alglib 0.1.1

Sign up to get free protection for your applications and to get access to all the features.
Files changed (255) hide show
  1. data/History.txt +7 -0
  2. data/Manifest.txt +253 -0
  3. data/README.txt +33 -0
  4. data/Rakefile +27 -0
  5. data/ext/Rakefile +24 -0
  6. data/ext/alglib.i +24 -0
  7. data/ext/alglib/Makefile +157 -0
  8. data/ext/alglib/airyf.cpp +372 -0
  9. data/ext/alglib/airyf.h +81 -0
  10. data/ext/alglib/alglib.cpp +8558 -0
  11. data/ext/alglib/alglib_util.cpp +19 -0
  12. data/ext/alglib/alglib_util.h +14 -0
  13. data/ext/alglib/ap.cpp +877 -0
  14. data/ext/alglib/ap.english.html +364 -0
  15. data/ext/alglib/ap.h +666 -0
  16. data/ext/alglib/ap.russian.html +442 -0
  17. data/ext/alglib/apvt.h +754 -0
  18. data/ext/alglib/bdss.cpp +1500 -0
  19. data/ext/alglib/bdss.h +251 -0
  20. data/ext/alglib/bdsvd.cpp +1339 -0
  21. data/ext/alglib/bdsvd.h +164 -0
  22. data/ext/alglib/bessel.cpp +1226 -0
  23. data/ext/alglib/bessel.h +331 -0
  24. data/ext/alglib/betaf.cpp +105 -0
  25. data/ext/alglib/betaf.h +74 -0
  26. data/ext/alglib/bidiagonal.cpp +1328 -0
  27. data/ext/alglib/bidiagonal.h +350 -0
  28. data/ext/alglib/binomialdistr.cpp +247 -0
  29. data/ext/alglib/binomialdistr.h +153 -0
  30. data/ext/alglib/blas.cpp +576 -0
  31. data/ext/alglib/blas.h +132 -0
  32. data/ext/alglib/cblas.cpp +226 -0
  33. data/ext/alglib/cblas.h +57 -0
  34. data/ext/alglib/cdet.cpp +138 -0
  35. data/ext/alglib/cdet.h +92 -0
  36. data/ext/alglib/chebyshev.cpp +216 -0
  37. data/ext/alglib/chebyshev.h +76 -0
  38. data/ext/alglib/chisquaredistr.cpp +157 -0
  39. data/ext/alglib/chisquaredistr.h +144 -0
  40. data/ext/alglib/cholesky.cpp +285 -0
  41. data/ext/alglib/cholesky.h +86 -0
  42. data/ext/alglib/cinverse.cpp +298 -0
  43. data/ext/alglib/cinverse.h +111 -0
  44. data/ext/alglib/clu.cpp +337 -0
  45. data/ext/alglib/clu.h +120 -0
  46. data/ext/alglib/correlation.cpp +280 -0
  47. data/ext/alglib/correlation.h +77 -0
  48. data/ext/alglib/correlationtests.cpp +726 -0
  49. data/ext/alglib/correlationtests.h +134 -0
  50. data/ext/alglib/crcond.cpp +826 -0
  51. data/ext/alglib/crcond.h +148 -0
  52. data/ext/alglib/creflections.cpp +310 -0
  53. data/ext/alglib/creflections.h +165 -0
  54. data/ext/alglib/csolve.cpp +312 -0
  55. data/ext/alglib/csolve.h +99 -0
  56. data/ext/alglib/ctrinverse.cpp +387 -0
  57. data/ext/alglib/ctrinverse.h +98 -0
  58. data/ext/alglib/ctrlinsolve.cpp +297 -0
  59. data/ext/alglib/ctrlinsolve.h +81 -0
  60. data/ext/alglib/dawson.cpp +234 -0
  61. data/ext/alglib/dawson.h +74 -0
  62. data/ext/alglib/descriptivestatistics.cpp +436 -0
  63. data/ext/alglib/descriptivestatistics.h +112 -0
  64. data/ext/alglib/det.cpp +140 -0
  65. data/ext/alglib/det.h +94 -0
  66. data/ext/alglib/dforest.cpp +1819 -0
  67. data/ext/alglib/dforest.h +316 -0
  68. data/ext/alglib/elliptic.cpp +497 -0
  69. data/ext/alglib/elliptic.h +217 -0
  70. data/ext/alglib/estnorm.cpp +429 -0
  71. data/ext/alglib/estnorm.h +107 -0
  72. data/ext/alglib/expintegrals.cpp +422 -0
  73. data/ext/alglib/expintegrals.h +108 -0
  74. data/ext/alglib/faq.english.html +258 -0
  75. data/ext/alglib/faq.russian.html +272 -0
  76. data/ext/alglib/fdistr.cpp +202 -0
  77. data/ext/alglib/fdistr.h +163 -0
  78. data/ext/alglib/fresnel.cpp +211 -0
  79. data/ext/alglib/fresnel.h +91 -0
  80. data/ext/alglib/gammaf.cpp +338 -0
  81. data/ext/alglib/gammaf.h +104 -0
  82. data/ext/alglib/gqgengauss.cpp +235 -0
  83. data/ext/alglib/gqgengauss.h +92 -0
  84. data/ext/alglib/gqgenhermite.cpp +268 -0
  85. data/ext/alglib/gqgenhermite.h +63 -0
  86. data/ext/alglib/gqgenjacobi.cpp +297 -0
  87. data/ext/alglib/gqgenjacobi.h +72 -0
  88. data/ext/alglib/gqgenlaguerre.cpp +265 -0
  89. data/ext/alglib/gqgenlaguerre.h +69 -0
  90. data/ext/alglib/gqgenlegendre.cpp +300 -0
  91. data/ext/alglib/gqgenlegendre.h +62 -0
