alglib 0.1.1

Sign up to get free protection for your applications and to get access to all the features.
Files changed (255) hide show
  1. data/History.txt +7 -0
  2. data/Manifest.txt +253 -0
  3. data/README.txt +33 -0
  4. data/Rakefile +27 -0
  5. data/ext/Rakefile +24 -0
  6. data/ext/alglib.i +24 -0
  7. data/ext/alglib/Makefile +157 -0
  8. data/ext/alglib/airyf.cpp +372 -0
  9. data/ext/alglib/airyf.h +81 -0
  10. data/ext/alglib/alglib.cpp +8558 -0
  11. data/ext/alglib/alglib_util.cpp +19 -0
  12. data/ext/alglib/alglib_util.h +14 -0
  13. data/ext/alglib/ap.cpp +877 -0
  14. data/ext/alglib/ap.english.html +364 -0
  15. data/ext/alglib/ap.h +666 -0
  16. data/ext/alglib/ap.russian.html +442 -0
  17. data/ext/alglib/apvt.h +754 -0
  18. data/ext/alglib/bdss.cpp +1500 -0
  19. data/ext/alglib/bdss.h +251 -0
  20. data/ext/alglib/bdsvd.cpp +1339 -0
  21. data/ext/alglib/bdsvd.h +164 -0
  22. data/ext/alglib/bessel.cpp +1226 -0
  23. data/ext/alglib/bessel.h +331 -0
  24. data/ext/alglib/betaf.cpp +105 -0
  25. data/ext/alglib/betaf.h +74 -0
  26. data/ext/alglib/bidiagonal.cpp +1328 -0
  27. data/ext/alglib/bidiagonal.h +350 -0
  28. data/ext/alglib/binomialdistr.cpp +247 -0
  29. data/ext/alglib/binomialdistr.h +153 -0
  30. data/ext/alglib/blas.cpp +576 -0
  31. data/ext/alglib/blas.h +132 -0
  32. data/ext/alglib/cblas.cpp +226 -0
  33. data/ext/alglib/cblas.h +57 -0
  34. data/ext/alglib/cdet.cpp +138 -0
  35. data/ext/alglib/cdet.h +92 -0
  36. data/ext/alglib/chebyshev.cpp +216 -0
  37. data/ext/alglib/chebyshev.h +76 -0
  38. data/ext/alglib/chisquaredistr.cpp +157 -0
  39. data/ext/alglib/chisquaredistr.h +144 -0
  40. data/ext/alglib/cholesky.cpp +285 -0
  41. data/ext/alglib/cholesky.h +86 -0
  42. data/ext/alglib/cinverse.cpp +298 -0
  43. data/ext/alglib/cinverse.h +111 -0
  44. data/ext/alglib/clu.cpp +337 -0
  45. data/ext/alglib/clu.h +120 -0
  46. data/ext/alglib/correlation.cpp +280 -0
  47. data/ext/alglib/correlation.h +77 -0
  48. data/ext/alglib/correlationtests.cpp +726 -0
  49. data/ext/alglib/correlationtests.h +134 -0
  50. data/ext/alglib/crcond.cpp +826 -0
  51. data/ext/alglib/crcond.h +148 -0
  52. data/ext/alglib/creflections.cpp +310 -0
  53. data/ext/alglib/creflections.h +165 -0
  54. data/ext/alglib/csolve.cpp +312 -0
  55. data/ext/alglib/csolve.h +99 -0
  56. data/ext/alglib/ctrinverse.cpp +387 -0
  57. data/ext/alglib/ctrinverse.h +98 -0
  58. data/ext/alglib/ctrlinsolve.cpp +297 -0
  59. data/ext/alglib/ctrlinsolve.h +81 -0
  60. data/ext/alglib/dawson.cpp +234 -0
  61. data/ext/alglib/dawson.h +74 -0
  62. data/ext/alglib/descriptivestatistics.cpp +436 -0
  63. data/ext/alglib/descriptivestatistics.h +112 -0
  64. data/ext/alglib/det.cpp +140 -0
  65. data/ext/alglib/det.h +94 -0
  66. data/ext/alglib/dforest.cpp +1819 -0
  67. data/ext/alglib/dforest.h +316 -0
  68. data/ext/alglib/elliptic.cpp +497 -0
  69. data/ext/alglib/elliptic.h +217 -0
  70. data/ext/alglib/estnorm.cpp +429 -0
  71. data/ext/alglib/estnorm.h +107 -0
  72. data/ext/alglib/expintegrals.cpp +422 -0
  73. data/ext/alglib/expintegrals.h +108 -0
  74. data/ext/alglib/faq.english.html +258 -0
  75. data/ext/alglib/faq.russian.html +272 -0
  76. data/ext/alglib/fdistr.cpp +202 -0
