 = 1.0;
296
+ yh = 1.0;
297
+ nflg = 0;
298
+ mainlooppos = 0;
299
+ ihalve = 1;
300
+ ihalvecycle = 2;
301
+ newt = 3;
302
+ newtcycle = 4;
303
+ breaknewtcycle = 5;
304
+ breakihalvecycle = 6;
305
+ while(true)
306
+ {
307
+
308
+ //
309
+ // start
310
+ //
311
+ if( mainlooppos==0 )
312
+ {
313
+ if( a<=1.0||b<=1.0 )
314
+ {
315
+ dithresh = 1.0e-6;
316
+ rflg = 0;
317
+ aaa = a;
318
+ bbb = b;
319
+ y0 = y;
320
+ x = aaa/(aaa+bbb);
321
+ yyy = incompletebeta(aaa, bbb, x);
322
+ mainlooppos = ihalve;
323
+ continue;
324
+ }
325
+ else
326
+ {
327
+ dithresh = 1.0e-4;
328
+ }
329
+ yp = -invnormaldistribution(y);
330
+ if( y>0.5 )
331
+ {
332
+ rflg = 1;
333
+ aaa = b;
334
+ bbb = a;
335
+ y0 = 1.0-y;
336
+ yp = -yp;
337
+ }
338
+ else
339
+ {
340
+ rflg = 0;
341
+ aaa = a;
342
+ bbb = b;
343
+ y0 = y;
344
+ }
345
+ lgm = (yp*yp-3.0)/6.0;
346
+ x = 2.0/(1.0/(2.0*aaa-1.0)+1.0/(2.0*bbb-1.0));
347
+ d = yp*sqrt(x+lgm)/x-(1.0/(2.0*bbb-1.0)-1.0/(2.0*aaa-1.0))*(lgm+5.0/6.0-2.0/(3.0*x));
348
+ d = 2.0*d;
349
+ if( d<log(ap::minrealnumber) )
350
+ {
351
+ x = 0;
352
+ break;
353
+ }
354
+ x = aaa/(aaa+bbb*exp(d));
355
+ yyy = incompletebeta(aaa, bbb, x);
356
+ yp = (yyy-y0)/y0;
357
+ if( fabs(yp)<0.2 )
358
+ {
359
+ mainlooppos = newt;
360
+ continue;
361
+ }
362
+ mainlooppos = ihalve;
363
+ continue;
364
+ }
365
+
366
+ //
367
+ // ihalve
368
+ //
369
+ if( mainlooppos==ihalve )
370
+ {
371
+ dir = 0;
372
+ di = 0.5;
373
+ i = 0;
374
+ mainlooppos = ihalvecycle;
375
+ continue;
376
+ }
377
+
378
+ //
379
+ // ihalvecycle
380
+ //
381
+ if( mainlooppos==ihalvecycle )
382
+ {
383
+ if( i<=99 )
384
+ {
385
+ if( i!=0 )
386
+ {
387
+ x = x0+di*(x1-x0);
388
+ if( x==1.0 )
389
+ {
390
+ x = 1.0-ap::machineepsilon;
391
+ }
392
+ if( x==0.0 )
393
+ {
394
+ di = 0.5;
395
+ x = x0+di*(x1-x0);
396
+ if( x==0.0 )
397
+ {
398
+ break;
399
+ }
400
+ }
401
+ yyy = incompletebeta(aaa, bbb, x);
402
+ yp = (x1-x0)/(x1+x0);
403
+ if( fabs(yp)<dithresh )
404
+ {
405
+ mainlooppos = newt;
406
+ continue;
407
+ }
408
+ yp = (yyy-y0)/y0;
409
+ if( fabs(yp)<dithresh )
410
+ {
411
+ mainlooppos = newt;
412
+ continue;
413
+ }
414
+ }
415
+ if( yyy<y0 )
416
+ {
417
+ x0 = x;
418
+ yl = yyy;
419
+ if( dir<0 )
420
+ {
421
+ dir = 0;
422
+ di = 0.5;
423
+ }
424
+ else
425
+ {
426
+ if( dir>3 )
427
+ {
428
+ di = 1.0-(1.0-di)*(1.0-di);
429
+ }
430
+ else
431
+ {
432