  92. data/ext/alglib/gqgenlobatto.cpp +305 -0
  93. data/ext/alglib/gqgenlobatto.h +97 -0
  94. data/ext/alglib/gqgenradau.cpp +232 -0
  95. data/ext/alglib/gqgenradau.h +95 -0
  96. data/ext/alglib/hbisinv.cpp +480 -0
  97. data/ext/alglib/hbisinv.h +183 -0
  98. data/ext/alglib/hblas.cpp +228 -0
  99. data/ext/alglib/hblas.h +64 -0
  100. data/ext/alglib/hcholesky.cpp +339 -0
  101. data/ext/alglib/hcholesky.h +91 -0
  102. data/ext/alglib/hermite.cpp +114 -0
  103. data/ext/alglib/hermite.h +49 -0
  104. data/ext/alglib/hessenberg.cpp +370 -0
  105. data/ext/alglib/hessenberg.h +152 -0
  106. data/ext/alglib/hevd.cpp +247 -0
  107. data/ext/alglib/hevd.h +107 -0
  108. data/ext/alglib/hsschur.cpp +1316 -0
  109. data/ext/alglib/hsschur.h +108 -0
  110. data/ext/alglib/htridiagonal.cpp +734 -0
  111. data/ext/alglib/htridiagonal.h +180 -0
  112. data/ext/alglib/ialglib.cpp +6 -0
  113. data/ext/alglib/ialglib.h +9 -0
  114. data/ext/alglib/ibetaf.cpp +960 -0
  115. data/ext/alglib/ibetaf.h +125 -0
  116. data/ext/alglib/igammaf.cpp +430 -0
  117. data/ext/alglib/igammaf.h +157 -0
  118. data/ext/alglib/inv.cpp +274 -0
  119. data/ext/alglib/inv.h +115 -0
  120. data/ext/alglib/inverseupdate.cpp +480 -0
  121. data/ext/alglib/inverseupdate.h +185 -0
  122. data/ext/alglib/jacobianelliptic.cpp +164 -0
  123. data/ext/alglib/jacobianelliptic.h +94 -0
  124. data/ext/alglib/jarquebera.cpp +2271 -0
  125. data/ext/alglib/jarquebera.h +80 -0
  126. data/ext/alglib/kmeans.cpp +356 -0
  127. data/ext/alglib/kmeans.h +76 -0
  128. data/ext/alglib/laguerre.cpp +94 -0
  129. data/ext/alglib/laguerre.h +48 -0
  130. data/ext/alglib/lbfgs.cpp +1167 -0
  131. data/ext/alglib/lbfgs.h +218 -0
  132. data/ext/alglib/lda.cpp +434 -0
  133. data/ext/alglib/lda.h +133 -0
  134. data/ext/alglib/ldlt.cpp +1130 -0
  135. data/ext/alglib/ldlt.h +124 -0
  136. data/ext/alglib/leastsquares.cpp +1252 -0
  137. data/ext/alglib/leastsquares.h +290 -0
  138. data/ext/alglib/legendre.cpp +107 -0
  139. data/ext/alglib/legendre.h +49 -0
  140. data/ext/alglib/linreg.cpp +1185 -0
  141. data/ext/alglib/linreg.h +380 -0
  142. data/ext/alglib/logit.cpp +1523 -0
  143. data/ext/alglib/logit.h +333 -0
  144. data/ext/alglib/lq.cpp +399 -0
  145. data/ext/alglib/lq.h +160 -0
  146. data/ext/alglib/lu.cpp +462 -0
  147. data/ext/alglib/lu.h +119 -0
  148. data/ext/alglib/mannwhitneyu.cpp +4490 -0
  149. data/ext/alglib/mannwhitneyu.h +115 -0
  150. data/ext/alglib/minlm.cpp +918 -0
  151. data/ext/alglib/minlm.h +312 -0
  152. data/ext/alglib/mlpbase.cpp +3375 -0
  153. data/ext/alglib/mlpbase.h +589 -0
  154. data/ext/alglib/mlpe.cpp +1369 -0
  155. data/ext/alglib/mlpe.h +552 -0
  156. data/ext/alglib/mlptrain.cpp +1056 -0
  157. data/ext/alglib/mlptrain.h +283 -0
  158. data/ext/alglib/nearunityunit.cpp +91 -0
  159. data/ext/alglib/nearunityunit.h +17 -0
  160. data/ext/alglib/normaldistr.cpp +377 -0
  161. data/ext/alglib/normaldistr.h +175 -0
  162. data/ext/alglib/nsevd.cpp +1869 -0
  163. data/ext/alglib/nsevd.h +140 -0
  164. data/ext/alglib/pca.cpp +168 -0
  165. data/ext/alglib/pca.h +87 -0
  166. data/ext/alglib/poissondistr.cpp +143 -0
  167. data/ext/alglib/poissondistr.h +130 -0
  168. data/ext/alglib/polinterpolation.cpp +685 -0
  169. data/ext/alglib/polinterpolation.h +206 -0
  170. data/ext/alglib/psif.cpp +173 -0
  171. data/ext/alglib/psif.h +88 -0
  172. data/ext/alglib/qr.cpp +414 -0
  173. data/ext/alglib/qr.h +168 -0
  174. data/ext/alglib/ratinterpolation.cpp +134 -0
  175. data/ext/alglib/ratinterpolation.h +72 -0
  176. data/ext/alglib/rcond.cpp +705 -0
  177. data/ext/alglib/rcond.h +140 -0
  178. data/ext/alglib/reflections.cpp +504 -0
  179. data/ext/alglib/reflections.h +165 -0
  180. data/ext/alglib/rotations.cpp +473 -0
  181. data/ext/alglib/rotations.h +128 -0
  182. data/ext/alglib/rsolve.cpp +221 -0
