alglib 0.1.1
Sign up to get free protection for your applications and to get access to all the features.
- data/History.txt +7 -0
- data/Manifest.txt +253 -0
- data/README.txt +33 -0
- data/Rakefile +27 -0
- data/ext/Rakefile +24 -0
- data/ext/alglib.i +24 -0
- data/ext/alglib/Makefile +157 -0
- data/ext/alglib/airyf.cpp +372 -0
- data/ext/alglib/airyf.h +81 -0
- data/ext/alglib/alglib.cpp +8558 -0
- data/ext/alglib/alglib_util.cpp +19 -0
- data/ext/alglib/alglib_util.h +14 -0
- data/ext/alglib/ap.cpp +877 -0
- data/ext/alglib/ap.english.html +364 -0
- data/ext/alglib/ap.h +666 -0
- data/ext/alglib/ap.russian.html +442 -0
- data/ext/alglib/apvt.h +754 -0
- data/ext/alglib/bdss.cpp +1500 -0
- data/ext/alglib/bdss.h +251 -0
- data/ext/alglib/bdsvd.cpp +1339 -0
- data/ext/alglib/bdsvd.h +164 -0
- data/ext/alglib/bessel.cpp +1226 -0
- data/ext/alglib/bessel.h +331 -0
- data/ext/alglib/betaf.cpp +105 -0
- data/ext/alglib/betaf.h +74 -0
- data/ext/alglib/bidiagonal.cpp +1328 -0
- data/ext/alglib/bidiagonal.h +350 -0
- data/ext/alglib/binomialdistr.cpp +247 -0
- data/ext/alglib/binomialdistr.h +153 -0
- data/ext/alglib/blas.cpp +576 -0
- data/ext/alglib/blas.h +132 -0
- data/ext/alglib/cblas.cpp +226 -0
- data/ext/alglib/cblas.h +57 -0
- data/ext/alglib/cdet.cpp +138 -0
- data/ext/alglib/cdet.h +92 -0
- data/ext/alglib/chebyshev.cpp +216 -0
- data/ext/alglib/chebyshev.h +76 -0
- data/ext/alglib/chisquaredistr.cpp +157 -0
- data/ext/alglib/chisquaredistr.h +144 -0
- data/ext/alglib/cholesky.cpp +285 -0
- data/ext/alglib/cholesky.h +86 -0
- data/ext/alglib/cinverse.cpp +298 -0
- data/ext/alglib/cinverse.h +111 -0
- data/ext/alglib/clu.cpp +337 -0
- data/ext/alglib/clu.h +120 -0
- data/ext/alglib/correlation.cpp +280 -0
- data/ext/alglib/correlation.h +77 -0
- data/ext/alglib/correlationtests.cpp +726 -0
- data/ext/alglib/correlationtests.h +134 -0
- data/ext/alglib/crcond.cpp +826 -0
- data/ext/alglib/crcond.h +148 -0
- data/ext/alglib/creflections.cpp +310 -0
- data/ext/alglib/creflections.h +165 -0
- data/ext/alglib/csolve.cpp +312 -0
- data/ext/alglib/csolve.h +99 -0
- data/ext/alglib/ctrinverse.cpp +387 -0
- data/ext/alglib/ctrinverse.h +98 -0
- data/ext/alglib/ctrlinsolve.cpp +297 -0
- data/ext/alglib/ctrlinsolve.h +81 -0
- data/ext/alglib/dawson.cpp +234 -0
- data/ext/alglib/dawson.h +74 -0
- data/ext/alglib/descriptivestatistics.cpp +436 -0
- data/ext/alglib/descriptivestatistics.h +112 -0
- data/ext/alglib/det.cpp +140 -0
- data/ext/alglib/det.h +94 -0
- data/ext/alglib/dforest.cpp +1819 -0
- data/ext/alglib/dforest.h +316 -0
- data/ext/alglib/elliptic.cpp +497 -0
- data/ext/alglib/elliptic.h +217 -0
- data/ext/alglib/estnorm.cpp +429 -0
- data/ext/alglib/estnorm.h +107 -0
- data/ext/alglib/expintegrals.cpp +422 -0
- data/ext/alglib/expintegrals.h +108 -0
- data/ext/alglib/faq.english.html +258 -0
- data/ext/alglib/faq.russian.html +272 -0
- data/ext/alglib/fdistr.cpp +202 -0
- data/ext/alglib/fdistr.h +163 -0
- data/ext/alglib/fresnel.cpp +211 -0
- data/ext/alglib/fresnel.h +91 -0
- data/ext/alglib/gammaf.cpp +338 -0
- data/ext/alglib/gammaf.h +104 -0
- data/ext/alglib/gqgengauss.cpp +235 -0
- data/ext/alglib/gqgengauss.h +92 -0
- data/ext/alglib/gqgenhermite.cpp +268 -0
- data/ext/alglib/gqgenhermite.h +63 -0
- data/ext/alglib/gqgenjacobi.cpp +297 -0
- data/ext/alglib/gqgenjacobi.h +72 -0
- data/ext/alglib/gqgenlaguerre.cpp +265 -0
- data/ext/alglib/gqgenlaguerre.h +69 -0
- data/ext/alglib/gqgenlegendre.cpp +300 -0
- data/ext/alglib/gqgenlegendre.h +62 -0
- data/ext/alglib/gqgenlobatto.cpp +305 -0
- data/ext/alglib/gqgenlobatto.h +97 -0
- data/ext/alglib/gqgenradau.cpp +232 -0
- data/ext/alglib/gqgenradau.h +95 -0
- data/ext/alglib/hbisinv.cpp +480 -0
- data/ext/alglib/hbisinv.h +183 -0
- data/ext/alglib/hblas.cpp +228 -0
- data/ext/alglib/hblas.h +64 -0
- data/ext/alglib/hcholesky.cpp +339 -0
- data/ext/alglib/hcholesky.h +91 -0
- data/ext/alglib/hermite.cpp +114 -0
- data/ext/alglib/hermite.h +49 -0
- data/ext/alglib/hessenberg.cpp +370 -0
- data/ext/alglib/hessenberg.h +152 -0
- data/ext/alglib/hevd.cpp +247 -0
- data/ext/alglib/hevd.h +107 -0
- data/ext/alglib/hsschur.cpp +1316 -0
- data/ext/alglib/hsschur.h +108 -0
- data/ext/alglib/htridiagonal.cpp +734 -0
- data/ext/alglib/htridiagonal.h +180 -0
- data/ext/alglib/ialglib.cpp +6 -0
- data/ext/alglib/ialglib.h +9 -0
- data/ext/alglib/ibetaf.cpp +960 -0
- data/ext/alglib/ibetaf.h +125 -0
- data/ext/alglib/igammaf.cpp +430 -0
- data/ext/alglib/igammaf.h +157 -0
- data/ext/alglib/inv.cpp +274 -0
- data/ext/alglib/inv.h +115 -0
- data/ext/alglib/inverseupdate.cpp +480 -0
- data/ext/alglib/inverseupdate.h +185 -0
- data/ext/alglib/jacobianelliptic.cpp +164 -0
- data/ext/alglib/jacobianelliptic.h +94 -0
- data/ext/alglib/jarquebera.cpp +2271 -0
- data/ext/alglib/jarquebera.h +80 -0
