alglib 0.1.1
Sign up to get free protection for your applications and to get access to all the features.
- data/History.txt +7 -0
- data/Manifest.txt +253 -0
- data/README.txt +33 -0
- data/Rakefile +27 -0
- data/ext/Rakefile +24 -0
- data/ext/alglib.i +24 -0
- data/ext/alglib/Makefile +157 -0
- data/ext/alglib/airyf.cpp +372 -0
- data/ext/alglib/airyf.h +81 -0
- data/ext/alglib/alglib.cpp +8558 -0
- data/ext/alglib/alglib_util.cpp +19 -0
- data/ext/alglib/alglib_util.h +14 -0
- data/ext/alglib/ap.cpp +877 -0
- data/ext/alglib/ap.english.html +364 -0
- data/ext/alglib/ap.h +666 -0
- data/ext/alglib/ap.russian.html +442 -0
- data/ext/alglib/apvt.h +754 -0
- data/ext/alglib/bdss.cpp +1500 -0
- data/ext/alglib/bdss.h +251 -0
- data/ext/alglib/bdsvd.cpp +1339 -0
- data/ext/alglib/bdsvd.h +164 -0
- data/ext/alglib/bessel.cpp +1226 -0
- data/ext/alglib/bessel.h +331 -0
- data/ext/alglib/betaf.cpp +105 -0
- data/ext/alglib/betaf.h +74 -0
- data/ext/alglib/bidiagonal.cpp +1328 -0
- data/ext/alglib/bidiagonal.h +350 -0
- data/ext/alglib/binomialdistr.cpp +247 -0
- data/ext/alglib/binomialdistr.h +153 -0
- data/ext/alglib/blas.cpp +576 -0
- data/ext/alglib/blas.h +132 -0
- data/ext/alglib/cblas.cpp +226 -0
- data/ext/alglib/cblas.h +57 -0
- data/ext/alglib/cdet.cpp +138 -0
- data/ext/alglib/cdet.h +92 -0
- data/ext/alglib/chebyshev.cpp +216 -0
- data/ext/alglib/chebyshev.h +76 -0
- data/ext/alglib/chisquaredistr.cpp +157 -0
- data/ext/alglib/chisquaredistr.h +144 -0
- data/ext/alglib/cholesky.cpp +285 -0
- data/ext/alglib/cholesky.h +86 -0
- data/ext/alglib/cinverse.cpp +298 -0
- data/ext/alglib/cinverse.h +111 -0
- data/ext/alglib/clu.cpp +337 -0
- data/ext/alglib/clu.h +120 -0
- data/ext/alglib/correlation.cpp +280 -0
- data/ext/alglib/correlation.h +77 -0
- data/ext/alglib/correlationtests.cpp +726 -0
- data/ext/alglib/correlationtests.h +134 -0
- data/ext/alglib/crcond.cpp +826 -0
- data/ext/alglib/crcond.h +148 -0
- data/ext/alglib/creflections.cpp +310 -0
- data/ext/alglib/creflections.h +165 -0
- data/ext/alglib/csolve.cpp +312 -0
- data/ext/alglib/csolve.h +99 -0
- data/ext/alglib/ctrinverse.cpp +387 -0
- data/ext/alglib/ctrinverse.h +98 -0
- data/ext/alglib/ctrlinsolve.cpp +297 -0
- data/ext/alglib/ctrlinsolve.h +81 -0
- data/ext/alglib/dawson.cpp +234 -0
- data/ext/alglib/dawson.h +74 -0
- data/ext/alglib/descriptivestatistics.cpp +436 -0
- data/ext/alglib/descriptivestatistics.h +112 -0
- data/ext/alglib/det.cpp +140 -0
- data/ext/alglib/det.h +94 -0
- data/ext/alglib/dforest.cpp +1819 -0
- data/ext/alglib/dforest.h +316 -0
- data/ext/alglib/elliptic.cpp +497 -0
- data/ext/alglib/elliptic.h +217 -0
- data/ext/alglib/estnorm.cpp +429 -0
- data/ext/alglib/estnorm.h +107 -0
- data/ext/alglib/expintegrals.cpp +422 -0
- data/ext/alglib/expintegrals.h +108 -0
- data/ext/alglib/faq.english.html +258 -0
- data/ext/alglib/faq.russian.html +272 -0
- data/ext/alglib/fdistr.cpp +202 -0
- data/ext/alglib/fdistr.h +163 -0
- data/ext/alglib/fresnel.cpp +211 -0
- data/ext/alglib/fresnel.h +91 -0
- data/ext/alglib/gammaf.cpp +338 -0
- data/ext/alglib/gammaf.h +104 -0
- data/ext/alglib/gqgengauss.cpp +235 -0
- data/ext/alglib/gqgengauss.h +92 -0
- data/ext/alglib/gqgenhermite.cpp +268 -0
- data/ext/alglib/gqgenhermite.h +63 -0
- data/ext/alglib/gqgenjacobi.cpp +297 -0
- data/ext/alglib/gqgenjacobi.h +72 -0
- data/ext/alglib/gqgenlaguerre.cpp +265 -0
- data/ext/alglib/gqgenlaguerre.h +69 -0
- data/ext/alglib/gqgenlegendre.cpp +300 -0
- data/ext/alglib/gqgenlegendre.h +62 -0
- data/ext/alglib/gqgenlobatto.cpp +305 -0
- data/ext/alglib/gqgenlobatto.h +97 -0
- data/ext/alglib/gqgenradau.cpp +232 -0
- data/ext/alglib/gqgenradau.h +95 -0
- data/ext/alglib/hbisinv.cpp +480 -0
- data/ext/alglib/hbisinv.h +183 -0
- data/ext/alglib/hblas.cpp +228 -0
- data/ext/alglib/hblas.h +64 -0
- data/ext/alglib/hcholesky.cpp +339 -0
- data/ext/alglib/hcholesky.h +91 -0
- data/ext/alglib/hermite.cpp +114 -0
- data/ext/alglib/hermite.h +49 -0
- data/ext/alglib/hessenberg.cpp +370 -0
- data/ext/alglib/hessenberg.h +152 -0
- data/ext/alglib/hevd.cpp +247 -0
- data/ext/alglib/hevd.h +107 -0
- data/ext/alglib/hsschur.cpp +1316 -0
- data/ext/alglib/hsschur.h +108 -0
- data/ext/alglib/htridiagonal.cpp +734 -0
- data/ext/alglib/htridiagonal.h +180 -0
- data/ext/alglib/ialglib.cpp +6 -0
- data/ext/alglib/ialglib.h +9 -0
- data/ext/alglib/ibetaf.cpp +960 -0
- data/ext/alglib/ibetaf.h +125 -0
- data/ext/alglib/igammaf.cpp +430 -0
- data/ext/alglib/igammaf.h +157 -0
- data/ext/alglib/inv.cpp +274 -0
- data/ext/alglib/inv.h +115 -0
- data/ext/alglib/inverseupdate.cpp +480 -0
- data/ext/alglib/inverseupdate.h +185 -0
- data/ext/alglib/jacobianelliptic.cpp +164 -0
- data/ext/alglib/jacobianelliptic.h +94 -0
- data/ext/alglib/jarquebera.cpp +2271 -0
- data/ext/alglib/jarquebera.h +80 -0
- data/ext/alglib/kmeans.cpp +356 -0
- data/ext/alglib/kmeans.h +76 -0
- data/ext/alglib/laguerre.cpp +94 -0
- data/ext/alglib/laguerre.h +48 -0
- data/ext/alglib/lbfgs.cpp +1167 -0
- data/ext/alglib/lbfgs.h +218 -0
- data/ext/alglib/lda.cpp +434 -0
- data/ext/alglib/lda.h +133 -0
- data/ext/alglib/ldlt.cpp +1130 -0
- data/ext/alglib/ldlt.h +124 -0
- data/ext/alglib/leastsquares.cpp +1252 -0
- data/ext/alglib/leastsquares.h +290 -0
- data/ext/alglib/legendre.cpp +107 -0
- data/ext/alglib/legendre.h +49 -0
- data/ext/alglib/linreg.cpp +1185 -0
- data/ext/alglib/linreg.h +380 -0
- data/ext/alglib/logit.cpp +1523 -0
- data/ext/alglib/logit.h +333 -0
- data/ext/alglib/lq.cpp +399 -0
- data/ext/alglib/lq.h +160 -0
- data/ext/alglib/lu.cpp +462 -0
- data/ext/alglib/lu.h +119 -0
- data/ext/alglib/mannwhitneyu.cpp +4490 -0
- data/ext/alglib/mannwhitneyu.h +115 -0
- data/ext/alglib/minlm.cpp +918 -0
- data/ext/alglib/minlm.h +312 -0
- data/ext/alglib/mlpbase.cpp +3375 -0
- data/ext/alglib/mlpbase.h +589 -0
- data/ext/alglib/mlpe.cpp +1369 -0
- data/ext/alglib/mlpe.h +552 -0
- data/ext/alglib/mlptrain.cpp +1056 -0
- data/ext/alglib/mlptrain.h +283 -0
- data/ext/alglib/nearunityunit.cpp +91 -0
- data/ext/alglib/nearunityunit.h +17 -0
- data/ext/alglib/normaldistr.cpp +377 -0
- data/ext/alglib/normaldistr.h +175 -0
- data/ext/alglib/nsevd.cpp +1869 -0
- data/ext/alglib/nsevd.h +140 -0
- data/ext/alglib/pca.cpp +168 -0
- data/ext/alglib/pca.h +87 -0
- data/ext/alglib/poissondistr.cpp +143 -0
- data/ext/alglib/poissondistr.h +130 -0
- data/ext/alglib/polinterpolation.cpp +685 -0
- data/ext/alglib/polinterpolation.h +206 -0
- data/ext/alglib/psif.cpp +173 -0
- data/ext/alglib/psif.h +88 -0
- data/ext/alglib/qr.cpp +414 -0
- data/ext/alglib/qr.h +168 -0
- data/ext/alglib/ratinterpolation.cpp +134 -0
- data/ext/alglib/ratinterpolation.h +72 -0
- data/ext/alglib/rcond.cpp +705 -0
- data/ext/alglib/rcond.h +140 -0
- data/ext/alglib/reflections.cpp +504 -0
- data/ext/alglib/reflections.h +165 -0
- data/ext/alglib/rotations.cpp +473 -0
- data/ext/alglib/rotations.h +128 -0
- data/ext/alglib/rsolve.cpp +221 -0
- data/ext/alglib/rsolve.h +99 -0
- data/ext/alglib/sbisinv.cpp +217 -0
- data/ext/alglib/sbisinv.h +171 -0
- data/ext/alglib/sblas.cpp +185 -0
- data/ext/alglib/sblas.h +64 -0
- data/ext/alglib/schur.cpp +156 -0
- data/ext/alglib/schur.h +102 -0
- data/ext/alglib/sdet.cpp +193 -0
- data/ext/alglib/sdet.h +101 -0
- data/ext/alglib/sevd.cpp +116 -0
- data/ext/alglib/sevd.h +99 -0
- data/ext/alglib/sinverse.cpp +672 -0