  183. data/ext/alglib/rsolve.h +99 -0
  184. data/ext/alglib/sbisinv.cpp +217 -0
  185. data/ext/alglib/sbisinv.h +171 -0
  186. data/ext/alglib/sblas.cpp +185 -0
  187. data/ext/alglib/sblas.h +64 -0
  188. data/ext/alglib/schur.cpp +156 -0
  189. data/ext/alglib/schur.h +102 -0
  190. data/ext/alglib/sdet.cpp +193 -0
  191. data/ext/alglib/sdet.h +101 -0
  192. data/ext/alglib/sevd.cpp +116 -0
  193. data/ext/alglib/sevd.h +99 -0
  194. data/ext/alglib/sinverse.cpp +672 -0
  195. data/ext/alglib/sinverse.h +138 -0
  196. data/ext/alglib/spddet.cpp +138 -0
  197. data/ext/alglib/spddet.h +96 -0
  198. data/ext/alglib/spdgevd.cpp +842 -0
  199. data/ext/alglib/spdgevd.h +200 -0
  200. data/ext/alglib/spdinverse.cpp +509 -0
  201. data/ext/alglib/spdinverse.h +122 -0
  202. data/ext/alglib/spdrcond.cpp +421 -0
  203. data/ext/alglib/spdrcond.h +118 -0
  204. data/ext/alglib/spdsolve.cpp +275 -0
  205. data/ext/alglib/spdsolve.h +105 -0
  206. data/ext/alglib/spline2d.cpp +1192 -0
  207. data/ext/alglib/spline2d.h +301 -0
  208. data/ext/alglib/spline3.cpp +1264 -0
  209. data/ext/alglib/spline3.h +290 -0
  210. data/ext/alglib/srcond.cpp +595 -0
  211. data/ext/alglib/srcond.h +127 -0
  212. data/ext/alglib/ssolve.cpp +895 -0
  213. data/ext/alglib/ssolve.h +139 -0
  214. data/ext/alglib/stdafx.h +0 -0
  215. data/ext/alglib/stest.cpp +131 -0
  216. data/ext/alglib/stest.h +94 -0
  217. data/ext/alglib/studenttdistr.cpp +222 -0
  218. data/ext/alglib/studenttdistr.h +115 -0
  219. data/ext/alglib/studentttests.cpp +377 -0
  220. data/ext/alglib/studentttests.h +178 -0
  221. data/ext/alglib/svd.cpp +620 -0
  222. data/ext/alglib/svd.h +126 -0
  223. data/ext/alglib/tdbisinv.cpp +2608 -0
  224. data/ext/alglib/tdbisinv.h +228 -0
  225. data/ext/alglib/tdevd.cpp +1229 -0
  226. data/ext/alglib/tdevd.h +115 -0
  227. data/ext/alglib/tridiagonal.cpp +594 -0
  228. data/ext/alglib/tridiagonal.h +171 -0
  229. data/ext/alglib/trigintegrals.cpp +490 -0
  230. data/ext/alglib/trigintegrals.h +131 -0
  231. data/ext/alglib/trinverse.cpp +345 -0
  232. data/ext/alglib/trinverse.h +98 -0
  233. data/ext/alglib/trlinsolve.cpp +926 -0
  234. data/ext/alglib/trlinsolve.h +73 -0
  235. data/ext/alglib/tsort.cpp +405 -0
  236. data/ext/alglib/tsort.h +54 -0
  237. data/ext/alglib/variancetests.cpp +245 -0
  238. data/ext/alglib/variancetests.h +134 -0
  239. data/ext/alglib/wsr.cpp +6285 -0
  240. data/ext/alglib/wsr.h +96 -0
  241. data/ext/ap.i +97 -0
  242. data/ext/correlation.i +24 -0
  243. data/ext/extconf.rb +6 -0
  244. data/ext/logit.i +89 -0
  245. data/lib/alglib.rb +71 -0
  246. data/lib/alglib/correlation.rb +26 -0
  247. data/lib/alglib/linearregression.rb +63 -0
  248. data/lib/alglib/logit.rb +42 -0
  249. data/test/test_alglib.rb +52 -0
  250. data/test/test_correlation.rb +44 -0
  251. data/test/test_correlationtest.rb +45 -0
  252. data/test/test_linreg.rb +35 -0
  253. data/test/test_logit.rb +43 -0
  254. data/test/test_pca.rb +27 -0
  255. metadata +326 -0
@@ -0,0 +1,108 @@
1
+ /*************************************************************************
2
+ Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
3
+
4
+ Contributors:
5
+ * Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
6
+ pseudocode.
7
+
8
+ See subroutines comments for additional copyrights.
9
+
10
+ Redistribution and use in source and binary forms, with or without
11
+ modification, are permitted provided that the following conditions are
12
+ met:
13
+
14
+ - Redistributions of source code must retain the above copyright
15
+ notice, this list of conditions and the following disclaimer.
16
+
17
+ - Redistributions in binary form must reproduce the above copyright
18
+ notice, this list of conditions and the following disclaimer listed
19
+ in this license in the documentation and/or other materials
20
+ provided with the distribution.