  77. data/ext/alglib/fdistr.h +163 -0
  78. data/ext/alglib/fresnel.cpp +211 -0
  79. data/ext/alglib/fresnel.h +91 -0
  80. data/ext/alglib/gammaf.cpp +338 -0
  81. data/ext/alglib/gammaf.h +104 -0
  82. data/ext/alglib/gqgengauss.cpp +235 -0
  83. data/ext/alglib/gqgengauss.h +92 -0
  84. data/ext/alglib/gqgenhermite.cpp +268 -0
  85. data/ext/alglib/gqgenhermite.h +63 -0
  86. data/ext/alglib/gqgenjacobi.cpp +297 -0
  87. data/ext/alglib/gqgenjacobi.h +72 -0
  88. data/ext/alglib/gqgenlaguerre.cpp +265 -0
  89. data/ext/alglib/gqgenlaguerre.h +69 -0
  90. data/ext/alglib/gqgenlegendre.cpp +300 -0
  91. data/ext/alglib/gqgenlegendre.h +62 -0
  92. data/ext/alglib/gqgenlobatto.cpp +305 -0
  93. data/ext/alglib/gqgenlobatto.h +97 -0
  94. data/ext/alglib/gqgenradau.cpp +232 -0
  95. data/ext/alglib/gqgenradau.h +95 -0
  96. data/ext/alglib/hbisinv.cpp +480 -0
  97. data/ext/alglib/hbisinv.h +183 -0
  98. data/ext/alglib/hblas.cpp +228 -0
  99. data/ext/alglib/hblas.h +64 -0
  100. data/ext/alglib/hcholesky.cpp +339 -0
  101. data/ext/alglib/hcholesky.h +91 -0
  102. data/ext/alglib/hermite.cpp +114 -0
  103. data/ext/alglib/hermite.h +49 -0
  104. data/ext/alglib/hessenberg.cpp +370 -0
  105. data/ext/alglib/hessenberg.h +152 -0
  106. data/ext/alglib/hevd.cpp +247 -0
  107. data/ext/alglib/hevd.h +107 -0
  108. data/ext/alglib/hsschur.cpp +1316 -0
  109. data/ext/alglib/hsschur.h +108 -0
  110. data/ext/alglib/htridiagonal.cpp +734 -0
  111. data/ext/alglib/htridiagonal.h +180 -0
  112. data/ext/alglib/ialglib.cpp +6 -0
  113. data/ext/alglib/ialglib.h +9 -0
  114. data/ext/alglib/ibetaf.cpp +960 -0
  115. data/ext/alglib/ibetaf.h +125 -0
  116. data/ext/alglib/igammaf.cpp +430 -0
  117. data/ext/alglib/igammaf.h +157 -0
  118. data/ext/alglib/inv.cpp +274 -0
  119. data/ext/alglib/inv.h +115 -0
  120. data/ext/alglib/inverseupdate.cpp +480 -0
  121. data/ext/alglib/inverseupdate.h +185 -0
  122. data/ext/alglib/jacobianelliptic.cpp +164 -0
  123. data/ext/alglib/jacobianelliptic.h +94 -0
  124. data/ext/alglib/jarquebera.cpp +2271 -0
  125. data/ext/alglib/jarquebera.h +80 -0
  126. data/ext/alglib/kmeans.cpp +356 -0
  127. data/ext/alglib/kmeans.h +76 -0
  128. data/ext/alglib/laguerre.cpp +94 -0
  129. data/ext/alglib/laguerre.h +48 -0
  130. data/ext/alglib/lbfgs.cpp +1167 -0
  131. data/ext/alglib/lbfgs.h +218 -0
  132. data/ext/alglib/lda.cpp +434 -0
  133. data/ext/alglib/lda.h +133 -0
  134. data/ext/alglib/ldlt.cpp +1130 -0
  135. data/ext/alglib/ldlt.h +124 -0
  136. data/ext/alglib/leastsquares.cpp +1252 -0
  137. data/ext/alglib/leastsquares.h +290 -0
  138. data/ext/alglib/legendre.cpp +107 -0
  139. data/ext/alglib/legendre.h +49 -0
  140. data/ext/alglib/linreg.cpp +1185 -0
  141. data/ext/alglib/linreg.h +380 -0
  142. data/ext/alglib/logit.cpp +1523 -0
  143. data/ext/alglib/logit.h +333 -0
  144. data/ext/alglib/lq.cpp +399 -0
  145. data/ext/alglib/lq.h +160 -0
  146. data/ext/alglib/lu.cpp +462 -0
  147. data/ext/alglib/lu.h +119 -0
  148. data/ext/alglib/mannwhitneyu.cpp +4490 -0
  149. data/ext/alglib/mannwhitneyu.h +115 -0
  150. data/ext/alglib/minlm.cpp +918 -0
  151. data/ext/alglib/minlm.h +312 -0
  152. data/ext/alglib/mlpbase.cpp +3375 -0
  153. data/ext/alglib/mlpbase.h +589 -0