- data/ext/alglib/sinverse.h +138 -0
- data/ext/alglib/spddet.cpp +138 -0
- data/ext/alglib/spddet.h +96 -0
- data/ext/alglib/spdgevd.cpp +842 -0
- data/ext/alglib/spdgevd.h +200 -0
- data/ext/alglib/spdinverse.cpp +509 -0
- data/ext/alglib/spdinverse.h +122 -0
- data/ext/alglib/spdrcond.cpp +421 -0
- data/ext/alglib/spdrcond.h +118 -0
- data/ext/alglib/spdsolve.cpp +275 -0
- data/ext/alglib/spdsolve.h +105 -0
- data/ext/alglib/spline2d.cpp +1192 -0
- data/ext/alglib/spline2d.h +301 -0
- data/ext/alglib/spline3.cpp +1264 -0
- data/ext/alglib/spline3.h +290 -0
- data/ext/alglib/srcond.cpp +595 -0
- data/ext/alglib/srcond.h +127 -0
- data/ext/alglib/ssolve.cpp +895 -0
- data/ext/alglib/ssolve.h +139 -0
- data/ext/alglib/stdafx.h +0 -0
- data/ext/alglib/stest.cpp +131 -0
- data/ext/alglib/stest.h +94 -0
- data/ext/alglib/studenttdistr.cpp +222 -0
- data/ext/alglib/studenttdistr.h +115 -0
- data/ext/alglib/studentttests.cpp +377 -0
- data/ext/alglib/studentttests.h +178 -0
- data/ext/alglib/svd.cpp +620 -0
- data/ext/alglib/svd.h +126 -0
- data/ext/alglib/tdbisinv.cpp +2608 -0
- data/ext/alglib/tdbisinv.h +228 -0
- data/ext/alglib/tdevd.cpp +1229 -0
- data/ext/alglib/tdevd.h +115 -0
- data/ext/alglib/tridiagonal.cpp +594 -0
- data/ext/alglib/tridiagonal.h +171 -0
- data/ext/alglib/trigintegrals.cpp +490 -0
- data/ext/alglib/trigintegrals.h +131 -0
- data/ext/alglib/trinverse.cpp +345 -0
- data/ext/alglib/trinverse.h +98 -0
- data/ext/alglib/trlinsolve.cpp +926 -0
- data/ext/alglib/trlinsolve.h +73 -0
- data/ext/alglib/tsort.cpp +405 -0
- data/ext/alglib/tsort.h +54 -0
- data/ext/alglib/variancetests.cpp +245 -0
- data/ext/alglib/variancetests.h +134 -0
- data/ext/alglib/wsr.cpp +6285 -0
- data/ext/alglib/wsr.h +96 -0
- data/ext/ap.i +97 -0
- data/ext/correlation.i +24 -0
- data/ext/extconf.rb +6 -0
- data/ext/logit.i +89 -0
- data/lib/alglib.rb +71 -0
- data/lib/alglib/correlation.rb +26 -0
- data/lib/alglib/linearregression.rb +63 -0
- data/lib/alglib/logit.rb +42 -0
- data/test/test_alglib.rb +52 -0
- data/test/test_correlation.rb +44 -0
- data/test/test_correlationtest.rb +45 -0
- data/test/test_linreg.rb +35 -0
- data/test/test_logit.rb +43 -0
- data/test/test_pca.rb +27 -0
- metadata +326 -0
data/ext/alglib/mlpe.cpp
ADDED
@@ -0,0 +1,1369 @@
|
|
1
|
+
/*************************************************************************
|
2
|
+
Copyright (c) 2007-2008, Sergey Bochkanov (ALGLIB project).
|
3
|
+
|
4
|
+
Redistribution and use in source and binary forms, with or without
|
5
|
+
modification, are permitted provided that the following conditions are
|
6
|
+
met:
|
7
|
+
|
8
|
+
- Redistributions of source code must retain the above copyright
|
9
|
+
notice, this list of conditions and the following disclaimer.
|
10
|
+
|
11
|
+
- Redistributions in binary form must reproduce the above copyright
|
12
|
+
notice, this list of conditions and the following disclaimer listed
|
13
|
+
in this license in the documentation and/or other materials
|
14
|
+
provided with the distribution.
|
15
|
+
|
16
|
+
- Neither the name of the copyright holders nor the names of its
|
17
|
+
contributors may be used to endorse or promote products derived from
|
18
|
+
this software without specific prior written permission.
|
19
|
+
|
20
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
21
|
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
22
|
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
23
|
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
24
|
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
25
|
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
26
|
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
27
|
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
28
|
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
29
|
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
30
|
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
31
|
+
*************************************************************************/
|
32
|
+
|
33
|
+
#include <stdafx.h>
|
34
|
+
#include "mlpe.h"
|
35
|
+
|
36
|
+
static const int mlpntotaloffset = 3;
|
37
|
+
static const int mlpevnum = 9;
|
38
|
+
|
39
|
+
static void mlpeallerrors(mlpensemble& ensemble,
|
40
|
+
const ap::real_2d_array& xy,
|
41
|
+
int npoints,
|
42
|
+
double& relcls,
|
43
|
+
double& avgce,
|
44
|
+
double& rms,
|
45
|
+
double& avg,
|
46
|
+
double& avgrel);
|
47
|
+
static void mlpebagginginternal(mlpensemble& ensemble,
|
48
|
+
const ap::real_2d_array& xy,
|
49
|
+
int npoints,
|
50
|
+
double decay,
|
51
|
+
int restarts,
|
52
|
+
double wstep,
|
53
|
+
int maxits,
|
54
|
+
bool lmalgorithm,
|
55
|
+
int& info,
|
56
|
+
mlpreport& rep,
|
57
|
+
mlpcvreport& ooberrors);
|
58
|
+
|
59
|
+
/*************************************************************************
|
60
|
+
Like MLPCreate0, but for ensembles.
|
61
|
+
|
62
|
+
-- ALGLIB --
|
63
|
+
Copyright 18.02.2009 by Bochkanov Sergey
|
64
|
+
*************************************************************************/
|
65
|
+
void mlpecreate0(int nin, int nout, int ensemblesize, mlpensemble& ensemble)
|
66
|
+
{
|
67
|
+
multilayerperceptron net;
|
68
|
+
|
69
|
+
mlpcreate0(nin, nout, net);
|
70
|
+
mlpecreatefromnetwork(net, ensemblesize, ensemble);
|
71
|
+
}
|
72
|
+
|
73
|
+
|
74
|
+
/*************************************************************************
|
75
|
+
Like MLPCreate1, but for ensembles.
|
76
|
+
|
77
|
+
-- ALGLIB --
|
78
|
+
Copyright 18.02.2009 by Bochkanov Sergey
|
79
|
+
*************************************************************************/
|
80
|
+
void mlpecreate1(int nin,
|
81
|
+
int nhid,
|
82
|
+
int nout,
|
83
|
+
int ensemblesize,
|
84
|
+
mlpensemble& ensemble)
|
85
|
+
{
|
86
|
+
multilayerperceptron net;
|
87
|
+
|
88
|
+
mlpcreate1(nin, nhid, nout, net);
|
89
|
+
mlpecreatefromnetwork(net, ensemblesize, ensemble);
|
90
|
+
}
|
91
|
+
|
92
|
+
|
93
|
+
/*************************************************************************
|
94
|
+
Like MLPCreate2, but for ensembles.
|
95
|
+
|
96
|
+
-- ALGLIB --
|
97
|
+
Copyright 18.02.2009 by Bochkanov Sergey
|
98
|
+
*************************************************************************/
|
99
|
+
void mlpecreate2(int nin,
|
100
|
+
int nhid1,
|
101
|
+
int nhid2,
|
102
|
+
int nout,
|
103
|
+
int ensemblesize,
|
104
|
+
mlpensemble& ensemble)
|
105
|
+
{
|
106
|
+
multilayerperceptron net;
|
107
|
+
|
108
|
+
mlpcreate2(nin, nhid1, nhid2, nout, net);
|
109
|
+
mlpecreatefromnetwork(net, ensemblesize, ensemble);
|
110
|
+
}
|
111
|
+
|
112
|
+
|
113
|
+
/*************************************************************************
|
114
|
+
Like MLPCreateB0, but for ensembles.
|
115
|
+
|
116
|
+
-- ALGLIB --
|
117
|
+
Copyright 18.02.2009 by Bochkanov Sergey
|
118
|
+
*************************************************************************/
|
119
|
+
void mlpecreateb0(int nin,
|
120
|
+
int nout,
|
121
|
+
double b,
|
122
|
+
double d,
|
123
|
+
int ensemblesize,
|
124
|
+
mlpensemble& ensemble)
|
125
|
+
{
|
126
|
+
multilayerperceptron net;
|
127
|
+
|
128
|
+
mlpcreateb0(nin, nout, b, d, net);
|
129
|
+
mlpecreatefromnetwork(net, ensemblesize, ensemble);
|
130
|
+
}
|
131
|
+
|
132
|
+
|
133
|
+
/*************************************************************************
|
134
|
+
Like MLPCreateB1, but for ensembles.