- data/ext/alglib/kmeans.cpp +356 -0
- data/ext/alglib/kmeans.h +76 -0
- data/ext/alglib/laguerre.cpp +94 -0
- data/ext/alglib/laguerre.h +48 -0
- data/ext/alglib/lbfgs.cpp +1167 -0
- data/ext/alglib/lbfgs.h +218 -0
- data/ext/alglib/lda.cpp +434 -0
- data/ext/alglib/lda.h +133 -0
- data/ext/alglib/ldlt.cpp +1130 -0
- data/ext/alglib/ldlt.h +124 -0
- data/ext/alglib/leastsquares.cpp +1252 -0
- data/ext/alglib/leastsquares.h +290 -0
- data/ext/alglib/legendre.cpp +107 -0
- data/ext/alglib/legendre.h +49 -0
- data/ext/alglib/linreg.cpp +1185 -0
- data/ext/alglib/linreg.h +380 -0
- data/ext/alglib/logit.cpp +1523 -0
- data/ext/alglib/logit.h +333 -0
- data/ext/alglib/lq.cpp +399 -0
- data/ext/alglib/lq.h +160 -0
- data/ext/alglib/lu.cpp +462 -0
- data/ext/alglib/lu.h +119 -0
- data/ext/alglib/mannwhitneyu.cpp +4490 -0
- data/ext/alglib/mannwhitneyu.h +115 -0
- data/ext/alglib/minlm.cpp +918 -0
- data/ext/alglib/minlm.h +312 -0
- data/ext/alglib/mlpbase.cpp +3375 -0
- data/ext/alglib/mlpbase.h +589 -0
- data/ext/alglib/mlpe.cpp +1369 -0
- data/ext/alglib/mlpe.h +552 -0
- data/ext/alglib/mlptrain.cpp +1056 -0
- data/ext/alglib/mlptrain.h +283 -0
- data/ext/alglib/nearunityunit.cpp +91 -0
- data/ext/alglib/nearunityunit.h +17 -0
- data/ext/alglib/normaldistr.cpp +377 -0
- data/ext/alglib/normaldistr.h +175 -0
- data/ext/alglib/nsevd.cpp +1869 -0
- data/ext/alglib/nsevd.h +140 -0
- data/ext/alglib/pca.cpp +168 -0
- data/ext/alglib/pca.h +87 -0
- data/ext/alglib/poissondistr.cpp +143 -0
- data/ext/alglib/poissondistr.h +130 -0
- data/ext/alglib/polinterpolation.cpp +685 -0
- data/ext/alglib/polinterpolation.h +206 -0
- data/ext/alglib/psif.cpp +173 -0
- data/ext/alglib/psif.h +88 -0
- data/ext/alglib/qr.cpp +414 -0
- data/ext/alglib/qr.h +168 -0
- data/ext/alglib/ratinterpolation.cpp +134 -0
- data/ext/alglib/ratinterpolation.h +72 -0
- data/ext/alglib/rcond.cpp +705 -0
- data/ext/alglib/rcond.h +140 -0
- data/ext/alglib/reflections.cpp +504 -0
- data/ext/alglib/reflections.h +165 -0
- data/ext/alglib/rotations.cpp +473 -0
- data/ext/alglib/rotations.h +128 -0
- data/ext/alglib/rsolve.cpp +221 -0
- data/ext/alglib/rsolve.h +99 -0
- data/ext/alglib/sbisinv.cpp +217 -0
- data/ext/alglib/sbisinv.h +171 -0
- data/ext/alglib/sblas.cpp +185 -0
- data/ext/alglib/sblas.h +64 -0
- data/ext/alglib/schur.cpp +156 -0
- data/ext/alglib/schur.h +102 -0
- data/ext/alglib/sdet.cpp +193 -0
- data/ext/alglib/sdet.h +101 -0
- data/ext/alglib/sevd.cpp +116 -0
- data/ext/alglib/sevd.h +99 -0
- data/ext/alglib/sinverse.cpp +672 -0
- data/ext/alglib/sinverse.h +138 -0
- data/ext/alglib/spddet.cpp +138 -0
- data/ext/alglib/spddet.h +96 -0
- data/ext/alglib/spdgevd.cpp +842 -0
- data/ext/alglib/spdgevd.h +200 -0
- data/ext/alglib/spdinverse.cpp +509 -0
- data/ext/alglib/spdinverse.h +122 -0
- data/ext/alglib/spdrcond.cpp +421 -0
- data/ext/alglib/spdrcond.h +118 -0
- data/ext/alglib/spdsolve.cpp +275 -0
- data/ext/alglib/spdsolve.h +105 -0
- data/ext/alglib/spline2d.cpp +1192 -0
- data/ext/alglib/spline2d.h +301 -0
- data/ext/alglib/spline3.cpp +1264 -0
- data/ext/alglib/spline3.h +290 -0
- data/ext/alglib/srcond.cpp +595 -0
- data/ext/alglib/srcond.h +127 -0
- data/ext/alglib/ssolve.cpp +895 -0
- data/ext/alglib/ssolve.h +139 -0
- data/ext/alglib/stdafx.h +0 -0
- data/ext/alglib/stest.cpp +131 -0
- data/ext/alglib/stest.h +94 -0
- data/ext/alglib/studenttdistr.cpp +222 -0
- data/ext/alglib/studenttdistr.h +115 -0
- data/ext/alglib/studentttests.cpp +377 -0
- data/ext/alglib/studentttests.h +178 -0
- data/ext/alglib/svd.cpp +620 -0
- data/ext/alglib/svd.h +126 -0
- data/ext/alglib/tdbisinv.cpp +2608 -0
- data/ext/alglib/tdbisinv.h +228 -0
- data/ext/alglib/tdevd.cpp +1229 -0
- data/ext/alglib/tdevd.h +115 -0
- data/ext/alglib/tridiagonal.cpp +594 -0
- data/ext/alglib/tridiagonal.h +171 -0
- data/ext/alglib/trigintegrals.cpp +490 -0
- data/ext/alglib/trigintegrals.h +131 -0
- data/ext/alglib/trinverse.cpp +345 -0
- data/ext/alglib/trinverse.h +98 -0
- data/ext/alglib/trlinsolve.cpp +926 -0
- data/ext/alglib/trlinsolve.h +73 -0
- data/ext/alglib/tsort.cpp +405 -0
- data/ext/alglib/tsort.h +54 -0
- data/ext/alglib/variancetests.cpp +245 -0
- data/ext/alglib/variancetests.h +134 -0
- data/ext/alglib/wsr.cpp +6285 -0
- data/ext/alglib/wsr.h +96 -0
- data/ext/ap.i +97 -0
- data/ext/correlation.i +24 -0
- data/ext/extconf.rb +6 -0
- data/ext/logit.i +89 -0
- data/lib/alglib.rb +71 -0
- data/lib/alglib/correlation.rb +26 -0
- data/lib/alglib/linearregression.rb +63 -0
- data/lib/alglib/logit.rb +42 -0
- data/test/test_alglib.rb +52 -0
- data/test/test_correlation.rb +44 -0
- data/test/test_correlationtest.rb +45 -0
- data/test/test_linreg.rb +35 -0
- data/test/test_logit.rb +43 -0
- data/test/test_pca.rb +27 -0
- metadata +326 -0
@@ -0,0 +1,108 @@
|
|
1
|
+