21
+
22
+ - Neither the name of the copyright holders nor the names of its
23
+ contributors may be used to endorse or promote products derived from
24
+ this software without specific prior written permission.
25
+
26
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
29
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
30
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
31
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
32
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
33
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
34
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
35
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
36
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
37
+ *************************************************************************/
38
+
39
+ #ifndef _hsschur_h
40
+ #define _hsschur_h
41
+
42
+ #include "ap.h"
43
+ #include "ialglib.h"
44
+
45
+ #include "blas.h"
46
+ #include "reflections.h"
47
+ #include "rotations.h"
48
+
49
+
50
+ /*************************************************************************
51
+ Subroutine performing the Schur decomposition of a matrix in upper
52
+ Hessenberg form using the QR algorithm with multiple shifts.
53
+
54
+ The source matrix H is represented as S'*H*S = T, where H - matrix in
55
+ upper Hessenberg form, S - orthogonal matrix (Schur vectors), T - upper
56
+ quasi-triangular matrix (with blocks of sizes 1x1 and 2x2 on the main
57
+ diagonal).
58
+
59
+ Input parameters:
60
+ H - matrix to be decomposed.
61
+ Array whose indexes range within [1..N, 1..N].
62
+ N - size of H, N>=0.
63
+
64
+
65
+ Output parameters:
66
+ H � contains the matrix T.
67
+ Array whose indexes range within [1..N, 1..N].
68
+ All elements below the blocks on the main diagonal are equal
69
+ to 0.
70
+ S - contains Schur vectors.
71
+ Array whose indexes range within [1..N, 1..N].
72
+
73
+ Note 1:
74
+ The block structure of matrix T could be easily recognized: since all
75
+ the elements below the blocks are zeros, the elements a[i+1,i] which
76
+ are equal to 0 show the block border.
77
+
78
+ Note 2:
79
+ the algorithm performance depends on the value of the internal
80
+ parameter NS of InternalSchurDecomposition subroutine which defines
81
+ the number of shifts in the QR algorithm (analog of the block width
82
+ in block matrix algorithms in linear algebra). If you require maximum
83
+ performance on your machine, it is recommended to adjust this
84
+ parameter manually.
85
+
86
+ Result:
87
+ True, if the algorithm has converged and the parameters H and S contain
88
+ the result.
89
+ False, if the algorithm has not converged.
90
+
91
+ Algorithm implemented on the basis of subroutine DHSEQR (LAPACK 3.0 library).
92
+ *************************************************************************/
93
+ bool upperhessenbergschurdecomposition(ap::real_2d_array& h,
94
+ int n,
95
+ ap::real_2d_array& s);
96
+
97
+
98
+ void internalschurdecomposition(ap::real_2d_array& h,
99
+ int n,
100
+ int tneeded,
101
+ int zneeded,
102
+ ap::real_1d_array& wr,
103
+ ap::real_1d_array& wi,
104
+ ap::real_2d_array& z,
105
+ int& info);
106
+
107
+
108
+ #endif
@@ -0,0 +1,734 @@
1
+ /*************************************************************************
2
+ Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
3
+
4
+ Contributors:
5
+ * Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
6
+ pseudocode.
7
+
8
+ See subroutines comments for additional copyrights.
9
+
10
+ Redistribution and use in source and binary forms, with or without
11
+ modification, are permitted provided that the following conditions are
12
+ met:
13
+
14
+ - Redistributions of source code must retain the above copyright
15
+ notice, this list of conditions and the following disclaimer.
16
+
17
+ - Redistributions in binary form must reproduce the above copyright
18
+ notice, this list of conditions and the following disclaimer listed
19
+ in this license in the documentation and/or other materials
20
+ provided with the distribution.
21
+
22
+ - Neither the name of the copyright holders nor the names of its
23
+ contributors may be used to endorse or promote products derived from
24
+ this software without specific prior written permission.
25
+
26
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
29
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
30
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
31
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
32
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
33
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
34
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
35
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
36
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
37
+ *************************************************************************/
38
+
39
+ #include <stdafx.h>
40
+ #include "htridiagonal.h"
41
+
42
+ /*************************************************************************
43
+ Reduction of a Hermitian matrix which is given by its higher or lower
44
+ triangular part to a real tridiagonal matrix using unitary similarity
45
+ transformation: Q'*A*Q = T.
46
+
47
+ Input parameters:
48
+ A - matrix to be transformed
49
+ array with elements [0..N-1, 0..N-1].
50
+ N - size of matrix A.
51
+ IsUpper - storage format. If IsUpper = True, then matrix A is given
52
+ by its upper triangle, and the lower triangle is not used
53
+ and not modified by the algorithm, and vice versa
54
+ if IsUpper = False.
55
+
56
+ Output parameters:
57
+ A - matrices T and Q in compact form (see lower)
58
+ Tau - array of factors which are forming matrices H(i)
59
+ array with elements [0..N-2].
60
+ D - main diagonal of real symmetric matrix T.
61
+ array with elements [0..N-1].
62
+ E - secondary diagonal of real symmetric matrix T.
63
+ array with elements [0..N-2].
64
+
65
+
66
+ If IsUpper=True, the matrix Q is represented as a product of elementary
67
+ reflectors
68
+
69
+ Q = H(n-2) . . . H(2) H(0).
70
+
71
+ Each H(i) has the form
72
+
73
+ H(i) = I - tau * v * v'
74
+
75
+ where tau is a complex scalar, and v is a complex vector with
76
+ v(i+1:n-1) = 0, v(i) = 1, v(0:i-1) is stored on exit in
77
+ A(0:i-1,i+1), and tau in TAU(i).