|
135
|
+
|
136
|
+
-- ALGLIB --
|
137
|
+
Copyright 18.02.2009 by Bochkanov Sergey
|
138
|
+
*************************************************************************/
|
139
|
+
void mlpecreateb1(int nin,
|
140
|
+
int nhid,
|
141
|
+
int nout,
|
142
|
+
double b,
|
143
|
+
double d,
|
144
|
+
int ensemblesize,
|
145
|
+
mlpensemble& ensemble)
|
146
|
+
{
|
147
|
+
multilayerperceptron net;
|
148
|
+
|
149
|
+
mlpcreateb1(nin, nhid, nout, b, d, net);
|
150
|
+
mlpecreatefromnetwork(net, ensemblesize, ensemble);
|
151
|
+
}
|
152
|
+
|
153
|
+
|
154
|
+
/*************************************************************************
|
155
|
+
Like MLPCreateB2, but for ensembles.
|
156
|
+
|
157
|
+
-- ALGLIB --
|
158
|
+
Copyright 18.02.2009 by Bochkanov Sergey
|
159
|
+
*************************************************************************/
|
160
|
+
void mlpecreateb2(int nin,
|
161
|
+
int nhid1,
|
162
|
+
int nhid2,
|
163
|
+
int nout,
|
164
|
+
double b,
|
165
|
+
double d,
|
166
|
+
int ensemblesize,
|
167
|
+
mlpensemble& ensemble)
|
168
|
+
{
|
169
|
+
multilayerperceptron net;
|
170
|
+
|
171
|
+
mlpcreateb2(nin, nhid1, nhid2, nout, b, d, net);
|
172
|
+
mlpecreatefromnetwork(net, ensemblesize, ensemble);
|
173
|
+
}
|
174
|
+
|
175
|
+
|
176
|
+
/*************************************************************************
|
177
|
+
Like MLPCreateR0, but for ensembles.
|
178
|
+
|
179
|
+
-- ALGLIB --
|
180
|
+
Copyright 18.02.2009 by Bochkanov Sergey
|
181
|
+
*************************************************************************/
|
182
|
+
void mlpecreater0(int nin,
|
183
|
+
int nout,
|
184
|
+
double a,
|
185
|
+
double b,
|
186
|
+
int ensemblesize,
|
187
|
+
mlpensemble& ensemble)
|
188
|
+
{
|
189
|
+
multilayerperceptron net;
|
190
|
+
|
191
|
+
mlpcreater0(nin, nout, a, b, net);
|
192
|
+
mlpecreatefromnetwork(net, ensemblesize, ensemble);
|
193
|
+
}
|
194
|
+
|
195
|
+
|
196
|
+
/*************************************************************************
|
197
|
+
Like MLPCreateR1, but for ensembles.
|
198
|
+
|
199
|
+
-- ALGLIB --
|
200
|
+
Copyright 18.02.2009 by Bochkanov Sergey
|
201
|
+
*************************************************************************/
|
202
|
+
void mlpecreater1(int nin,
|
203
|
+
int nhid,
|
204
|
+
int nout,
|
205
|
+
double a,
|
206
|
+
double b,
|
207
|
+
int ensemblesize,
|
208
|
+
mlpensemble& ensemble)
|
209
|
+
{
|
210
|
+
multilayerperceptron net;
|
211
|
+
|
212
|
+
mlpcreater1(nin, nhid, nout, a, b, net);
|
213
|
+
mlpecreatefromnetwork(net, ensemblesize, ensemble);
|
214
|
+
}
|
215
|
+
|
216
|
+
|
217
|
+
/*************************************************************************
|
218
|
+
Like MLPCreateR2, but for ensembles.
|
219
|
+
|
220
|
+
-- ALGLIB --
|
221
|
+
Copyright 18.02.2009 by Bochkanov Sergey
|
222
|
+
*************************************************************************/
|
223
|
+
void mlpecreater2(int nin,
|
224
|
+
int nhid1,
|
225
|
+
int nhid2,
|
226
|
+
int nout,
|
227
|
+
double a,
|
228
|
+
double b,
|
229
|
+
int ensemblesize,
|
230
|
+
mlpensemble& ensemble)
|
231
|
+
{
|
232
|
+
multilayerperceptron net;
|
233
|
+
|
234
|
+
mlpcreater2(nin, nhid1, nhid2, nout, a, b, net);
|
235
|
+
mlpecreatefromnetwork(net, ensemblesize, ensemble);
|
236
|
+
}
|
237
|
+
|
238
|
+
|
239
|
+
/*************************************************************************
|
240
|
+
Like MLPCreateC0, but for ensembles.
|
241
|
+
|
242
|
+
-- ALGLIB --
|
243
|
+
Copyright 18.02.2009 by Bochkanov Sergey
|
244
|
+
*************************************************************************/
|
245
|
+
void mlpecreatec0(int nin, int nout, int ensemblesize, mlpensemble& ensemble)
|
246
|
+
{
|
247
|
+
multilayerperceptron net;
|
248
|
+
|
249
|
+
mlpcreatec0(nin, nout, net);
|
250
|
+
mlpecreatefromnetwork(net, ensemblesize, ensemble);
|
251
|
+
}
|
252
|
+
|
253
|
+
|
254
|
+
/*************************************************************************
|
255
|
+
Like MLPCreateC1, but for ensembles.
|
256
|
+
|
257
|
+
-- ALGLIB --
|
258
|
+
Copyright 18.02.2009 by Bochkanov Sergey
|
259
|
+
*************************************************************************/
|
260
|
+
void mlpecreatec1(int nin,
|
261
|
+
int nhid,
|
262
|
+
int nout,
|
263
|
+
int ensemblesize,
|
264
|
+
mlpensemble& ensemble)
|
265
|
+
{
|
266
|
+
multilayerperceptron net;
|
267
|
+
|
268
|
+
mlpcreatec1(nin, nhid, nout, net);
|
269
|
+
mlpecreatefromnetwork(net, ensemblesize, ensemble);
|
270
|
+
}
|
271
|
+
|
272
|
+
|
273
|
+
/*************************************************************************
|
274
|
+
Like MLPCreateC2, but for ensembles.
|
275
|
+
|
276
|
+
-- ALGLIB --
|
277
|
+
Copyright 18.02.2009 by Bochkanov Sergey
|
278
|
+
*************************************************************************/
|
279
|
+
void mlpecreatec2(int nin,
|
280
|
+
int nhid1,
|
281
|
+
int nhid2,
|
282
|
+
int nout,
|
283
|
+
int ensemblesize,
|
284
|
+
mlpensemble& ensemble)
|
285
|
+
{
|
286
|
+
multilayerperceptron net;
|
287
|
+
|
288
|
+
mlpcreatec2(nin, nhid1, nhid2, nout, net);
|
289
|
+
mlpecreatefromnetwork(net, ensemblesize, ensemble);
|
290
|
+
}
|
291
|
+
|
292
|
+
|
293
|
+
/*************************************************************************
|
294
|
+
Creates ensemble from network. Only network geometry is copied.