  154. data/ext/alglib/mlpe.cpp +1369 -0
  155. data/ext/alglib/mlpe.h +552 -0
  156. data/ext/alglib/mlptrain.cpp +1056 -0
  157. data/ext/alglib/mlptrain.h +283 -0
  158. data/ext/alglib/nearunityunit.cpp +91 -0
  159. data/ext/alglib/nearunityunit.h +17 -0
  160. data/ext/alglib/normaldistr.cpp +377 -0
  161. data/ext/alglib/normaldistr.h +175 -0
  162. data/ext/alglib/nsevd.cpp +1869 -0
  163. data/ext/alglib/nsevd.h +140 -0
  164. data/ext/alglib/pca.cpp +168 -0
  165. data/ext/alglib/pca.h +87 -0
  166. data/ext/alglib/poissondistr.cpp +143 -0
  167. data/ext/alglib/poissondistr.h +130 -0
  168. data/ext/alglib/polinterpolation.cpp +685 -0
  169. data/ext/alglib/polinterpolation.h +206 -0
  170. data/ext/alglib/psif.cpp +173 -0
  171. data/ext/alglib/psif.h +88 -0
  172. data/ext/alglib/qr.cpp +414 -0
  173. data/ext/alglib/qr.h +168 -0
  174. data/ext/alglib/ratinterpolation.cpp +134 -0
  175. data/ext/alglib/ratinterpolation.h +72 -0
  176. data/ext/alglib/rcond.cpp +705 -0
  177. data/ext/alglib/rcond.h +140 -0
  178. data/ext/alglib/reflections.cpp +504 -0
  179. data/ext/alglib/reflections.h +165 -0
  180. data/ext/alglib/rotations.cpp +473 -0
  181. data/ext/alglib/rotations.h +128 -0
  182. data/ext/alglib/rsolve.cpp +221 -0
  183. data/ext/alglib/rsolve.h +99 -0
  184. data/ext/alglib/sbisinv.cpp +217 -0
  185. data/ext/alglib/sbisinv.h +171 -0
  186. data/ext/alglib/sblas.cpp +185 -0
  187. data/ext/alglib/sblas.h +64 -0
  188. data/ext/alglib/schur.cpp +156 -0
  189. data/ext/alglib/schur.h +102 -0
  190. data/ext/alglib/sdet.cpp +193 -0
  191. data/ext/alglib/sdet.h +101 -0
  192. data/ext/alglib/sevd.cpp +116 -0
  193. data/ext/alglib/sevd.h +99 -0
  194. data/ext/alglib/sinverse.cpp +672 -0
  195. data/ext/alglib/sinverse.h +138 -0
  196. data/ext/alglib/spddet.cpp +138 -0
  197. data/ext/alglib/spddet.h +96 -0
  198. data/ext/alglib/spdgevd.cpp +842 -0
  199. data/ext/alglib/spdgevd.h +200 -0
  200. data/ext/alglib/spdinverse.cpp +509 -0
  201. data/ext/alglib/spdinverse.h +122 -0
  202. data/ext/alglib/spdrcond.cpp +421 -0
  203. data/ext/alglib/spdrcond.h +118 -0
  204. data/ext/alglib/spdsolve.cpp +275 -0
  205. data/ext/alglib/spdsolve.h +105 -0
  206. data/ext/alglib/spline2d.cpp +1192 -0
  207. data/ext/alglib/spline2d.h +301 -0
  208. data/ext/alglib/spline3.cpp +1264 -0
  209. data/ext/alglib/spline3.h +290 -0
  210. data/ext/alglib/srcond.cpp +595 -0
  211. data/ext/alglib/srcond.h +127 -0
  212. data/ext/alglib/ssolve.cpp +895 -0
  213. data/ext/alglib/ssolve.h +139 -0
  214. data/ext/alglib/stdafx.h +0 -0
  215. data/ext/alglib/stest.cpp +131 -0
  216. data/ext/alglib/stest.h +94 -0
  217. data/ext/alglib/studenttdistr.cpp +222 -0
  218. data/ext/alglib/studenttdistr.h +115 -0
  219. data/ext/alglib/studentttests.cpp +377 -0
  220. data/ext/alglib/studentttests.h +178 -0
  221. data/ext/alglib/svd.cpp +620 -0
  222. data/ext/alglib/svd.h +126 -0
  223. data/ext/alglib/tdbisinv.cpp +2608 -0
  224. data/ext/alglib/tdbisinv.h +228 -0
  225. data/ext/alglib/tdevd.cpp +1229 -0
  226. data/ext/alglib/tdevd.h +115 -0
  227. data/ext/alglib/tridiagonal.cpp +594 -0
  228. data/ext/alglib/tridiagonal.h +171 -0
  229. data/ext/alglib/trigintegrals.cpp +490 -0
  230. data/ext/alglib/trigintegrals.h +131 -0