78
+
79
+ If IsUpper=False, the matrix Q is represented as a product of elementary
80
+ reflectors
81
+
82
+ Q = H(0) H(2) . . . H(n-2).
83
+
84
+ Each H(i) has the form
85
+
86
+ H(i) = I - tau * v * v'
87
+
88
+ where tau is a complex scalar, and v is a complex vector with
89
+ v(0:i) = 0, v(i+1) = 1, v(i+2:n-1) is stored on exit in A(i+2:n-1,i),
90
+ and tau in TAU(i).
91
+
92
+ The contents of A on exit are illustrated by the following examples
93
+ with n = 5:
94
+
95
+ if UPLO = 'U': if UPLO = 'L':
96
+
97
+ ( d e v1 v2 v3 ) ( d )
98
+ ( d e v2 v3 ) ( e d )
99
+ ( d e v3 ) ( v0 e d )
100
+ ( d e ) ( v0 v1 e d )
101
+ ( d ) ( v0 v1 v2 e d )
102
+
103
+ where d and e denote diagonal and off-diagonal elements of T, and vi
104
+ denotes an element of the vector defining H(i).
105
+
106
+ -- LAPACK routine (version 3.0) --
107
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
108
+ Courant Institute, Argonne National Lab, and Rice University
109
+ October 31, 1992
110
+ *************************************************************************/
111
+ void hmatrixtd(ap::complex_2d_array& a,
112
+ int n,
113
+ bool isupper,
114
+ ap::complex_1d_array& tau,
115
+ ap::real_1d_array& d,
116
+ ap::real_1d_array& e)
117
+ {
118
+ int i;
119
+ ap::complex alpha;
120
+ ap::complex taui;
121
+ ap::complex v;
122
+ ap::complex_1d_array t;
123
+ ap::complex_1d_array t2;
124
+ ap::complex_1d_array t3;
125
+ int i_;
126
+ int i1_;
127
+
128
+ if( n<=0 )
129
+ {
130
+ return;
131
+ }
132
+ for(i = 0; i <= n-1; i++)
133
+ {
134
+ ap::ap_error::make_assertion(a(i,i).y==0, "");
135
+ }
136
+ if( n>1 )
137
+ {
138
+ tau.setbounds(0, n-2);
139
+ e.setbounds(0, n-2);
140
+ }
141
+ d.setbounds(0, n-1);
142
+ t.setbounds(0, n-1);
143
+ t2.setbounds(0, n-1);
144
+ t3.setbounds(0, n-1);
145
+ if( isupper )
146
+ {
147
+
148
+ //
149
+ // Reduce the upper triangle of A
150
+ //
151
+ a(n-1,n-1) = a(n-1,n-1).x;
152
+ for(i = n-2; i >= 0; i--)
153
+ {
154
+
155
+ //
156
+ // Generate elementary reflector H = I+1 - tau * v * v'
157
+ //
158
+ alpha = a(i,i+1);
159
+ t(1) = alpha;
160
+ if( i>=1 )
161
+ {
162
+ i1_ = (0) - (2);
163
+ for(i_=2; i_<=i+1;i_++)
164
+ {
165
+ t(i_) = a(i_+i1_,i+1);
166
+ }
167
+ }
168
+ complexgeneratereflection(t, i+1, taui);
169
+ if( i>=1 )
170
+ {
171
+ i1_ = (2) - (0);
172
+ for(i_=0; i_<=i-1;i_++)
173
+ {
174
+ a(i_,i+1) = t(i_+i1_);
175
+ }
176
+ }
177
+ alpha = t(1);
178
+ e(i) = alpha.x;
179
+ if( taui!=0 )
180
+ {
181
+
182
+ //
183
+ // Apply H(I+1) from both sides to A
184
+ //
185
+ a(i,i+1) = 1;
186
+
187
+ //
188
+ // Compute x := tau * A * v storing x in TAU
189
+ //
190
+ i1_ = (0) - (1);
191
+ for(i_=1; i_<=i+1;i_++)
192
+ {
193
+ t(i_) = a(i_+i1_,i+1);
194
+ }
195
+ hermitianmatrixvectormultiply(a, isupper, 0, i, t, taui, t2);
196
+ i1_ = (1) - (0);
197
+ for(i_=0; i_<=i;i_++)
198
+ {
199
+ tau(i_) = t2(i_+i1_);
200
+ }
201
+
202
+ //
203
+ // Compute w := x - 1/2 * tau * (x'*v) * v
204
+ //
205
+ v = 0.0;
206
+ for(i_=0; i_<=i;i_++)
207
+ {
208
+ v += ap::conj(tau(i_))*a(i_,i+1);