|
295
|
+
|
296
|
+
-- ALGLIB --
|
297
|
+
Copyright 17.02.2009 by Bochkanov Sergey
|
298
|
+
*************************************************************************/
|
299
|
+
void mlpecreatefromnetwork(const multilayerperceptron& network,
|
300
|
+
int ensemblesize,
|
301
|
+
mlpensemble& ensemble)
|
302
|
+
{
|
303
|
+
int i;
|
304
|
+
int ccount;
|
305
|
+
int rlen;
|
306
|
+
|
307
|
+
ap::ap_error::make_assertion(ensemblesize>0, "MLPECreate: incorrect ensemble size!");
|
308
|
+
|
309
|
+
//
|
310
|
+
// network properties
|
311
|
+
//
|
312
|
+
mlpproperties(network, ensemble.nin, ensemble.nout, ensemble.wcount);
|
313
|
+
if( mlpissoftmax(network) )
|
314
|
+
{
|
315
|
+
ccount = ensemble.nin;
|
316
|
+
}
|
317
|
+
else
|
318
|
+
{
|
319
|
+
ccount = ensemble.nin+ensemble.nout;
|
320
|
+
}
|
321
|
+
ensemble.postprocessing = false;
|
322
|
+
ensemble.issoftmax = mlpissoftmax(network);
|
323
|
+
ensemble.ensemblesize = ensemblesize;
|
324
|
+
|
325
|
+
//
|
326
|
+
// structure information
|
327
|
+
//
|
328
|
+
ensemble.structinfo.setbounds(0, network.structinfo(0)-1);
|
329
|
+
for(i = 0; i <= network.structinfo(0)-1; i++)
|
330
|
+
{
|
331
|
+
ensemble.structinfo(i) = network.structinfo(i);
|
332
|
+
}
|
333
|
+
|
334
|
+
//
|
335
|
+
// weights, means, sigmas
|
336
|
+
//
|
337
|
+
ensemble.weights.setbounds(0, ensemblesize*ensemble.wcount-1);
|
338
|
+
ensemble.columnmeans.setbounds(0, ensemblesize*ccount-1);
|
339
|
+
ensemble.columnsigmas.setbounds(0, ensemblesize*ccount-1);
|
340
|
+
for(i = 0; i <= ensemblesize*ensemble.wcount-1; i++)
|
341
|
+
{
|
342
|
+
ensemble.weights(i) = ap::randomreal()-0.5;
|
343
|
+
}
|
344
|
+
for(i = 0; i <= ensemblesize-1; i++)
|
345
|
+
{
|
346
|
+
ap::vmove(&ensemble.columnmeans(i*ccount), &network.columnmeans(0), ap::vlen(i*ccount,(i+1)*ccount-1));
|
347
|
+
ap::vmove(&ensemble.columnsigmas(i*ccount), &network.columnsigmas(0), ap::vlen(i*ccount,(i+1)*ccount-1));
|
348
|
+
}
|
349
|
+
|
350
|
+
//
|
351
|
+
// serialized part
|
352
|
+
//
|
353
|
+
mlpserialize(network, ensemble.serializedmlp, ensemble.serializedlen);
|
354
|
+
|
355
|
+
//
|
356
|
+
// temporaries, internal buffers
|
357
|
+
//
|
358
|
+
ensemble.tmpweights.setbounds(0, ensemble.wcount-1);
|
359
|
+
ensemble.tmpmeans.setbounds(0, ccount-1);
|
360
|
+
ensemble.tmpsigmas.setbounds(0, ccount-1);
|
361
|
+
ensemble.neurons.setbounds(0, ensemble.structinfo(mlpntotaloffset)-1);
|
362
|
+
ensemble.dfdnet.setbounds(0, ensemble.structinfo(mlpntotaloffset)-1);
|
363
|
+
ensemble.y.setbounds(0, ensemble.nout-1);
|
364
|
+
}
|
365
|
+
|
366
|
+
|
367
|
+
/*************************************************************************
|
368
|
+
Copying of MLPEnsemble strucure
|
369
|
+
|
370
|
+
INPUT PARAMETERS:
|
371
|
+
Ensemble1 - original
|
372
|
+
|
373
|
+
OUTPUT PARAMETERS:
|
374
|
+
Ensemble2 - copy
|
375
|
+
|
376
|
+
-- ALGLIB --
|
377
|
+
Copyright 17.02.2009 by Bochkanov Sergey
|
378
|
+
*************************************************************************/
|
379
|
+
void mlpecopy(const mlpensemble& ensemble1, mlpensemble& ensemble2)
|
380
|
+
{
|
381
|
+
int i;
|
382
|
+
int ssize;
|
383
|
+
int ccount;
|
384
|
+
int ntotal;
|
385
|
+
int nin;
|
386
|
+
int nout;
|
387
|
+
int wcount;
|
388
|
+
|
389
|
+
|
390
|
+
//
|
391
|
+
// Unload info
|
392
|
+
//
|
393
|
+
ssize = ensemble1.structinfo(0);
|
394
|
+
if( ensemble1.issoftmax )
|
395
|
+
{
|
396
|
+
ccount = ensemble1.nin;
|
397
|
+
}
|
398
|
+
else
|
399
|
+
{
|
400
|
+
ccount = ensemble1.nin+ensemble1.nout;
|
401
|
+
}
|
402
|
+
ntotal = ensemble1.structinfo(mlpntotaloffset);
|
403
|
+
|
404
|
+
//
|
405
|
+
// Allocate space
|
406
|
+
//
|
407
|
+
ensemble2.structinfo.setbounds(0, ssize-1);
|
408
|
+
ensemble2.weights.setbounds(0, ensemble1.ensemblesize*ensemble1.wcount-1);
|
409
|
+
ensemble2.columnmeans.setbounds(0, ensemble1.ensemblesize*ccount-1);
|
410
|
+
ensemble2.columnsigmas.setbounds(0, ensemble1.ensemblesize*ccount-1);
|
411
|
+
ensemble2.tmpweights.setbounds(0, ensemble1.wcount-1);
|
412
|
+
ensemble2.tmpmeans.setbounds(0, ccount-1);
|
413
|
+
ensemble2.tmpsigmas.setbounds(0, ccount-1);
|
414
|
+
ensemble2.serializedmlp.setbounds(0, ensemble1.serializedlen-1);
|
415
|
+
ensemble2.neurons.setbounds(0, ntotal-1);
|
416
|
+
ensemble2.dfdnet.setbounds(0, ntotal-1);
|
417
|
+
ensemble2.y.setbounds(0, ensemble1.nout-1);
|
418
|
+
|
419
|
+
//
|
420
|
+
// Copy
|
421
|
+
//
|
422
|
+
ensemble2.nin = ensemble1.nin;
|
423
|
+
ensemble2.nout = ensemble1.nout;
|
424
|
+
ensemble2.wcount = ensemble1.wcount;
|
425
|
+
ensemble2.ensemblesize = ensemble1.ensemblesize;
|
426
|
+
ensemble2.issoftmax = ensemble1.issoftmax;
|
427
|
+
ensemble2.postprocessing = ensemble1.postprocessing;
|
428
|
+
ensemble2.serializedlen = ensemble1.serializedlen;
|
429
|
+
for(i = 0; i <= ssize-1; i++)
|
430
|
+
{
|
431
|
+
ensemble2.structinfo(i) = ensemble1.structinfo(i);
|
432
|
+
}
|
433
|
+
ap::vmove(&ensemble2.weights(0), &ensemble1.weights(0), ap::vlen(0,ensemble1.ensemblesize*ensemble1.wcount-1));
|
434
|
+
ap::vmove(&ensemble2.columnmeans(0), &ensemble1.columnmeans(0), ap::vlen(0,ensemble1.ensemblesize*ccount-1));
|
435
|
+
ap::vmove(&ensemble2.columnsigmas(0), &ensemble1.columnsigmas(0), ap::vlen(0,ensemble1.ensemblesize*ccount-1));
|
436
|
+
ap::vmove(&ensemble2.serializedmlp(0), &ensemble1.serializedmlp(0), ap::vlen(0,ensemble1.serializedlen-1));
|
437
|
+
}
|
438
|
+
|
439
|
+
|
440
|
+
/*************************************************************************
|
441
|
+
Serialization of MLPEnsemble strucure
|
442
|
+
|
443
|
+
INPUT PARAMETERS:
|
444
|
+
Ensemble- original
|
445
|
+
|
446
|
+
OUTPUT PARAMETERS:
|
447
|
+
RA - array of real numbers which stores ensemble,
|
448
|
+
array[0..RLen-1]
|
449
|
+
RLen - RA lenght
|
450
|
+
|
451
|
+
-- ALGLIB --
|
452
|
+
Copyright 17.02.2009 by Bochkanov Sergey
|
453
|
+
*************************************************************************/
|
454
|
+
void mlpeserialize(mlpensemble& ensemble, ap::real_1d_array& ra, int& rlen)
|
455
|
+
{
|
456
|
+
int i;
|
457
|
+
int ssize;
|
458
|
+
int ntotal;
|
459
|
+
int ccount;
|
460
|
+
int hsize;
|
461
|
+
int offs;
|
462
|
+
|
463
|
+
hsize = 13;
|
464
|
+
ssize = ensemble.structinfo(0);
|
465
|
+
if( ensemble.issoftmax )
|
466
|
+
{
|
467
|
+
ccount = ensemble.nin;
|
468
|
+
}
|
469
|
+
else
|
470
|
+
{
|
471
|
+
ccount = ensemble.nin+ensemble.nout;
|
472
|
+
}
|
473
|
+
ntotal = ensemble.structinfo(mlpntotaloffset);
|
474
|
+
rlen = hsize+ssize+ensemble.ensemblesize*ensemble.wcount+2*ccount*ensemble.ensemblesize+ensemble.serializedlen;
|
475
|
+
|
476
|
+
//
|
477
|
+
// RA format:
|
478
|
+
// [0] RLen
|
479
|
+
// [1] Version (MLPEVNum)
|
480
|
+
// [2] EnsembleSize
|
481
|
+
// [3] NIn
|
482
|
+
// [4] NOut
|
483
|
+
// [5] WCount
|
484
|
+
// [6] IsSoftmax 0/1
|
485
|
+
// [7] PostProcessing 0/1
|
486
|
+
// [8] sizeof(StructInfo)
|
487
|
+
// [9] NTotal (sizeof(Neurons), sizeof(DFDNET))
|
488
|
+
// [10] CCount (sizeof(ColumnMeans), sizeof(ColumnSigmas))
|
489
|
+
// [11] data offset
|
490
|
+
// [12] SerializedLen
|
491
|
+
//
|
492
|
+
// [..] StructInfo
|
493
|
+
// [..] Weights
|
494
|
+
// [..] ColumnMeans
|
495
|
+
// [..] ColumnSigmas
|
496
|
+
//
|
497
|
+
ra.setbounds(0, rlen-1);
|
498
|
+
ra(0) = rlen;
|
499
|
+
ra(1) = mlpevnum;
|
500
|
+
ra(2) = ensemble.ensemblesize;
|
501
|
+
ra(3) = ensemble.nin;
|
502
|
+
ra(4) = ensemble.nout;
|
503
|
+
ra(5) = ensemble.wcount;
|
504
|
+
if( ensemble.issoftmax )
|
505
|
+
{
|
506
|
+
ra(6) = 1;
|
507
|
+
}
|
508
|
+
else
|
509
|
+
{
|
510
|
+
ra(6) = 0;
|
511
|
+
}
|
512
|
+
if( ensemble.postprocessing )
|
513
|
+
{
|
514
|
+
ra(7) = 1;
|
515
|
+
}
|
516
|
+
else
|
517
|
+
{
|
518
|
+
ra(7) = 9;
|
519
|
+
}
|
520
|
+
ra(8) = ssize;
|
521
|
+
ra(9) = ntotal;
|
522
|
+
ra(10) = ccount;
|
523