  231. data/ext/alglib/trinverse.cpp +345 -0
  232. data/ext/alglib/trinverse.h +98 -0
  233. data/ext/alglib/trlinsolve.cpp +926 -0
  234. data/ext/alglib/trlinsolve.h +73 -0
  235. data/ext/alglib/tsort.cpp +405 -0
  236. data/ext/alglib/tsort.h +54 -0
  237. data/ext/alglib/variancetests.cpp +245 -0
  238. data/ext/alglib/variancetests.h +134 -0
  239. data/ext/alglib/wsr.cpp +6285 -0
  240. data/ext/alglib/wsr.h +96 -0
  241. data/ext/ap.i +97 -0
  242. data/ext/correlation.i +24 -0
  243. data/ext/extconf.rb +6 -0
  244. data/ext/logit.i +89 -0
  245. data/lib/alglib.rb +71 -0
  246. data/lib/alglib/correlation.rb +26 -0
  247. data/lib/alglib/linearregression.rb +63 -0
  248. data/lib/alglib/logit.rb +42 -0
  249. data/test/test_alglib.rb +52 -0
  250. data/test/test_correlation.rb +44 -0
  251. data/test/test_correlationtest.rb +45 -0
  252. data/test/test_linreg.rb +35 -0
  253. data/test/test_logit.rb +43 -0
  254. data/test/test_pca.rb +27 -0
  255. metadata +326 -0
@@ -0,0 +1,589 @@
1
+ /*************************************************************************
2
+ Copyright (c) 2007-2008, Sergey Bochkanov (ALGLIB project).
3
+
4
+ Redistribution and use in source and binary forms, with or without
5
+ modification, are permitted provided that the following conditions are
6
+ met:
7
+
8
+ - Redistributions of source code must retain the above copyright
9
+ notice, this list of conditions and the following disclaimer.
10
+
11
+ - Redistributions in binary form must reproduce the above copyright
12
+ notice, this list of conditions and the following disclaimer listed
13
+ in this license in the documentation and/or other materials
14
+ provided with the distribution.
15
+
16
+ - Neither the name of the copyright holders nor the names of its
17
+ contributors may be used to endorse or promote products derived from
18
+ this software without specific prior written permission.
19
+
20
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31
+ *************************************************************************/
32
+
33
+ #ifndef _mlpbase_h
34
+ #define _mlpbase_h
35
+
36
+ #include "ap.h"
37
+ #include "ialglib.h"
38
+
39
+ struct multilayerperceptron
40
+ {
41
+ ap::integer_1d_array structinfo;
42
+ ap::real_1d_array weights;
43
+ ap::real_1d_array columnmeans;
44
+ ap::real_1d_array columnsigmas;
45
+ ap::real_1d_array neurons;
46
+ ap::real_1d_array dfdnet;
47
+ ap::real_1d_array derror;
48
+ ap::real_1d_array x;
49
+ ap::real_1d_array y;
50
+ ap::real_2d_array chunks;
51
+ ap::real_1d_array nwbuf;
52
+ };
53
+
54
+
55
+ /*************************************************************************
56
+ Creates neural network with NIn inputs, NOut outputs, without hidden
57
+ layers, with linear output layer. Network weights are filled with small
58
+ random values.
59
+
60
+ -- ALGLIB --
61
+ Copyright 04.11.2007 by Bochkanov Sergey
62
+ *************************************************************************/
63
+ void mlpcreate0(int nin, int nout, multilayerperceptron& network);
64
+
65
+
66
+ /*************************************************************************
67
+ Same as MLPCreate0, but with one hidden layer (NHid neurons) with
68
+ non-linear activation function. Output layer is linear.