209
+ }
210
+ alpha = -0.5*taui*v;
211
+ for(i_=0; i_<=i;i_++)
212
+ {
213
+ tau(i_) = tau(i_) + alpha*a(i_,i+1);
214
+ }
215
+
216
+ //
217
+ // Apply the transformation as a rank-2 update:
218
+ // A := A - v * w' - w * v'
219
+ //
220
+ i1_ = (0) - (1);
221
+ for(i_=1; i_<=i+1;i_++)
222
+ {
223
+ t(i_) = a(i_+i1_,i+1);
224
+ }
225
+ i1_ = (0) - (1);
226
+ for(i_=1; i_<=i+1;i_++)
227
+ {
228
+ t3(i_) = tau(i_+i1_);
229
+ }
230
+ hermitianrank2update(a, isupper, 0, i, t, t3, t2, -1);
231
+ }
232
+ else
233
+ {
234
+ a(i,i) = a(i,i).x;
235
+ }
236
+ a(i,i+1) = e(i);
237
+ d(i+1) = a(i+1,i+1).x;
238
+ tau(i) = taui;
239
+ }
240
+ d(0) = a(0,0).x;
241
+ }
242
+ else
243
+ {
244
+
245
+ //
246
+ // Reduce the lower triangle of A
247
+ //
248
+ a(0,0) = a(0,0).x;
249
+ for(i = 0; i <= n-2; i++)
250
+ {
251
+
252
+ //
253
+ // Generate elementary reflector H = I - tau * v * v'
254
+ //
255
+ i1_ = (i+1) - (1);
256
+ for(i_=1; i_<=n-i-1;i_++)
257
+ {
258
+ t(i_) = a(i_+i1_,i);
259
+ }
260
+ complexgeneratereflection(t, n-i-1, taui);
261
+ i1_ = (1) - (i+1);
262
+ for(i_=i+1; i_<=n-1;i_++)
263
+ {
264
+ a(i_,i) = t(i_+i1_);
265
+ }
266
+ e(i) = a(i+1,i).x;
267
+ if( taui!=0 )
268
+ {
269
+
270
+ //
271
+ // Apply H(i) from both sides to A(i+1:n,i+1:n)
272
+ //
273
+ a(i+1,i) = 1;
274
+
275
+ //
276
+ // Compute x := tau * A * v storing y in TAU
277
+ //
278
+ i1_ = (i+1) - (1);
279
+ for(i_=1; i_<=n-i-1;i_++)
280
+ {
281
+ t(i_) = a(i_+i1_,i);
282
+ }
283
+ hermitianmatrixvectormultiply(a, isupper, i+1, n-1, t, taui, t2);
284
+ i1_ = (1) - (i);
285
+ for(i_=i; i_<=n-2;i_++)
286
+ {
287
+ tau(i_) = t2(i_+i1_);
288
+ }
289
+
290
+ //
291
+ // Compute w := x - 1/2 * tau * (x'*v) * v
292
+ //
293
+ i1_ = (i+1)-(i);
294
+ v = 0.0;
295
+ for(i_=i; i_<=n-2;i_++)
296
+ {
297
+ v += ap::conj(tau(i_))*a(i_+i1_,i);
298
+ }
299
+ alpha = -0.5*taui*v;
300
+ i1_ = (i+1) - (i);
301
+ for(i_=i; i_<=n-2;i_++)
302
+ {
303
+ tau(i_) = tau(i_) + alpha*a(i_+i1_,i);
304
+ }
305
+
306
+ //
307
+ // Apply the transformation as a rank-2 update:
308
+ // A := A - v * w' - w * v'
309
+ //
310
+ i1_ = (i+1) - (1);
311
+ for(i_=1; i_<=n-i-1;i_++)
312
+ {
313
+ t(i_) = a(i_+i1_,i);
314
+ }
315
+ i1_ = (i) - (1);
316
+ for(i_=1; i_<=n-i-1;i_++)
317
+ {
318
+ t2(i_) = tau(i_+i1_);
319
+ }
320
+ hermitianrank2update(a, isupper, i+1, n-1, t, t2, t3, -1);
321
+ }
322
+ else
323
+ {
324
+ a(i+1,i+1) = a(i+1,i+1).x;
325
+ }
326
+ a(i+1,i) = e(i);
327
+ d(i) = a(i,i).x;
328
+ tau(i) = taui;
329
+ }
330
+ d(n-1) = a(n-1,n-1).x;
331
+ }
332
+ }
333
+
334
+
335
+ /*************************************************************************
336
+ Unpacking matrix Q which reduces a Hermitian matrix to a real tridiagonal
337
+ form.
338
+
339
+ Input parameters:
340
+ A - the result of a HMatrixTD subroutine
341
+ N - size of matrix A.
342
+ IsUpper - storage format (a parameter of HMatrixTD subroutine)
343
+ Tau - the result of a HMatrixTD subroutine
344
+
345
+ Output parameters:
346
+ Q - transformation matrix.
347
+ array with elements [0..N-1, 0..N-1].