|
+
ra(11) = hsize;
|
524
|
+
ra(12) = ensemble.serializedlen;
|
525
|
+
offs = hsize;
|
526
|
+
for(i = offs; i <= offs+ssize-1; i++)
|
527
|
+
{
|
528
|
+
ra(i) = ensemble.structinfo(i-offs);
|
529
|
+
}
|
530
|
+
offs = offs+ssize;
|
531
|
+
ap::vmove(&ra(offs), &ensemble.weights(0), ap::vlen(offs,offs+ensemble.ensemblesize*ensemble.wcount-1));
|
532
|
+
offs = offs+ensemble.ensemblesize*ensemble.wcount;
|
533
|
+
ap::vmove(&ra(offs), &ensemble.columnmeans(0), ap::vlen(offs,offs+ensemble.ensemblesize*ccount-1));
|
534
|
+
offs = offs+ensemble.ensemblesize*ccount;
|
535
|
+
ap::vmove(&ra(offs), &ensemble.columnsigmas(0), ap::vlen(offs,offs+ensemble.ensemblesize*ccount-1));
|
536
|
+
offs = offs+ensemble.ensemblesize*ccount;
|
537
|
+
ap::vmove(&ra(offs), &ensemble.serializedmlp(0), ap::vlen(offs,offs+ensemble.serializedlen-1));
|
538
|
+
offs = offs+ensemble.serializedlen;
|
539
|
+
}
|
540
|
+
|
541
|
+
|
542
|
+
/*************************************************************************
|
543
|
+
Unserialization of MLPEnsemble strucure
|
544
|
+
|
545
|
+
INPUT PARAMETERS:
|
546
|
+
RA - real array which stores ensemble
|
547
|
+
|
548
|
+
OUTPUT PARAMETERS:
|
549
|
+
Ensemble- restored structure
|
550
|
+
|
551
|
+
-- ALGLIB --
|
552
|
+
Copyright 17.02.2009 by Bochkanov Sergey
|
553
|
+
*************************************************************************/
|
554
|
+
void mlpeunserialize(const ap::real_1d_array& ra, mlpensemble& ensemble)
|
555
|
+
{
|
556
|
+
int i;
|
557
|
+
int ssize;
|
558
|
+
int ntotal;
|
559
|
+
int ccount;
|
560
|
+
int hsize;
|
561
|
+
int offs;
|
562
|
+
|
563
|
+
ap::ap_error::make_assertion(ap::round(ra(1))==mlpevnum, "MLPEUnserialize: incorrect array!");
|
564
|
+
|
565
|
+
//
|
566
|
+
// load info
|
567
|
+
//
|
568
|
+
hsize = 13;
|
569
|
+
ensemble.ensemblesize = ap::round(ra(2));
|
570
|
+
ensemble.nin = ap::round(ra(3));
|
571
|
+
ensemble.nout = ap::round(ra(4));
|
572
|
+
ensemble.wcount = ap::round(ra(5));
|
573
|
+
ensemble.issoftmax = ap::round(ra(6))==1;
|
574
|
+
ensemble.postprocessing = ap::round(ra(7))==1;
|
575
|
+
ssize = ap::round(ra(8));
|
576
|
+
ntotal = ap::round(ra(9));
|
577
|
+
ccount = ap::round(ra(10));
|
578
|
+
offs = ap::round(ra(11));
|
579
|
+
ensemble.serializedlen = ap::round(ra(12));
|
580
|
+
|
581
|
+
//
|
582
|
+
// Allocate arrays
|
583
|
+
//
|
584
|
+
ensemble.structinfo.setbounds(0, ssize-1);
|
585
|
+
ensemble.weights.setbounds(0, ensemble.ensemblesize*ensemble.wcount-1);
|
586
|
+
ensemble.columnmeans.setbounds(0, ensemble.ensemblesize*ccount-1);
|
587
|
+
ensemble.columnsigmas.setbounds(0, ensemble.ensemblesize*ccount-1);
|
588
|
+
ensemble.tmpweights.setbounds(0, ensemble.wcount-1);
|
589
|
+
ensemble.tmpmeans.setbounds(0, ccount-1);
|
590
|
+
ensemble.tmpsigmas.setbounds(0, ccount-1);
|
591
|
+
ensemble.neurons.setbounds(0, ntotal-1);
|
592
|
+
ensemble.dfdnet.setbounds(0, ntotal-1);
|
593
|
+
ensemble.serializedmlp.setbounds(0, ensemble.serializedlen-1);
|
594
|
+
ensemble.y.setbounds(0, ensemble.nout-1);
|
595
|
+
|
596
|
+
//
|
597
|
+
// load data
|
598
|
+
//
|
599
|
+
for(i = offs; i <= offs+ssize-1; i++)
|
600
|
+
{
|
601
|
+
ensemble.structinfo(i-offs) = ap::round(ra(i));
|
602
|
+
}
|
603
|
+
offs = offs+ssize;
|
604
|
+
ap::vmove(&ensemble.weights(0), &ra(offs), ap::vlen(0,ensemble.ensemblesize*ensemble.wcount-1));
|
605
|
+
offs = offs+ensemble.ensemblesize*ensemble.wcount;
|
606
|
+
ap::vmove(&ensemble.columnmeans(0), &ra(offs), ap::vlen(0,ensemble.ensemblesize*ccount-1));
|
607
|
+
offs = offs+ensemble.ensemblesize*ccount;
|
608
|
+
ap::vmove(&ensemble.columnsigmas(0), &ra(offs), ap::vlen(0,ensemble.ensemblesize*ccount-1));
|
609
|
+
offs = offs+ensemble.ensemblesize*ccount;
|
610
|
+
ap::vmove(&ensemble.serializedmlp(0), &ra(offs), ap::vlen(0,ensemble.serializedlen-1));
|
611
|
+
offs = offs+ensemble.serializedlen;
|
612
|
+
}
|
613
|
+
|
614
|
+
|
615
|
+
/*************************************************************************
|
616
|
+
Randomization of MLP ensemble
|
617
|
+
|
618
|
+
-- ALGLIB --
|
619
|
+
Copyright 17.02.2009 by Bochkanov Sergey
|
620
|
+
*************************************************************************/
|
621
|
+
void mlperandomize(mlpensemble& ensemble)
|
622
|
+
{
|
623
|
+
int i;
|
624
|
+
|
625
|
+
for(i = 0; i <= ensemble.ensemblesize*ensemble.wcount-1; i++)
|
626
|
+
{
|
627
|
+
ensemble.weights(i) = ap::randomreal()-0.5;
|
628
|
+
}
|
629
|
+
}
|
630
|
+
|
631
|
+
|
632
|
+
/*************************************************************************
|
633
|
+
Return ensemble properties (number of inputs and outputs).
|
634
|
+
|
635
|
+
-- ALGLIB --
|
636
|
+
Copyright 17.02.2009 by Bochkanov Sergey
|
637
|
+
*************************************************************************/
|
638
|
+
void mlpeproperties(const mlpensemble& ensemble, int& nin, int& nout)
|
639
|
+
{
|
640
|
+
|
641
|
+
nin = ensemble.nin;
|
642
|
+
nout = ensemble.nout;
|
643
|
+
}
|
644
|
+
|
645
|
+
|
646
|
+
/*************************************************************************
|
647
|
+
Return normalization type (whether ensemble is SOFTMAX-normalized or not).
|
648
|
+
|
649
|
+
-- ALGLIB --
|
650
|
+
Copyright 17.02.2009 by Bochkanov Sergey
|
651
|
+
*************************************************************************/
|
652
|
+
bool mlpeissoftmax(const mlpensemble& ensemble)
|
653
|
+
{
|
654
|
+
bool result;
|
655
|
+
|
656
|
+
result = ensemble.issoftmax;
|
657
|
+
return result;
|
658
|
+
}
|
659
|
+
|
660
|
+
|
661
|
+
/*************************************************************************
|
662
|
+
Procesing
|
663
|
+
|
664
|
+
INPUT PARAMETERS:
|
665
|
+
Ensemble- neural networks ensemble
|
666
|
+
X - input vector, array[0..NIn-1].
|
667
|
+
|
668
|
+
OUTPUT PARAMETERS:
|
669
|
+
Y - result. Regression estimate when solving regression task,
|
670
|
+
vector of posterior probabilities for classification task.
|
671
|
+
Subroutine does not allocate memory for this vector, it is
|
672
|
+
responsibility of a caller to allocate it. Array must be
|
673
|
+
at least [0..NOut-1].
|
674
|
+
|
675
|
+
-- ALGLIB --
|
676
|
+
Copyright 17.02.2009 by Bochkanov Sergey
|
677
|
+
*************************************************************************/
|
678
|
+
void mlpeprocess(mlpensemble& ensemble,
|
679
|
+
const ap::real_1d_array& x,
|
680
|
+
ap::real_1d_array& y)
|
681
|
+
{
|
682
|
+
int i;
|
683
|
+
int es;
|
684
|
+
int wc;
|
685
|
+
int cc;
|
686
|
+
double v;
|
687
|
+
|
688
|
+
es = ensemble.ensemblesize;
|
689
|
+
wc = ensemble.wcount;
|
690
|
+
if( ensemble.issoftmax )
|
691
|
+
{
|
692
|
+
cc = ensemble.nin;
|
693
|
+
}
|
694
|
+
else
|
695
|
+
{
|
696
|
+
cc = ensemble.nin+ensemble.nout;
|
697
|
+
}
|
698
|
+
v = double(1)/double(es);
|
699
|
+
for(i = 0; i <= ensemble.nout-1; i++)
|
700
|
+
{
|
701
|
+
y(i) = 0;
|
702
|
+
}
|
703
|
+
for(i = 0; i <= es-1; i++)
|
704
|
+
{
|
705
|
+
ap::vmove(&ensemble.tmpweights(0), &ensemble.weights(i*wc), ap::vlen(0,wc-1));
|
706
|
+
ap::vmove(&ensemble.tmpmeans(0), &ensemble.columnmeans(i*cc), ap::vlen(0,cc-1));
|
707
|
+
ap::vmove(&ensemble.tmpsigmas(0), &ensemble.columnsigmas(i*cc), ap::vlen(0,cc-1));
|
708
|
+
mlpinternalprocessvector(ensemble.structinfo, ensemble.tmpweights, ensemble.tmpmeans, ensemble.tmpsigmas, ensemble.neurons, ensemble.dfdnet, x, ensemble.y);
|
709
|
+
ap::vadd(&y(0), &ensemble.y(0), ap::vlen(0,ensemble.nout-1), v);
|
710
|
+
}
|
711
|
+
}
|
712
|
+
|
713
|
+
|
714
|
+
/*************************************************************************
|
715
|
+
Relative classification error on the test set
|
716
|
+
|
717
|
+
INPUT PARAMETERS:
|
718
|
+
Ensemble- ensemble
|
719
|
+
XY - test set
|
720
|
+
NPoints - test set size
|
721
|
+
|
722
|
+
RESULT:
|
723
|
+
percent of incorrectly classified cases.