69
+
70
+ -- ALGLIB --
71
+ Copyright 04.11.2007 by Bochkanov Sergey
72
+ *************************************************************************/
73
+ void mlpcreate1(int nin, int nhid, int nout, multilayerperceptron& network);
74
+
75
+
76
+ /*************************************************************************
77
+ Same as MLPCreate0, but with two hidden layers (NHid1 and NHid2 neurons)
78
+ with non-linear activation function. Output layer is linear.
79
+ $ALL
80
+
81
+ -- ALGLIB --
82
+ Copyright 04.11.2007 by Bochkanov Sergey
83
+ *************************************************************************/
84
+ void mlpcreate2(int nin,
85
+ int nhid1,
86
+ int nhid2,
87
+ int nout,
88
+ multilayerperceptron& network);
89
+
90
+
91
+ /*************************************************************************
92
+ Creates neural network with NIn inputs, NOut outputs, without hidden
93
+ layers with non-linear output layer. Network weights are filled with small
94
+ random values.
95
+
96
+ Activation function of the output layer takes values:
97
+
98
+ (B, +INF), if D>=0
99
+
100
+ or
101
+
102
+ (-INF, B), if D<0.
103
+
104
+
105
+ -- ALGLIB --
106
+ Copyright 30.03.2008 by Bochkanov Sergey
107
+ *************************************************************************/
108
+ void mlpcreateb0(int nin,
109
+ int nout,
110
+ double b,
111
+ double d,
112
+ multilayerperceptron& network);
113
+
114
+
115
+ /*************************************************************************
116
+ Same as MLPCreateB0 but with non-linear hidden layer.
117
+
118
+ -- ALGLIB --
119
+ Copyright 30.03.2008 by Bochkanov Sergey
120
+ *************************************************************************/
121
+ void mlpcreateb1(int nin,
122
+ int nhid,
123
+ int nout,
124
+ double b,
125
+ double d,
126
+ multilayerperceptron& network);
127
+
128
+
129
+ /*************************************************************************
130
+ Same as MLPCreateB0 but with two non-linear hidden layers.
131
+
132
+ -- ALGLIB --
133
+ Copyright 30.03.2008 by Bochkanov Sergey
134
+ *************************************************************************/
135
+ void mlpcreateb2(int nin,
136
+ int nhid1,
137
+ int nhid2,
138
+ int nout,
139
+ double b,
140
+ double d,
141
+ multilayerperceptron& network);
142
+
143
+
144
+ /*************************************************************************
145
+ Creates neural network with NIn inputs, NOut outputs, without hidden
146
+ layers with non-linear output layer. Network weights are filled with small
147
+ random values. Activation function of the output layer takes values [A,B].
148
+
149
+ -- ALGLIB --
150
+ Copyright 30.03.2008 by Bochkanov Sergey
151
+ *************************************************************************/
152
+ void mlpcreater0(int nin,
153
+ int nout,
154
+ double a,
155
+ double b,
156
+ multilayerperceptron& network);
157
+
158
+
159
+ /*************************************************************************
160
+ Same as MLPCreateR0, but with non-linear hidden layer.
161
+
162
+ -- ALGLIB --
163
+ Copyright 30.03.2008 by Bochkanov Sergey
164
+ *************************************************************************/
165
+ void mlpcreater1(int nin,
166
+ int nhid,
167
+ int nout,
168
+ double a,
169
+ double b,
170
+ multilayerperceptron& network);
171
+
172
+
173
+ /*************************************************************************
174
+ Same as MLPCreateR0, but with two non-linear hidden layers.
175
+
176
+ -- ALGLIB --
177
+ Copyright 30.03.2008 by Bochkanov Sergey
178
+ *************************************************************************/
179
+ void mlpcreater2(int nin,
180
+ int nhid1,
181
+ int nhid2,
182
+ int nout,
183
+ double a,
184
+ double b,
185
+ multilayerperceptron& network);
186
+
187
+
188
+ /*************************************************************************
189
+ Creates classifier network with NIn inputs and NOut possible classes.
190
+ Network contains no hidden layers and linear output layer with SOFTMAX-
191
+ normalization (so outputs sums up to 1.0 and converge to posterior
192
+ probabilities).
193
+
194
+ -- ALGLIB --
195
+ Copyright 04.11.2007 by Bochkanov Sergey
196
+ *************************************************************************/
197
+ void mlpcreatec0(int nin, int nout, multilayerperceptron& network);
198
+
199
+
200
+ /*************************************************************************
201
+ Same as MLPCreateC0, but with one non-linear hidden layer.