/*************************************************************************
|
2
|
+
Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
|
3
|
+
|
4
|
+
Contributors:
|
5
|
+
* Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
|
6
|
+
pseudocode.
|
7
|
+
|
8
|
+
See subroutines comments for additional copyrights.
|
9
|
+
|
10
|
+
Redistribution and use in source and binary forms, with or without
|
11
|
+
modification, are permitted provided that the following conditions are
|
12
|
+
met:
|
13
|
+
|
14
|
+
- Redistributions of source code must retain the above copyright
|
15
|
+
notice, this list of conditions and the following disclaimer.
|
16
|
+
|
17
|
+
- Redistributions in binary form must reproduce the above copyright
|
18
|
+
notice, this list of conditions and the following disclaimer listed
|
19
|
+
in this license in the documentation and/or other materials
|
20
|
+
provided with the distribution.
|
21
|
+
|
22
|
+
- Neither the name of the copyright holders nor the names of its
|
23
|
+
contributors may be used to endorse or promote products derived from
|
24
|
+
this software without specific prior written permission.
|
25
|
+
|
26
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
27
|
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
28
|
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
29
|
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
30
|
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
31
|
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
32
|
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
33
|
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
34
|
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
35
|
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
36
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
37
|
+
*************************************************************************/
|
38
|
+
|
39
|
+
#ifndef _hsschur_h
|
40
|
+
#define _hsschur_h
|
41
|
+
|
42
|
+
#include "ap.h"
|
43
|
+
#include "ialglib.h"
|
44
|
+
|
45
|
+
#include "blas.h"
|
46
|
+
#include "reflections.h"
|
47
|
+
#include "rotations.h"
|
48
|
+
|
49
|
+
|
50
|
+
/*************************************************************************
|
51
|
+
Subroutine performing the Schur decomposition of a matrix in upper
|
52
|
+
Hessenberg form using the QR algorithm with multiple shifts.
|
53
|
+
|
54
|
+
The source matrix H is represented as S'*H*S = T, where H - matrix in
|
55
|
+
upper Hessenberg form, S - orthogonal matrix (Schur vectors), T - upper
|
56
|
+
quasi-triangular matrix (with blocks of sizes 1x1 and 2x2 on the main
|
57
|
+
diagonal).
|
58
|
+
|
59
|
+
Input parameters:
|
60
|
+
H - matrix to be decomposed.
|
61
|
+
Array whose indexes range within [1..N, 1..N].
|
62
|
+
N - size of H, N>=0.
|
63
|
+
|
64
|
+
|
65
|
+
Output parameters:
|
66
|
+
H � contains the matrix T.
|
67
|
+
Array whose indexes range within [1..N, 1..N].
|
68
|
+
All elements below the blocks on the main diagonal are equal
|
69
|
+
to 0.
|
70
|
+
S - contains Schur vectors.
|
71
|
+
Array whose indexes range within [1..N, 1..N].
|
72
|
+
|
73
|
+
Note 1:
|
74
|
+
The block structure of matrix T could be easily recognized: since all
|
75
|
+
the elements below the blocks are zeros, the elements a[i+1,i] which
|
76
|
+
are equal to 0 show the block border.
|
77
|
+
|
78
|
+
Note 2:
|
79
|
+
the algorithm performance depends on the value of the internal
|
80
|
+
parameter NS of InternalSchurDecomposition subroutine which defines
|
81
|
+
the number of shifts in the QR algorithm (analog of the block width
|
82
|
+
in block matrix algorithms in linear algebra). If you require maximum
|
83
|
+
performance on your machine, it is recommended to adjust this
|
84
|
+
parameter manually.
|
85
|
+
|
86
|
+
Result:
|
87
|
+
True, if the algorithm has converged and the parameters H and S contain
|
88
|
+
the result.
|
89
|
+
False, if the algorithm has not converged.
|
90
|
+
|
91
|
+
Algorithm implemented on the basis of subroutine DHSEQR (LAPACK 3.0 library).
|
92
|
+
*************************************************************************/
|
93
|
+
bool upperhessenbergschurdecomposition(ap::real_2d_array& h,
|
94
|
+
int n,
|
95
|
+
ap::real_2d_array& s);
|
96
|
+
|
97
|
+
|
98
|
+
void internalschurdecomposition(ap::real_2d_array& h,
|
99
|
+
int n,
|
100
|
+
int tneeded,
|
101
|
+
int zneeded,
|
102
|
+
ap::real_1d_array& wr,
|
103
|
+
ap::real_1d_array& wi,
|
104
|
+
ap::real_2d_array& z,
|
105
|
+
int& info);
|
106
|
+
|
107
|
+
|
108
|
+
#endif
|
@@ -0,0 +1,734 @@
|
|
1
|
+
/*************************************************************************
|
2
|
+
Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
|
3
|
+
|
4
|
+
Contributors:
|
5
|
+
* Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
|
6
|
+
pseudocode.