|
724
|
+
Works both for classifier betwork and for regression networks which
|
725
|
+
are used as classifiers.
|
726
|
+
|
727
|
+
-- ALGLIB --
|
728
|
+
Copyright 17.02.2009 by Bochkanov Sergey
|
729
|
+
*************************************************************************/
|
730
|
+
double mlperelclserror(mlpensemble& ensemble,
|
731
|
+
const ap::real_2d_array& xy,
|
732
|
+
int npoints)
|
733
|
+
{
|
734
|
+
double result;
|
735
|
+
double relcls;
|
736
|
+
double avgce;
|
737
|
+
double rms;
|
738
|
+
double avg;
|
739
|
+
double avgrel;
|
740
|
+
|
741
|
+
mlpeallerrors(ensemble, xy, npoints, relcls, avgce, rms, avg, avgrel);
|
742
|
+
result = relcls;
|
743
|
+
return result;
|
744
|
+
}
|
745
|
+
|
746
|
+
|
747
|
+
/*************************************************************************
|
748
|
+
Average cross-entropy (in bits per element) on the test set
|
749
|
+
|
750
|
+
INPUT PARAMETERS:
|
751
|
+
Ensemble- ensemble
|
752
|
+
XY - test set
|
753
|
+
NPoints - test set size
|
754
|
+
|
755
|
+
RESULT:
|
756
|
+
CrossEntropy/(NPoints*LN(2)).
|
757
|
+
Zero if ensemble solves regression task.
|
758
|
+
|
759
|
+
-- ALGLIB --
|
760
|
+
Copyright 17.02.2009 by Bochkanov Sergey
|
761
|
+
*************************************************************************/
|
762
|
+
double mlpeavgce(mlpensemble& ensemble,
|
763
|
+
const ap::real_2d_array& xy,
|
764
|
+
int npoints)
|
765
|
+
{
|
766
|
+
double result;
|
767
|
+
double relcls;
|
768
|
+
double avgce;
|
769
|
+
double rms;
|
770
|
+
double avg;
|
771
|
+
double avgrel;
|
772
|
+
|
773
|
+
mlpeallerrors(ensemble, xy, npoints, relcls, avgce, rms, avg, avgrel);
|
774
|
+
result = avgce;
|
775
|
+
return result;
|
776
|
+
}
|
777
|
+
|
778
|
+
|
779
|
+
/*************************************************************************
|
780
|
+
RMS error on the test set
|
781
|
+
|
782
|
+
INPUT PARAMETERS:
|
783
|
+
Ensemble- ensemble
|
784
|
+
XY - test set
|
785
|
+
NPoints - test set size
|
786
|
+
|
787
|
+
RESULT:
|
788
|
+
root mean square error.
|
789
|
+
Its meaning for regression task is obvious. As for classification task
|
790
|
+
RMS error means error when estimating posterior probabilities.
|
791
|
+
|
792
|
+
-- ALGLIB --
|
793
|
+
Copyright 17.02.2009 by Bochkanov Sergey
|
794
|
+
*************************************************************************/
|
795
|
+
double mlpermserror(mlpensemble& ensemble,
|
796
|
+
const ap::real_2d_array& xy,
|
797
|
+
int npoints)
|
798
|
+
{
|
799
|
+
double result;
|
800
|
+
double relcls;
|
801
|
+
double avgce;
|
802
|
+
double rms;
|
803
|
+
double avg;
|
804
|
+
double avgrel;
|
805
|
+
|
806
|
+
mlpeallerrors(ensemble, xy, npoints, relcls, avgce, rms, avg, avgrel);
|
807
|
+
result = rms;
|
808
|
+
return result;
|
809
|
+
}
|
810
|
+
|
811
|
+
|
812
|
+
/*************************************************************************
|
813
|
+
Average error on the test set
|
814
|
+
|
815
|
+
INPUT PARAMETERS:
|
816
|
+
Ensemble- ensemble
|
817
|
+
XY - test set
|
818
|
+
NPoints - test set size
|
819
|
+
|
820
|
+
RESULT:
|
821
|
+
Its meaning for regression task is obvious. As for classification task
|
822
|
+
it means average error when estimating posterior probabilities.
|
823
|
+
|
824
|
+
-- ALGLIB --
|
825
|
+
Copyright 17.02.2009 by Bochkanov Sergey
|
826
|
+
*************************************************************************/
|
827
|
+
double mlpeavgerror(mlpensemble& ensemble,
|
828
|
+
const ap::real_2d_array& xy,
|
829
|
+
int npoints)
|
830
|
+
{
|
831
|
+
double result;
|
832
|
+
double relcls;
|
833
|
+
double avgce;
|
834
|
+
double rms;
|
835
|
+
double avg;
|
836
|
+
double avgrel;
|
837
|
+
|
838
|
+
mlpeallerrors(ensemble, xy, npoints, relcls, avgce, rms, avg, avgrel);
|
839
|
+
result = avg;
|
840
|
+
return result;
|
841
|
+
}
|
842
|
+
|
843
|
+
|
844
|
+
/*************************************************************************
|
845
|
+
Average relative error on the test set
|
846
|
+
|
847
|
+
INPUT PARAMETERS:
|
848
|
+
Ensemble- ensemble
|
849
|
+
XY - test set
|
850
|
+
NPoints - test set size
|
851
|
+
|
852
|
+
RESULT:
|
853
|
+
Its meaning for regression task is obvious. As for classification task
|
854
|
+
it means average relative error when estimating posterior probabilities.
|
855
|
+
|
856
|
+
-- ALGLIB --
|
857
|
+
Copyright 17.02.2009 by Bochkanov Sergey
|
858
|
+
*************************************************************************/
|
859
|
+
double mlpeavgrelerror(mlpensemble& ensemble,
|
860
|
+
const ap::real_2d_array& xy,
|
861
|
+
int npoints)
|
862
|
+
{
|
863
|
+
double result;
|
864
|
+
double relcls;
|
865
|
+
double avgce;
|
866
|
+
double rms;
|
867
|
+
double avg;
|
868
|
+
double avgrel;
|
869
|
+
|
870
|
+
mlpeallerrors(ensemble, xy, npoints, relcls, avgce, rms, avg, avgrel);
|
871
|
+
result = avgrel;
|
872
|
+
return result;
|
873
|
+
}
|
874
|
+
|
875
|
+
|
876
|
+
/*************************************************************************
|
877
|
+
Training neural networks ensemble using bootstrap aggregating (bagging).
|
878
|
+
Modified Levenberg-Marquardt algorithm is used as base training method.
|
879
|
+
|
880
|
+
INPUT PARAMETERS:
|
881
|
+
Ensemble - model with initialized geometry
|
882
|
+
XY - training set
|
883
|
+
NPoints - training set size
|
884
|
+
Decay - weight decay coefficient, >=0.001
|
885
|
+
Restarts - restarts, >0.
|
886
|
+
|
887
|
+
OUTPUT PARAMETERS:
|
888
|
+
Ensemble - trained model
|
889
|
+
Info - return code:
|
890
|
+
* -2, if there is a point with class number
|
891
|
+
outside of [0..NClasses-1].
|
892
|
+
* -1, if incorrect parameters was passed
|
893
|
+
(NPoints<0, Restarts<1).
|
894
|
+
* 2, if task has been solved.
|
895
|
+
Rep - training report.
|
896
|
+
OOBErrors - out-of-bag generalization error estimate
|
897
|
+
|
898
|
+
-- ALGLIB --
|
899
|
+
Copyright 17.02.2009 by Bochkanov Sergey
|
900
|
+
*************************************************************************/
|
901
|
+
void mlpebagginglm(mlpensemble& ensemble,
|
902
|
+
const ap::real_2d_array& xy,
|
903
|
+
int npoints,
|
904
|
+
double decay,
|
905
|
+
int restarts,
|
906
|
+
int& info,
|
907
|
+
mlpreport& rep,
|
908
|
+
mlpcvreport& ooberrors)
|
909
|
+
{
|
910
|
+
|
911
|
+
mlpebagginginternal(ensemble, xy, npoints, decay, restarts, 0.0, 0, true, info, rep, ooberrors);
|
912
|
+
}
|
913
|
+
|
914
|
+
|
915
|
+
/*************************************************************************
|
916
|
+
Training neural networks ensemble using bootstrap aggregating (bagging).
|
917
|
+
L-BFGS algorithm is used as base training method.
|
918
|
+
|
919
|
+
INPUT PARAMETERS:
|
920
|
+
Ensemble - model with initialized geometry
|
921
|
+
XY - training set
|
922
|
+
NPoints - training set size
|
923
|
+
Decay - weight decay coefficient, >=0.001
|
924
|
+
Restarts - restarts, >0.
|
925
|
+
WStep - stopping criterion, same as in MLPTrainLBFGS
|
926
|
+
MaxIts - stopping criterion, same as in MLPTrainLBFGS
|
927
|
+
|
928
|
+
OUTPUT PARAMETERS:
|
929
|
+
Ensemble - trained model
|
930
|
+
Info - return code:
|
931
|
+
* -8, if both WStep=0 and MaxIts=0
|
932
|
+
* -2, if there is a point with class number
|
933
|
+
outside of [0..NClasses-1].
|
934
|
+
* -1, if incorrect parameters was passed
|
935
|
+
(NPoints<0, Restarts<1).
|
936
|
+
* 2, if task has been solved.
|
937
|
+
Rep - training report.