+ if( dir>1 )
433
+ {
434
+ di = 0.5*di+0.5;
435
+ }
436
+ else
437
+ {
438
+ di = (y0-yyy)/(yh-yl);
439
+ }
440
+ }
441
+ }
442
+ dir = dir+1;
443
+ if( x0>0.75 )
444
+ {
445
+ if( rflg==1 )
446
+ {
447
+ rflg = 0;
448
+ aaa = a;
449
+ bbb = b;
450
+ y0 = y;
451
+ }
452
+ else
453
+ {
454
+ rflg = 1;
455
+ aaa = b;
456
+ bbb = a;
457
+ y0 = 1.0-y;
458
+ }
459
+ x = 1.0-x;
460
+ yyy = incompletebeta(aaa, bbb, x);
461
+ x0 = 0.0;
462
+ yl = 0.0;
463
+ x1 = 1.0;
464
+ yh = 1.0;
465
+ mainlooppos = ihalve;
466
+ continue;
467
+ }
468
+ }
469
+ else
470
+ {
471
+ x1 = x;
472
+ if( rflg==1&&x1<ap::machineepsilon )
473
+ {
474
+ x = 0.0;
475
+ break;
476
+ }
477
+ yh = yyy;
478
+ if( dir>0 )
479
+ {
480
+ dir = 0;
481
+ di = 0.5;
482
+ }
483
+ else
484
+ {
485
+ if( dir<-3 )
486
+ {
487
+ di = di*di;
488
+ }
489
+ else
490
+ {
491
+ if( dir<-1 )
492
+ {
493
+ di = 0.5*di;
494
+ }
495
+ else
496
+ {
497
+ di = (yyy-y0)/(yh-yl);
498
+ }
499
+ }
500
+ }
501
+ dir = dir-1;
502
+ }
503
+ i = i+1;
504
+ mainlooppos = ihalvecycle;
505
+ continue;
506
+ }
507
+ else
508
+ {
509
+ mainlooppos = breakihalvecycle;
510
+ continue;
511
+ }
512
+ }
513
+
514
+ //
515
+ // breakihalvecycle
516
+ //
517
+ if( mainlooppos==breakihalvecycle )
518
+ {
519
+ if( x0>=1.0 )
520
+ {
521
+ x = 1.0-ap::machineepsilon;
522
+ break;
523
+ }
524
+ if( x<=0.0 )
525
+ {
526
+ x = 0.0;
527
+ break;
528
+ }
529
+ mainlooppos = newt;
530
+ continue;
531
+ }
532
+
533
+ //
534
+ // newt
535
+ //
536
+ if( mainlooppos==newt )
537
+ {
538
+ if( nflg!=0 )
539
+ {
540
+ break;
541
+ }
542
+ nflg = 1;
543
+ lgm = lngamma(aaa+bbb, s)-lngamma(aaa, s)-lngamma(bbb, s);
544
+ i = 0;
545
+ mainlooppos = newtcycle;
546
+ continue;
547
+ }
548
+
549
+ //
550
+ // newtcycle
551
+ //
552
+ if( mainlooppos==newtcycle )
553
+ {
554
+ if( i<=7 )
555
+ {
556
+ if( i!=0 )
557
+ {
558
+ yyy = incompletebeta(aaa, bbb, x);
559
+ }
560
+ if( yyy<yl )
561
+ {
562
+ x = x0;
563
+ yyy = yl;
564
+ }
565
+ else
566
+ {
567
+ if( yyy>yh )
568
+ {
569
+ x = x1;
570
+ yyy = yh;
571
+ }
572
+ else
573
+ {
574
+ if( yyy<y0 )
575
+ {
576
+ x0 = x;
577
+ yl = yyy;
578
+ }
579
+ else
580
+ {
581
+ x1 = x;
582
+ yh = yyy;
583
+ }
584
+ }
585
+ }
586
+ if( x==1.0||x==0.0 )
587
+ {
588
+ mainlooppos = breaknewtcycle;
589
+ continue;
590
+ }
591
+ d = (aaa-1.0)*log(x)+(bbb-1.0)*log(1.0-x)+lgm;
592
+ if( d<log(ap::minrealnumber) )