|
7
|
+
|
8
|
+
See subroutines comments for additional copyrights.
|
9
|
+
|
10
|
+
Redistribution and use in source and binary forms, with or without
|
11
|
+
modification, are permitted provided that the following conditions are
|
12
|
+
met:
|
13
|
+
|
14
|
+
- Redistributions of source code must retain the above copyright
|
15
|
+
notice, this list of conditions and the following disclaimer.
|
16
|
+
|
17
|
+
- Redistributions in binary form must reproduce the above copyright
|
18
|
+
notice, this list of conditions and the following disclaimer listed
|
19
|
+
in this license in the documentation and/or other materials
|
20
|
+
provided with the distribution.
|
21
|
+
|
22
|
+
- Neither the name of the copyright holders nor the names of its
|
23
|
+
contributors may be used to endorse or promote products derived from
|
24
|
+
this software without specific prior written permission.
|
25
|
+
|
26
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
27
|
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
28
|
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
29
|
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
30
|
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
31
|
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
32
|
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
33
|
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
34
|
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
35
|
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
36
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
37
|
+
*************************************************************************/
|
38
|
+
|
39
|
+
#include <stdafx.h>
|
40
|
+
#include "htridiagonal.h"
|
41
|
+
|
42
|
+
/*************************************************************************
|
43
|
+
Reduction of a Hermitian matrix which is given by its higher or lower
|
44
|
+
triangular part to a real tridiagonal matrix using unitary similarity
|
45
|
+
transformation: Q'*A*Q = T.
|
46
|
+
|
47
|
+
Input parameters:
|
48
|
+
A - matrix to be transformed
|
49
|
+
array with elements [0..N-1, 0..N-1].
|
50
|
+
N - size of matrix A.
|
51
|
+
IsUpper - storage format. If IsUpper = True, then matrix A is given
|
52
|
+
by its upper triangle, and the lower triangle is not used
|
53
|
+
and not modified by the algorithm, and vice versa
|
54
|
+
if IsUpper = False.
|
55
|
+
|
56
|
+
Output parameters:
|
57
|
+
A - matrices T and Q in compact form (see lower)
|
58
|
+
Tau - array of factors which are forming matrices H(i)
|
59
|
+
array with elements [0..N-2].
|
60
|
+
D - main diagonal of real symmetric matrix T.
|
61
|
+
array with elements [0..N-1].
|
62
|
+
E - secondary diagonal of real symmetric matrix T.
|
63
|
+
array with elements [0..N-2].
|
64
|
+
|
65
|
+
|
66
|
+
If IsUpper=True, the matrix Q is represented as a product of elementary
|
67
|
+
reflectors
|
68
|
+
|
69
|
+
Q = H(n-2) . . . H(2) H(0).
|
70
|
+
|
71
|
+
Each H(i) has the form
|
72
|
+
|
73
|
+
H(i) = I - tau * v * v'
|
74
|
+
|
75
|
+
where tau is a complex scalar, and v is a complex vector with
|
76
|
+
v(i+1:n-1) = 0, v(i) = 1, v(0:i-1) is stored on exit in
|
77
|
+
A(0:i-1,i+1), and tau in TAU(i).
|
78
|
+
|
79
|
+
If IsUpper=False, the matrix Q is represented as a product of elementary
|
80
|
+
reflectors
|
81
|
+
|
82
|
+
Q = H(0) H(2) . . . H(n-2).
|
83
|
+
|
84
|
+
Each H(i) has the form
|
85
|
+
|
86
|
+
H(i) = I - tau * v * v'
|
87
|
+
|
88
|
+
where tau is a complex scalar, and v is a complex vector with
|
89
|
+
v(0:i) = 0, v(i+1) = 1, v(i+2:n-1) is stored on exit in A(i+2:n-1,i),
|
90
|
+
and tau in TAU(i).
|
91
|
+
|
92
|
+
The contents of A on exit are illustrated by the following examples
|
93
|
+
with n = 5:
|
94
|
+
|
95
|
+
if UPLO = 'U': if UPLO = 'L':
|
96
|
+
|
97
|
+
( d e v1 v2 v3 ) ( d )
|
98
|
+
( d e v2 v3 ) ( e d )
|
99
|
+
( d e v3 ) ( v0 e d )
|
100
|
+
( d e ) ( v0 v1 e d )
|
101
|
+
( d ) ( v0 v1 v2 e d )
|
102
|
+
|
103
|
+
where d and e denote diagonal and off-diagonal elements of T, and vi
|
104
|
+
denotes an element of the vector defining H(i).