202
+
203
+ -- ALGLIB --
204
+ Copyright 04.11.2007 by Bochkanov Sergey
205
+ *************************************************************************/
206
+ void mlpcreatec1(int nin, int nhid, int nout, multilayerperceptron& network);
207
+
208
+
209
+ /*************************************************************************
210
+ Same as MLPCreateC0, but with two non-linear hidden layers.
211
+
212
+ -- ALGLIB --
213
+ Copyright 04.11.2007 by Bochkanov Sergey
214
+ *************************************************************************/
215
+ void mlpcreatec2(int nin,
216
+ int nhid1,
217
+ int nhid2,
218
+ int nout,
219
+ multilayerperceptron& network);
220
+
221
+
222
+ /*************************************************************************
223
+ Copying of neural network
224
+
225
+ INPUT PARAMETERS:
226
+ Network1 - original
227
+
228
+ OUTPUT PARAMETERS:
229
+ Network2 - copy
230
+
231
+ -- ALGLIB --
232
+ Copyright 04.11.2007 by Bochkanov Sergey
233
+ *************************************************************************/
234
+ void mlpcopy(const multilayerperceptron& network1,
235
+ multilayerperceptron& network2);
236
+
237
+
238
+ /*************************************************************************
239
+ Serialization of MultiLayerPerceptron strucure
240
+
241
+ INPUT PARAMETERS:
242
+ Network - original
243
+
244
+ OUTPUT PARAMETERS:
245
+ RA - array of real numbers which stores network,
246
+ array[0..RLen-1]
247
+ RLen - RA lenght
248
+
249
+ -- ALGLIB --
250
+ Copyright 29.03.2008 by Bochkanov Sergey
251
+ *************************************************************************/
252
+ void mlpserialize(const multilayerperceptron& network,
253
+ ap::real_1d_array& ra,
254
+ int& rlen);
255
+
256
+
257
+ /*************************************************************************
258
+ Unserialization of MultiLayerPerceptron strucure
259
+
260
+ INPUT PARAMETERS:
261
+ RA - real array which stores network
262
+
263
+ OUTPUT PARAMETERS:
264
+ Network - restored network
265
+
266
+ -- ALGLIB --
267
+ Copyright 29.03.2008 by Bochkanov Sergey
268
+ *************************************************************************/
269
+ void mlpunserialize(const ap::real_1d_array& ra,
270
+ multilayerperceptron& network);
271
+
272
+
273
+ /*************************************************************************
274
+ Randomization of neural network weights
275
+
276
+ -- ALGLIB --
277
+ Copyright 06.11.2007 by Bochkanov Sergey
278
+ *************************************************************************/
279
+ void mlprandomize(multilayerperceptron& network);
280
+
281
+
282
+ /*************************************************************************
283
+ Randomization of neural network weights and standartisator
284
+
285
+ -- ALGLIB --
286
+ Copyright 10.03.2008 by Bochkanov Sergey
287
+ *************************************************************************/
288
+ void mlprandomizefull(multilayerperceptron& network);
289
+
290
+
291
+ /*************************************************************************
292
+ Internal subroutine.
293
+
294
+ -- ALGLIB --
295
+ Copyright 30.03.2008 by Bochkanov Sergey
296
+ *************************************************************************/
297
+ void mlpinitpreprocessor(multilayerperceptron& network,
298
+ const ap::real_2d_array& xy,
299
+ int ssize);
300
+
301
+
302
+ /*************************************************************************
303
+ Returns information about initialized network: number of inputs, outputs,
304
+ weights.
305
+
306
+ -- ALGLIB --
307
+ Copyright 04.11.2007 by Bochkanov Sergey
308
+ *************************************************************************/
309
+ void mlpproperties(const multilayerperceptron& network,
310
+ int& nin,
311
+ int& nout,
312
+ int& wcount);
313
+
314
+
315
+ /*************************************************************************
316
+ Tells whether network is SOFTMAX-normalized (i.e. classifier) or not.
317
+
318
+ -- ALGLIB --
319
+ Copyright 04.11.2007 by Bochkanov Sergey
320
+ *************************************************************************/
321
+ bool mlpissoftmax(const multilayerperceptron& network);
322
+
323
+
324
+ /*************************************************************************
325
+ Procesing
326
+
327
+ INPUT PARAMETERS:
328
+ Network - neural network
329
+ X - input vector, array[0..NIn-1].
330
+
331
+ OUTPUT PARAMETERS:
332
+ Y - result. Regression estimate when solving regression task,
333
+ vector of posterior probabilities for classification task.