593
+ {
594
+ break;
595
+ }
596
+ if( d>log(ap::maxrealnumber) )
597
+ {
598
+ mainlooppos = breaknewtcycle;
599
+ continue;
600
+ }
601
+ d = exp(d);
602
+ d = (yyy-y0)/d;
603
+ xt = x-d;
604
+ if( xt<=x0 )
605
+ {
606
+ yyy = (x-x0)/(x1-x0);
607
+ xt = x0+0.5*yyy*(x-x0);
608
+ if( xt<=0.0 )
609
+ {
610
+ mainlooppos = breaknewtcycle;
611
+ continue;
612
+ }
613
+ }
614
+ if( xt>=x1 )
615
+ {
616
+ yyy = (x1-x)/(x1-x0);
617
+ xt = x1-0.5*yyy*(x1-x);
618
+ if( xt>=1.0 )
619
+ {
620
+ mainlooppos = breaknewtcycle;
621
+ continue;
622
+ }
623
+ }
624
+ x = xt;
625
+ if( fabs(d/x)<128.0*ap::machineepsilon )
626
+ {
627
+ break;
628
+ }
629
+ i = i+1;
630
+ mainlooppos = newtcycle;
631
+ continue;
632
+ }
633
+ else
634
+ {
635
+ mainlooppos = breaknewtcycle;
636
+ continue;
637
+ }
638
+ }
639
+
640
+ //
641
+ // breaknewtcycle
642
+ //
643
+ if( mainlooppos==breaknewtcycle )
644
+ {
645
+ dithresh = 256.0*ap::machineepsilon;
646
+ mainlooppos = ihalve;
647
+ continue;
648
+ }
649
+ }
650
+
651
+ //
652
+ // done
653
+ //
654
+ if( rflg!=0 )
655
+ {
656
+ if( x<=ap::machineepsilon )
657
+ {
658
+ x = 1.0-ap::machineepsilon;
659
+ }
660
+ else
661
+ {
662
+ x = 1.0-x;
663
+ }
664
+ }
665
+ result = x;
666
+ return result;
667
+ }
668
+
669
+
670
+ /*************************************************************************
671
+ Continued fraction expansion #1 for incomplete beta integral
672
+
673
+ Cephes Math Library, Release 2.8: June, 2000
674
+ Copyright 1984, 1995, 2000 by Stephen L. Moshier
675
+ *************************************************************************/
676
+ static double incompletebetafe(double a,
677
+ double b,
678
+ double x,
679
+ double big,
680
+ double biginv)
681
+ {
682
+ double result;
683
+ double xk;
684
+ double pk;
685
+ double pkm1;
686
+ double pkm2;
687
+ double qk;
688
+ double qkm1;
689
+ double qkm2;
690
+ double k1;
691
+ double k2;
692
+ double k3;
693
+ double k4;
694
+ double k5;
695
+ double k6;
696
+ double k7;
697
+ double k8;
698
+ double r;
699
+ double t;
700
+ double ans;
701
+ double thresh;
702
+ int n;
703
+
704
+ k1 = a;
705
+ k2 = a+b;
706
+ k3 = a;
707
+ k4 = a+1.0;
708
+ k5 = 1.0;
709
+ k6 = b-1.0;
710
+ k7 = k4;
711
+ k8 = a+2.0;
712
+ pkm2 = 0.0;
713
+ qkm2 = 1.0;
714
+ pkm1 = 1.0;
715
+ qkm1 = 1.0;
716
+ ans = 1.0;
717
+ r = 1.0;
718
+ n = 0;
719
+ thresh = 3.0*ap::machineepsilon;