|
938
|
+
OOBErrors - out-of-bag generalization error estimate
|
939
|
+
|
940
|
+
-- ALGLIB --
|
941
|
+
Copyright 17.02.2009 by Bochkanov Sergey
|
942
|
+
*************************************************************************/
|
943
|
+
void mlpebagginglbfgs(mlpensemble& ensemble,
|
944
|
+
const ap::real_2d_array& xy,
|
945
|
+
int npoints,
|
946
|
+
double decay,
|
947
|
+
int restarts,
|
948
|
+
double wstep,
|
949
|
+
int maxits,
|
950
|
+
int& info,
|
951
|
+
mlpreport& rep,
|
952
|
+
mlpcvreport& ooberrors)
|
953
|
+
{
|
954
|
+
|
955
|
+
mlpebagginginternal(ensemble, xy, npoints, decay, restarts, wstep, maxits, false, info, rep, ooberrors);
|
956
|
+
}
|
957
|
+
|
958
|
+
|
959
|
+
/*************************************************************************
|
960
|
+
Training neural networks ensemble using early stopping.
|
961
|
+
|
962
|
+
INPUT PARAMETERS:
|
963
|
+
Ensemble - model with initialized geometry
|
964
|
+
XY - training set
|
965
|
+
NPoints - training set size
|
966
|
+
Decay - weight decay coefficient, >=0.001
|
967
|
+
Restarts - restarts, >0.
|
968
|
+
|
969
|
+
OUTPUT PARAMETERS:
|
970
|
+
Ensemble - trained model
|
971
|
+
Info - return code:
|
972
|
+
* -2, if there is a point with class number
|
973
|
+
outside of [0..NClasses-1].
|
974
|
+
* -1, if incorrect parameters was passed
|
975
|
+
(NPoints<0, Restarts<1).
|
976
|
+
* 2, if task has been solved.
|
977
|
+
Rep - training report.
|
978
|
+
OOBErrors - out-of-bag generalization error estimate
|
979
|
+
|
980
|
+
-- ALGLIB --
|
981
|
+
Copyright 10.03.2009 by Bochkanov Sergey
|
982
|
+
*************************************************************************/
|
983
|
+
void mlpetraines(mlpensemble& ensemble,
|
984
|
+
const ap::real_2d_array& xy,
|
985
|
+
int npoints,
|
986
|
+
double decay,
|
987
|
+
int restarts,
|
988
|
+
int& info,
|
989
|
+
mlpreport& rep)
|
990
|
+
{
|
991
|
+
int i;
|
992
|
+
int k;
|
993
|
+
int ccount;
|
994
|
+
int pcount;
|
995
|
+
ap::real_2d_array trnxy;
|
996
|
+
ap::real_2d_array valxy;
|
997
|
+
int trnsize;
|
998
|
+
int valsize;
|
999
|
+
multilayerperceptron network;
|
1000
|
+
int tmpinfo;
|
1001
|
+
mlpreport tmprep;
|
1002
|
+
|
1003
|
+
if( npoints<2||restarts<1||decay<0 )
|
1004
|
+
{
|
1005
|
+
info = -1;
|
1006
|
+
return;
|
1007
|
+
}
|
1008
|
+
if( ensemble.issoftmax )
|
1009
|
+
{
|
1010
|
+
for(i = 0; i <= npoints-1; i++)
|
1011
|
+
{
|
1012
|
+
if( ap::round(xy(i,ensemble.nin))<0||ap::round(xy(i,ensemble.nin))>=ensemble.nout )
|
1013
|
+
{
|
1014
|
+
info = -2;
|
1015
|
+
return;
|
1016
|
+
}
|
1017
|
+
}
|
1018
|
+
}
|
1019
|
+
info = 6;
|
1020
|
+
|
1021
|
+
//
|
1022
|
+
// allocate
|
1023
|
+
//
|
1024
|
+
if( ensemble.issoftmax )
|
1025
|
+
{
|
1026
|
+
ccount = ensemble.nin+1;
|
1027
|
+
pcount = ensemble.nin;
|
1028
|
+
}
|
1029
|
+
else
|
1030
|
+
{
|
1031
|
+
ccount = ensemble.nin+ensemble.nout;
|
1032
|
+
pcount = ensemble.nin+ensemble.nout;
|
1033
|
+
}
|
1034
|
+
trnxy.setbounds(0, npoints-1, 0, ccount-1);
|
1035
|
+
valxy.setbounds(0, npoints-1, 0, ccount-1);
|
1036
|
+
mlpunserialize(ensemble.serializedmlp, network);
|
1037
|
+
rep.ngrad = 0;
|
1038
|
+
rep.nhess = 0;
|
1039
|
+
rep.ncholesky = 0;
|
1040
|
+
|
1041
|
+
//
|
1042
|
+
// train networks
|
1043
|
+
//
|
1044
|
+
for(k = 0; k <= ensemble.ensemblesize-1; k++)
|
1045
|
+
{
|
1046
|
+
|
1047
|
+
//
|
1048
|
+
// Split set
|
1049
|
+
//
|
1050
|
+
do
|
1051
|
+
{
|
1052
|
+
trnsize = 0;
|
1053
|
+
valsize = 0;
|
1054
|
+
for(i = 0; i <= npoints-1; i++)
|
1055
|
+
{
|
1056
|
+
if( ap::randomreal()<0.66 )
|
1057
|
+
{
|
1058
|
+
|
1059
|
+
//
|
1060
|
+
// Assign sample to training set
|
1061
|
+
//
|
1062
|
+
ap::vmove(&trnxy(trnsize, 0), &xy(i, 0), ap::vlen(0,ccount-1));
|
1063
|
+
trnsize = trnsize+1;
|
1064
|
+
}
|
1065
|
+
else
|
1066
|
+
{
|
1067
|
+
|
1068
|
+
//
|
1069
|
+
// Assign sample to validation set
|
1070
|
+
//
|
1071
|
+
ap::vmove(&valxy(valsize, 0), &xy(i, 0), ap::vlen(0,ccount-1));
|
1072
|
+
valsize = valsize+1;
|
1073
|
+
}
|
1074
|
+
}
|
1075
|
+
}
|
1076
|
+
while(!(trnsize!=0&&valsize!=0));
|
1077
|
+
|
1078
|
+
//
|
1079
|
+
// Train
|
1080
|
+
//
|
1081
|
+
mlptraines(network, trnxy, trnsize, valxy, valsize, decay, restarts, tmpinfo, tmprep);
|
1082
|
+
if( tmpinfo<0 )
|
1083
|
+
{
|
1084
|
+
info = tmpinfo;
|
1085
|
+
return;
|
1086
|
+
}
|
1087
|
+
|
1088
|
+
//
|
1089
|
+
// save results
|
1090
|
+
//
|
1091
|
+
ap::vmove(&ensemble.weights(k*ensemble.wcount), &network.weights(0), ap::vlen(k*ensemble.wcount,(k+1)*ensemble.wcount-1));
|
1092
|
+
ap::vmove(&ensemble.columnmeans(k*pcount), &network.columnmeans(0), ap::vlen(k*pcount,(k+1)*pcount-1));
|
1093
|
+
ap::vmove(&ensemble.columnsigmas(k*pcount), &network.columnsigmas(0), ap::vlen(k*pcount,(k+1)*pcount-1));
|
1094
|
+
rep.ngrad = rep.ngrad+tmprep.ngrad;
|
1095
|
+
rep.nhess = rep.nhess+tmprep.nhess;
|
1096
|
+
rep.ncholesky = rep.ncholesky+tmprep.ncholesky;
|
1097
|
+
}
|
1098
|
+
}
|
1099
|
+
|
1100
|
+
|
1101
|
+
/*************************************************************************
|
1102
|
+
Calculation of all types of errors
|
1103
|
+
|
1104
|
+
-- ALGLIB --
|
1105
|
+
Copyright 17.02.2009 by Bochkanov Sergey
|
1106
|
+
*************************************************************************/
|
1107
|
+
static void mlpeallerrors(mlpensemble& ensemble,
|
1108
|
+
const ap::real_2d_array& xy,
|
1109
|
+
int npoints,
|
1110
|
+
double& relcls,
|
1111
|
+
double& avgce,
|
1112
|
+
double& rms,
|
1113
|
+
double& avg,
|
1114
|
+
double& avgrel)
|
1115
|
+
{
|
1116
|
+
int i;
|
1117
|
+
ap::real_1d_array buf;
|
1118
|
+
ap::real_1d_array workx;
|
1119
|
+
ap::real_1d_array y;
|
1120
|
+
ap::real_1d_array dy;
|
1121
|
+
|
1122
|
+
workx.setbounds(0, ensemble.nin-1);
|
1123
|
+
y.setbounds(0, ensemble.nout-1);
|
1124
|
+
if( ensemble.issoftmax )
|
1125
|
+
{
|
1126
|
+
dy.setbounds(0, 0);
|
1127
|
+
dserrallocate(ensemble.nout, buf);
|
1128
|
+
}
|
1129
|
+
else
|
1130
|
+
{
|
1131
|
+
dy.setbounds(0, ensemble.nout-1);
|
1132
|
+
dserrallocate(-ensemble.nout, buf);
|
1133
|
+
}
|
1134
|
+
for(i = 0; i <= npoints-1; i++)
|
1135
|
+
{
|
1136
|
+
ap::vmove(&workx(0), &xy(i, 0), ap::vlen(0,ensemble.nin-1));
|
1137
|
+
mlpeprocess(ensemble, workx, y);
|
1138
|
+
if( ensemble.issoftmax )
|
1139
|
+
{
|
1140
|
+
dy(0) = xy(i,ensemble.nin);
|
1141
|
+
}
|
1142
|
+
else
|
1143
|
+
{
|
1144
|
+
ap::vmove(&dy(0), &xy(i, ensemble.nin), ap::vlen(0,ensemble.nout-1));
|
1145
|
+
}
|
1146
|
+
dserraccumulate(buf, y, dy);
|
1147
|
+
}
|
1148
|
+
dserrfinish(buf);
|
1149
|
+
relcls = buf(0);
|
1150
|
+
avgce = buf(1);
|
1151
|
+
rms = buf(2);
|
1152
|
+
avg = buf(3);
|
1153
|
+
avgrel = buf(4);
|
1154
|
+
}
|
1155
|
+
|
1156
|
+
|
1157
|
+
/*************************************************************************
|
1158
|
+
Internal bagging subroutine.