334
+ Subroutine does not allocate memory for this vector, it is
335
+ responsibility of a caller to allocate it. Array must be
336
+ at least [0..NOut-1].
337
+
338
+ -- ALGLIB --
339
+ Copyright 04.11.2007 by Bochkanov Sergey
340
+ *************************************************************************/
341
+ void mlpprocess(multilayerperceptron& network,
342
+ const ap::real_1d_array& x,
343
+ ap::real_1d_array& y);
344
+
345
+
346
+ /*************************************************************************
347
+ Error function for neural network, internal subroutine.
348
+
349
+ -- ALGLIB --
350
+ Copyright 04.11.2007 by Bochkanov Sergey
351
+ *************************************************************************/
352
+ double mlperror(multilayerperceptron& network,
353
+ const ap::real_2d_array& xy,
354
+ int ssize);
355
+
356
+
357
+ /*************************************************************************
358
+ Natural error function for neural network, internal subroutine.
359
+
360
+ -- ALGLIB --
361
+ Copyright 04.11.2007 by Bochkanov Sergey
362
+ *************************************************************************/
363
+ double mlperrorn(multilayerperceptron& network,
364
+ const ap::real_2d_array& xy,
365
+ int ssize);
366
+
367
+
368
+ /*************************************************************************
369
+ Classification error
370
+
371
+ -- ALGLIB --
372
+ Copyright 04.11.2007 by Bochkanov Sergey
373
+ *************************************************************************/
374
+ int mlpclserror(multilayerperceptron& network,
375
+ const ap::real_2d_array& xy,
376
+ int ssize);
377
+
378
+
379
+ /*************************************************************************
380
+ Relative classification error on the test set
381
+
382
+ INPUT PARAMETERS:
383
+ Network - network
384
+ XY - test set
385
+ NPoints - test set size
386
+
387
+ RESULT:
388
+ percent of incorrectly classified cases. Works both for
389
+ classifier networks and general purpose networks used as
390
+ classifiers.
391
+
392
+ -- ALGLIB --
393
+ Copyright 25.12.2008 by Bochkanov Sergey
394
+ *************************************************************************/
395
+ double mlprelclserror(multilayerperceptron& network,
396
+ const ap::real_2d_array& xy,
397
+ int npoints);
398
+
399
+
400
+ /*************************************************************************
401
+ Average cross-entropy (in bits per element) on the test set
402
+
403
+ INPUT PARAMETERS:
404
+ Network - neural network
405
+ XY - test set
406
+ NPoints - test set size
407
+
408
+ RESULT:
409
+ CrossEntropy/(NPoints*LN(2)).
410
+ Zero if network solves regression task.
411
+
412
+ -- ALGLIB --
413
+ Copyright 08.01.2009 by Bochkanov Sergey
414
+ *************************************************************************/
415
+ double mlpavgce(multilayerperceptron& network,
416
+ const ap::real_2d_array& xy,
417
+ int npoints);
418
+
419
+
420
+ /*************************************************************************
421
+ RMS error on the test set
422
+
423
+ INPUT PARAMETERS:
424
+ Network - neural network
425
+ XY - test set
426
+ NPoints - test set size
427
+
428
+ RESULT:
429
+ root mean square error.
430
+ Its meaning for regression task is obvious. As for
431
+ classification task, RMS error means error when estimating posterior
432
+ probabilities.
433
+
434
+ -- ALGLIB --
435
+ Copyright 04.11.2007 by Bochkanov Sergey
436
+ *************************************************************************/
437
+ double mlprmserror(multilayerperceptron& network,
438
+ const ap::real_2d_array& xy,
439
+ int npoints);
440
+
441
+
442
+ /*************************************************************************
443
+ Average error on the test set
444
+
445
+ INPUT PARAMETERS:
446
+ Network - neural network
447
+ XY - test set
448
+ NPoints - test set size
449
+
450
+ RESULT:
451
+ Its meaning for regression task is obvious. As for
452
+ classification task, it means average error when estimating posterior
453
+ probabilities.
454
+
455
+ -- ALGLIB --
456
+ Copyright 11.03.2008 by Bochkanov Sergey
457
+ *************************************************************************/
458
+ double mlpavgerror(multilayerperceptron& network,
459
+ const ap::real_2d_array& xy,
460
+ int npoints);
461
+
462
+
463
+ /*************************************************************************
464
+ Average relative error on the test set
465
+
466
+ INPUT PARAMETERS:
467
+ Network - neural network
468
+ XY - test set
469
+ NPoints - test set size
470
+
471
+ RESULT:
472
+ Its meaning for regression task is obvious. As for
473
+ classification task, it means average relative error when estimating
474
+ posterior probability of belonging to the correct class.