720
+ do
721
+ {
722
+ xk = -x*k1*k2/(k3*k4);
723
+ pk = pkm1+pkm2*xk;
724
+ qk = qkm1+qkm2*xk;
725
+ pkm2 = pkm1;
726
+ pkm1 = pk;
727
+ qkm2 = qkm1;
728
+ qkm1 = qk;
729
+ xk = x*k5*k6/(k7*k8);
730
+ pk = pkm1+pkm2*xk;
731
+ qk = qkm1+qkm2*xk;
732
+ pkm2 = pkm1;
733
+ pkm1 = pk;
734
+ qkm2 = qkm1;
735
+ qkm1 = qk;
736
+ if( qk!=0 )
737
+ {
738
+ r = pk/qk;
739
+ }
740
+ if( r!=0 )
741
+ {
742
+ t = fabs((ans-r)/r);
743
+ ans = r;
744
+ }
745
+ else
746
+ {
747
+ t = 1.0;
748
+ }
749
+ if( t<thresh )
750
+ {
751
+ break;
752
+ }
753
+ k1 = k1+1.0;
754
+ k2 = k2+1.0;
755
+ k3 = k3+2.0;
756
+ k4 = k4+2.0;
757
+ k5 = k5+1.0;
758
+ k6 = k6-1.0;
759
+ k7 = k7+2.0;
760
+ k8 = k8+2.0;
761
+ if( fabs(qk)+fabs(pk)>big )
762
+ {
763
+ pkm2 = pkm2*biginv;
764
+ pkm1 = pkm1*biginv;
765
+ qkm2 = qkm2*biginv;
766
+ qkm1 = qkm1*biginv;
767
+ }
768
+ if( fabs(qk)<biginv||fabs(pk)<biginv )
769
+ {
770
+ pkm2 = pkm2*big;
771
+ pkm1 = pkm1*big;
772
+ qkm2 = qkm2*big;
773
+ qkm1 = qkm1*big;
774
+ }
775
+ n = n+1;
776
+ }
777
+ while(n!=300);
778
+ result = ans;
779
+ return result;
780
+ }
781
+
782
+
783
+ /*************************************************************************
784
+ Continued fraction expansion #2
785
+ for incomplete beta integral
786
+
787
+ Cephes Math Library, Release 2.8: June, 2000
788
+ Copyright 1984, 1995, 2000 by Stephen L. Moshier
789
+ *************************************************************************/
790
+ static double incompletebetafe2(double a,
791
+ double b,
792
+ double x,
793
+ double big,
794
+ double biginv)
795
+ {
796
+ double result;
797
+ double xk;
798
+ double pk;
799
+ double pkm1;
800
+ double pkm2;
801
+ double qk;
802
+ double qkm1;
803
+ double qkm2;
804
+ double k1;
805
+ double k2;
806
+ double k3;
807
+ double k4;
808
+ double k5;
809
+ double k6;
810
+ double k7;
811
+ double k8;
812
+ double r;
813
+ double t;
814
+ double ans;
815
+ double z;
816
+ double thresh;
817
+ int n;
818
+
819
+ k1 = a;
820
+ k2 = b-1.0;
821
+ k3 = a;
822
+ k4 = a+1.0;
823
+ k5 = 1.0;
824
+ k6 = a+b;
825
+ k7 = a+1.0;
826
+ k8 = a+2.0;
827
+ pkm2 = 0.0;
828
+ qkm2 = 1.0;
829
+ pkm1 = 1.0;
830
+ qkm1 = 1.0;
831
+ z = x/(1.0-x);
832
+ ans = 1.0;
833
+ r = 1.0;
834
+ n = 0;
835
+ thresh = 3.0*ap::machineepsilon;
836
+ do
837
+ {
838
+ xk = -z*k1*k2/(k3*k4);
839
+ pk = pkm1+pkm2*xk;
840
+ qk = qkm1+qkm2*xk;