|
105
|
+
|
106
|
+
-- LAPACK routine (version 3.0) --
|
107
|
+
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
108
|
+
Courant Institute, Argonne National Lab, and Rice University
|
109
|
+
October 31, 1992
|
110
|
+
*************************************************************************/
|
111
|
+
void hmatrixtd(ap::complex_2d_array& a,
|
112
|
+
int n,
|
113
|
+
bool isupper,
|
114
|
+
ap::complex_1d_array& tau,
|
115
|
+
ap::real_1d_array& d,
|
116
|
+
ap::real_1d_array& e)
|
117
|
+
{
|
118
|
+
int i;
|
119
|
+
ap::complex alpha;
|
120
|
+
ap::complex taui;
|
121
|
+
ap::complex v;
|
122
|
+
ap::complex_1d_array t;
|
123
|
+
ap::complex_1d_array t2;
|
124
|
+
ap::complex_1d_array t3;
|
125
|
+
int i_;
|
126
|
+
int i1_;
|
127
|
+
|
128
|
+
if( n<=0 )
|
129
|
+
{
|
130
|
+
return;
|
131
|
+
}
|
132
|
+
for(i = 0; i <= n-1; i++)
|
133
|
+
{
|
134
|
+
ap::ap_error::make_assertion(a(i,i).y==0, "");
|
135
|
+
}
|
136
|
+
if( n>1 )
|
137
|
+
{
|
138
|
+
tau.setbounds(0, n-2);
|
139
|
+
e.setbounds(0, n-2);
|
140
|
+
}
|
141
|
+
d.setbounds(0, n-1);
|
142
|
+
t.setbounds(0, n-1);
|
143
|
+
t2.setbounds(0, n-1);
|
144
|
+
t3.setbounds(0, n-1);
|
145
|
+
if( isupper )
|
146
|
+
{
|
147
|
+
|
148
|
+
//
|
149
|
+
// Reduce the upper triangle of A
|
150
|
+
//
|
151
|
+
a(n-1,n-1) = a(n-1,n-1).x;
|
152
|
+
for(i = n-2; i >= 0; i--)
|
153
|
+
{
|
154
|
+
|
155
|
+
//
|
156
|
+
// Generate elementary reflector H = I+1 - tau * v * v'
|
157
|
+
//
|
158
|
+
alpha = a(i,i+1);
|
159
|
+
t(1) = alpha;
|
160
|
+
if( i>=1 )
|
161
|
+
{
|
162
|
+
i1_ = (0) - (2);
|
163
|
+
for(i_=2; i_<=i+1;i_++)
|
164
|
+
{
|
165
|
+
t(i_) = a(i_+i1_,i+1);
|
166
|
+
}
|
167
|
+
}
|
168
|
+
complexgeneratereflection(t, i+1, taui);
|
169
|
+
if( i>=1 )
|
170
|
+
{
|
171
|
+
i1_ = (2) - (0);
|
172
|
+
for(i_=0; i_<=i-1;i_++)
|
173
|
+
{
|
174
|
+
a(i_,i+1) = t(i_+i1_);
|
175
|
+
}
|
176
|
+
}
|
177
|
+
alpha = t(1);
|
178
|
+
e(i) = alpha.x;
|
179
|
+
if( taui!=0 )
|
180
|
+
{
|
181
|
+
|
182
|
+
//
|
183
|
+
// Apply H(I+1) from both sides to A
|
184
|
+
//
|
185
|
+
a(i,i+1) = 1;
|
186
|
+
|
187
|
+
//
|
188
|
+
// Compute x := tau * A * v storing x in TAU
|
189
|
+
//
|
190
|
+
i1_ = (0) - (1);
|
191
|
+
for(i_=1; i_<=i+1;i_++)
|
192
|
+
{
|
193
|
+
t(i_) = a(i_+i1_,i+1);
|
194
|
+
}
|
195
|
+
hermitianmatrixvectormultiply(a, isupper, 0, i, t, taui, t2);
|
196
|
+
i1_ = (1) - (0);
|
197
|
+
for(i_=0; i_<=i;i_++)
|
198
|
+
{
|
199
|
+
tau(i_) = t2(i_+i1_);
|
200
|
+
}
|
201
|
+
|
202
|
+
//
|
203
|
+
// Compute w := x - 1/2 * tau * (x'*v) * v
|
204
|
+
//
|
205
|
+
v = 0.0;
|
206
|
+
for(i_=0; i_<=i;i_++)
|
207
|
+
{
|
208
|
+
v += ap::conj(tau(i_))*a(i_,i+1);
|
209
|
+
}
|
210
|
+
alpha = -0.5*taui*v;
|
211
|
+
for(i_=0; i_<=i;i_++)
|
212
|
+
{
|
213
|
+
tau(i_) = tau(i_) + alpha*a(i_,i+1);
|
214
|
+
}
|
215
|
+
|
216
|
+
//
|
217
|
+
// Apply the transformation as a rank-2 update:
|
218
|
+
// A := A - v * w' - w * v'
|
219
|
+
//
|
220
|
+
i1_ = (0) - (1);
|
221
|
+
for(i_=1; i_<=i+1;i_++)
|
222
|
+
{
|
223
|
+
t(i_) = a(i_+i1_,i+1);
|
224
|
+
}
|
225
|
+
i1_ = (0) - (1);
|
226
|
+
for(i_=1; i_<=i+1;i_++)
|
227
|
+
{
|
228
|
+
t3(i_) = tau(i_+i1_);
|
229
|
+
}
|
230
|
+
hermitianrank2update(a, isupper, 0, i, t, t3, t2, -1);
|
231
|
+
}
|
232
|
+
else
|
233
|
+
{
|
234
|
+
a(i,i) = a(i,i).x;
|
235
|
+
}
|
236
|
+
a(i,i+1) = e(i);
|
237
|
+
d(i+1) = a(i+1,i+1).x;
|
238
|
+
tau(i) = taui;
|
239
|
+
}
|
240
|
+
d(0) = a(0,0).x;
|
241
|
+
}
|
242
|
+
else
|
243
|
+
{
|
244
|
+
|
245
|
+
//
|
246
|
+
// Reduce the lower triangle of A
|
247
|
+
//
|
248
|
+
a(0,0) = a(0,0).x;
|
249
|
+
for(i = 0; i <= n-2; i++)
|
250
|
+
{
|
251
|
+
|
252
|
+
//
|
253
|
+
// Generate elementary reflector H = I - tau * v * v'
|
254
|
+
//
|
255
|
+
i1_ = (i+1) - (1);
|
256
|
+
for(i_=1; i_<=n-i-1;i_++)
|
257
|
+
{
|
258
|
+
t(i_) = a(i_+i1_,i);
|
259
|
+
}
|
260
|
+
complexgeneratereflection(t, n-i-1, taui);