475
+
476
+ -- ALGLIB --
477
+ Copyright 11.03.2008 by Bochkanov Sergey
478
+ *************************************************************************/
479
+ double mlpavgrelerror(multilayerperceptron& network,
480
+ const ap::real_2d_array& xy,
481
+ int npoints);
482
+
483
+
484
+ /*************************************************************************
485
+ Gradient calculation. Internal subroutine.
486
+
487
+ -- ALGLIB --
488
+ Copyright 04.11.2007 by Bochkanov Sergey
489
+ *************************************************************************/
490
+ void mlpgrad(multilayerperceptron& network,
491
+ const ap::real_1d_array& x,
492
+ const ap::real_1d_array& desiredy,
493
+ double& e,
494
+ ap::real_1d_array& grad);
495
+
496
+
497
+ /*************************************************************************
498
+ Gradient calculation (natural error function). Internal subroutine.
499
+
500
+ -- ALGLIB --
501
+ Copyright 04.11.2007 by Bochkanov Sergey
502
+ *************************************************************************/
503
+ void mlpgradn(multilayerperceptron& network,
504
+ const ap::real_1d_array& x,
505
+ const ap::real_1d_array& desiredy,
506
+ double& e,
507
+ ap::real_1d_array& grad);
508
+
509
+
510
+ /*************************************************************************
511
+ Batch gradient calculation. Internal subroutine.
512
+
513
+ -- ALGLIB --
514
+ Copyright 04.11.2007 by Bochkanov Sergey
515
+ *************************************************************************/
516
+ void mlpgradbatch(multilayerperceptron& network,
517
+ const ap::real_2d_array& xy,
518
+ int ssize,
519
+ double& e,
520
+ ap::real_1d_array& grad);
521
+
522
+
523
+ /*************************************************************************
524
+ Batch gradient calculation (natural error function). Internal subroutine.
525
+
526
+ -- ALGLIB --
527
+ Copyright 04.11.2007 by Bochkanov Sergey
528
+ *************************************************************************/
529
+ void mlpgradnbatch(multilayerperceptron& network,
530
+ const ap::real_2d_array& xy,
531
+ int ssize,
532
+ double& e,
533
+ ap::real_1d_array& grad);
534
+
535
+
536
+ /*************************************************************************
537
+ Batch Hessian calculation (natural error function) using R-algorithm.
538
+ Internal subroutine.
539
+
540
+ -- ALGLIB --
541
+ Copyright 26.01.2008 by Bochkanov Sergey.
542
+
543
+ Hessian calculation based on R-algorithm described in
544
+ "Fast Exact Multiplication by the Hessian",
545
+ B. A. Pearlmutter,
546
+ Neural Computation, 1994.
547
+ *************************************************************************/
548
+ void mlphessiannbatch(multilayerperceptron& network,
549
+ const ap::real_2d_array& xy,
550
+ int ssize,
551
+ double& e,
552
+ ap::real_1d_array& grad,
553
+ ap::real_2d_array& h);
554
+
555
+
556
+ /*************************************************************************
557
+ Batch Hessian calculation using R-algorithm.
558
+ Internal subroutine.
559
+
560
+ -- ALGLIB --
561
+ Copyright 26.01.2008 by Bochkanov Sergey.
562
+
563
+ Hessian calculation based on R-algorithm described in
564
+ "Fast Exact Multiplication by the Hessian",
565
+ B. A. Pearlmutter,
566
+ Neural Computation, 1994.
567
+ *************************************************************************/
568
+ void mlphessianbatch(multilayerperceptron& network,
569
+ const ap::real_2d_array& xy,
570
+ int ssize,
571
+ double& e,
572
+ ap::real_1d_array& grad,
573
+ ap::real_2d_array& h);
574
+
575
+
576
+ /*************************************************************************
577
+ Internal subroutine, shouldn't be called by user.
578
+ *************************************************************************/
579
+ void mlpinternalprocessvector(const ap::integer_1d_array& structinfo,
580
+ const ap::real_1d_array& weights,
581
+ const ap::real_1d_array& columnmeans,
582
+ const ap::real_1d_array& columnsigmas,
583
+ ap::real_1d_array& neurons,
584
+ ap::real_1d_array& dfdnet,
585
+ const ap::real_1d_array& x,
586
+ ap::real_1d_array& y);
587
+
588
+
589
+ #endif