|
1159
|
+
|
1160
|
+
-- ALGLIB --
|
1161
|
+
Copyright 19.02.2009 by Bochkanov Sergey
|
1162
|
+
*************************************************************************/
|
1163
|
+
static void mlpebagginginternal(mlpensemble& ensemble,
|
1164
|
+
const ap::real_2d_array& xy,
|
1165
|
+
int npoints,
|
1166
|
+
double decay,
|
1167
|
+
int restarts,
|
1168
|
+
double wstep,
|
1169
|
+
int maxits,
|
1170
|
+
bool lmalgorithm,
|
1171
|
+
int& info,
|
1172
|
+
mlpreport& rep,
|
1173
|
+
mlpcvreport& ooberrors)
|
1174
|
+
{
|
1175
|
+
ap::real_2d_array xys;
|
1176
|
+
ap::boolean_1d_array s;
|
1177
|
+
ap::real_2d_array oobbuf;
|
1178
|
+
ap::integer_1d_array oobcntbuf;
|
1179
|
+
ap::real_1d_array x;
|
1180
|
+
ap::real_1d_array y;
|
1181
|
+
ap::real_1d_array dy;
|
1182
|
+
ap::real_1d_array dsbuf;
|
1183
|
+
int nin;
|
1184
|
+
int nout;
|
1185
|
+
int ccnt;
|
1186
|
+
int pcnt;
|
1187
|
+
int i;
|
1188
|
+
int j;
|
1189
|
+
int k;
|
1190
|
+
double v;
|
1191
|
+
mlpreport tmprep;
|
1192
|
+
multilayerperceptron network;
|
1193
|
+
|
1194
|
+
|
1195
|
+
//
|
1196
|
+
// Test for inputs
|
1197
|
+
//
|
1198
|
+
if( !lmalgorithm&&wstep==0&&maxits==0 )
|
1199
|
+
{
|
1200
|
+
info = -8;
|
1201
|
+
return;
|
1202
|
+
}
|
1203
|
+
if( npoints<=0||restarts<1||wstep<0||maxits<0 )
|
1204
|
+
{
|
1205
|
+
info = -1;
|
1206
|
+
return;
|
1207
|
+
}
|
1208
|
+
if( ensemble.issoftmax )
|
1209
|
+
{
|
1210
|
+
for(i = 0; i <= npoints-1; i++)
|
1211
|
+
{
|
1212
|
+
if( ap::round(xy(i,ensemble.nin))<0||ap::round(xy(i,ensemble.nin))>=ensemble.nout )
|
1213
|
+
{
|
1214
|
+
info = -2;
|
1215
|
+
return;
|
1216
|
+
}
|
1217
|
+
}
|
1218
|
+
}
|
1219
|
+
|
1220
|
+
//
|
1221
|
+
// allocate temporaries
|
1222
|
+
//
|
1223
|
+
info = 2;
|
1224
|
+
rep.ngrad = 0;
|
1225
|
+
rep.nhess = 0;
|
1226
|
+
rep.ncholesky = 0;
|
1227
|
+
ooberrors.relclserror = 0;
|
1228
|
+
ooberrors.avgce = 0;
|
1229
|
+
ooberrors.rmserror = 0;
|
1230
|
+
ooberrors.avgerror = 0;
|
1231
|
+
ooberrors.avgrelerror = 0;
|
1232
|
+
nin = ensemble.nin;
|
1233
|
+
nout = ensemble.nout;
|
1234
|
+
if( ensemble.issoftmax )
|
1235
|
+
{
|
1236
|
+
ccnt = nin+1;
|
1237
|
+
pcnt = nin;
|
1238
|
+
}
|
1239
|
+
else
|
1240
|
+
{
|
1241
|
+
ccnt = nin+nout;
|
1242
|
+
pcnt = nin+nout;
|
1243
|
+
}
|
1244
|
+
xys.setbounds(0, npoints-1, 0, ccnt-1);
|
1245
|
+
s.setbounds(0, npoints-1);
|
1246
|
+
oobbuf.setbounds(0, npoints-1, 0, nout-1);
|
1247
|
+
oobcntbuf.setbounds(0, npoints-1);
|
1248
|
+
x.setbounds(0, nin-1);
|
1249
|
+
y.setbounds(0, nout-1);
|
1250
|
+
if( ensemble.issoftmax )
|
1251
|
+
{
|
1252
|
+
dy.setbounds(0, 0);
|
1253
|
+
}
|
1254
|
+
else
|
1255
|
+
{
|
1256
|
+
dy.setbounds(0, nout-1);
|
1257
|
+
}
|
1258
|
+
for(i = 0; i <= npoints-1; i++)
|
1259
|
+
{
|
1260
|
+
for(j = 0; j <= nout-1; j++)
|
1261
|
+
{
|
1262
|
+
oobbuf(i,j) = 0;
|
1263
|
+
}
|
1264
|
+
}
|
1265
|
+
for(i = 0; i <= npoints-1; i++)
|
1266
|
+
{
|
1267
|
+
oobcntbuf(i) = 0;
|
1268
|
+
}
|
1269
|
+
mlpunserialize(ensemble.serializedmlp, network);
|
1270
|
+
|
1271
|
+
//
|
1272
|
+
// main bagging cycle
|
1273
|
+
//
|
1274
|
+
for(k = 0; k <= ensemble.ensemblesize-1; k++)
|
1275
|
+
{
|
1276
|
+
|
1277
|
+
//
|
1278
|
+
// prepare dataset
|
1279
|
+
//
|
1280
|
+
for(i = 0; i <= npoints-1; i++)
|
1281
|
+
{
|
1282
|
+
s(i) = false;
|
1283
|
+
}
|
1284
|
+
for(i = 0; i <= npoints-1; i++)
|
1285
|
+
{
|
1286
|
+
j = ap::randominteger(npoints);
|
1287
|
+
s(j) = true;
|
1288
|
+
ap::vmove(&xys(i, 0), &xy(j, 0), ap::vlen(0,ccnt-1));
|
1289
|
+
}
|
1290
|
+
|
1291
|
+
//
|
1292
|
+
// train
|
1293
|
+
//
|
1294
|
+
if( lmalgorithm )
|
1295
|
+
{
|
1296
|
+
mlptrainlm(network, xys, npoints, decay, restarts, info, tmprep);
|
1297
|
+
}
|
1298
|
+
else
|
1299
|
+
{
|
1300
|
+
mlptrainlbfgs(network, xys, npoints, decay, restarts, wstep, maxits, info, tmprep);
|
1301
|
+
}
|
1302
|
+
if( info<0 )
|
1303
|
+
{
|
1304
|
+
return;
|
1305
|
+
}
|
1306
|
+
|
1307
|
+
//
|
1308
|
+
// save results
|
1309
|
+
//
|
1310
|
+
rep.ngrad = rep.ngrad+tmprep.ngrad;
|
1311
|
+
rep.nhess = rep.nhess+tmprep.nhess;
|
1312
|
+
rep.ncholesky = rep.ncholesky+tmprep.ncholesky;
|
1313
|
+
ap::vmove(&ensemble.weights(k*ensemble.wcount), &network.weights(0), ap::vlen(k*ensemble.wcount,(k+1)*ensemble.wcount-1));
|
1314
|
+
ap::vmove(&ensemble.columnmeans(k*pcnt), &network.columnmeans(0), ap::vlen(k*pcnt,(k+1)*pcnt-1));
|
1315
|
+
ap::vmove(&ensemble.columnsigmas(k*pcnt), &network.columnsigmas(0), ap::vlen(k*pcnt,(k+1)*pcnt-1));
|
1316
|
+
|
1317
|
+
//
|
1318
|
+
// OOB estimates
|
1319
|
+
//
|
1320
|
+
for(i = 0; i <= npoints-1; i++)
|
1321
|
+
{
|
1322
|
+
if( !s(i) )
|
1323
|
+
{
|
1324
|
+
ap::vmove(&x(0), &xy(i, 0), ap::vlen(0,nin-1));
|
1325
|
+
mlpprocess(network, x, y);
|
1326
|
+
ap::vadd(&oobbuf(i, 0), &y(0), ap::vlen(0,nout-1));
|
1327
|
+
oobcntbuf(i) = oobcntbuf(i)+1;
|
1328
|
+
}
|
1329
|
+
}
|
1330
|
+
}
|
1331
|
+
|
1332
|
+
//
|
1333
|
+
// OOB estimates
|
1334
|
+
//
|
1335
|
+
if( ensemble.issoftmax )
|
1336
|
+
{
|
1337
|
+
dserrallocate(nout, dsbuf);
|
1338
|
+
}
|
1339
|
+
else
|
1340
|
+
{
|
1341
|
+
dserrallocate(-nout, dsbuf);
|
1342
|
+
}
|
1343
|
+
for(i = 0; i <= npoints-1; i++)
|
1344
|
+
{
|
1345
|
+
if( oobcntbuf(i)!=0 )
|
1346
|
+
{
|
1347
|
+
v = double(1)/double(oobcntbuf(i));
|
1348
|
+
ap::vmove(&y(0), &oobbuf(i, 0), ap::vlen(0,nout-1), v);
|
1349
|
+
if( ensemble.issoftmax )
|
1350
|
+
{
|
1351
|
+
dy(0) = xy(i,nin);
|
1352
|
+
}
|
1353
|
+
else
|
1354
|
+
{
|
1355
|
+
ap::vmove(&dy(0), &xy(i, nin), ap::vlen(0,nout-1), v);
|
1356
|
+
}
|
1357
|
+
dserraccumulate(dsbuf, y, dy);
|
1358
|
+
}
|
1359
|
+
}
|
1360
|
+
dserrfinish(dsbuf);
|
1361
|
+
ooberrors.relclserror = dsbuf(0);
|
1362
|
+
ooberrors.avgce = dsbuf(1);
|
1363
|
+
ooberrors.rmserror = dsbuf(2);
|
1364
|
+
ooberrors.avgerror = dsbuf(3);
|
1365
|
+
ooberrors.avgrelerror = dsbuf(4);
|
1366
|
+
}
|
1367
|
+
|
1368
|
+
|
1369
|
+
|