|
261
|
+
i1_ = (1) - (i+1);
|
262
|
+
for(i_=i+1; i_<=n-1;i_++)
|
263
|
+
{
|
264
|
+
a(i_,i) = t(i_+i1_);
|
265
|
+
}
|
266
|
+
e(i) = a(i+1,i).x;
|
267
|
+
if( taui!=0 )
|
268
|
+
{
|
269
|
+
|
270
|
+
//
|
271
|
+
// Apply H(i) from both sides to A(i+1:n,i+1:n)
|
272
|
+
//
|
273
|
+
a(i+1,i) = 1;
|
274
|
+
|
275
|
+
//
|
276
|
+
// Compute x := tau * A * v storing y in TAU
|
277
|
+
//
|
278
|
+
i1_ = (i+1) - (1);
|
279
|
+
for(i_=1; i_<=n-i-1;i_++)
|
280
|
+
{
|
281
|
+
t(i_) = a(i_+i1_,i);
|
282
|
+
}
|
283
|
+
hermitianmatrixvectormultiply(a, isupper, i+1, n-1, t, taui, t2);
|
284
|
+
i1_ = (1) - (i);
|
285
|
+
for(i_=i; i_<=n-2;i_++)
|
286
|
+
{
|
287
|
+
tau(i_) = t2(i_+i1_);
|
288
|
+
}
|
289
|
+
|
290
|
+
//
|
291
|
+
// Compute w := x - 1/2 * tau * (x'*v) * v
|
292
|
+
//
|
293
|
+
i1_ = (i+1)-(i);
|
294
|
+
v = 0.0;
|
295
|
+
for(i_=i; i_<=n-2;i_++)
|
296
|
+
{
|
297
|
+
v += ap::conj(tau(i_))*a(i_+i1_,i);
|
298
|
+
}
|
299
|
+
alpha = -0.5*taui*v;
|
300
|
+
i1_ = (i+1) - (i);
|
301
|
+
for(i_=i; i_<=n-2;i_++)
|
302
|
+
{
|
303
|
+
tau(i_) = tau(i_) + alpha*a(i_+i1_,i);
|
304
|
+
}
|
305
|
+
|
306
|
+
//
|
307
|
+
// Apply the transformation as a rank-2 update:
|
308
|
+
// A := A - v * w' - w * v'
|
309
|
+
//
|
310
|
+
i1_ = (i+1) - (1);
|
311
|
+
for(i_=1; i_<=n-i-1;i_++)
|
312
|
+
{
|
313
|
+
t(i_) = a(i_+i1_,i);
|
314
|
+
}
|
315
|
+
i1_ = (i) - (1);
|
316
|
+
for(i_=1; i_<=n-i-1;i_++)
|
317
|
+
{
|
318
|
+
t2(i_) = tau(i_+i1_);
|
319
|
+
}
|
320
|
+
hermitianrank2update(a, isupper, i+1, n-1, t, t2, t3, -1);
|
321
|
+
}
|
322
|
+
else
|
323
|
+
{
|
324
|
+
a(i+1,i+1) = a(i+1,i+1).x;
|
325
|
+
}
|
326
|
+
a(i+1,i) = e(i);
|
327
|
+
d(i) = a(i,i).x;
|
328
|
+
tau(i) = taui;
|
329
|
+
}
|
330
|
+
d(n-1) = a(n-1,n-1).x;
|
331
|
+
}
|
332
|
+
}
|
333
|
+
|
334
|
+
|
335
|
+
/*************************************************************************
|
336
|
+
Unpacking matrix Q which reduces a Hermitian matrix to a real tridiagonal
|
337
|
+
form.
|
338
|
+
|
339
|
+
Input parameters:
|
340
|
+
A - the result of a HMatrixTD subroutine
|
341
|
+
N - size of matrix A.
|
342
|
+
IsUpper - storage format (a parameter of HMatrixTD subroutine)
|
343
|
+
Tau - the result of a HMatrixTD subroutine
|
344
|
+
|
345
|
+
Output parameters:
|
346
|
+
Q - transformation matrix.
|
347
|
+
array with elements [0..N-1, 0..N-1].
|
348
|
+
|
349
|
+
-- ALGLIB --
|
350
|
+
Copyright 2005, 2007, 2008 by Bochkanov Sergey
|
351
|
+
*************************************************************************/
|
352
|
+
void hmatrixtdunpackq(const ap::complex_2d_array& a,
|
353
|
+
const int& n,
|
354
|
+
const bool& isupper,
|
355
|
+
const ap::complex_1d_array& tau,
|
356
|
+
ap::complex_2d_array& q)
|
357
|
+
{
|
358
|
+
int i;
|
359
|
+
int j;
|
360
|
+
ap::complex_1d_array v;
|
361
|
+
ap::complex_1d_array work;
|
362
|
+
int i_;
|
363
|
+
int i1_;
|
364
|
+
|
365
|
+
if( n==0 )
|
366
|
+
{
|
367
|
+
return;
|
368
|
+
}
|
369
|
+
|
370
|
+
//
|
371
|
+
// init
|
372
|
+
//
|
373
|
+
q.setbounds(0, n-1, 0, n-1);
|
374
|
+
v.setbounds(1, n);
|
375
|
+
work.setbounds(0, n-1);
|
376
|
+
for(i = 0; i <= n-1; i++)
|
377
|
+
{
|
378
|
+
for(j = 0; j <= n-1; j++)
|
379
|
+
{
|
380
|
+
if( i==j )
|
381
|
+
{
|
382
|
+
q(i,j) = 1;
|
383
|
+
}
|
384
|
+
else
|
385
|
+
{
|
386
|
+
q(i,j) = 0;
|
387
|
+
}
|
388
|
+
}
|
389
|
+
}
|
390
|
+
|
391
|
+
//
|
392
|
+
// unpack Q
|
393
|
+
//
|
394
|
+
if( isupper )
|
395
|
+
{
|
396
|
+
for(i = 0; i <= n-2; i++)
|
397
|
+
{
|
398
|
+
|
399
|
+
//
|
400
|
+
// Apply H(i)
|
401
|
+
//
|
402
|
+
i1_ = (0) - (1);
|
403
|
+
for(i_=1; i_<=i+1;i_++)
|
404
|
+
{
|
405
|
+
v(i_) = a(i_+i1_,i+1);
|
406
|
+
}
|
407
|
+
v(i+1) = 1;
|
408
|
+
complexapplyreflectionfromtheleft(q, tau(i), v, 0, i, 0, n-1, work);
|
409
|
+
}
|
410
|
+
}
|
411
|
+
else
|
412
|
+
{
|
413
|
+
for(i = n-2; i >= 0; i--)
|
414
|
+
{
|
415
|
+
|
416
|
+
//
|
417
|
+
// Apply H(i)