348
+
349
+ -- ALGLIB --
350
+ Copyright 2005, 2007, 2008 by Bochkanov Sergey
351
+ *************************************************************************/
352
+ void hmatrixtdunpackq(const ap::complex_2d_array& a,
353
+ const int& n,
354
+ const bool& isupper,
355
+ const ap::complex_1d_array& tau,
356
+ ap::complex_2d_array& q)
357
+ {
358
+ int i;
359
+ int j;
360
+ ap::complex_1d_array v;
361
+ ap::complex_1d_array work;
362
+ int i_;
363
+ int i1_;
364
+
365
+ if( n==0 )
366
+ {
367
+ return;
368
+ }
369
+
370
+ //
371
+ // init
372
+ //
373
+ q.setbounds(0, n-1, 0, n-1);
374
+ v.setbounds(1, n);
375
+ work.setbounds(0, n-1);
376
+ for(i = 0; i <= n-1; i++)
377
+ {
378
+ for(j = 0; j <= n-1; j++)
379
+ {
380
+ if( i==j )
381
+ {
382
+ q(i,j) = 1;
383
+ }
384
+ else
385
+ {
386
+ q(i,j) = 0;
387
+ }
388
+ }
389
+ }
390
+
391
+ //
392
+ // unpack Q
393
+ //
394
+ if( isupper )
395
+ {
396
+ for(i = 0; i <= n-2; i++)
397
+ {
398
+
399
+ //
400
+ // Apply H(i)
401
+ //
402
+ i1_ = (0) - (1);
403
+ for(i_=1; i_<=i+1;i_++)
404
+ {
405
+ v(i_) = a(i_+i1_,i+1);
406
+ }
407
+ v(i+1) = 1;
408
+ complexapplyreflectionfromtheleft(q, tau(i), v, 0, i, 0, n-1, work);
409
+ }
410
+ }
411
+ else
412
+ {
413
+ for(i = n-2; i >= 0; i--)
414
+ {
415
+
416
+ //
417
+ // Apply H(i)
418
+ //
419
+ i1_ = (i+1) - (1);
420
+ for(i_=1; i_<=n-i-1;i_++)
421
+ {
422
+ v(i_) = a(i_+i1_,i);
423
+ }
424
+ v(1) = 1;
425
+ complexapplyreflectionfromtheleft(q, tau(i), v, i+1, n-1, 0, n-1, work);
426
+ }
427
+ }
428
+ }
429
+
430
+
431
+ /*************************************************************************
432
+ Obsolete 1-based subroutine
433
+
434
+ -- LAPACK routine (version 3.0) --
435
+ Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
436
+ Courant Institute, Argonne National Lab, and Rice University
437
+ October 31, 1992
438
+ *************************************************************************/
439
+ void hermitiantotridiagonal(ap::complex_2d_array& a,
440
+ int n,
441
+ bool isupper,
442
+ ap::complex_1d_array& tau,
443
+ ap::real_1d_array& d,
444
+ ap::real_1d_array& e)
445
+ {
446
+ int i;
447
+ ap::complex alpha;
448
+ ap::complex taui;
449
+ ap::complex v;
450
+ ap::complex_1d_array t;
451
+ ap::complex_1d_array t2;
452
+ ap::complex_1d_array t3;
453
+ int i_;
454
+ int i1_;
455
+
456
+ if( n<=0 )
457
+ {
458
+ return;
459
+ }
460
+ for(i = 1; i <= n; i++)
461
+ {
462
+ ap::ap_error::make_assertion(a(i,i).y==0, "");
463
+ }
464
+ tau.setbounds(1, ap::maxint(1, n-1));
465
+ d.setbounds(1, n);
466
+ e.setbounds(1, ap::maxint(1, n-1));
467
+ t.setbounds(1, n);
468
+ t2.setbounds(1, n);
469
+ t3.setbounds(1, n);
470
+ if( isupper )
471
+ {
472
+
473
+ //
474
+ // Reduce the upper triangle of A
475
+ //
476
+ a(n,n) = a(n,n).x;
477
+ for(i = n-1; i >= 1; i--)
478
+ {
479
+
480
+ //
481
+ // Generate elementary reflector H(i) = I - tau * v * v'
482
+ // to annihilate A(1:i-1,i+1)
483
+ //
484
+ alpha = a(i,i+1);
485
+ t(1) = alpha;
486
+ if( i>=2 )
487
+ {
488
+ i1_ = (1) - (2);
489
+ for(i_=2; i_<=i;i_++)
490
+ {
491
+ t(i_) = a(i_+i1_,i+1);
492
+ }
493
+ }
494
+ complexgeneratereflection(t, i, taui);
495
+ if( i>=2 )
496
+ {
497
+ i1_ = (2) - (1);
498
+ for(i_=1; i_<=i-1;i_++)
499
+ {
500
+ a(i_,i+1) = t(i_+i1_);
501
+ }
502
+ }
503
+ alpha = t(1);
504
+ e(i) = alpha.x;
505
+ if( taui!=0 )
506
+ {
507
+
508
+ //
509
+ // Apply H(i) from both sides to A(1:i,1:i)
510
+ //
511
+ a(i,i+1) = 1;
512
+
513
+ //
514
+ // Compute x := tau * A * v storing x in TAU(1:i)
515
+ //
516
+ for(i_=1; i_<=i;i_++)
517
+ {
518
+ t(i_) = a(i_,i+1);
519
+ }
520
+ hermitianmatrixvectormultiply(a, isupper, 1, i, t, taui, tau);
521
+
522
+ //
523
+ // Compute w := x - 1/2 * tau * (x'*v) * v
524
+ //
525
+ v = 0.0;
526
+ for(i_=1; i_<=i;i_++)
527
+ {
528
+ v += ap::conj(tau(i_))*a(i_,i+1);
529
+ }
530
+ alpha = -0.5*taui*v;
531
+ for(i_=1; i_<=i;i_++)
532
+ {
533
+ tau(i_) = tau(i_) + alpha*a(i_,i+1);
534