841
+ pkm2 = pkm1;
842
+ pkm1 = pk;
843
+ qkm2 = qkm1;
844
+ qkm1 = qk;
845
+ xk = z*k5*k6/(k7*k8);
846
+ pk = pkm1+pkm2*xk;
847
+ qk = qkm1+qkm2*xk;
848
+ pkm2 = pkm1;
849
+ pkm1 = pk;
850
+ qkm2 = qkm1;
851
+ qkm1 = qk;
852
+ if( qk!=0 )
853
+ {
854
+ r = pk/qk;
855
+ }
856
+ if( r!=0 )
857
+ {
858
+ t = fabs((ans-r)/r);
859
+ ans = r;
860
+ }
861
+ else
862
+ {
863
+ t = 1.0;
864
+ }
865
+ if( t<thresh )
866
+ {
867
+ break;
868
+ }
869
+ k1 = k1+1.0;
870
+ k2 = k2-1.0;
871
+ k3 = k3+2.0;
872
+ k4 = k4+2.0;
873
+ k5 = k5+1.0;
874
+ k6 = k6+1.0;
875
+ k7 = k7+2.0;
876
+ k8 = k8+2.0;
877
+ if( fabs(qk)+fabs(pk)>big )
878
+ {
879
+ pkm2 = pkm2*biginv;
880
+ pkm1 = pkm1*biginv;
881
+ qkm2 = qkm2*biginv;
882
+ qkm1 = qkm1*biginv;
883
+ }
884
+ if( fabs(qk)<biginv||fabs(pk)<biginv )
885
+ {
886
+ pkm2 = pkm2*big;
887
+ pkm1 = pkm1*big;
888
+ qkm2 = qkm2*big;
889
+ qkm1 = qkm1*big;
890
+ }
891
+ n = n+1;
892
+ }
893
+ while(n!=300);
894
+ result = ans;
895
+ return result;
896
+ }
897
+
898
+
899
+ /*************************************************************************
900
+ Power series for incomplete beta integral.
901
+ Use when b*x is small and x not too close to 1.
902
+
903
+ Cephes Math Library, Release 2.8: June, 2000
904
+ Copyright 1984, 1995, 2000 by Stephen L. Moshier
905
+ *************************************************************************/
906
+ static double incompletebetaps(double a, double b, double x, double maxgam)
907
+ {
908
+ double result;
909
+ double s;
910
+ double t;
911
+ double u;
912
+ double v;
913
+ double n;
914
+ double t1;
915
+ double z;
916
+ double ai;
917
+ double sg;
918
+
919
+ ai = 1.0/a;
920
+ u = (1.0-b)*x;
921
+ v = u/(a+1.0);
922
+ t1 = v;
923
+ t = u;
924
+ n = 2.0;
925
+ s = 0.0;
926
+ z = ap::machineepsilon*ai;
927
+ while(fabs(v)>z)
928
+ {
929
+ u = (n-b)*x/n;
930
+ t = t*u;
931
+ v = t/(a+n);
932
+ s = s+v;
933
+ n = n+1.0;
934
+ }
935
+ s = s+t1;
936
+ s = s+ai;
937
+ u = a*log(x);
938
+ if( a+b<maxgam&&fabs(u)<log(ap::maxrealnumber) )
939
+ {
940
+ t = gamma(a+b)/(gamma(a)*gamma(b));
941
+ s = s*t*pow(x, a);
942
+ }
943
+ else
944
+ {
945
+ t = lngamma(a+b, sg)-lngamma(a, sg)-lngamma(b, sg)+u+log(s);
946
+ if( t<log(ap::minrealnumber) )
947
+ {
948
+ s = 0.0;
949
+ }
950
+ else
951
+ {
952
+ s = exp(t);
953
+ }
954
+ }
955
+ result = s;
956
+ return result;
957
+ }
958
+
959
+
960
+