|
418
|
+
//
|
419
|
+
i1_ = (i+1) - (1);
|
420
|
+
for(i_=1; i_<=n-i-1;i_++)
|
421
|
+
{
|
422
|
+
v(i_) = a(i_+i1_,i);
|
423
|
+
}
|
424
|
+
v(1) = 1;
|
425
|
+
complexapplyreflectionfromtheleft(q, tau(i), v, i+1, n-1, 0, n-1, work);
|
426
|
+
}
|
427
|
+
}
|
428
|
+
}
|
429
|
+
|
430
|
+
|
431
|
+
/*************************************************************************
|
432
|
+
Obsolete 1-based subroutine
|
433
|
+
|
434
|
+
-- LAPACK routine (version 3.0) --
|
435
|
+
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
436
|
+
Courant Institute, Argonne National Lab, and Rice University
|
437
|
+
October 31, 1992
|
438
|
+
*************************************************************************/
|
439
|
+
void hermitiantotridiagonal(ap::complex_2d_array& a,
|
440
|
+
int n,
|
441
|
+
bool isupper,
|
442
|
+
ap::complex_1d_array& tau,
|
443
|
+
ap::real_1d_array& d,
|
444
|
+
ap::real_1d_array& e)
|
445
|
+
{
|
446
|
+
int i;
|
447
|
+
ap::complex alpha;
|
448
|
+
ap::complex taui;
|
449
|
+
ap::complex v;
|
450
|
+
ap::complex_1d_array t;
|
451
|
+
ap::complex_1d_array t2;
|
452
|
+
ap::complex_1d_array t3;
|
453
|
+
int i_;
|
454
|
+
int i1_;
|
455
|
+
|
456
|
+
if( n<=0 )
|
457
|
+
{
|
458
|
+
return;
|
459
|
+
}
|
460
|
+
for(i = 1; i <= n; i++)
|
461
|
+
{
|
462
|
+
ap::ap_error::make_assertion(a(i,i).y==0, "");
|
463
|
+
}
|
464
|
+
tau.setbounds(1, ap::maxint(1, n-1));
|
465
|
+
d.setbounds(1, n);
|
466
|
+
e.setbounds(1, ap::maxint(1, n-1));
|
467
|
+
t.setbounds(1, n);
|
468
|
+
t2.setbounds(1, n);
|
469
|
+
t3.setbounds(1, n);
|
470
|
+
if( isupper )
|
471
|
+
{
|
472
|
+
|
473
|
+
//
|
474
|
+
// Reduce the upper triangle of A
|
475
|
+
//
|
476
|
+
a(n,n) = a(n,n).x;
|
477
|
+
for(i = n-1; i >= 1; i--)
|
478
|
+
{
|
479
|
+
|
480
|
+
//
|
481
|
+
// Generate elementary reflector H(i) = I - tau * v * v'
|
482
|
+
// to annihilate A(1:i-1,i+1)
|
483
|
+
//
|
484
|
+
alpha = a(i,i+1);
|
485
|
+
t(1) = alpha;
|
486
|
+
if( i>=2 )
|
487
|
+
{
|
488
|
+
i1_ = (1) - (2);
|
489
|
+
for(i_=2; i_<=i;i_++)
|
490
|
+
{
|
491
|
+
t(i_) = a(i_+i1_,i+1);
|
492
|
+
}
|
493
|
+
}
|
494
|
+
complexgeneratereflection(t, i, taui);
|
495
|
+
if( i>=2 )
|
496
|
+
{
|
497
|
+
i1_ = (2) - (1);
|
498
|
+
for(i_=1; i_<=i-1;i_++)
|
499
|
+
{
|
500
|
+
a(i_,i+1) = t(i_+i1_);
|
501
|
+
}
|
502
|
+
}
|
503
|
+
alpha = t(1);
|
504
|
+
e(i) = alpha.x;
|
505
|
+
if( taui!=0 )
|
506
|
+
{
|
507
|
+
|
508
|
+
//
|
509
|
+
// Apply H(i) from both sides to A(1:i,1:i)
|
510
|
+
//
|
511
|
+
a(i,i+1) = 1;
|
512
|
+
|
513
|
+
//
|
514
|
+
// Compute x := tau * A * v storing x in TAU(1:i)
|
515
|
+
//
|
516
|
+
for(i_=1; i_<=i;i_++)
|
517
|
+
{
|
518
|
+
t(i_) = a(i_,i+1);
|
519
|
+
}
|
520
|
+
hermitianmatrixvectormultiply(a, isupper, 1, i, t, taui, tau);
|
521
|
+
|
522
|
+
//
|
523
|
+
// Compute w := x - 1/2 * tau * (x'*v) * v
|
524
|
+
//
|
525
|
+
v = 0.0;
|
526
|
+
for(i_=1; i_<=i;i_++)
|
527
|
+
{
|
528
|
+
v += ap::conj(tau(i_))*a(i_,i+1);
|
529
|
+
}
|
530
|
+
alpha = -0.5*taui*v;
|
531
|
+
for(i_=1; i_<=i;i_++)
|
532
|
+
{
|
533
|
+
tau(i_) = tau(i_) + alpha*a(i_,i+1);
|
534
|
+
}
|
535
|
+
|
536
|
+
//
|
537
|
+
// Apply the transformation as a rank-2 update:
|
538
|
+
// A := A - v * w' - w * v'
|
539
|
+
//
|
540
|
+
for(i_=1; i_<=i;i_++)
|
541
|
+
{
|
542
|
+
t(i_) = a(i_,i+1);
|
543
|
+
}
|
544
|
+
hermitianrank2update(a, isupper, 1, i, t, tau, t2, -1);
|
545
|
+
}
|
546
|
+
else
|
547
|
+
{
|
548
|
+
a(i,i) = a(i,i).x;
|
549
|
+
}
|
550
|
+
a(i,i+1) = e(i);
|
551
|
+
d(i+1) = a(i+1,i+1).x;
|
552
|
+
tau(i) = taui;
|
553
|
+
}
|
554
|
+
d(1) = a(1,1).x;
|
555
|
+
}
|
556
|
+
else
|
557
|
+
{
|
558
|
+
|
559
|
+
//
|
560
|
+
// Reduce the lower triangle of A
|
561
|
+
//
|
562
|
+
a(1,1) = a(1,1).x;
|
563
|
+
for(i = 1; i <= n-1; i++)
|
564
|
+
{
|
565
|
+
|
566
|
+
//
|
567
|
+
// Generate elementary reflector H(i) = I - tau * v * v'
|
568
|
+
// to annihilate A(i+2:n,i)