+ }
535
+
536
+ //
537
+ // Apply the transformation as a rank-2 update:
538
+ // A := A - v * w' - w * v'
539
+ //
540
+ for(i_=1; i_<=i;i_++)
541
+ {
542
+ t(i_) = a(i_,i+1);
543
+ }
544
+ hermitianrank2update(a, isupper, 1, i, t, tau, t2, -1);
545
+ }
546
+ else
547
+ {
548
+ a(i,i) = a(i,i).x;
549
+ }
550
+ a(i,i+1) = e(i);
551
+ d(i+1) = a(i+1,i+1).x;
552
+ tau(i) = taui;
553
+ }
554
+ d(1) = a(1,1).x;
555
+ }
556
+ else
557
+ {
558
+
559
+ //
560
+ // Reduce the lower triangle of A
561
+ //
562
+ a(1,1) = a(1,1).x;
563
+ for(i = 1; i <= n-1; i++)
564
+ {
565
+
566
+ //
567
+ // Generate elementary reflector H(i) = I - tau * v * v'
568
+ // to annihilate A(i+2:n,i)
569
+ //
570
+ i1_ = (i+1) - (1);
571
+ for(i_=1; i_<=n-i;i_++)
572
+ {
573
+ t(i_) = a(i_+i1_,i);
574
+ }
575
+ complexgeneratereflection(t, n-i, taui);
576
+ i1_ = (1) - (i+1);
577
+ for(i_=i+1; i_<=n;i_++)
578
+ {
579
+ a(i_,i) = t(i_+i1_);
580
+ }
581
+ e(i) = a(i+1,i).x;
582
+ if( taui!=0 )
583
+ {
584
+
585
+ //
586
+ // Apply H(i) from both sides to A(i+1:n,i+1:n)
587
+ //
588
+ a(i+1,i) = 1;
589
+
590
+ //
591
+ // Compute x := tau * A * v storing y in TAU(i:n-1)
592
+ //
593
+ i1_ = (i+1) - (1);
594
+ for(i_=1; i_<=n-i;i_++)
595
+ {
596
+ t(i_) = a(i_+i1_,i);
597
+ }
598
+ hermitianmatrixvectormultiply(a, isupper, i+1, n, t, taui, t2);
599
+ i1_ = (1) - (i);
600
+ for(i_=i; i_<=n-1;i_++)
601
+ {
602
+ tau(i_) = t2(i_+i1_);
603
+ }
604
+
605
+ //
606
+ // Compute w := x - 1/2 * tau * (x'*v) * v
607
+ //
608
+ i1_ = (i+1)-(i);
609
+ v = 0.0;
610
+ for(i_=i; i_<=n-1;i_++)
611
+ {
612
+ v += ap::conj(tau(i_))*a(i_+i1_,i);
613
+ }
614
+ alpha = -0.5*taui*v;
615
+ i1_ = (i+1) - (i);
616
+ for(i_=i; i_<=n-1;i_++)
617
+ {
618
+ tau(i_) = tau(i_) + alpha*a(i_+i1_,i);
619
+ }
620
+
621
+ //
622
+ // Apply the transformation as a rank-2 update:
623
+ // A := A - v * w' - w * v'
624
+ //
625
+ i1_ = (i+1) - (1);
626
+ for(i_=1; i_<=n-i;i_++)
627
+ {
628
+ t(i_) = a(i_+i1_,i);
629
+ }
630
+ i1_ = (i) - (1);
631
+ for(i_=1; i_<=n-i;i_++)
632
+ {
633
+ t2(i_) = tau(i_+i1_);
634
+ }
635
+ hermitianrank2update(a, isupper, i+1, n, t, t2, t3, -1);
636
+ }
637
+ else
638
+ {
639
+ a(i+1,i+1) = a(i+1,i+1).x;
640
+ }
641
+ a(i+1,i) = e(i);
642
+ d(i) = a(i,i).x;
643
+ tau(i) = taui;
644
+ }
645
+ d(n) = a(n,n).x;
646
+ }
647
+ }
648
+
649
+
650
+ /*************************************************************************
651
+ Obsolete 1-based subroutine
652
+
653
+ -- ALGLIB --
654
+ Copyright 2005, 2007 by Bochkanov Sergey
655
+ *************************************************************************/
656
+ void unpackqfromhermitiantridiagonal(const ap::complex_2d_array& a,
657
+ const int& n,
658
+ const bool& isupper,
659
+ const ap::complex_1d_array& tau,
660
+ ap::complex_2d_array& q)
661
+ {
662
+ int i;
663
+ int j;
664
+ ap::complex_1d_array v;
665
+ ap::complex_1d_array work;
666
+ int i_;
667
+ int i1_;
668
+
669
+ if( n==0 )
670
+ {
671
+ return;
672
+ }
673
+
674
+ //
675
+ // init
676
+ //
677
+ q.setbounds(1, n, 1, n);
678
+ v.setbounds(1, n);
679
+ work.setbounds(1, n);
680
+ for(i = 1; i <= n; i++)
681
+ {
682
+ for(j = 1; j <= n; j++)
683
+ {
684
+ if( i==j )
685
+ {
686
+ q(i,j) = 1;
687
+ }
688
+ else
689
+ {
690
+ q(i,j) = 0;
691
+ }
692
+ }
693
+ }
694
+
695
+ //
696
+ // unpack Q
697
+ //
698
+ if( isupper )
699
+ {
700
+ for(i = 1; i <= n-1; i++)
701
+ {
702
+
703
+ //
704
+ // Apply H(i)
705
+ //
706
+ for(i_=1; i_<=i;i_++)
707
+ {
708
+ v(i_) = a(i_,i+1);
709
+ }
710
+ v(i) = 1;
711
+ complexapplyreflectionfromtheleft(q, tau(i), v, 1, i, 1, n, work);
712
+ }
713
+ }
714
+ else
715
+ {
716
+ for(i = n-1; i >= 1; i--)
717
+ {
718
+
719
+ //
720
+ // Apply H(i)
721
+ //
722
+ i1_ = (i+1) - (1);
723
+ for(i_=1; i_<=n-i;i_++)
724
+ {
725
+ v(i_) = a(i_+i1_,i);
726
+ }
727
+ v(1) = 1;
728
+ complexapplyreflectionfromtheleft(q, tau(i), v, i+1, n, 1, n, work);
729
+ }
730
+ }
731
+ }
732
+
733
+
734
+