|
569
|
+
//
|
570
|
+
i1_ = (i+1) - (1);
|
571
|
+
for(i_=1; i_<=n-i;i_++)
|
572
|
+
{
|
573
|
+
t(i_) = a(i_+i1_,i);
|
574
|
+
}
|
575
|
+
complexgeneratereflection(t, n-i, taui);
|
576
|
+
i1_ = (1) - (i+1);
|
577
|
+
for(i_=i+1; i_<=n;i_++)
|
578
|
+
{
|
579
|
+
a(i_,i) = t(i_+i1_);
|
580
|
+
}
|
581
|
+
e(i) = a(i+1,i).x;
|
582
|
+
if( taui!=0 )
|
583
|
+
{
|
584
|
+
|
585
|
+
//
|
586
|
+
// Apply H(i) from both sides to A(i+1:n,i+1:n)
|
587
|
+
//
|
588
|
+
a(i+1,i) = 1;
|
589
|
+
|
590
|
+
//
|
591
|
+
// Compute x := tau * A * v storing y in TAU(i:n-1)
|
592
|
+
//
|
593
|
+
i1_ = (i+1) - (1);
|
594
|
+
for(i_=1; i_<=n-i;i_++)
|
595
|
+
{
|
596
|
+
t(i_) = a(i_+i1_,i);
|
597
|
+
}
|
598
|
+
hermitianmatrixvectormultiply(a, isupper, i+1, n, t, taui, t2);
|
599
|
+
i1_ = (1) - (i);
|
600
|
+
for(i_=i; i_<=n-1;i_++)
|
601
|
+
{
|
602
|
+
tau(i_) = t2(i_+i1_);
|
603
|
+
}
|
604
|
+
|
605
|
+
//
|
606
|
+
// Compute w := x - 1/2 * tau * (x'*v) * v
|
607
|
+
//
|
608
|
+
i1_ = (i+1)-(i);
|
609
|
+
v = 0.0;
|
610
|
+
for(i_=i; i_<=n-1;i_++)
|
611
|
+
{
|
612
|
+
v += ap::conj(tau(i_))*a(i_+i1_,i);
|
613
|
+
}
|
614
|
+
alpha = -0.5*taui*v;
|
615
|
+
i1_ = (i+1) - (i);
|
616
|
+
for(i_=i; i_<=n-1;i_++)
|
617
|
+
{
|
618
|
+
tau(i_) = tau(i_) + alpha*a(i_+i1_,i);
|
619
|
+
}
|
620
|
+
|
621
|
+
//
|
622
|
+
// Apply the transformation as a rank-2 update:
|
623
|
+
// A := A - v * w' - w * v'
|
624
|
+
//
|
625
|
+
i1_ = (i+1) - (1);
|
626
|
+
for(i_=1; i_<=n-i;i_++)
|
627
|
+
{
|
628
|
+
t(i_) = a(i_+i1_,i);
|
629
|
+
}
|
630
|
+
i1_ = (i) - (1);
|
631
|
+
for(i_=1; i_<=n-i;i_++)
|
632
|
+
{
|
633
|
+
t2(i_) = tau(i_+i1_);
|
634
|
+
}
|
635
|
+
hermitianrank2update(a, isupper, i+1, n, t, t2, t3, -1);
|
636
|
+
}
|
637
|
+
else
|
638
|
+
{
|
639
|
+
a(i+1,i+1) = a(i+1,i+1).x;
|
640
|
+
}
|
641
|
+
a(i+1,i) = e(i);
|
642
|
+
d(i) = a(i,i).x;
|
643
|
+
tau(i) = taui;
|
644
|
+
}
|
645
|
+
d(n) = a(n,n).x;
|
646
|
+
}
|
647
|
+
}
|
648
|
+
|
649
|
+
|
650
|
+
/*************************************************************************
|
651
|
+
Obsolete 1-based subroutine
|
652
|
+
|
653
|
+
-- ALGLIB --
|
654
|
+
Copyright 2005, 2007 by Bochkanov Sergey
|
655
|
+
*************************************************************************/
|
656
|
+
void unpackqfromhermitiantridiagonal(const ap::complex_2d_array& a,
|
657
|
+
const int& n,
|
658
|
+
const bool& isupper,
|
659
|
+
const ap::complex_1d_array& tau,
|
660
|
+
ap::complex_2d_array& q)
|
661
|
+
{
|
662
|
+
int i;
|
663
|
+
int j;
|
664
|
+
ap::complex_1d_array v;
|
665
|
+
ap::complex_1d_array work;
|
666
|
+
int i_;
|
667
|
+
int i1_;
|
668
|
+
|
669
|
+
if( n==0 )
|
670
|
+
{
|
671
|
+
return;
|
672
|
+
}
|
673
|
+
|
674
|
+
//
|
675
|
+
// init
|
676
|
+
//
|
677
|
+
q.setbounds(1, n, 1, n);
|
678
|
+
v.setbounds(1, n);
|
679
|
+
work.setbounds(1, n);
|
680
|
+
for(i = 1; i <= n; i++)
|
681
|
+
{
|
682
|
+
for(j = 1; j <= n; j++)
|
683
|
+
{
|
684
|
+
if( i==j )
|
685
|
+
{
|
686
|
+
q(i,j) = 1;
|
687
|
+
}
|
688
|
+
else
|
689
|
+
{
|
690
|
+
q(i,j) = 0;
|
691
|
+
}
|
692
|
+
}
|
693
|
+
}
|
694
|
+
|
695
|
+
//
|
696
|
+
// unpack Q
|
697
|
+
//
|
698
|
+
if( isupper )
|
699
|
+
{
|
700
|
+
for(i = 1; i <= n-1; i++)
|
701
|
+
{
|
702
|
+
|
703
|
+
//
|
704
|
+
// Apply H(i)
|
705
|
+
//
|
706
|
+
for(i_=1; i_<=i;i_++)
|
707
|
+
{
|
708
|
+
v(i_) = a(i_,i+1);
|
709
|
+
}
|
710
|
+
v(i) = 1;
|
711
|
+
complexapplyreflectionfromtheleft(q, tau(i), v, 1, i, 1, n, work);
|
712
|
+
}
|
713
|
+
}
|
714
|
+
else
|
715
|
+
{
|
716
|
+
for(i = n-1; i >= 1; i--)
|
717
|
+
{
|
718
|
+
|
719
|
+
//
|
720
|
+
// Apply H(i)
|
721
|
+
//
|
722
|
+
i1_ = (i+1) - (1);
|
723
|
+
for(i_=1; i_<=n-i;i_++)
|
724
|
+
{
|
725
|
+
v(i_) = a(i_+i1_,i);
|
726
|
+
}
|
727
|
+
v(1) = 1;
|
728
|
+
complexapplyreflectionfromtheleft(q, tau(i), v, i+1, n, 1, n, work);
|
729
|
+
}
|
730
|
+
}
|
731
|
+
}
|
732
|
+
|
733
|
+
|
734
|
+
|